201
|
Willemarck N, Rysman E, Brusselmans K, Van Imschoot G, Vanderhoydonc F, Moerloose K, Lerut E, Verhoeven G, van Roy F, Vleminckx K, Swinnen JV. Aberrant activation of fatty acid synthesis suppresses primary cilium formation and distorts tissue development. Cancer Res 2010; 70:9453-62. [PMID: 20889723 DOI: 10.1158/0008-5472.can-10-2324] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activation of fatty acid synthesis is a key feature of many advanced human cancers. Unlike in classical lipogenic tissues, this process has been implicated in membrane production required for rapid cell proliferation. Here, to gain further insight into the consequences of tumor-associated fatty acid synthesis, we have mimicked the lipogenic phenotype of cancer cells in Xenopus embryos by microinjection of RNA encoding the lipogenic transcription factor sterol regulatory element binding protein 1c (SREBP1c). Dramatic morphologic changes were observed that could be linked to alterations in Wnt and Hedgehog signaling, and ultimately to a distortion of the primary cilium. This is a sophisticated microtubular sensory organelle that is expressed on the surface of nearly every cell type and that is lost in many cancers. SREBP1c-induced loss of the primary cilium could be confirmed in mammalian Madin-Darby canine kidney (MDCK) cells and was mediated by changes in the supply of fatty acids. Conversely, inhibition of fatty acid synthesis in highly lipogenic human prostate cancer cells restored the formation of the primary cilium. Lipid-induced ciliary loss was associated with mislocalization of apical proteins, distortion of cell polarization, and aberrant epithelial tissue development as revealed in three-dimensional cultures of MDCK cells and in the developing mouse prostate. These data imply that tumor-associated lipogenesis, in addition to rendering cells more autonomous in terms of lipid supply, disturbs cilium formation and contributes to impaired environmental sensing, aberrant signaling, and distortion of polarized tissue architecture, which are all hallmarks of cancer.
Collapse
Affiliation(s)
- Nicolas Willemarck
- Laboratory for Experimental Medicine and Endocrinology, Department of Experimental Medicine, Molecular Small Animal Imaging Centre, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Vladar EK, Antic D, Axelrod JD. Planar cell polarity signaling: the developing cell's compass. Cold Spring Harb Perspect Biol 2010; 1:a002964. [PMID: 20066108 DOI: 10.1101/cshperspect.a002964] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.
Collapse
Affiliation(s)
- Eszter K Vladar
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | |
Collapse
|
203
|
Abstract
The fur on a cat's back, the scales on a fish, or the bristles on a fly are all beautifully organized, with a high degree of polarization in their surface organization. Great progress has been made in understanding how individual cell polarity is established, but our understanding of how cells coordinate their polarity in forming coherent tissues is still fragmentary. The organization of cells in the plane of the epithelium is known as planar cell polarity (PCP), and studies in the past decade have delineated a genetic pathway for the control of PCP. This review will first briefly review data from the Drosophila field, where PCP was first identified and genetically characterized, and then explore how vertebrate tissues become polarized during development.
Collapse
|
204
|
May-Simera HL, Kai M, Hernandez V, Osborn DPS, Tada M, Beales PL. Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish. Dev Biol 2010; 345:215-25. [PMID: 20643117 DOI: 10.1016/j.ydbio.2010.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry.
Collapse
Affiliation(s)
- Helen L May-Simera
- Molecular Medicine Unit, Institute of Child Health, University College London, WC1N 1EH, UK
| | | | | | | | | | | |
Collapse
|
205
|
Kim SK, Shindo A, Park TJ, Oh EC, Ghosh S, Gray RS, Lewis RA, Johnson CA, Attie-Bittach T, Katsanis N, Wallingford JB. Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science 2010; 329:1337-40. [PMID: 20671153 PMCID: PMC3509789 DOI: 10.1126/science.1191184] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The planar cell polarity (PCP) signaling pathway governs collective cell movements during vertebrate embryogenesis, and certain PCP proteins are also implicated in the assembly of cilia. The septins are cytoskeletal proteins controlling behaviors such as cell division and migration. Here, we identified control of septin localization by the PCP protein Fritz as a crucial control point for both collective cell movement and ciliogenesis in Xenopus embryos. We also linked mutations in human Fritz to Bardet-Biedl and Meckel-Gruber syndromes, a notable link given that other genes mutated in these syndromes also influence collective cell movement and ciliogenesis. These findings shed light on the mechanisms by which fundamental cellular machinery, such as the cytoskeleton, is regulated during embryonic development and human disease.
Collapse
Affiliation(s)
- Su Kyoung Kim
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Asako Shindo
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Tae Joo Park
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Edwin C. Oh
- Center for Human Disease Modeling, Departments of Cell Biology and Pediatrics, Duke University, Durham, NC 27710, USA
| | - Srimoyee Ghosh
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Ryan S. Gray
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Richard A. Lewis
- Departments of Ophthalmology, Medicine, Pediatrics, and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin A. Johnson
- Sections of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Tania Attie-Bittach
- Département de Génétique, INSERM U781, Hôpital Necker–Enfants Malades, Université Paris Descartes, Paris, France
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Departments of Cell Biology and Pediatrics, Duke University, Durham, NC 27710, USA
| | - John B. Wallingford
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
206
|
Kiefer JC. Primer and interviews: Diverse connections between primary cilia and Hedgehog signaling. Dev Dyn 2010; 239:1255-62. [PMID: 20235234 DOI: 10.1002/dvdy.22278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
On the surface, the Hedgehog (Hh) pathway and primary cilia make strange bedfellows. Hh is a dynamic regulator of a myriad of developmental processes, ranging from spinal cord and limb patterning to lung branching morphogenesis. By contrast, immotile primary cilia were long considered ancestral holdovers with no known function. Considering the disparate perceptions of these two phenomena, the relatively recent discovery that there is a symbiotic-like relationship between Hh and cilia was unexpected. This primer covers the basics of primary cilia and Hh signaling, highlighting variations in ways they are connected across species, and also discusses the evolutionary implications of these findings. Roles of cilia in signal transduction are analyzed further in an interview with Søren T. Christensen, PhD, and Andrew S. Peterson, PhD, in the A Conversation With the Experts section.
Collapse
Affiliation(s)
- Julie C Kiefer
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
207
|
Luyten A, Su X, Gondela S, Chen Y, Rompani S, Takakura A, Zhou J. Aberrant regulation of planar cell polarity in polycystic kidney disease. J Am Soc Nephrol 2010; 21:1521-32. [PMID: 20705705 DOI: 10.1681/asn.2010010127] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mutations in PKD1, which encodes polycystin-1 (PC1), contribute to >85% of cases of autosomal dominant polycystic kidney disease (ADPKD). The planar cell polarity (PCP) pathway is necessary for the oriented cell division and convergent extension that establishes and maintains the structure of kidney tubules, but the role of this pathway in the pathophysiology of ADPKD is incompletely understood. Here, we show that inactivation of Pkd1 in postnatal developing mouse kidneys leads to a defect in oriented cell division in precystic kidney tubules. We also observed this defect in precystic Pkd1-inactivated mature kidneys subjected to ischemia-reperfusion injury as a "third hit." Cystic kidneys exhibited striking upregulation and activation of Frizzled 3 (Fz3), a regulator of PCP, and its downstream effector, CDC42. Precystic kidneys demonstrated upregulation of CDC42, but the localization of the polarity proteins Par3 and Par6 was similar to control. Fz3 was expressed on the cilia of cystic kidneys but barely detected on the cilia of normal kidneys. In vitro, PC1 and Fz3 antagonized each other to control CDC42 expression and the rate of cell migration in HEK293T cells. Taken together, our data suggest that PC1 controls oriented cell division and that aberrant PCP signaling contributes to cystogenesis.
