201
|
Antioxidant Strategies to Modulate NETosis and the Release of Neutrophil Extracellular Traps during Chronic Inflammation. Antioxidants (Basel) 2023; 12:antiox12020478. [PMID: 36830036 PMCID: PMC9952818 DOI: 10.3390/antiox12020478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Extracellular traps are released by neutrophils and other immune cells as part of the innate immune response to combat pathogens. Neutrophil extracellular traps (NETs) consist of a mesh of DNA and histone proteins decorated with various anti-microbial granule proteins, such as elastase and myeloperoxidase (MPO). In addition to their role in innate immunity, NETs are also strongly linked with numerous pathological conditions, including atherosclerosis, sepsis and COVID-19. This has led to significant interest in developing strategies to inhibit NET release. In this study, we have examined the efficacy of different antioxidant approaches to selectively modulate the inflammatory release of NETs. PLB-985 neutrophil-like cells were shown to release NETs on exposure to phorbol myristate acetate (PMA), hypochlorous acid or nigericin, a bacterial peptide derived from Streptomyces hygroscopicus. Studies with the probe R19-S indicated that treatment of the PLB-985 cells with PMA, but not nigericin, resulted in the production of HOCl. Therefore, studies were extended to examine the efficacy of a range of antioxidant compounds that modulate HOCl production by MPO to prevent NETosis. It was shown that thiocyanate, selenocyanate and various nitroxides could prevent NETosis in PLB-985 neutrophils exposed to PMA and HOCl, but not nigericin. These results were confirmed in analogous experiments with freshly isolated primary human neutrophils. Taken together, these data provide new information regarding the utility of supplementation with MPO inhibitors and/or HOCl scavengers to prevent NET release, which could be important to more specifically target pathological NETosis in vivo.
Collapse
|
202
|
Li J, Zhang J, Shi M, Yu S, Ji M, Liang Y, Meng X. Crosstalk between Inflammation and Hemorrhage/Coagulation Disorders in Primary Blast Lung Injury. Biomolecules 2023; 13:biom13020351. [PMID: 36830720 PMCID: PMC9953683 DOI: 10.3390/biom13020351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Primary blast lung injury (PBLI), caused by exposure to high-intensity pressure waves from explosions in war, terrorist attacks, industrial production, and life explosions, is associated with pulmonary parenchymal tissue injury and severe ventilation insufficiency. PBLI patients, characterized by diffused intra-alveolar destruction, including hemorrhage and inflammation, might deteriorate into acute respiratory distress syndrome (ARDS) with high mortality. However, due to the absence of guidelines about PBLI, emergency doctors and rescue teams treating PBLI patients rely on experience. The goal of this review is to summarize the mechanisms of PBLI and their cross-linkages, exploring potential diagnostic and therapeutic targets of PBLI. We summarize the pathophysiological performance and pharmacotherapy principles of PBLI. In particular, we emphasize the crosstalk between hemorrhage and inflammation, as well as coagulation, and we propose early control of hemorrhage as the main treatment of PBLI. We also summarize several available therapy methods, including some novel internal hemostatic nanoparticles to prevent the vicious circle of inflammation and coagulation disorders. We hope that this review can provide information about the mechanisms, diagnosis, and treatment of PBLI for all interested investigators.
Collapse
Affiliation(s)
- Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325000, China
- Key Laboratory of Medical Rescue Key Technology and Equipment, Ministry of Emergency Management, Wenzhou 325000, China
- Correspondence:
| |
Collapse
|
203
|
Hogwood J, Gray E, Mulloy B. Heparin, Heparan Sulphate and Sepsis: Potential New Options for Treatment. Pharmaceuticals (Basel) 2023; 16:271. [PMID: 37259415 PMCID: PMC9959362 DOI: 10.3390/ph16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/22/2023] [Accepted: 02/07/2023] [Indexed: 08/31/2023] Open
Abstract
Sepsis is a life-threatening hyperreaction to infection in which excessive inflammatory and immune responses cause damage to host tissues and organs. The glycosaminoglycan heparan sulphate (HS) is a major component of the cell surface glycocalyx. Cell surface HS modulates several of the mechanisms involved in sepsis such as pathogen interactions with the host cell and neutrophil recruitment and is a target for the pro-inflammatory enzyme heparanase. Heparin, a close structural relative of HS, is used in medicine as a powerful anticoagulant and antithrombotic. Many studies have shown that heparin can influence the course of sepsis-related processes as a result of its structural similarity to HS, including its strong negative charge. The anticoagulant activity of heparin, however, limits its potential in treatment of inflammatory conditions by introducing the risk of bleeding and other adverse side-effects. As the anticoagulant potency of heparin is largely determined by a single well-defined structural feature, it has been possible to develop heparin derivatives and mimetic compounds with reduced anticoagulant activity. Such heparin mimetics may have potential for use as therapeutic agents in the context of sepsis.
Collapse
Affiliation(s)
- John Hogwood
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms EN6 3QG, UK
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| | - Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, Stamford St., London SE1 9NH, UK
| |
Collapse
|
204
|
Marcos-Jubilar M, Lecumberri R, Páramo JA. Immunothrombosis: Molecular Aspects and New Therapeutic Perspectives. J Clin Med 2023; 12:1399. [PMID: 36835934 PMCID: PMC9958829 DOI: 10.3390/jcm12041399] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Thromboinflammation or immunothrombosis is a concept that explains the existing link between coagulation and inflammatory response present in many situations, such as sepsis, venous thromboembolism, or COVID-19 associated coagulopathy. The purpose of this review is to provide an overview of the current data regarding the mechanisms involved in immunothrombosis in order to understand the new therapeutic strategies focused in reducing thrombotic risk by controlling the inflammation.
Collapse
Affiliation(s)
- María Marcos-Jubilar
- Hematology and Hemotherapy Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Ramón Lecumberri
- Hematology and Hemotherapy Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- CIBER-CV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José A. Páramo
- Hematology and Hemotherapy Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
205
|
Uhl B, Haring F, Slotta-Huspenina J, Luft J, Schneewind V, Hildinger J, Wu Z, Steiger K, Smiljanov B, Batcha AMN, Keppler OT, Hellmuth JC, Lahmer T, Stock K, Weiss BG, Canis M, Stark K, Bromberger T, Moser M, Schulz C, Weichert W, Zuchtriegel G, Reichel CA. Vitronectin promotes immunothrombotic dysregulation in the venular microvasculature. Front Immunol 2023; 14:1078005. [PMID: 36845099 PMCID: PMC9945350 DOI: 10.3389/fimmu.2023.1078005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/05/2023] [Indexed: 02/10/2023] Open
Abstract
Microvascular immunothrombotic dysregulation is a critical process in the pathogenesis of severe systemic inflammatory diseases. The mechanisms controlling immunothrombosis in inflamed microvessels, however, remain poorly understood. Here, we report that under systemic inflammatory conditions the matricellular glycoproteinvitronectin (VN) establishes an intravascular scaffold, supporting interactions of aggregating platelets with immune cells and the venular endothelium. Blockade of the VN receptor glycoprotein (GP)IIb/IIIa interfered with this multicellular interplay and effectively prevented microvascular clot formation. In line with these experimental data, particularly VN was found to be enriched in the pulmonary microvasculature of patients with non-infectious (pancreatitis-associated) or infectious (coronavirus disease 2019 (COVID-19)-associated) severe systemic inflammatory responses. Targeting the VN-GPIIb/IIIa axis hence appears as a promising, already feasible strategy to counteract microvascular immunothrombotic dysregulation in systemic inflammatory pathologies.
Collapse
Affiliation(s)
- Bernd Uhl
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany,*Correspondence: Bernd Uhl,
| | - Florian Haring
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | | | - Joshua Luft
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Vera Schneewind
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Jonas Hildinger
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Zhengquan Wu
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University of Munich, Munich, Germany
| | - Bojan Smiljanov
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Aarif M. N. Batcha
- Institute of Medical Data Processing, Biometrics, and Epidemiology (IBE), University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany,Data Integration for Future Medicine (DiFuture), University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Oliver T. Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany,German Centre for Infection Research (DZIF), Partner Site München, Munich, Germany
| | - Johannes C. Hellmuth
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Munich, Germany,COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Tobias Lahmer
- Department of Internal Medicine II, Technical University of Munich, Munich, Germany
| | - Konrad Stock
- Department of Nephrology, Technical University of Munich, Munich, Germany
| | - Bernhard G. Weiss
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Konstantin Stark
- Department of Cardiology, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Thomas Bromberger
- Institute of Experimental Hematology, Technical University of Munich, Munich, Germany
| | - Markus Moser
- Institute of Experimental Hematology, Technical University of Munich, Munich, Germany
| | - Christian Schulz
- Department of Cardiology, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Wilko Weichert
- Department of Pathology, Technical University of Munich, Munich, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| | - Christoph A. Reichel
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany,Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München (LMU) Munich, Munich, Germany
| |
Collapse
|
206
|
Elrod J, Lenz M, Kiwit A, Armbrust L, Schönfeld L, Reinshagen K, Pagerols Raluy L, Mohr C, Saygi C, Alawi M, Rohde H, Herrmann M, Boettcher M. Murine scald models characterize the role of neutrophils and neutrophil extracellular traps in severe burns. Front Immunol 2023; 14:1113948. [PMID: 36825027 PMCID: PMC9941538 DOI: 10.3389/fimmu.2023.1113948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Severe burns cause unique pathophysiological alterations especially on the immune system. A murine scald model was optimized as a basis for the understanding of immunological reactions in response to heat induced injury. The understanding of the roles of neutrophil extracellular traps (NETs) and DNases will support the development of new surgical or pharmacological strategies for the therapy of severe burns. Methods We studied C57BL/6 mice (n=30) and employed four scalding protocols with varying exposure times to hot water. An additional scald group with a shorter observational time was generated to reduce mortality and study the very early phase of pathophysiology. At 24h or 72h, blood was drawn and tissue (wound, liver, lung, spleen) was analyzed for the presence of NETs, oxidative stress, apoptosis, bacterial translocation, and extracellular matrix re-organization. In addition, we analyzed the transcriptome from lung and liver tissues. Results Exposure to hot water for 7s led to significant systemic and local effects and caused considerable late mortality. Therefore, we used an observation time of 24h in this groups. To study later phases of burns (72h) an exposure time of 6s is optimal. Both conditions led to significant disorganization of collagen, increased oxidative stress, NET formation (by immunodetection of H3cit, NE, MPO), apoptosis (cC3) and alterations of the levels of DNase1 and DNase1L3. Transcriptome analysis revealed remarkable alterations in genes involved in acute phase signaling, cell cohesion, extracellular matrix organization, and immune response. Conclusion We identified two scald models that allow the analysis of early (24h) or late (72h) severe burn effects, thereby generating reproducible and standardized scald injuries. The study elucidated the important involvement of neutrophil activity and the role of NETs in burns. Extensive transcriptome analysis characterized the acute phase and tissue remodeling pathways involved in the process of healing and may serve as crucial basis for future in-depth studies.
Collapse
Affiliation(s)
- Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany,Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Julia Elrod,
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lina Armbrust
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lavinia Schönfeld
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Ceren Saygi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany,Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany,Deutsches Zentrum Immuntherapie DZI, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany,Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
207
|
Smith CF, Brandehoff NP, Pepin L, McCabe MC, Castoe TA, Mackessy SP, Nemkov T, Hansen KC, Saviola AJ. Feasibility of detecting snake envenomation biomarkers from dried blood spots. ANALYTICAL SCIENCE ADVANCES 2023; 4:26-36. [PMID: 38715579 PMCID: PMC10989584 DOI: 10.1002/ansa.202200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 11/17/2024]
Abstract
Biofluid proteomics is a sensitive and high throughput technique that provides vast amounts of molecular data for biomarker discovery. More recently, dried blood spots (DBS) have gained traction as a stable, noninvasive, and relatively cheap source of proteomic data for biomarker identification in disease and injury. Snake envenomation is responsible for significant morbidity and mortality worldwide; however, much remains unknown about the systemic molecular response to envenomation and acquiring biological samples for analysis is a major hurdle. In this study, we utilized DBS acquired from a case of lethal rattlesnake envenomation to determine the feasibility of discovering biomarkers associated with human envenomation. We identified proteins that were either unique or upregulated in envenomated blood compared to non-envenomated blood and evaluated if physiological response pathways and protein markers that correspond to the observed syndromes triggered by envenomation could be detected. We demonstrate that DBS provide useful proteomic information on the systemic processes that resulted from envenomation in this case and find evidence for a massive and systemic inflammatory cascade, combined with coagulation dysregulation, complement system activation, hypoxia response activation, and apoptosis. We also detected potential markers indicative of lethal anaphylaxis, cardiac arrest, and brain death. Ultimately, DBS proteomics has the potential to provide stable and sensitive molecular data on envenomation syndromes and response pathways, which is particularly relevant in low-resource areas which may lack the materials for biofluid processing and storage.
Collapse
Affiliation(s)
- Cara F. Smith
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| | | | - Lesley Pepin
- Rocky Mountain Poison and Drug Safety, Denver Health and Hospital AuthorityDenverCOUSA
| | - Maxwell C. McCabe
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| | - Todd A. Castoe
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
| | - Stephen P. Mackessy
- Department of Biological SciencesUniversity of Northern ColoradoGreeleyCOUSA
| | - Travis Nemkov
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado DenverAuroraCOUSA
| |
Collapse
|
208
|
Jain N, Corken A, Arthur JM, Ware J, Arulprakash N, Dai J, Phadnis MA, Davis O, Rahmatallah Y, Mehta JL, Hedayati SS, Smyth S. Ticagrelor inhibits platelet aggregation and reduces inflammatory burden more than clopidogrel in patients with stages 4 or 5 chronic kidney disease. Vascul Pharmacol 2023; 148:107143. [PMID: 36682595 PMCID: PMC9998358 DOI: 10.1016/j.vph.2023.107143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
BACKGROUND No study has compared pharmacologic properties of ticagrelor and clopidogrel in non-dialysis patients with stage 4-5 chronic kidney disease (CKD). METHODS We conducted a double-blind RCT to compare effects of ticagrelor and clopidogrel in 48 CKD, with the primary outcome of ADP-induced platelet aggregation (WBPA) after 2 weeks of DAPT. In a parallel arm, we compared effects of 2 weeks of ticagrelor plus aspirin on mean changes in WBPA and markers of thromboinflammation among non-CKD controls (n = 26) with that of CKD in the ticagrelor-arm. RESULTS Average age of CKD was 53.7 years, with 62% women, 54% African American, and 42% with stage 5 CKD. Ticagrelor generated statistically lower WBPA values post treatment [median 0 Ω (IQR 0, 2)] vs. clopidogrel [median 0 Ω (IQR 0, 5)] (P = 0.002); percent inhibition of WBPA was greater (87 ± 22% vs. 63 ± 50%; P = 0.04; and plasma IL-6 levels were much lower (8.42 ± 1.73 pg/ml vs. 18.48 ± 26.56 pg/ml; P = 0.04). No differences in mean changes in WBPA between CKD-ticagrelor and control groups were observed. Ticagrelor- DAPT reduced levels of IL-1α and IL-1β in CKD-ticagrelor and control groups, attenuated lowering of TNFα and TRAIL levels in CKD-ticagrelor (vs controls), and had global changes in correlation between various cytokines in a subgroup of CKD-ticagrelor subjects not on statins (n = 10). Peak/trough levels of ticagrelor/metabolite were not different between CKD-ticagrelor and control groups. CONCLUSIONS We report significant differences in platelet aggregation and anti-inflammatory properties between ticagrelor- and clopidogrel-based DAPT in non-dialysis people with stage 4-5 CKD. These notable inflammatory responses suggest ticagrelor-based DAPT might lower inflammatory burden of asymptomatic patients with stage 4 or 5 CKD. (clinicaltrials.gov # NCT03649711).