Collapse
Affiliation(s)
- Annouck Luyten
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
208
|
Lancaster MA, Gleeson JG. Cystic kidney disease: the role of Wnt signaling. Trends Mol Med 2010; 16:349-60. [PMID: 20576469 PMCID: PMC2919646 DOI: 10.1016/j.molmed.2010.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 05/19/2010] [Accepted: 05/19/2010] [Indexed: 02/07/2023]
Abstract
Wnt signaling encompasses a variety of signaling cascades that can be activated by secreted Wnt ligands. Two such pathways, the canonical or beta-catenin pathway and the planar cell polarity (PCP) pathway, have recently received attention for their roles in multiple cellular processes within the kidney. Both of these pathways are important for kidney development as well as homeostasis and injury repair. The disruption of either pathway can lead to cystic kidney disease, a class of genetic diseases that includes the most common hereditary life-threatening syndrome polycystic kidney disease (PKD). Recent evidence implicates canonical and noncanonical Wnt pathways in cyst formation and points to a remarkable role for developmental processes in the adult kidney.
Collapse
Affiliation(s)
- Madeline A Lancaster
- Biomedical Sciences Program, Howard Hughes Medical Institutes, Department of Neurosciences, University of California, San Diego, USA.
| | | |
Collapse
|
209
|
Cao Y, Park A, Sun Z. Intraflagellar transport proteins are essential for cilia formation and for planar cell polarity. J Am Soc Nephrol 2010; 21:1326-33. [PMID: 20576807 PMCID: PMC2938599 DOI: 10.1681/asn.2009091001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 04/12/2010] [Indexed: 11/03/2022] Open
Abstract
The highly conserved intraflagellar transport (IFT) proteins are essential for cilia formation in multiple organisms, but surprisingly, cilia form in multiple zebrafish ift mutants. Here, we detected maternal deposition of ift gene products in zebrafish and found that ciliary assembly occurs only during early developmental stages, supporting the idea that maternal contribution of ift gene products masks the function of IFT proteins during initial development. In addition, the basal bodies in multiciliated cells of the pronephric duct in ift mutants were disorganized, with a pattern suggestive of defective planar cell polarity (PCP). Depletion of pk1, a core PCP component, similarly led to kidney cyst formation and basal body disorganization. Furthermore, we found that multiple ift genes genetically interact with pk1. Taken together, these data suggest that IFT proteins play a conserved role in cilia formation and planar cell polarity in zebrafish.
Collapse
Affiliation(s)
- Ying Cao
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Alice Park
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
210
|
Duldulao NA, Li J, Sun Z. Cilia in cell signaling and human disorders. Protein Cell 2010; 1:726-36. [PMID: 21203914 PMCID: PMC4875200 DOI: 10.1007/s13238-010-0098-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 07/19/2010] [Indexed: 01/13/2023] Open
Abstract
One of the most widespread cellular organelles in nature is cilium, which is found in many unicellular and multicellular organisms. Formerly thought to be a mostly vestigial organelle, the cilium has been discovered in the past several decades to play critical motile and sensory roles involved in normal organogenesis during development. The role of cilia has also been implicated in an ever increasing array of seemingly unrelated human diseases, including blindness, kidney cysts, neural tube defects and obesity. In this article we review some of the recent developments in research on cilia, and how defects in ciliogenesis and function can give rise to developmental disorders and disease.
Collapse
Affiliation(s)
- Neil A. Duldulao
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., SHM I-329A, New Haven, CT 06520 USA
| | - Jade Li
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., SHM I-329A, New Haven, CT 06520 USA
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., SHM I-329A, New Haven, CT 06520 USA
| |
Collapse
|
211
|
Song H, Hu J, Chen W, Elliott G, Andre P, Gao B, Yang Y. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 2010; 466:378-82. [PMID: 20562861 PMCID: PMC3065171 DOI: 10.1038/nature09129] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 04/26/2010] [Indexed: 11/17/2022]
Abstract
Defining the three body axes is a central event of vertebrate morphogenesis. Establishment of left-right (L-R) asymmetry in development follows the determination of dorsal-ventral and anterior-posterior (A-P) body axes, although the molecular mechanism underlying precise L-R symmetry breaking in reference to the other two axes is still poorly understood. Here, by removing both Vangl1 and Vangl2, the two mouse homologues of a Drosophila core planar cell polarity (PCP) gene Van Gogh (Vang), we reveal a previously unrecognized function of PCP in the initial breaking of lateral symmetry. The leftward nodal flow across the posterior notochord (PNC) has been identified as the earliest event in the de novo formation of L-R asymmetry. We show that PCP is essential in interpreting the A-P patterning information and linking it to L-R asymmetry. In the absence of Vangl1 and Vangl2, cilia are positioned randomly around the centre of the PNC cells and nodal flow is turbulent, which results in disrupted L-R asymmetry. PCP in mouse, unlike what has been implicated in other vertebrate species, is not required for ciliogenesis, cilium motility, Sonic hedgehog (Shh) signalling or apical docking of basal bodies in ciliated tracheal epithelial cells. Our data suggest that PCP acts earlier than the unidirectional nodal flow during bilateral symmetry breaking in vertebrates and provide insight into the functional mechanism of PCP in organizing the vertebrate tissues in development.
Collapse
Affiliation(s)
- Hai Song
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Jianxin Hu
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Wen Chen
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Gene Elliott
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Philipp Andre
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Bo Gao
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Yingzi Yang
- Developmental Genetics Section, Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| |
Collapse
|
212
|
Valente EM, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaglini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Sougnez C, Hildebrandt F, Otto EA, Held S, Diplas BH, Davis EE, Mikula M, Strom CM, Ben-Zeev B, Lev D, Sagie TL, Michelson M, Yaron Y, Krause A, Boltshauser E, Elkhartoufi N, Roume J, Shalev S, Munnich A, Saunier S, Inglehearn C, Saad A, Alkindy A, Thomas S, Vekemans M, Dallapiccola B, Katsanis N, Johnson CA, Attié-Bitach T, Gleeson JG. Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes. Nat Genet 2010; 42:619-25. [PMID: 20512146 PMCID: PMC2894012 DOI: 10.1038/ng.594] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 04/26/2010] [Indexed: 01/24/2023]
Abstract
Joubert syndrome (JBTS), related disorders (JSRDs) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and CORS2 (JBTS2) loci are allelic and caused by mutations in TMEM216, which encodes an uncharacterized tetraspan transmembrane protein. Individuals with CORS2 frequently had nephronophthisis and polydactyly, and two affected individuals conformed to the oro-facio-digital type VI phenotype, whereas skeletal dysplasia was common in fetuses affected by MKS. A single G218T mutation (R73L in the protein) was identified in all cases of Ashkenazi Jewish descent (n=10). TMEM216 localized to the base of primary cilia, and loss of TMEM216 in mutant fibroblasts or after knockdown caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA and Dishevelled. TMEM216 formed a complex with Meckelin, which is encoded by a gene also mutated in JSRDs and MKS. Disruption of tmem216 expression in zebrafish caused gastrulation defects similar to those in other ciliary morphants. These data implicate a new family of proteins in the ciliopathies and further support allelism between ciliopathy disorders.
Collapse
Affiliation(s)
- Enza Maria Valente
- Mendel Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Ross ME. Gene-environment interactions, folate metabolism and the embryonic nervous system. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2010; 2:471-480. [PMID: 20836042 PMCID: PMC2981143 DOI: 10.1002/wsbm.72] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Formation of brain and spinal cord requires the successful closure of neural ectoderm into an embryonic neural tube. Defects in this process result in anencephaly or spina bifida, which together constitute a leading cause of mortality and morbidity in children, affecting all ethnic and socioeconomic groups. The subject of intensive research for decades, neural tube defects (NTDs), are understood to arise from complex interactions of genes and environmental conditions, though systems-level details are still elusive. Despite the variety of underlying causes, a single intervention, folic acid supplementation given in the first gestational month, can measurably reduce the occurrence of NTDs in a population. Evidence for and the scope of gene-environment interactions in the genesis of NTDs is discussed. A systems-based approach is now possible toward studies of genetic and environmental influences underlying NTDs that will enable the assessment of individual risk and personalized optimization of prevention.
Collapse
Affiliation(s)
- M. Elizabeth Ross
- Laboratory of Neurogenetics & Development, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065
| |
Collapse
|
214
|
Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci 2010; 13:700-7. [PMID: 20473291 DOI: 10.1038/nn.2555] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 04/01/2010] [Indexed: 12/11/2022]
Abstract
Ependymal cells form the epithelial lining of cerebral ventricles. Their apical surface is covered by cilia that beat in a coordinated fashion to facilitate circulation of the cerebrospinal fluid (CSF). The genetic factors that govern the development and function of ependymal cilia remain poorly understood. We found that the planar cell polarity cadherins Celsr2 and Celsr3 control these processes. In Celsr2-deficient mice, the development and planar organization of ependymal cilia are compromised, leading to defective CSF dynamics and hydrocephalus. In Celsr2 and Celsr3 double mutant ependyma, ciliogenesis is markedly impaired, resulting in lethal hydrocephalus. The membrane distribution of Vangl2 and Fzd3, two key planar cell polarity proteins, was disturbed in Celsr2 mutants, and even more so in Celsr2 and Celsr3 double mutants. Our findings suggest that planar cell polarity signaling is involved in ependymal cilia development and in the pathophysiology of hydrocephalus, with possible implications in other ciliopathies.
Collapse
|
215
|
Tay SY, Yu X, Wong KN, Panse P, Ng CP, Roy S. The iguana/DZIP1 protein is a novel component of the ciliogenic pathway essential for axonemal biogenesis. Dev Dyn 2010; 239:527-34. [PMID: 20014402 DOI: 10.1002/dvdy.22199] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cilia play important roles in many developmental and physiological processes. However, the genetic and cell biological control of ciliogenesis remains poorly understood. Here, we show that the zebrafish iguana gene is required for differentiation of primary cilia. iguana encodes a zinc finger and coiled-coil containing protein, previously implicated in Hedgehog signaling. We now argue that aberrant Hedgehog activity in iguana -deficient zebrafish arises from their profound lack of primary cilia. By contrast, the requirement of iguana for motile cilia formation is less obligatory. In the absence of iguana function, basal bodies can migrate to the cell surface and appear to engage with the apical membrane. However, formation of ciliary pits and axonemal outgrowth is completely inhibited. Iguana localizes to the base of primary and motile cilia, in the immediate vicinity or closely associated with the basal bodies. These findings identify the Iguana protein as a novel and critical component of ciliogenesis.
Collapse
Affiliation(s)
- Shang Yew Tay
- Institute of Molecular and Cell Biology, Cancer and Developmental Cell Biology Division, Proteos, Singapore
| | | | | | | | | | | |
Collapse
|
216
|
Abstract
The primary cilium has recently stepped into the spotlight, as a flood of data show that this organelle has crucial roles in vertebrate development and human genetic diseases. Cilia are required for the response to developmental signals, and evidence is accumulating that the primary cilium is specialized for hedgehog signal transduction. The formation of cilia, in turn, is regulated by other signalling pathways, possibly including the planar cell polarity pathway. The cilium therefore represents a nexus for signalling pathways during development. The connections between cilia and developmental signalling have begun to clarify the basis of human diseases associated with ciliary dysfunction.
Collapse
Affiliation(s)
- Sarah C Goetz
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | |
Collapse
|
217
|
McDermott KM, Liu BY, Tlsty TD, Pazour GJ. Primary cilia regulate branching morphogenesis during mammary gland development. Curr Biol 2010; 20:731-7. [PMID: 20381354 PMCID: PMC2916967 DOI: 10.1016/j.cub.2010.02.048] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 12/21/2022]
Abstract
During mammary gland development, an epithelial bud undergoes branching morphogenesis to expand into a continuous tree-like network of branched ducts [1]. The process involves multiple cell types that are coordinated by hormones and growth factors coupled with signaling events including Wnt and Hedgehog [2-5]. Primary cilia play key roles in the development of many organs by coordinating extracellular signaling (of Wnt and Hedgehog) with cellular physiology [6-8]. During mammary development, we find cilia on luminal epithelial, myoepithelial, and stromal cells during early branching morphogenesis when epithelial ducts extend into the fat pad and undergo branching morphogenesis. When branching is complete, cilia disappear from luminal epithelial cells but remain on myoepithelial and stromal cells. Ciliary dysfunction caused by intraflagellar transport defects results in branching defects. These include decreased ductal extension and decreased secondary and tertiary branching, along with reduced lobular-alveolar development during pregnancy and lactation. We find increased canonical Wnt and decreased Hedgehog signaling in the mutant glands, which is consistent with the role of cilia in regulating these pathways [6-11]. In mammary gland and other organs, increased canonical Wnt [12-14] and decreased Hedgehog [15, 16] signaling decrease branching morphogenesis, suggesting that Wnt and Hedgehog signaling connect ciliary dysfunction to branching defects.
Collapse
Affiliation(s)
- Kimberly M. McDermott
- University of Arizona, Department of Cell Biology and Anatomy, Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724USA
| | - Bob Y. Liu
- University of California San Francisco, Department of Pathology and UCSF Comprehensive Cancer Center, HSW 501, 513 Parnassus Ave., San Francisco, California 94143-0511, USA
| | - Thea D. Tlsty
- University of California San Francisco, Department of Pathology and UCSF Comprehensive Cancer Center, HSW 501, 513 Parnassus Ave., San Francisco, California 94143-0511, USA
| | - Gregory J. Pazour
- University of Massachusetts Medical School, Program in Molecular Medicine, Biotech II, Suite 213, 373 Plantation St., Worcester, MA 01605, USA
| |
Collapse
|
218
|
Borovina A, Superina S, Voskas D, Ciruna B. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 2010; 12:407-12. [PMID: 20305649 DOI: 10.1038/ncb2042] [Citation(s) in RCA: 280] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 02/11/2010] [Indexed: 12/29/2022]
Abstract
Cilia are microtubule-based organelles that project into the extracellular space, function in the perception and integration of environmental cues, and regulate Hedgehog signal transduction. The emergent association of ciliary defects with diverse and pleiotropic human disorders has fuelled investigations into the molecular genetic regulation of ciliogenesis. Although recent studies implicate planar cell polarity (PCP) in cilia formation, this conclusion is based on analyses of proteins that are not specific to, or downstream effectors of PCP signal transduction. Here we characterize zebrafish embryos devoid of all Vangl2 function, a core and specific component of the PCP signalling pathway. Using Arl13b-GFP as a live marker of the ciliary axoneme, we demonstrate that Vangl2 is not required for ciliogenesis. Instead, Vangl2 controls the posterior tilting of primary motile cilia lining the neurocoel, Kupffer's vesicle and pronephric duct. Furthermore, we show that Vangl2 is required for asymmetric localization of cilia to the posterior apical membrane of neuroepithelial cells. Our results indicate a broad and essential role for PCP in the asymmetric localization and orientation of motile primary cilia, establishing directional fluid flow implicated in normal embryonic development and disease.