Collapse
Affiliation(s)
- Nishank Jain
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Central Arkansas Veterans Health Care System, Little Rock, AR, United States of America.
| | - Adam Corken
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - John M Arthur
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Central Arkansas Veterans Health Care System, Little Rock, AR, United States of America
| | - Jerry Ware
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Narenraj Arulprakash
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Junqiang Dai
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Milind A Phadnis
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Otis Davis
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Yasir Rahmatallah
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - J L Mehta
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Central Arkansas Veterans Health Care System, Little Rock, AR, United States of America
| | - S Susan Hedayati
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Susan Smyth
- Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America; Central Arkansas Veterans Health Care System, Little Rock, AR, United States of America
| |
Collapse
|
209
|
Colicchia M, Perrella G, Gant P, Rayes J. Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost 2023; 7:100116. [PMID: 37063765 PMCID: PMC10099327 DOI: 10.1016/j.rpth.2023.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
A state-of-the-art lecture titled "novel mechanisms of thrombo-inflammation during infection" was presented at the ISTH Congress in 2022. Platelet, neutrophil, and endothelial cell activation coordinate the development, progression, and resolution of thrombo-inflammatory events during infection. Activated platelets and neutrophil extracellular traps (NETs) are frequently observed in patients with sepsis and COVID-19, and high levels of NET-derived damage-associated molecular patterns (DAMPs) correlate with thrombotic complications. NET-associated DAMPs induce direct and indirect platelet activation, which in return potentiates neutrophil activation and NET formation. These coordinated interactions involve multiple receptors and signaling pathways contributing to vascular and organ damage exacerbating disease severity. This state-of-the-art review describes the main mechanisms by which platelets support NETosis and the key mechanisms by which NET-derived DAMPs trigger platelet activation and the formation of procoagulant platelets leading to thrombosis. We report how these DAMPs act through multiple receptors and signaling pathways differentially regulating cell activation and disease outcome, focusing on histones and S100A8/A9 and their contribution to the pathogenesis of sepsis and COVID-19. We further discuss the complexity of platelet activation during NETosis and the potential benefit of targeting selective or multiple NET-associated DAMPs to limit thrombo-inflammation during infection. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Poppy Gant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, U.K
| |
Collapse
|
210
|
Cannito S, Dianzani U, Parola M, Albano E, Sutti S. Inflammatory processes involved in NASH-related hepatocellular carcinoma. Biosci Rep 2023; 43:BSR20221271. [PMID: 36691794 PMCID: PMC9874450 DOI: 10.1042/bsr20221271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide. In the recent years nonalcoholic fatty liver disease (NAFLD) is becoming a growing cause of HCCs and the incidence of NAFLD-related HCCs is expected to further dramatically increase by the next decade. Chronic inflammation is regarded as the driving force of NAFLD progression and a key factor in hepatic carcinogenesis. Hepatic inflammation in NAFLD results from the persistent stimulation of innate immunity in response to hepatocellular injury and gut dysbiosis as well as by the activation of adaptive immunity. However, the relative roles of innate and adaptive immunity in the processes leading to HCC are still incompletely characterized. This is due to the complex interplay between different liver cell populations, which is also strongly influenced by gut-derived bacterial products, metabolic/nutritional signals. Furthermore, carcinogenic mechanisms in NAFLD/NASH appear to involve the activation of signals mediated by hypoxia inducible factors. This review discusses recent data regarding the contribution of different inflammatory cells to NAFLD-related HCC and their possible impact on patient response to current treatments.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Turin, Turin, Italy
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine and Clinical Pathology, University of Turin, Turin, Italy
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Centre for Autoimmune Diseases, University of East Piedmont, Novara, Italy
| |
Collapse
|
211
|
Kapoor D, Shukla D. Neutrophil Extracellular Traps and Their Possible Implications in Ocular Herpes Infection. Pathogens 2023; 12:209. [PMID: 36839481 PMCID: PMC9958879 DOI: 10.3390/pathogens12020209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released from neutrophils. NETs predominantly contain cell-free deoxyribonucleic acid (DNA) decorated with histones and neutrophil granule proteins. Numerous extrinsic and intrinsic stimuli can induce the formation of NETs such as pathogens, cytokines, immune complexes, microcrystals, antibodies, and other physiological stimuli. The mechanism of NETosis induction can either be ROS-dependent or independent based on the catalase producing activity of the pathogen. NADPH is the source of ROS production, which in turn depends on the upregulation of Ca2+ production in the cytoplasm. ROS-independent induction of NETosis is regulated through toll-like receptors (TLRs). Besides capturing and eliminating pathogens, NETs also aggravate the inflammatory response and thus act as a double-edged sword. Currently, there are growing reports of NETosis induction during bacterial and fungal ocular infections leading to different pathologies, but there is no direct report suggesting its role during herpes simplex virus (HSV) infection. There are innumerable independent reports showing that the major effectors of NETosis are also directly affected by HSV infection, and thus, there is a strong possibility that HSV interacts with these facilitators that can either result in virally mediated modulation of NETosis or NETosis-mediated suppression of ocular HSV infection. This review focuses on the mechanism of NETs formation during different ocular pathologies, with its prime focus on highlighting their potential implications during HSV ocular infections and acting as prospective targets for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|
212
|
Wadowski PP, Panzer B, Józkowicz A, Kopp CW, Gremmel T, Panzer S, Koppensteiner R. Microvascular Thrombosis as a Critical Factor in Severe COVID-19. Int J Mol Sci 2023; 24:2492. [PMID: 36768817 PMCID: PMC9916726 DOI: 10.3390/ijms24032492] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Platelet-endothelial interactions have a critical role in microcirculatory function, which maintains tissue homeostasis. The subtle equilibrium between platelets and the vessel wall is disturbed by the coronavirus disease 2019 (COVID-19), which affects all three components of Virchow's triad (endothelial injury, stasis and a hypercoagulable state). Endotheliitis, vasculitis, glycocalyx degradation, alterations in blood flow and viscosity, neutrophil extracellular trap formation and microparticle shedding are only few pathomechanisms contributing to endothelial damage and microthrombosis resulting in capillary plugging and tissue ischemia. In the following opinion paper, we discuss major pathological processes leading to microvascular endothelial activation and thrombosis formation as a possible major adverse factor driving the deterioration of patient disease course in severe COVID-19.
Collapse
Affiliation(s)
- Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Benjamin Panzer
- Department of Cardiology, Wilhelminenspital, 1160 Vienna, Austria
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gremmel
- Institute of Antithrombotic Therapy in Cardiovascular Disease, Karl Landsteiner Society, 3100 St. Pölten, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria
| | - Simon Panzer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
213
|
Neutrophil Extracellular Traps and NLRP3 Inflammasome: A Disturbing Duo in Atherosclerosis, Inflammation and Atherothrombosis. Vaccines (Basel) 2023; 11:vaccines11020261. [PMID: 36851139 PMCID: PMC9966193 DOI: 10.3390/vaccines11020261] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis is the formation of plaque within arteries due to overt assemblage of fats, cholesterol and fibrous material causing a blockage of the free flow of blood leading to ischemia. It is harshly impinging on health statistics worldwide because of being principal cause of high morbidity and mortality for several diseases including rheumatological, heart and brain disorders. Atherosclerosis is perpetuated by pro-inflammatory and exacerbated by pro-coagulatory mediators. Besides several other pathways, the formation of neutrophil extracellular traps (NETs) and the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome contribute significantly to the initiation and propagation of atherosclerotic plaque for its worst outcomes. The present review highlights the contribution of these two disturbing processes in atherosclerosis, inflammation and atherothrombosis in their individual as well as collaborative manner.
Collapse
|
214
|
Narwal A, Whyte CS, Mutch NJ. Location, location, location: Fibrin, cells, and fibrinolytic factors in thrombi. Front Cardiovasc Med 2023; 9:1070502. [PMID: 36741833 PMCID: PMC9889369 DOI: 10.3389/fcvm.2022.1070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Thrombi are heterogenous in nature with composition and structure being dictated by the site of formation, initiating stimuli, shear stress, and cellular influences. Arterial thrombi are historically associated with high platelet content and more tightly packed fibrin, reflecting the shear stress in these vessels. In contrast, venous thrombi are generally erythrocyte and fibrin-rich with reduced platelet contribution. However, these conventional views on the composition of thrombi in divergent vascular beds have shifted in recent years, largely due to recent advances in thromboectomy and high-resolution imaging. Interestingly, the distribution of fibrinolytic proteins within thrombi is directly influenced by the cellular composition and vascular bed. This in turn influences the susceptibility of thrombi to proteolytic degradation. Our current knowledge of thrombus composition and its impact on resistance to thrombolytic therapy and success of thrombectomy is advancing, but nonetheless in its infancy. We require a deeper understanding of thrombus architecture and the downstream influence on fibrinolytic susceptibility. Ultimately, this will aid in a stratified and targeted approach to tailored antithrombotic strategies in patients with various thromboembolic diseases.