Collapse
Affiliation(s)
- Antonia Borovina
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada, M5G 1X8
| | | | | | | |
Collapse
|
219
|
Heydeck W, Zeng H, Liu A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev Dyn 2010; 238:3035-42. [PMID: 19877275 DOI: 10.1002/dvdy.22130] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Precise planar cell polarity (PCP) is critical for the development of multiple organ systems in animals. A group of core-PCP proteins are recognized to play crucial roles in convergent extension and other PCP-related processes in mammals. However, the functions of another group of PCP-regulating proteins, the PCP-effector proteins, are yet to be fully studied. In this study, the generation and characterization of a mouse mutant for the PCP effector gene Fuzzy (Fuz) is reported. Fuz homozygous mutants are embryonically lethal, with multiple defects including neural tube defects, abnormal dorsal/ventral patterning of the spinal cord, and defective anterior/posterior patterning of the limb buds. Fuz mutants also exhibit abnormal Hedgehog (Hh) signaling and inefficient proteolytic processing of Gli3. Finally, a significant decrease in cilia was found in Fuz homozygous mutants. In conclusion, Fuz plays an important role in cilia formation, Hh signal transduction, and embryonic development in mammals.
Collapse
Affiliation(s)
- Westley Heydeck
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
220
|
Mirzadeh Z, Han YG, Soriano-Navarro M, García-Verdugo JM, Alvarez-Buylla A. Cilia organize ependymal planar polarity. J Neurosci 2010; 30:2600-10. [PMID: 20164345 PMCID: PMC2873868 DOI: 10.1523/jneurosci.3744-09.2010] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/11/2009] [Accepted: 12/17/2009] [Indexed: 12/18/2022] Open
Abstract
Multiciliated epithelial cells, called ependymal cells, line the ventricles in the adult brain. Most ependymal cells are born prenatally and are derived from radial glia. Ependymal cells have a remarkable planar polarization that determines orientation of ciliary beating and propulsion of CSF. Disruption of ependymal ciliary beating, by injury or disease, results in aberrant CSF circulation and hydrocephalus, a common disorder of the CNS. Very little is known about the mechanisms guiding ependymal planar polarity and whether this organization is acquired during ependymal cell development or is already present in radial glia. Here we show that basal bodies in ependymal cells in the lateral ventricle walls of adult mice are polarized in two ways: (1) rotational; angle of individual basal bodies with respect to their long axis and (2) translational; the position of basal bodies on the apical surface of the cell. Conditional ablation of motile cilia disrupted rotational orientation, but translational polarity was largely preserved. In contrast, translational polarity was dramatically affected when radial glial primary cilia were ablated earlier in development. Remarkably, radial glia in the embryo have a translational polarity that predicts the orientation of mature ependymal cells. These results suggest that ependymal planar cell polarity is a multistep process initially organized by primary cilia in radial glia and then refined by motile cilia in ependymal cells.
Collapse
Affiliation(s)
- Zaman Mirzadeh
- Department of Neurosurgery and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143, and
| | - Young-Goo Han
- Department of Neurosurgery and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143, and
| | - Mario Soriano-Navarro
- Laboratorio de Morfología Celular, Unidad Mixta Centro de Investigacion Principe Felipe, Universidad de Valencia Estudios Generales, Centro Investigación Biomédica en Red para Enfermedades Neurodegenerativas, Valencia 46012, Spain
| | - Jose Manuel García-Verdugo
- Laboratorio de Morfología Celular, Unidad Mixta Centro de Investigacion Principe Felipe, Universidad de Valencia Estudios Generales, Centro Investigación Biomédica en Red para Enfermedades Neurodegenerativas, Valencia 46012, Spain
| | - Arturo Alvarez-Buylla
- Department of Neurosurgery and
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143, and
| |
Collapse
|
221
|
PCP effector gene Inturned is an important regulator of cilia formation and embryonic development in mammals. Dev Biol 2010; 339:418-28. [PMID: 20067783 DOI: 10.1016/j.ydbio.2010.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 01/03/2010] [Accepted: 01/04/2010] [Indexed: 11/21/2022]
Abstract
The PCP effector gene Inturned regulates planar cell polarity (PCP) and wing hair formation in Drosophila wings. In order to understand the roles for Inturned in mammalian embryonic development, we generated a null mutant allele for the mouse homologue of Inturned (Intu) via gene-targeting in ES cells. Mouse Intu null mutants are homozygous lethal at midgestation, exhibiting multiple defects including neural tube closure defects, abnormal dorsal/ventral patterning of the central nervous system and abnormal anterior-posterior patterning of the limbs resulting in severe polydactyly (7-9 digits each limb). The developmental processes affected by the Intu mutation are under the control of Hh signaling through Gli-family transcription factors. We found that in Intu mutant embryos the expression of Gli1 and Ptch1, two direct transcriptional targets of Hh signaling, is down-regulated, and the proteolytic processing of Gli3 is compromised. We further demonstrate that Intu plays significant roles in the formation of primary cilia both during embryonic development and in cultured fibroblasts. Finally, a cytoplasmic GFP-Intu fusion protein efficiently rescues the ciliogenic defects in Intu mutant cells. In conclusion, we show that PCP effector gene Intu is an important regulator of cilia formation, Hh signal transduction, and embryonic development in mammals.
Collapse
|
222
|
Abstract
The primary cilium organizes numerous signal transduction cascades, and an understanding of signaling receptor trafficking to cilia is now emerging. A defining feature of cilia is the periciliary diffusion barrier that separates the ciliary and plasma membranes. Although lateral transport through this barrier may take place, polarized exocytosis to the base of the cilium has been the prevailing model for delivering membrane proteins to cilia. Key players for this polarized exocytosis model include the GTPases Rab8 and Rab11, the exocyst, and possibly the intraflagellar tranport machinery. In turn, the sorting of membrane proteins to cilia critically relies on the recognition of ciliary targeting signals by sorting machines such as the BBSome coat complex or the GTPase Arf4. Finally, some proteins need to exit from cilia, and ubiquitination may regulate this step. The stage is now set to dissect the interplay between signaling and regulated trafficking to and from cilia.
Collapse
Affiliation(s)
- Maxence V. Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345;
| | - E. Scott Seeley
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345;
| | - Hua Jin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345;
| |
Collapse
|
223
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the cardiovascular system, pulmonary system, gastrointestinal tract, reproductive organ systems, excretory system, and auditory system. Using a variety of animal model systems, recent studies have substantiated the role of Wnt signaling via the canonical/beta-catenin-mediated trajectory, the non-canonical Wnt trajectories, or both, in forming epithelial tubular tissues. This review focuses on the involvement of the Wnt pathways in the induction, specification, proliferation, and morphogenesis involved in tubulogenesis within tissues including the lungs, kidneys, ears, mammary glands, gut, and heart. The ultimate goal is to describe the developmental processes forming the various tubulogenic organ systems to determine the relationships between these processes.
Collapse
Affiliation(s)
- Rachel K Miller
- Department of Biochemistry and Molecular Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
224
|
Sugiyama Y, Stump RJW, Nguyen A, Wen L, Chen Y, Wang Y, Murdoch JN, Lovicu FJ, McAvoy JW. Secreted frizzled-related protein disrupts PCP in eye lens fiber cells that have polarised primary cilia. Dev Biol 2009; 338:193-201. [PMID: 19968984 DOI: 10.1016/j.ydbio.2009.11.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/19/2009] [Accepted: 11/30/2009] [Indexed: 11/18/2022]
Abstract
Planar cell polarity (PCP) signaling polarises cells along tissue axes. Although pathways involved are becoming better understood, outstanding issues include; (i) existence/identity of cues that orchestrate global polarisation in tissues, and (ii) the generality of the link between polarisation of primary cilia and asymmetric localisation of PCP proteins. Mammalian lenses are mainly comprised of epithelial-derived fiber cells. Concentrically arranged fibers are precisely aligned as they elongate along the anterior-posterior axis and orientate towards lens poles where they meet fibers from other segments to form characteristic sutures. We show that lens exhibits PCP, with each fiber cell having an apically situated cilium and in most cases this is polarised towards the anterior pole. Frizzled and other PCP proteins are also asymmetrically localised along the equatorial-anterior axis. Mutations in core PCP genes Van Gogh-like 2 and Celsr1 perturb oriented fiber alignment and suture formation. Suppression of the PCP pathway by overexpressing Sfrp2 shows that whilst local groups of fibers are often similarly oriented, they lack global orientation; consequently when local groups of fibers with different orientations meet they form multiple, small, ectopic suture-like configurations. This indicates that this extracellular inhibitor disrupts a global polarising signal that utilises a PCP-mediated mechanism to coordinate the global alignment and orientation of fibers to lens poles.