Collapse
|
215
|
Coagulation Disorders in Sepsis and COVID-19-Two Sides of the Same Coin? A Review of Inflammation-Coagulation Crosstalk in Bacterial Sepsis and COVID-19. J Clin Med 2023; 12:jcm12020601. [PMID: 36675530 PMCID: PMC9866352 DOI: 10.3390/jcm12020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a major cause of morbidity and mortality worldwide. Sepsis-associated coagulation disorders are involved in the pathogenesis of multiorgan failure and lead to a subsequently worsening prognosis. Alongside the global impact of the COVID-19 pandemic, a great number of research papers have focused on SARS-CoV-2 pathogenesis and treatment. Significant progress has been made in this regard and coagulation disturbances were once again found to underlie some of the most serious adverse outcomes of SARS-CoV-2 infection, such as acute lung injury and multiorgan dysfunction. In the attempt of untangling the mechanisms behind COVID-19-associated coagulopathy (CAC), a series of similarities with sepsis-induced coagulopathy (SIC) became apparent. Whether they are, in fact, the same disease has not been established yet. The clinical picture of CAC shows the unique feature of an initial phase of intravascular coagulation confined to the respiratory system. Only later on, patients can develop a clinically significant form of systemic coagulopathy, possibly with a consumptive pattern, but, unlike SIC, it is not a key feature. Deepening our understanding of CAC pathogenesis has to remain a major goal for the research community, in order to design and validate accurate definitions and classification criteria.
Collapse
|
216
|
Distinct subsets of neutrophils crosstalk with cytokines and metabolites in patients with sepsis. iScience 2023; 26:105948. [PMID: 36756375 PMCID: PMC9900520 DOI: 10.1016/j.isci.2023.105948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to infection. Despite continued efforts to understand the pathophysiology of sepsis, no effective therapies are currently available. While singular components of the aberrant immune response have been investigated, comprehensive studies linking different data layers are lacking. Using an integrated systems immunology approach, we evaluated neutrophil phenotypes and concomitant changes in cytokines and metabolites in patients with sepsis. Our findings identify differentially expressed mature and immature neutrophil subsets in patients with sepsis. These subsets correlate with various proteins, metabolites, and lipids, including pentraxin-3, angiopoietin-2, and lysophosphatidylcholines, in patients with sepsis. These results enabled the construction of a statistical model based on weighted multi-omics linear regression analysis for sepsis biomarker identification. These findings could help inform early patient stratification and treatment options, and facilitate further mechanistic studies targeting the trifecta of surface marker expression, cytokines, and metabolites.
Collapse
|
217
|
Guillotin F, Fortier M, Portes M, Demattei C, Mousty E, Nouvellon E, Mercier E, Chea M, Letouzey V, Gris JC, Bouvier S. Vital NETosis vs. suicidal NETosis during normal pregnancy and preeclampsia. Front Cell Dev Biol 2023; 10:1099038. [PMID: 36684420 PMCID: PMC9849884 DOI: 10.3389/fcell.2022.1099038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Background: NETosis occurs in the context of infection or inflammation and results in the expulsion of decondensed DNA filaments called NETs (Neutrophil Extracellular Traps) into the extracellular environment. NETosis activates coagulation and contributes to the thrombotic risk of inflammatory diseases. To date, two mechanisms of NETosis have been identified: suicidal NETosis, in which neutrophils die after expelling the filaments; and vital NETosis, in which expulsion appears without altering the membrane. Human pregnancy is associated with a mild pro-inflammatory state, which is increased in the event of complications such as preeclampsia (PE). NETosis has been observed in these situations, but the mechanism of its production has not yet been studied. The aim of our study was to evaluate the balance of vital vs. suicidal NETosis in normal pregnancy and in PE. Patients/Methods: Neutrophils from healthy volunteers were stimulated with plasma from normal pregnancies (n = 13) and from women developing preeclampsia (n = 13). Immunofluorescent labelling was performed to determine the percentages and origin of NETs in both groups. Inhibition with suicidal or vital NETosis inhibitors was also performed to validate our results. Results: We found a significant increase in NETs in women with PE compared to women with normal pregnancies. We showed that vital and non-vital NETosis are present in normal and preeclamptic pregnancies. We demonstrated that the higher proportion of NETs observed in PE was due to non-vital NETosis whose main component is represented by suicidal NETosis. Discussion: These results suggest the important part of non-vital NETosis in the pathophysiology of PE.
Collapse
Affiliation(s)
| | - Mathieu Fortier
- Department of Haematology, University Hospital, Nîmes, France
| | - Marie Portes
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, France
| | - Christophe Demattei
- Department of Biostatistics, Public Health and Innovation in Methodology, Nîmes University Hospital, Nîmes, France
| | - Eve Mousty
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, France
| | - Eva Nouvellon
- Department of Haematology, University Hospital, Nîmes, France,UA11 INSERM—UM Institut Desbrest d’Épidémiologie et de Santé Publique (IDESP), Montpellier, France
| | - Eric Mercier
- Department of Haematology, University Hospital, Nîmes, France,UA11 INSERM—UM Institut Desbrest d’Épidémiologie et de Santé Publique (IDESP), Montpellier, France,Faculty of Pharmaceutical and Biological Sciences, Montpellier University, France
| | - Mathias Chea
- Department of Haematology, University Hospital, Nîmes, France
| | - Vincent Letouzey
- Department of Gynecology and Obstetrics, University Hospital, Nîmes, France,Department of artificial polymers, Max Mousseron Institute of Biomolecules, CNRS UMR 5247, Univ Montpellier, Montpellier, France
| | - Jean-Christophe Gris
- Department of Haematology, University Hospital, Nîmes, France,UA11 INSERM—UM Institut Desbrest d’Épidémiologie et de Santé Publique (IDESP), Montpellier, France,Faculty of Pharmaceutical and Biological Sciences, Montpellier University, France,I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sylvie Bouvier
- Department of Haematology, University Hospital, Nîmes, France,UA11 INSERM—UM Institut Desbrest d’Épidémiologie et de Santé Publique (IDESP), Montpellier, France,Faculty of Pharmaceutical and Biological Sciences, Montpellier University, France,*Correspondence: Sylvie Bouvier,
| |
Collapse
|
218
|
Tang X, Xu Q, Yang S, Huang X, Wang L, Huang F, Luo J, Zhou X, Wu A, Mei Q, Zhao C, Wu J. Toll-like Receptors and Thrombopoiesis. Int J Mol Sci 2023; 24:ijms24021010. [PMID: 36674552 PMCID: PMC9864288 DOI: 10.3390/ijms24021010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Platelets are the second most abundant blood component after red blood cells and can participate in a variety of physiological and pathological functions. Beyond its traditional role in hemostasis and thrombosis, it also plays an indispensable role in inflammatory diseases. However, thrombocytopenia is a common hematologic problem in the clinic, and it presents a proportional relationship with the fatality of many diseases. Therefore, the prevention and treatment of thrombocytopenia is of great importance. The expression of Toll-like receptors (TLRs) is one of the most relevant characteristics of thrombopoiesis and the platelet inflammatory function. We know that the TLR family is found on the surface or inside almost all cells, where they perform many immune functions. Of those, TLR2 and TLR4 are the main stress-inducing members and play an integral role in inflammatory diseases and platelet production and function. Therefore, the aim of this review is to present and discuss the relationship between platelets, inflammation and the TLR family and extend recent research on the influence of the TLR2 and TLR4 pathways and the regulation of platelet production and function. Reviewing the interaction between TLRs and platelets in inflammation may be a research direction or program for the treatment of thrombocytopenia-related and inflammatory-related diseases.
Collapse
Affiliation(s)
- Xiaoqin Tang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qian Xu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shuo Yang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xinwu Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Jiesi Luo
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Xiaogang Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
| | - Chunling Zhao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Correspondence: (C.Z.); (J.W.); Tel.: +86-186-8307-3667 (C.Z.); +86-139-8241-6641 (J.W.)
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Institute of Cardiovascular Research, the Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Luzhou 646000, China
- Correspondence: (C.Z.); (J.W.); Tel.: +86-186-8307-3667 (C.Z.); +86-139-8241-6641 (J.W.)
| |
Collapse
|
219
|
Fujihara J, Takinami Y, Kimura-Kataoka K, Kawai Y, Takeshita H. Cell-free DNA Release in the Plasma of Patients with Cardiac Disease is Associated with Cell Death Processes. Indian J Clin Biochem 2023; 38:67-72. [PMID: 36684502 PMCID: PMC9852365 DOI: 10.1007/s12291-022-01034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 01/25/2023]
Abstract
Cell-free DNA (cfDNA) is released into the plasma of patients with cardiac disease. Here, the source and mechanism of plasma cfDNA release in patients with myocardial infarction (MI) and other cardiac diseases (n = 59) were investigated. Plasma levels of various markers including M30 (apoptosis), M65 (apoptosis and necrosis), cyclophilin A (CyPA) (necrosis), and myeloperoxidase (MPO) (neutrophil activation) were assayed. The plasma cfDNA concentrations in MI and other cardiac diseases were significantly higher than that in the healthy control subjects. Significant differences were not observed among the cardiac disease patients (MI and other cardiac diseases) and healthy control subjects in M30, M65, and CyPA levels. In contrast,the MPO levels were significantly elevated in cardiac disease patients when compared to control groups, and MPO levels in MI patients were significantly higher than other cardiac diseases patients. These results suggest that cfDNA is mainly released by neutrophils via NETosis in addition to apoptosis except for epithelial apoptosis in patients with cardiac disease and the degree is greater in MI patients. The results from this study provide basic information for diagnosis marker of MI.