Collapse
Affiliation(s)
- Yuki Sugiyama
- Save Sight Institute, The University of Sydney, NSW 2001, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Huang P, Schier AF. Dampened Hedgehog signaling but normal Wnt signaling in zebrafish without cilia. Development 2009; 136:3089-98. [PMID: 19700616 DOI: 10.1242/dev.041343] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cilia have been implicated in Hedgehog (Hh) and Wnt signaling in mouse but not in Drosophila. To determine whether the role of cilia is conserved in zebrafish, we generated maternal-zygotic (MZ) oval (ovl; ift88) mutants that lack all cilia. MZovl mutants display normal canonical and non-canonical Wnt signaling but show defects in Hh signaling. As in mouse, zebrafish cilia are required to mediate the activities of Hh, Ptc, Smo and PKA. However, in contrast to mouse Ift88 mutants, which show a dramatic reduction in Hh signaling, zebrafish MZovl mutants display dampened, but expanded, Hh pathway activity. This activity is largely due to gli1, the expression of which is fully dependent on Hh signaling in mouse but not in zebrafish. These results reveal a conserved requirement for cilia in transducing the activity of upstream regulators of Hh signaling but distinct phenotypic effects due to differential regulation and differing roles of transcriptional mediators.
Collapse
Affiliation(s)
- Peng Huang
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard Stem Cell Institute, Broad Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
226
|
Maisonneuve C, Guilleret I, Vick P, Weber T, Andre P, Beyer T, Blum M, Constam DB. Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 2009; 136:3019-30. [PMID: 19666828 DOI: 10.1242/dev.038174] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycystic diseases and left-right (LR) axis malformations are frequently linked to cilia defects. Renal cysts also arise in mice and frogs lacking Bicaudal C (BicC), a conserved RNA-binding protein containing K-homology (KH) domains and a sterile alpha motif (SAM). However, a role for BicC in cilia function has not been demonstrated. Here, we report that targeted inactivation of BicC randomizes left-right (LR) asymmetry by disrupting the planar alignment of motile cilia required for cilia-driven fluid flow. Furthermore, depending on its SAM domain, BicC can uncouple Dvl2 signaling from the canonical Wnt pathway, which has been implicated in antagonizing planar cell polarity (PCP). The SAM domain concentrates BicC in cytoplasmic structures harboring RNA-processing bodies (P-bodies) and Dvl2. These results suggest a model whereby BicC links the orientation of cilia with PCP, possibly by regulating RNA silencing in P-bodies.
Collapse
|
227
|
Planar cell polarity and cilia. Semin Cell Dev Biol 2009; 20:998-1005. [PMID: 19815086 DOI: 10.1016/j.semcdb.2009.09.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/22/2022]
Abstract
In the last few years, evidence has come to light suggesting that planar cell polarity signaling in vertebrates may be controlled and modulated by primary cilia, subcellular organelles that emerge from the plasma membrane of most cell types. This characteristic distinguishes vertebrate planar cell polarity signaling from that in insects. We review here some of the experimental evidence contributing to this finding. These observations have begun to suggest molecular and cellular mechanisms of the so-called ciliopathies, important human diseases characterized by defective ciliary functions.
Collapse
|
228
|
Rida PCG, Chen P. Line up and listen: Planar cell polarity regulation in the mammalian inner ear. Semin Cell Dev Biol 2009; 20:978-85. [PMID: 19508855 PMCID: PMC2796270 DOI: 10.1016/j.semcdb.2009.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
Abstract
The inner ear sensory organs possess extraordinary structural features necessary to conduct mechanosensory transduction for hearing and balance. Their structural beauty has fascinated scientists since the dawn of modern science and ensured a rigorous pursuit of the understanding of mechanotransduction. Sensory cells of the inner ear display unique structural features that underlie their mechanosensitivity and resolution, and represent perhaps the most distinctive form of a type of cellular polarity, known as planar cell polarity (PCP). Until recently, however, it was not known how the precise PCP of the inner ear sensory organs was achieved during development. Here, we review the PCP of the inner ear and recent advances in the quest for an understanding of its formation.
Collapse
Affiliation(s)
- Padmashree C G Rida
- Department of Cell Biology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
229
|
Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, Finnell RH. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 2009; 11:1225-32. [PMID: 19767740 PMCID: PMC2755648 DOI: 10.1038/ncb1966] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/22/2009] [Indexed: 11/08/2022]
Abstract
The planar cell polarity (PCP) signalling pathway is essential for embryonic development because it governs diverse cellular behaviours, and 'core PCP' proteins, such as Dishevelled and Frizzled, have been extensively characterized. By contrast, the 'PCP effector' proteins, such as Intu and Fuz, remain largely unstudied. These proteins are essential for PCP signalling, but they have never been investigated in mammals and their cell biological activities remain entirely unknown. We report here that Fuz mutant mice show neural tube defects, skeletal dysmorphologies and Hedgehog signalling defects stemming from disrupted ciliogenesis. Using bioinformatics and imaging of an in vivo mucociliary epithelium, we established a central role for Fuz in membrane trafficking, showing that Fuz is essential for trafficking of cargo to basal bodies and to the apical tips of cilia. Fuz is also essential for exocytosis in secretory cells. Finally, we identified a Rab-related small GTPase as a Fuz interaction partner that is also essential for ciliogenesis and secretion. These results are significant because they provide new insights into the mechanisms by which developmental regulatory systems such as PCP signalling interface with fundamental cellular systems such as the vesicle trafficking machinery.
Collapse
Affiliation(s)
- Ryan S. Gray
- Dept. of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Philip B. Abitua
- Dept. of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Bogdan J. Wlodarczyk
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | | | - Otis Blanchard
- Dept. of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Insuk Lee
- Dept. Chemistry and Biochemistry and Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712
| | - Greg S. Weiss
- Dept. of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
- Dept. Chemistry and Biochemistry and Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712
| | - Karen J. Liu
- Dept. of Craniofacial Development, King’s College London, London, UK SE1 9RT
| | - Edward M. Marcotte
- Dept. Chemistry and Biochemistry and Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712
| | - John B. Wallingford
- Dept. of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712
| | - Richard H. Finnell
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
- The Texas A&M Institute for Genomic Medicine, Houston, Texas 77030
| |
Collapse
|
230
|
|
231
|
Roszko I, Sawada A, Solnica-Krezel L. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 2009; 20:986-97. [PMID: 19761865 DOI: 10.1016/j.semcdb.2009.09.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 12/18/2022]
Abstract
Vertebrate gastrulation entails massive cell movements that establish and shape the germ layers. During gastrulation, the individual cell behaviors are strictly coordinated in time and space by various signaling pathways. These pathways instruct the cells about proliferation, shape, fate and migration into proper location. Convergence and extension (C&E) movements during vertebrate gastrulation play a major role in the shaping of the embryonic body. In vertebrates, the Wnt/Planar Cell Polarity (Wnt/PCP) pathway is a key regulator of C&E movements, essential for several polarized cell behaviors, including directed cell migration, and mediolateral and radial cell intercalation. However, the molecular mechanisms underlying the acquisition of Planar Cell Polarity by highly dynamic mesenchymal cells engaged in C&E are still not well understood. Here we review new evidence implicating the Wnt/PCP pathway in specific cell behaviors required for C&E during zebrafish gastrulation, in comparison to other vertebrates. We also discuss findings on the molecular regulation and the interaction of the Wnt/PCP pathway with other signaling pathways during gastrulation movements.