Collapse
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, 693-8501 Izumo, Shimane, Japan
| | - Yoshikazu Takinami
- Department of Emergency Medicine, Fukui Kosei Hospital, 201 Shimorokujyo, 918-8537 Fukui, Fukui Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, 693-8501 Izumo, Shimane, Japan
| | - Yasuyuki Kawai
- Department of Cardiology, Kanazawa Medical University, 1-1 Daigaku, 920-0293 Uchinada, Kanazawa, Ishikawa Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, 693-8501 Izumo, Shimane, Japan
| |
Collapse
|
220
|
Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med 2023; 13:e1170. [PMID: 36629024 PMCID: PMC9832433 DOI: 10.1002/ctm2.1170] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Sepsis is a persistent systemic inflammatory condition involving multiple organ failures resulting from a dysregulated immune response to infection, and one of the hallmarks of sepsis is endothelial dysfunction. During its progression, neutrophils are the first line of innate immune defence against infection. Aside from traditional mechanisms, such as phagocytosis or the release of inflammatory cytokines, reactive oxygen species and other antibacterial substances, activated neutrophils also release web-like structures composed of tangled decondensed DNA, histone, myeloperoxidase and other granules called neutrophil extracellular traps (NETs), which can efficiently ensnare bacteria in the circulation. In contrast, excessive neutrophil activation and NET release may induce endothelial cells to shift toward a pro-inflammatory and pro-coagulant phenotype. Furthermore, neutrophils and NETs can degrade glycocalyx on the endothelial cell surface and increase endothelium permeability. Consequently, the endothelial barrier collapses, contributing to impaired microcirculatory blood flow, tissue hypoperfusion and life-threatening organ failure in the late phase of sepsis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Mengdi Qu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Wenqian Li
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
| | - Dan Wu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative MedicineThe University of Texas‐MD Anderson Cancer CenterHoustonTexasUSA
- Anesthesiology and Surgical Oncology Research GroupHoustonTexasUSA
| | - Changhong Miao
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| |
Collapse
|
221
|
Xie M, Yuan K, Zhu X, Chen J, Zhang X, Xie Y, Wu M, Wang Z, Liu R, Liu X. Systemic Immune-Inflammation Index and Long-Term Mortality in Patients with Stroke-Associated Pneumonia. J Inflamm Res 2023; 16:1581-1593. [PMID: 37092129 PMCID: PMC10120842 DOI: 10.2147/jir.s399371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 04/25/2023] Open
Abstract
Background Systemic immune inflammation has been investigated as a prognostic marker of different diseases. This study is designed to assess the association of systemic immune-inflammation index (SII) with long-term mortality of stroke-associated pneumonia (SAP) patients. Methods Patients aged ≥18 years with SAP were selected from the Nanjing Stroke Registry Program in China. We retrospectively evaluated systemic immune-inflammation response with SII and pneumonia severity with the pneumonia severity index and the confusion, uremia, elevated respiratory rate, hypotension, and aged 65 years or older score. To explore the correlation between SII and mortality in SAP patients, multivariable Cox regressions and competing risk regressions were conducted. Mediation analysis was also performed to assess the role of pneumonia severity. Results Among 611 patients in the SAP population, death occurred in 164 patients (26.8%) during the median follow-up of 3.0 (1.2-4.6) years. In multivariate analysis, higher SII scores could predict increased mortality in patients with SAP (adjusted hazard ratio 2.061; 95% confidence interval, 1.256-3.383; P = 0.004), and the association was mediated by pneumonia severity. Moreover, adding SII to traditional models improved their predictive ability for mortality. Conclusion Our study displayed that SII was characterized in SAP patients with different prognoses. Elevated SII scores increased the risk of mortality. Further research is required for the clinical practice of the index among SAP patients.
Collapse
Affiliation(s)
- Mengdi Xie
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Kang Yuan
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xinyi Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jingjing Chen
- Department of Neurology, Changhai Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yi Xie
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Min Wu
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhaojun Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Rui Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
- Rui Liu, Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210000, Jiangsu Province, People’s Republic of China, Tel +86 2584801861, Fax +86 2584805169, Email
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
- Stroke Center & Department of Neurology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
- Correspondence: Xinfeng Liu, Department of Neurology, Jinling Hospital, Nanjing Medical University, No. 305 East Zhongshan Road, Nanjing, Jiangsu Province, 210000, People’s Republic of China, Tel +86 2584801861, Fax +86 2584805169, Email
| |
Collapse
|
222
|
Anselmo A, Boselli D. Flow Cytometry Analysis of IL-1 Receptors and Toll-Like Receptors on Platelets and Platelet-Derived Extracellular Vesicles. Methods Mol Biol 2023; 2700:117-137. [PMID: 37603177 DOI: 10.1007/978-1-0716-3366-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Flow cytometry is largely used for the immunophenotyping and quantification of several cell types or related components including platelets and extracellular vesicles. Platelets and platelet-derived extracellular vesicles (PEVs) are receiving increased interest in inflammatory diseases including sepsis. Thus, in this chapter, we will describe protocols for the flow cytometry analysis of platelets, platelet/neutrophils hetero aggregates, and PEVs mainly focusing on the evaluation of the surface expression of some IL-1 receptor (ILR) and Toll-like receptor (TLR) family members.
Collapse
Affiliation(s)
- Achille Anselmo
- Flow Cytometry Resource, Advanced Cytometry Technical Applications Laboratory, San Raffaele Scientific Institute, Milan, Italy.
| | - Daniela Boselli
- Flow Cytometry Resource, Advanced Cytometry Technical Applications Laboratory, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
223
|
Lipka S, Ostendorf L, Schneider U, Hiepe F, Apel F, Alexander T. Increased levels of immature and activated low density granulocytes and altered degradation of neutrophil extracellular traps in granulomatosis with polyangiitis. PLoS One 2023; 18:e0282919. [PMID: 36920946 PMCID: PMC10016653 DOI: 10.1371/journal.pone.0282919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Granulomatosis with Polyangiitis (GPA) is a small vessel vasculitis typically associated with release of neutrophil extracellular traps (NETs) by activated neutrophils. In this study, we further aimed to investigate the contributions of neutrophils and NETs to the complex disease pathogenesis. We characterized the phenotype of neutrophils and their capacity to induce NETs. In addition, the level of circulating NETs, determined by neutrophil elastase/DNA complexes, and the capacity of patient sera to degrade NETs were investigated from blood samples of 12 GPA patients, 21 patients with systemic lupus erythematosus (SLE) and 21 healthy donors (HD). We found that GPA patients had significantly increased levels of low-density granulocytes (LDGs) compared to HD, which displayed an activated and more immature phenotype. While the propensity of normal-density granulocytes to release NETs and the levels of circulating NETs were not significantly different from HD, patient sera from GPA patients degraded NETs less effectively, which weakly correlated with markers of disease activity. In conclusion, increased levels of immature and activated LDGs and altered degradation of circulating NETs may contribute to pathogenesis of GPA, potentially by providing a source of autoantigens that trigger or further enhance autoimmune responses.
Collapse
Affiliation(s)
- Spyridon Lipka
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ Berlin)–a Leibniz Institute, Autoimmunology Group, Berlin, Germany
| | - Lennard Ostendorf
- Deutsches Rheuma-Forschungszentrum (DRFZ Berlin)–a Leibniz Institute, Autoimmunology Group, Berlin, Germany
- Department of Nephrology and Intensive Care Medicine–Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health (BIH), Berlin, Germany
- Department of Rheumatology and Clinical Immunology–Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health (BIH), Berlin, Germany
| | - Udo Schneider
- Department of Rheumatology and Clinical Immunology–Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health (BIH), Berlin, Germany
| | - Falk Hiepe
- Deutsches Rheuma-Forschungszentrum (DRFZ Berlin)–a Leibniz Institute, Autoimmunology Group, Berlin, Germany
- Department of Rheumatology and Clinical Immunology–Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health (BIH), Berlin, Germany
| | - Falko Apel
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Tobias Alexander
- Deutsches Rheuma-Forschungszentrum (DRFZ Berlin)–a Leibniz Institute, Autoimmunology Group, Berlin, Germany
- Department of Rheumatology and Clinical Immunology–Charité–Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and the Berlin Institute of Health (BIH), Berlin, Germany
- * E-mail:
| |
Collapse
|
224
|
Chen L, Zhu C, Pan F, Chen Y, Xiong L, Li Y, Chu X, Huang G. Platelets in the tumor microenvironment and their biological effects on cancer hallmarks. Front Oncol 2023; 13:1121401. [PMID: 36937386 PMCID: PMC10022734 DOI: 10.3389/fonc.2023.1121401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The interplay between platelets and tumors has long been studied. It has been widely accepted that platelets could promote tumor metastasis. However, the precise interactions between platelets and tumor cells have not been thoroughly investigated. Although platelets may play complex roles in multiple steps of tumor development, most studies focus on the platelets in the circulation of tumor patients. Platelets in the primary tumor microenvironment, in addition to platelets in the circulation during tumor cell dissemination, have recently been studied. Their effects on tumor biology are gradually figured out. According to updated cancer hallmarks, we reviewed the biological effects of platelets on tumors, including regulating tumor proliferation and growth, promoting cancer invasion and metastasis, inducing vasculature, avoiding immune destruction, and mediating tumor metabolism and inflammation.
Collapse
Affiliation(s)
- Lilan Chen
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chunyan Zhu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fan Pan
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ying Chen
- Division of Immunology, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Lei Xiong
- Department of Cardio-Thoracic Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yan Li
- Department of Respiratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- *Correspondence: Guichun Huang, ; Yan Li, ; Xiaoyuan Chu,
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- *Correspondence: Guichun Huang, ; Yan Li, ; Xiaoyuan Chu,
| | - Guichun Huang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
- *Correspondence: Guichun Huang, ; Yan Li, ; Xiaoyuan Chu,
| |
Collapse
|
225
|
Li J, Chen J, Sun J, Li K. The Formation of NETs and Their Mechanism of Promoting Tumor Metastasis. JOURNAL OF ONCOLOGY 2023; 2023:7022337. [PMID: 36942262 PMCID: PMC10024627 DOI: 10.1155/2023/7022337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Neutrophil extracellular traps (NETs) are network structures comprised of decondensed DNA strands coated with granule proteins. There have been three types of NETs recorded. NETs have been discovered concerning the progression of some malignancies, including gastric cancer, breast cancer, ovarian cancer, hepatocellular carcinoma, colorectal cancer, glioblastoma, diffuse large B cell lymphoma (DLBCL), and lung cancer, among others. In various methods, tumors encourage the formation of NETs, and NETs, in turn, promote tumor growth. NETs can stimulate primary tumor cell proliferation, suppress immune cells to create a tumor-friendly immune microenvironment, and stimulate epithelial-mesenchymal transition (EMT). NETs significantly promote liver and lung metastasis, possibly by altering vascular permeability, inducing cytoskeleton rearrangement and directional cell migration, and reawakening dormant cancer cells. NETs are therapeutically promising targets for cancer patients. Cancer patients may benefit from anti-NETs therapy, especially when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jian Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Jing Chen
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Jing Sun
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200434, China
| |
Collapse
|
226
|
Sim MS, Kim HJ, Bae I, Kim C, Chang HS, Choi Y, Lee DH, Park HS, Chung IY. Calcium ionophore-activated platelets induce eosinophil extracellular trap formation. Allergol Int 2022:S1323-8930(22)00138-1. [PMID: 36586745 DOI: 10.1016/j.alit.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Platelets play a modulatory role in inflammatory response by secreting a vast array of granules and disintegrating into membrane-bound microparticles upon activation. The interplay between eosinophils and platelets is postulated to be implicated in the pathology of allergic airway inflammation. In this study, we investigated whether activated platelets can induce eosinophil extracellular trap (EET) formation, a cellular process by which activated eosinophils release net-like DNA fibers. METHODS Platelets were stimulated with the calcium ionophore, A23187, and the platelet agonists, thrombin and adenosine diphosphate (ADP). Platelet cultures were fractionated into conditioned medium (CM) and pellet, which were then overlaid on eosinophils to examine EET formation. RESULTS The CM and pellet from A23187-activated platelets stimulated eosinophils to generate EET, whereas those from thrombin- or ADP-activated platelets failed to induce such generation. The EET-inducing activity of the A23187-activated platelet culture was linearly proportional to the number of activated platelets. Interestingly, while EET formation induced by the direct stimulation of eosinophils with A23187 was NADPH oxidase (NOX)-dependent, EET formation induced by A23187-activated platelets was NOX-independent and significantly inhibited by necroptosis pathway inhibitors. CONCLUSIONS Activated platelets and their products may induce EET formation, thereby potentiating their role in eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Myeong Seong Sim
- Department of BionanoTechnology, Hanyang University, Ansan, South Korea
| | - Hye Jeong Kim
- Department of BionanoTechnology, Hanyang University, Ansan, South Korea
| | - Ikhyeon Bae
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Chun Kim
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Hun Soo Chang
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Dong-Hyun Lee
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| | - Il Yup Chung
- Department of Molecular and Life Sciences, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea.
| |
Collapse
|
227
|
High-Dose Intravenous Ascorbate in Sepsis, a Pro-Oxidant Enhanced Microbicidal Activity and the Effect on Neutrophil Functions. Biomedicines 2022; 11:biomedicines11010051. [PMID: 36672559 PMCID: PMC9855518 DOI: 10.3390/biomedicines11010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Vitamin C (ascorbic acid), a water-soluble essential vitamin, is well-known as an antioxidant and an essential substrate for several neutrophil functions. Because of (i) the importance of neutrophils in microbial control and (ii) the relatively low vitamin C level in neutrophils and in plasma during stress, vitamin C has been studied in sepsis (a life-threatening organ dysfunction from severe infection). Surprisingly, the supraphysiologic blood level of vitamin C (higher than 5 mM) after the high-dose intravenous vitamin C (HDIVC) for 4 days possibly induces the pro-oxidant effect in the extracellular space. As such, HDIVC demonstrates beneficial effects in sepsis which might be due to the impacts on an enhanced microbicidal activity through the improved activity indirectly via enhanced neutrophil functions and directly from the extracellular pro-oxidant effect on the organismal membrane. The concentration-related vitamin C properties are also observed in the neutrophil extracellular traps (NETs) formation as ascorbate inhibits NETs at 1 mM (or less) but facilitates NETs at 5 mM (or higher) concentration. The longer duration of HDIVC administration might be harmful in sepsis because NETs and pro-oxidants are partly responsible for sepsis-induced injuries, despite the possible microbicidal benefit. Despite the negative results in several randomized control trials, the short course HDIVC might be interesting to use in some selected groups, such as against anti-biotic resistant organisms. More studies on the proper use of vitamin C, a low-cost and widely available drug, in sepsis are warranted.
Collapse
|
228
|
Fang Q, Stehr AM, Naschberger E, Knopf J, Herrmann M, Stürzl M. No NETs no TIME: Crosstalk between neutrophil extracellular traps and the tumor immune microenvironment. Front Immunol 2022; 13:1075260. [PMID: 36618417 PMCID: PMC9816414 DOI: 10.3389/fimmu.2022.1075260] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The tumor immune microenvironment (TIME) controls tumorigenesis. Neutrophils are important components of TIME and control tumor progression and therapy resistance. Neutrophil extracellular traps (NETs) ejected by activated neutrophils are net-like structures composed of decondensed extracellular chromatin filaments decorated with a plethora of granules as well as cytoplasmic proteins. Many of these harbour post translational modifications. Cancer cells reportedly trigger NET formation, and conversely, NETs alter the TIME and promote tumor cell proliferation and migration. The specific interactions between NETs and TIME and the respective effects on tumor progression are still elusive. In certain tumors, a CD4+ T helper (Th) 2 cell-associated TIME induces NETs and exerts immunosuppressive functions via programmed death 1 (PD-1)/PD-L1, both associated with poorer prognosis. In other cases, NETs induce the proliferation of Th1 cells, associated with an improved prognosis in cancer. In addition, NETs can drive macrophage polarization and often rely on macrophages to promote cancer cell invasion and metastasis. In turn, macrophages can swiftly clear NETs in an immunologically silent manner. The aim of this review is to summarize the knowledge about the mutual interaction between NETs and TIME and its impact on tumor growth and therapy.