Collapse
Affiliation(s)
- Isabelle Roszko
- Vanderbilt University, Department of Biological Sciences, VU Station B #351634, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
232
|
Abstract
The association between renal dysplasia and minor malformations of the external ear is weak. However, there is a remarkable list of syndromes that link the kidney to the inner ear. To organize these seemingly disparate syndromes, we cluster representative examples into three groups: (a) syndromes that share pathways regulating development; (b) syndromes involving dysfunction of the primary cilium, which normally provides critical information to epithelial cells about the fluid in which they are bathed; (c) syndromes arising from dysfunction of specialized proteins that transport ions and drugs in and out of the extracellular fluid or provide structural support.
Collapse
Affiliation(s)
- Elena Torban
- Departments of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
233
|
Abstract
Respect for the primary cilium has undergone a remarkable renaissance over the past decade, and it is now thought to be an essential regulator of numerous signaling pathways. The primary cilium's functions range from the movement of cells and fluid, to sensory inputs involved with olfaction and photoreception. Disruption of cilia function is involved in multiple human syndromes collectively called 'ciliopathies'. The cilium's activities are mediated by targeting of receptors, channels, and their downstream effector proteins to the ciliary or basal body compartment. These combined properties of the cilium make it a critical organelle facilitating the interactions between the cell and its environment. Here, we review many of the recent advances contributing to the ascendancy of the primary cilium and how the extraordinary complexity of this organelle inevitably assures many more exciting future discoveries.
Collapse
Affiliation(s)
- Nicolas F. Berbari
- Department of Cell Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama 35294, USA
| | - Amber K. O’Connor
- Department of Cell Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama 35294, USA
| | - Courtney J. Haycraft
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bradley K. Yoder
- Department of Cell Biology, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama 35294, USA
| |
Collapse
|
234
|
Abstract
From the onset of zebrafish development both canonical and noncanonical Wnt signaling play major roles in a diverse array of developmental processes such as patterning, gastrulation, and neuralation making both pathways unarguably prime requests for normal development to occur. In this review, we will focus on their association with cilia and, in particular, how they regulate ciliogenesis and consequently how cilia may regulate them.
Collapse
Affiliation(s)
- Chris Jopling
- The Center of Regenerative Medicine in Barcelona, Barcelona, Spain
| | | |
Collapse
|
235
|
Dawe HR, Adams M, Wheway G, Szymanska K, Logan CV, Noegel AA, Gull K, Johnson CA. Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton. J Cell Sci 2009; 122:2716-26. [PMID: 19596800 DOI: 10.1242/jcs.043794] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Meckel-Gruber syndrome (MKS) is a severe autosomal recessively inherited disorder caused by mutations in genes that encode components of the primary cilium and basal body. Here we show that two MKS proteins, MKS1 and meckelin, that are required for centrosome migration and ciliogenesis interact with actin-binding isoforms of nesprin-2 (nuclear envelope spectrin repeat protein 2, also known as Syne-2 and NUANCE). Nesprins are important scaffold proteins for maintenance of the actin cytoskeleton, nuclear positioning and nuclear-envelope architecture. However, in ciliated-cell models, meckelin and nesprin-2 isoforms colocalized at filopodia prior to the establishment of cell polarity and ciliogenesis. Loss of nesprin-2 and nesprin-1 shows that both mediate centrosome migration and are then essential for ciliogenesis, but do not otherwise affect apical-basal polarity. Loss of meckelin (by siRNA and in a patient cell-line) caused a dramatic remodelling of the actin cytoskeleton, aberrant localization of nesprin-2 isoforms to actin stress-fibres and activation of RhoA signalling. These findings further highlight the important roles of the nesprins during cellular and developmental processes, particularly in general organelle positioning, and suggest that a mechanistic link between centrosome positioning, cell polarity and the actin cytoskeleton is required for centrosomal migration and is essential for early ciliogenesis.
Collapse
Affiliation(s)
- Helen R Dawe
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
236
|
Lunt SC, Haynes T, Perkins BD. Zebrafish ift57, ift88, and ift172 intraflagellar transport mutants disrupt cilia but do not affect hedgehog signaling. Dev Dyn 2009; 238:1744-59. [PMID: 19517571 PMCID: PMC2771627 DOI: 10.1002/dvdy.21999] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cilia formation requires intraflagellar transport (IFT) proteins. Recent studies indicate that mammalian Hedgehog (Hh) signaling requires cilia. It is unclear, however, if the requirement for cilia and IFT proteins in Hh signaling represents a general rule for all vertebrates. Here we examine zebrafish ift57, ift88, and ift172 mutants and morphants for defects in Hh signaling. Although ift57 and ift88 mutants and morphants contained residual maternal protein, the cilia were disrupted. In contrast to previous genetic studies in mouse, mutations in zebrafish IFT genes did not affect the expression of Hh target genes in the neural tube and forebrain and had no quantitative effect on Hh target gene expression. Zebrafish IFT mutants also exhibited no dramatic changes in the craniofacial skeleton, somite formation, or motor neuron patterning. Thus, our data indicate the requirement for cilia in the Hh signal transduction pathway may not represent a universal mechanism in vertebrates.
Collapse
Affiliation(s)
- Shannon C Lunt
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
237
|
Tammachote R, Hommerding CJ, Sinders RM, Miller CA, Czarnecki PG, Leightner AC, Salisbury JL, Ward CJ, Torres VE, Gattone VH, Harris PC. Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum Mol Genet 2009; 18:3311-23. [PMID: 19515853 DOI: 10.1093/hmg/ddp272] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Meckel syndrome (MKS) is a lethal disorder characterized by renal cystic dysplasia, encephalocele, polydactyly and biliary dysgenesis. It is highly genetically heterogeneous with nine different genes implicated in this disorder. MKS is thought to be a ciliopathy because of the range of phenotypes and localization of some of the implicated proteins. However, limited data are available about the phenotypes associated with MKS1 and MKS3, and the published ciliary data are conflicting. Analysis of the wpk rat model of MKS3 revealed functional defects of the connecting cilium in the eye that resulted in lack of formation of the outer segment, whereas infertile wpk males developed spermatids with very short flagella that did not extend beyond the cell body. In wpk renal collecting duct cysts, cilia were generally longer than normal, with additional evidence of cells with multiple primary cilia and centrosome over-duplication. Kidney tissue and cells from MKS1 and MKS3 patients showed defects in centrosome and cilia number, including multi-ciliated respiratory-like epithelia, and longer cilia. Stable shRNA knockdown of Mks1 and Mks3 in IMCD3 cells induced multi-ciliated and multi-centrosomal phenotypes. These studies demonstrate that MKS1 and MKS3 are ciliopathies, with new cilia-related eye and sperm phenotypes defined. MKS1 and MKS3 functions are required for ciliary structure and function, including a role in regulating length and appropriate number through modulating centrosome duplication.
Collapse
|
238
|
Mitchell B, Stubbs J, Huisman F, Taborek P, Yu C, Kintner C. The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin. Curr Biol 2009; 19:924-9. [PMID: 19427216 PMCID: PMC2720401 DOI: 10.1016/j.cub.2009.04.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 03/05/2009] [Accepted: 04/02/2009] [Indexed: 01/16/2023]
Abstract
Planar cell polarity (PCP) is a property of epithelial tissues where cellular structures coordinately orient along a two-dimensional plane lying orthogonal to the axis of apical-basal polarity. PCP is particularly striking in tissues where multiciliate cells generate a directed fluid flow, as seen, for example, in the ciliated epithelia lining the respiratory airways or the ventricles of the brain. To produce directed flow, ciliated cells orient along a common planar axis in a direction set by tissue patterning, but how this is achieved in any ciliated epithelium is unknown. Here, we show that the planar orientation of Xenopus multiciliate cells is disrupted when components in the PCP-signaling pathway are altered non-cell-autonomously. We also show that wild-type ciliated cells located at a mutant clone border reorient toward cells with low Vangl2 or high Frizzled activity and away from those with high Vangl2 activity. These results indicate that the PCP pathway provides directional non-cell-autonomous cues to orient ciliated cells as they differentiate, thus playing a critical role in establishing directed ciliary flow.
Collapse
Affiliation(s)
- B. Mitchell
- The Salk Institute for Biological Studies La Jolla, CA
| | - J. Stubbs
- The Salk Institute for Biological Studies La Jolla, CA
| | - F. Huisman
- Department of Physics and Astronomy University of California, Irvine Irvine, CA
| | - P. Taborek
- Department of Physics and Astronomy University of California, Irvine Irvine, CA
| | - C. Yu
- Department of Physics and Astronomy University of California, Irvine Irvine, CA
| | - C. Kintner
- The Salk Institute for Biological Studies La Jolla, CA
| |
Collapse
|
239
|
Abstract
Over the last 5 years, disorders of nonmotile cilia have come of age and their study has contributed immeasurably to our understanding of cell biology and human genetics. This review summarizes the main features of the ciliopathies, their underlying genetics, and the functions of the proteins involved. We describe some of the key findings in the field, including new animal models, the role of ciliopathy proteins in signaling pathways and development, and the unusual genetics of these diseases. We also discuss the therapeutic potential for these diseases and finally, discuss important future work that will extend our understanding of this fascinating organelle and its associated pathologies.
Collapse
Affiliation(s)
- Jonathan L Tobin
- Cancer Research United Kingdom London Research Institute, London, United Kingdom
| | | |
Collapse
|
240
|
D'Angelo A, Franco B. The dynamic cilium in human diseases. PATHOGENETICS 2009; 2:3. [PMID: 19439065 PMCID: PMC2694804 DOI: 10.1186/1755-8417-2-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 05/13/2009] [Indexed: 01/09/2023]
Abstract
Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity.
Collapse
Affiliation(s)
- Anna D'Angelo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| | | |
Collapse
|
241
|
Abstract
Renal cystic diseases are a major clinical concern as they are the most common genetic cause of end-stage renal disease. While many of the genes causing cystic disease have been identified in recent years, knowing the molecular nature of the mutations has not clarified the mechanisms underlying cyst formation. Recent research in model organisms has suggested that cyst formation may be because of defective planar cell polarity (PCP) and/or ciliary defects. In this review, we first outline the clinical features of renal cystic diseases and then discuss current research linking our understanding of cystic kidney disease to PCP and cilia.
Collapse
Affiliation(s)
- R L Bacallao
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
242
|
Abstract
Cilia are complex structures that have garnered interest because of their roles in vertebrate development and their involvement in human genetic disorders. In contrast to multicellular invertebrates in which cilia are restricted to specific cell types, these organelles are found almost ubiquitously in vertebrate cells, where they serve a diverse set of signaling functions. Here, we highlight properties of vertebrate cilia, with particular emphasis on their relationship with other subcellular structures, and explore the physiological consequences of ciliary dysfunction.
Collapse
Affiliation(s)
- Jantje M. Gerdes
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erica E. Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
243
|
Bonnet CS, Aldred M, von Ruhland C, Harris R, Sandford R, Cheadle JP. Defects in cell polarity underlie TSC and ADPKD-associated cystogenesis. Hum Mol Genet 2009; 18:2166-76. [PMID: 19321600 DOI: 10.1093/hmg/ddp149] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical trials are underway for the treatment of tuberous sclerosis (TSC)-associated tumours using mTOR inhibitors. Here, we show that many of the earliest renal lesions from Tsc1+/- and Tsc2+/- mice do not exhibit mTOR activation, suggesting that pharmacological targeting of an alternative pathway may be necessary to prevent tumour formation. Patients with TSC often develop renal cysts and those with inherited co-deletions of the autosomal dominant polycystic kidney disease (ADPKD) 1 gene (PKD1) develop severe, early onset, polycystic kidneys. Using mouse models, we showed a genetic interaction between Tsc1 and Tsc2 with Pkd1 and confirmed an mTOR-independent pathway of renal cystogenesis. We observed that the Tsc and Pkd1 gene products helped regulate primary cilia length and, consistent with the function of this organelle in modulating cell polarity, found that many dividing pre-cystic renal tubule and hepatic bile duct cells from Tsc1, Tsc2 and Pkd1 heterozygous mice were highly misoriented. We therefore propose that defects in cell polarity underlie TSC and ADPKD-associated cystic disease and targeting of this pathway may be of key therapeutic benefit.
Collapse
Affiliation(s)
- Cleo S Bonnet
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | | | | | | | | | | |
Collapse
|
244
|
Garcia-Lavandeira M, Quereda V, Flores I, Saez C, Diaz-Rodriguez E, Japon MA, Ryan AK, Blasco MA, Dieguez C, Malumbres M, Alvarez CV. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 2009; 4:e4815. [PMID: 19283075 PMCID: PMC2654029 DOI: 10.1371/journal.pone.0004815] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Accepted: 01/27/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. PRINCIPAL FINDINGS We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. SIGNIFICANCE Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease.
Collapse
Affiliation(s)
- Montse Garcia-Lavandeira
- Department of Physiology, School of Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Víctor Quereda
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - Ignacio Flores
- Telomeres and Telomerase Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carmen Saez
- Department of Pathology, Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Esther Diaz-Rodriguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Miguel A. Japon
- Department of Pathology, Hospital Universitario Virgen del Rocio, Seville, Spain
| | - Aymee K. Ryan
- Department of Human Genetics, McGill University (MUHC), Montreal, Quebec, Canada
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carlos Dieguez
- Department of Physiology, School of Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- CIBER Obesity & Nutrition (ISCIII), Santiago de Compostela, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncologicas (CNIO), Madrid, Spain
- * E-mail: (MM); (CVA)
| | - Clara V. Alvarez
- Department of Physiology, School of Medicine, University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- * E-mail: (MM); (CVA)
| |
Collapse
|
245
|
Abstract
The branch of the Wnt pathway, related to planar cell polarity signaling in Drosophila, is fundamental not only to the establishment of tissue polarity but also to a variety of morphogenetic processes in vertebrates. The genetic pathway has been noted for its similarity as well as divergence of between vertebrates and Drosophila. This review focuses on issues related to the complexity of the output of the planar cell polarity pathway during gastrulation in zebrafish and Xenopus and, to a lesser extent, during gastrulation/neurulation in mice.
Collapse
Affiliation(s)
- Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | | |
Collapse
|
246
|
Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 2009; 119:428-37. [PMID: 19252258 PMCID: PMC2648685 DOI: 10.1172/jci37041] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a multisystemic disorder typified by developmental and progressive degenerative defects. A combination of genetic, in vitro, and in vivo studies have highlighted ciliary dysfunction as a primary cause of BBS pathology, which has in turn contributed to the improved understanding of the functions of the primary cilium in humans and other vertebrates. Here we discuss the evidence linking the clinical BBS phenotype to ciliary defects, highlight how the genetic and cellular characteristics of BBS overlap with and inform other ciliary disorders, and explore the possible mechanistic underpinnings of ciliary dysfunction.