Collapse
Affiliation(s)
- Qi Fang
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Antonia Margarethe Stehr
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Translational Research Center, Department of Surgery, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nürnberg (EMN), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
229
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
230
|
Peng F, Yi Q, Zhang Q, Deng J, Li C, Xu M, Wu C, Zhong Y, Wu S. Performance of D-dimer to lymphocyte ratio in predicting the mortality of COVID-19 patients. Front Cell Infect Microbiol 2022; 12:1053039. [PMID: 36590587 PMCID: PMC9797859 DOI: 10.3389/fcimb.2022.1053039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Background Nowadays, there is still no effective treatment developed for COVID-19, and early identification and supportive therapies are essential in reducing the morbidity and mortality of COVID-19. This is the first study to evaluate D-dimer to lymphocyte ratio (DLR) as a prognostic utility in patients with COVID-19. Methods We retrospectively analyzed 611 patients and separated them into groups of survivors and non-survivors. The area under the curve (AUC) of various predictors integrated into the prognosis of COVID-19 was compared using the receiver operating characteristic (ROC) curve. In order to ascertain the interaction between DLR and survival in COVID-19 patients, the Kaplan-Meier (KM) curve was chosen. Results Age (OR = 1.053; 95% CI, 1.022-1.086; P = 0.001), NLR (OR = 1.045; 95% CI, 1.001-1.091; P = 0.046), CRP (OR = 1.010; 95% CI, 1.005-1.016; P < 0.001), PT (OR = 1.184; 95% CI, 1.018-1.377; P = 0.029), and DLR (OR = 1.048; 95% CI, 1.018-1.078; P = 0.001) were the independent risk factors related with the mortality of COVID-19. DLR had the highest predictive value for COVID-19 mortality with the AUC of 0.924. Patients' survival was lower when compared to those with lower DLR (Log Rank P <0.001). Conclusion DLR might indicate a risk factor in the mortality of patients with COVID-19.
Collapse
Affiliation(s)
- Fei Peng
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Yi
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Quan Zhang
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Li
- Department of respiratory medicine, Hunan Provincial People’s Hospital, Changsha, China
| | - Min Xu
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chenfang Wu
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Yanjun Zhong, ; Shangjie Wu,
| | - Shangjie Wu
- Department of Respiratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Yanjun Zhong, ; Shangjie Wu,
| |
Collapse
|
231
|
Mariotti A, Ezzraimi AE, Camoin-Jau L. Effect of antiplatelet agents on Escherichia coli sepsis mechanisms: A review. Front Microbiol 2022; 13:1043334. [PMID: 36569083 PMCID: PMC9780297 DOI: 10.3389/fmicb.2022.1043334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Despite ever-increasing improvements in the prognosis of sepsis, this condition remains a frequent cause of hospitalization and mortality in Western countries. Sepsis exposes the patient to multiple complications, including thrombotic complications, due to the ability of circulating bacteria to activate platelets. One of the bacteria most frequently implicated in sepsis, Escherichia coli, a Gram-negative bacillus, has been described as being capable of inducing platelet activation during sepsis. However, to date, the mechanisms involved in this activation have not been clearly established, due to their multiple characteristics. Many signaling pathways are thought to be involved. At the same time, reports on the use of antiplatelet agents in sepsis to reduce platelet activation have been published, with variable results. To date, their use in sepsis remains controversial. The aim of this review is to summarize the currently available knowledge on the mechanisms of platelet activation secondary to Escherichia coli sepsis, as well as to provide an update on the effects of antiplatelet agents in these pathological circumstances.
Collapse
Affiliation(s)
- Antoine Mariotti
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France
| | - Amina Ezzeroug Ezzraimi
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France
| | - Laurence Camoin-Jau
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France,*Correspondence: Laurence Camoin-Jau,
| |
Collapse
|
232
|
Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022; 10:biomedicines10123180. [PMID: 36551934 PMCID: PMC9775400 DOI: 10.3390/biomedicines10123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient, yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and improves platelet count. Platelets dysfunction results in several disorders, including inflammation, atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin on platelets and hence proved it is an important candidate for the treatment of the aforementioned diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conventional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally also reduced rats' acute inflammation brought on by carrageenan. Curcumin has also been proven to prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue. In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion. It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expression and mice survival after cecal ligation and puncture were improved by curcumin, which also altered platelet and leukocyte adhesion and blood-brain barrier dysfunction. Through regulating many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet activation as possible therapeutic agents. This review article proposes to highlight and discuss the regulatory effects of curcumin on platelets.
Collapse
|
233
|
Zeller J, Cheung Tung Shing KS, Nero TL, McFadyen JD, Krippner G, Bogner B, Kreuzaler S, Kiefer J, Horner VK, Braig D, Danish H, Baratchi S, Fricke M, Wang X, Kather MG, Kammerer B, Woollard KJ, Sharma P, Morton CJ, Pietersz G, Parker MW, Peter K, Eisenhardt SU. A novel phosphocholine-mimetic inhibits a pro-inflammatory conformational change in C-reactive protein. EMBO Mol Med 2022; 15:e16236. [PMID: 36468184 PMCID: PMC9832874 DOI: 10.15252/emmm.202216236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 12/09/2022] Open
Abstract
C-reactive protein (CRP) is an early-stage acute phase protein and highly upregulated in response to inflammatory reactions. We recently identified a novel mechanism that leads to a conformational change from the native, functionally relatively inert, pentameric CRP (pCRP) structure to a pentameric CRP intermediate (pCRP*) and ultimately to the monomeric CRP (mCRP) form, both exhibiting highly pro-inflammatory effects. This transition in the inflammatory profile of CRP is mediated by binding of pCRP to activated/damaged cell membranes via exposed phosphocholine lipid head groups. We designed a tool compound as a low molecular weight CRP inhibitor using the structure of phosphocholine as a template. X-ray crystallography revealed specific binding to the phosphocholine binding pockets of pCRP. We provide in vitro and in vivo proof-of-concept data demonstrating that the low molecular weight tool compound inhibits CRP-driven exacerbation of local inflammatory responses, while potentially preserving pathogen-defense functions of CRP. The inhibition of the conformational change generating pro-inflammatory CRP isoforms via phosphocholine-mimicking compounds represents a promising, potentially broadly applicable anti-inflammatory therapy.
Collapse
Affiliation(s)
- Johannes Zeller
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany,Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Karen S Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Tracy L Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia,ACRF Rational Drug Discovery CentreSt. Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - James D McFadyen
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Guy Krippner
- Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Balázs Bogner
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Sheena Kreuzaler
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Jurij Kiefer
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Verena K Horner
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - David Braig
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Habiba Danish
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,School of Health and Biomedical SciencesRMIT UniversityMelbourneVic.Australia
| | - Sara Baratchi
- School of Health and Biomedical SciencesRMIT UniversityMelbourneVic.Australia
| | - Mark Fricke
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| | - Xiaowei Wang
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Michel G Kather
- Centre for Integrative Signalling Analysis CISAUniversity of FreiburgFreiburgGermany
| | - Bernd Kammerer
- Centre for Integrative Signalling Analysis CISAUniversity of FreiburgFreiburgGermany
| | | | - Prerna Sharma
- Baker Heart and Diabetes InstituteMelbourneVic.Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Geoffrey Pietersz
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia,ACRF Rational Drug Discovery CentreSt. Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes InstituteMelbourneVic.Australia,Department of Cardiometabolic HealthThe University of MelbourneParkvilleVic.Australia
| | - Steffen U Eisenhardt
- Department of Plastic and Hand Surgery, University of Freiburg Medical CentreMedical Faculty of the University of FreiburgFreiburgGermany
| |
Collapse
|
234
|
Role of neutrophil extracellular traps in inflammatory evolution in severe acute pancreatitis. Chin Med J (Engl) 2022; 135:2773-2784. [PMID: 36729096 PMCID: PMC9945416 DOI: 10.1097/cm9.0000000000002359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
ABSTRACT Severe acute pancreatitis (SAP) is a life-threatening acute abdominal disease with two peaks of death: the first in the early stage, characterized by systemic inflammatory response-associated organ failure; and the second in the late stage, characterized by infectious complications. Neutrophils are the main immune cells participating in the whole process of SAP. In addition to the traditional recognition of neutrophils as the origination of chemokine and cytokine cascades or phagocytosis and degranulation of pathogens, neutrophil extracellular traps (NETs) also play an important roles in inflammatory reactions. We reviewed the role of NETs in the occurrence and development of SAP and its fatal complications, including multiple organs injury, infected pancreatic necrosis, and thrombosis. This review provides novel insights into the involvement of NETs throughout the entire process of SAP, showing that targeting NETs might be a promising strategy in SAP treatment. However, precision therapeutic options targeting NETs in different situations require further investigation.