Collapse
Affiliation(s)
- Norann A. Zaghloul
- McKusick-Nathans Institute of Genetic Medicine, Wilmer
Eye Institute, and Department of Molecular Biology and Genetics, Johns
Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Katsanis
- McKusick-Nathans Institute of Genetic Medicine, Wilmer
Eye Institute, and Department of Molecular Biology and Genetics, Johns
Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
247
|
DiBella LM, Park A, Sun Z. Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet 2009; 18:595-606. [PMID: 19008302 PMCID: PMC2722215 DOI: 10.1093/hmg/ddn384] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 11/11/2008] [Indexed: 01/10/2023] Open
Abstract
The cell surface organelle called the cilium is essential for preventing kidney cyst formation and for establishing left-right asymmetry of the vertebrate body plan. Recent advances suggest that the cilium functions as a sensory organelle in vertebrate cells for multiple signaling pathways such as the hedgehog and the Wnt pathways. Prompted by kidney cyst formation in tuberous sclerosis complex (TSC) patients and rodent models, we investigated the role of the cilium in the TSC-target of rapamycin (TOR) pathway using zebrafish. TSC1 and TSC2 genes are causal for TSC, and their protein products form a complex in the TOR pathway that integrates environmental signals to regulate cell growth, proliferation and survival. Two TSC1 homologs were identified in zebrafish, which we refer to as tsc1a and tsc1b. Morpholino knockdown of tsc1a led to a ciliary phenotype including kidney cyst formation and left-right asymmetry defects. Tsc1a was observed to localize to the Golgi, but morpholinos against it, nonetheless, acted synthetically with ciliary genes in producing kidney cysts. Consistent with a role of the cilium in the same pathway as Tsc genes, the TOR pathway is aberrantly activated in ciliary mutants, resembling the effect of tsc1a knockdown. Moreover, kidney cyst formation in ciliary mutants was blocked by the Tor inhibitor, rapamycin. Surprisingly, we observed elongation of cilia in tsc1a knockdown animals. Together, these data suggest a signaling network between the cilium and the TOR pathway in that ciliary signals can feed into the TOR pathway and that Tsc1a regulates the length of the cilium itself.
Collapse
Affiliation(s)
| | | | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
248
|
Yin Y, Bangs F, Paton IR, Prescott A, James J, Davey MG, Whitley P, Genikhovich G, Technau U, Burt DW, Tickle C. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation. Development 2009; 136:655-64. [PMID: 19144723 PMCID: PMC2741201 DOI: 10.1242/dev.028464] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2008] [Indexed: 11/20/2022]
Abstract
The chicken talpid(3) mutant, with polydactyly and defects in other embryonic regions that depend on hedgehog (Hh) signalling (e.g. the neural tube), has a mutation in KIAA0568. Similar phenotypes are seen in mice and in human syndromes with mutations in genes that encode centrosomal or intraflagella transport proteins. Such mutations lead to defects in primary cilia, sites where Hh signalling occurs. Here, we show that cells of talpid(3) mutant embryos lack primary cilia and that primary cilia can be rescued with constructs encoding Talpid3. talpid(3) mutant embryos also develop polycystic kidneys, consistent with widespread failure of ciliogenesis. Ultrastructural studies of talpid(3) mutant neural tube show that basal bodies mature but fail to dock with the apical cell membrane, are misorientated and almost completely lack ciliary axonemes. We also detected marked changes in actin organisation in talpid(3) mutant cells, which may explain misorientation of basal bodies. KIAA0586 was identified in the human centrosomal proteome and, using an antibody against chicken Talpid3, we detected Talpid3 in the centrosome of wild-type chicken cells but not in mutant cells. Cloning and bioinformatic analysis of the Talpid3 homolog from the sea anemone Nematostella vectensis identified a highly conserved region in the Talpid3 protein, including a predicted coiled-coil domain. We show that this region is required to rescue primary cilia formation and neural tube patterning in talpid(3) mutant embryos, and is sufficient for centrosomal localisation. Thus, Talpid3 is one of a growing number of centrosomal proteins that affect both ciliogenesis and Hh signalling.
Collapse
Affiliation(s)
- Yili Yin
- Division of Cell and Developmental Biology, Wellcome Trust Biocentre, The University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Gorivodsky M, Mukhopadhyay M, Wilsch-Braeuninger M, Phillips M, Teufel A, Kim C, Malik N, Huttner W, Westphal H. Intraflagellar transport protein 172 is essential for primary cilia formation and plays a vital role in patterning the mammalian brain. Dev Biol 2009; 325:24-32. [PMID: 18930042 PMCID: PMC2613858 DOI: 10.1016/j.ydbio.2008.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/11/2008] [Accepted: 09/03/2008] [Indexed: 11/16/2022]
Abstract
IFT172, also known as Selective Lim-domain Binding protein (SLB), is a component of the intraflagellar transport (IFT) complex. In order to evaluate the biological role of the Ift172 gene, we generated a loss-of-function mutation in the mouse. The resulting Slb mutant embryos die between E12.5 and 13.0, and exhibit severe cranio-facial malformations, failure to close the cranial neural tube, holoprosencephaly, heart edema and extensive hemorrhages. Cilia outgrowth in cells of the neuroepithelium is initiated but the axonemes are severely truncated and do not contain visible microtubules. Morphological and molecular analyses revealed a global brain-patterning defect along the dorsal-ventral (DV) and anterior-posterior (AP) axes. We demonstrate that Ift172 gene function is required for early regulation of Fgf8 at the midbrain-hindbrain boundary and maintenance of the isthmic organizer. In addition, Ift172 is required for proper function of the embryonic node, the early embryonic organizer and for formation of the head organizing center (the anterior mesendoderm, or AME). We propose a model suggesting that forebrain and mid-hindbrain growth and AP patterning depends on the early function of Ift172 at gastrulation. Our data suggest that the formation and function of the node and AME in the mouse embryo relies on an indispensable role of Ift172 in cilia morphogenesis and cilia-mediated signaling.
Collapse
Affiliation(s)
- Marat Gorivodsky
- Laboratory of Mammalian Genes and Development, Program on Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahua Mukhopadhyay
- Laboratory of Mammalian Genes and Development, Program on Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Matthew Phillips
- Laboratory of Mammalian Genes and Development, Program on Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Andreas Teufel
- Johannes Gutenberg Universität, I. Medizinische Klinik und Poliklinik 55101 Mainz, Germany
| | - Changmee Kim
- Laboratory of Mammalian Genes and Development, Program on Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nasir Malik
- Laboratory of Mammalian Genes and Development, Program on Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wieland Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Heiner Westphal
- Laboratory of Mammalian Genes and Development, Program on Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
250
|
Stubbs J, Oishi I, Belmonte JCI, Kintner C. The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet 2008; 40:1454-60. [PMID: 19011629 PMCID: PMC4648715 DOI: 10.1038/ng.267] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 09/03/2008] [Indexed: 11/08/2022]
Abstract
It has been proposed that ciliated cells that produce a leftward fluid flow mediate left-right patterning in many vertebrate embryos. The cilia on these cells combine features of primary sensory and motile cilia, but how this cilia subtype is specified is unknown. We address this issue by analyzing the Xenopus and zebrafish homologs of Foxj1, a forkhead transcription factor necessary for ciliogenesis in multiciliated cells of the mouse. We show that the cilia that underlie left-right patterning on the Xenopus gastrocoel roof plate (GRP) and zebrafish Kupffer's vesicle are severely shortened or fail to form in Foxj1 morphants. We also show that misexpressing Foxj1 is sufficient to induce ectopic GRP-like cilia formation in frog embryos. Microarray analysis indicates that Xenopus Foxj1 induces the formation of cilia by upregulating the expression of motile cilia genes. These results indicate that Foxj1 is a critical determinant in the specification of cilia used in left-right patterning.
Collapse
Affiliation(s)
- Jennifer Stubbs
- The Salk Institute for Biological Studies, Post Office Box 85800, San Diego, California 92186-5800
| | - Isao Oishi
- The Salk Institute for Biological Studies, Post Office Box 85800, San Diego, California 92186-5800
| | | | - Chris Kintner
- The Salk Institute for Biological Studies, Post Office Box 85800, San Diego, California 92186-5800
| |
Collapse
|