Collapse
|
235
|
Immunopathophysiology of human sepsis. EBioMedicine 2022; 86:104363. [PMID: 36470832 PMCID: PMC9783164 DOI: 10.1016/j.ebiom.2022.104363] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
Sepsis is an ill-defined syndrome yet is a leading cause of morbidity and mortality worldwide. The most recent consensus defines sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection. However, this definition belies the complexity and breadth of immune mechanisms involved in sepsis, which are characterized by simultaneous hyperinflammation and immune suppression. In this review, we describe the immunopathogenesis of sepsis and highlight some recent pathophysiological findings that have expanded our understanding of sepsis. Sepsis endotypes can be used to divide sepsis patients in different groups with distinct immune profiles and outcomes. We also summarize evidence on the role of the gut microbiome in sepsis immunity. The challenge of the coming years will be to translate our increasing knowledge about the molecular mechanisms underlying sepsis into therapies that improve relevant patient outcomes.
Collapse
|
236
|
Meier S, Seddon JA, Maasdorp E, Kleynhans L, du Plessis N, Loxton AG, Malherbe ST, Zak DE, Thompson E, Duffy FJ, Kaufmann SHE, Ottenhoff THM, Scriba TJ, Suliman S, Sutherland JS, Winter J, Kuivaniemi H, Walzl G, Tromp G. Neutrophil degranulation, NETosis and platelet degranulation pathway genes are co-induced in whole blood up to six months before tuberculosis diagnosis. PLoS One 2022; 17:e0278295. [PMID: 36454773 PMCID: PMC9714760 DOI: 10.1371/journal.pone.0278295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) causes tuberculosis (TB) and remains one of the leading causes of mortality due to an infectious pathogen. Host immune responses have been implicated in driving the progression from infection to severe lung disease. We analyzed longitudinal RNA sequencing (RNAseq) data from the whole blood of 74 TB progressors whose samples were grouped into four six-month intervals preceding diagnosis (the GC6-74 study). We additionally analyzed RNAseq data from an independent cohort of 90 TB patients with positron emission tomography-computed tomography (PET-CT) scan results which were used to categorize them into groups with high and low levels of lung damage (the Catalysis TB Biomarker study). These groups were compared to non-TB controls to obtain a complete whole blood transcriptional profile for individuals spanning from early stages of M.tb infection to TB diagnosis. The results revealed a steady increase in the number of genes that were differentially expressed in progressors at time points closer to diagnosis with 278 genes at 13-18 months, 742 at 7-12 months and 5,131 detected 1-6 months before diagnosis and 9,205 detected in TB patients. A total of 2,144 differentially expressed genes were detected when comparing TB patients with high and low levels of lung damage. There was a large overlap in the genes upregulated in progressors 1-6 months before diagnosis (86%) with those in TB patients. A comprehensive pathway analysis revealed a potent activation of neutrophil and platelet mediated defenses including neutrophil and platelet degranulation, and NET formation at both time points. These pathways were also enriched in TB patients with high levels of lung damage compared to those with low. These findings suggest that neutrophils and platelets play a critical role in TB pathogenesis, and provide details of the timing of specific effector mechanisms that may contribute to TB lung pathology.
Collapse
Affiliation(s)
- Stuart Meier
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
| | - James A. Seddon
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Elizna Maasdorp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T. Malherbe
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Daniel E. Zak
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Ethan Thompson
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Fergal J. Duffy
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States of America
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States of America
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Sara Suliman
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Jayne S. Sutherland
- Vaccines & Immunity Theme, Medical Research Council Unit, The Gambia, at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Jill Winter
- Catalysis Foundation for Health, San Ramon, CA, United States of America
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- DSI–NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | | | | |
Collapse
|
237
|
Das D, Adhikary S, Das RK, Banerjee A, Radhakrishnan AK, Paul S, Pathak S, Duttaroy AK. Bioactive food components and their inhibitory actions in multiple platelet pathways. J Food Biochem 2022; 46:e14476. [PMID: 36219755 DOI: 10.1111/jfbc.14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
In addition to hemostasis and thrombosis, blood platelets are involved in various processes such as inflammation, infection, immunobiology, cancer metastasis, wound repair and angiogenesis. Platelets' hemostatic and non-hemostatic functions are mediated by the expression of various membrane receptors and the release of proteins, ions and other mediators. Therefore, specific activities of platelets responsible for the non-hemostatic disease are to be inhibited while leaving the platelet's hemostatic function unaffected. Platelets' anti-aggregatory property has been used as a primary criterion for antiplatelet drugs/bioactives; however, their non-hemostatic activities are not well known. This review describes the hemostatic and non-hemostatic function of human blood platelets and the modulatory effects of bioactive food components. PRACTICAL APPLICATIONS: In this review, we have discussed the antiplatelet effects of several food components. These bioactive compounds inhibit both hemostatic and non-hemostatic pathways involving blood platelet. Platelets have emerged as critical biological factors of normal and pathologic vascular healing and other diseases such as cancers and inflammatory and immune disorders. The challenge for therapeutic intervention in these disorders will be to find drugs and bioactive compounds that preferentially block specific sites implicated in emerging roles of platelets' complicated contribution to inflammation, tumour growth, or other disorders while leaving at least some of their hemostatic function intact.
Collapse
Affiliation(s)
- Diptimayee Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Shubhamay Adhikary
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
238
|
Jiang SZ, To JL, Hughes MR, McNagny KM, Kim H. Platelet signaling at the nexus of innate immunity and rheumatoid arthritis. Front Immunol 2022; 13:977828. [PMID: 36505402 PMCID: PMC9732516 DOI: 10.3389/fimmu.2022.977828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is a debilitating autoimmune disorder characterized by chronic inflammation of the synovial tissues and progressive destruction of bone and cartilage. The inflammatory response and subsequent tissue degradation are orchestrated by complex signaling networks between immune cells and their products in the blood, vascular endothelia and the connective tissue cells residing in the joints. Platelets are recognized as immune-competent cells with an important role in chronic inflammatory diseases such as RA. Here we review the specific aspects of platelet function relevant to arthritic disease, including current knowledge of the molecular crosstalk between platelets and other innate immune cells that modulate RA pathogenesis.
Collapse
Affiliation(s)
- Steven Z. Jiang
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Jeffrey L. To
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R. Hughes
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M. McNagny
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
239
|
Preliminary Study on the Host Response to Bivalent and Monovalent Autogenous Vaccines against Mycoplasma agalactiae in Dairy Sheep. Vet Sci 2022; 9:vetsci9120651. [PMID: 36548812 PMCID: PMC9785335 DOI: 10.3390/vetsci9120651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
In Italy, dairy sheep farming represents a vital agro-industry sector, but it is still challenged by contagious agalactia (CA), which is endemic there, and vaccination is the most economical and sustainable tool for control. This study aimed to evaluate the combined Mycoplasma agalactiae (Ma)-Staphylococcus aureus (Sa) vaccine (Ma-Sa) against the Ma monovalent vaccine in ewes. Twelve primiparous Ma-free ewes were randomly grouped into three equal groups: first, the control group injected with placebo, second, the group vaccinated with the Ma monovalent vaccine, and third, the group vaccinated with Ma-Sa combined vaccine, with two S/C doses at 45-day intervals. The animals were examined for serological, hematological, and somatic cell count (SCC) changes for 17 successive weeks. A significant increase in anti-Ma antibody mean titers, leukocytes, and platelets was observed in the vaccinated animals, with the highest values in those who received the combined vaccine. Neutrophils were high only in the animals who received the combined vaccine. SCC was lower in the vaccinated animals during the first six weeks. This study concludes that the combined Ma-Sa vaccines enhance immune response and potentiate its efficacy against Ma. This improvement might be attributed to the sensitization/activation effect of S. aureus on platelets, which are recoded to act as a key regulator for the coordination of all components of the innate immune system. Even though this study included a small number of animals, its findings about the potentialities of this inactivated vaccine in the control of CA are strongly encouraging. Further confirmation might be needed through additional replicates and a challenge study is needed before proceeding with widespread use.
Collapse
|
240
|
Platelet-Neutrophil Association in NETs-Rich Areas in the Retrieved AIS Patient Thrombi. Int J Mol Sci 2022; 23:ijms232214477. [PMID: 36430952 PMCID: PMC9694992 DOI: 10.3390/ijms232214477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Histological structure of thrombi is a strong determinant of the outcome of vascular recanalization therapy, the only treatment option for acute ischemic stroke (AIS) patients. A total of 21 AIS patients from this study after undergoing non-enhanced CT scan and multimodal MRI were treated with mechanical stent-based and manual aspiration thrombectomy, and thromboembolic retrieved from a cerebral artery. Complementary histopathological and imaging analyses were performed to understand their composition with a specific focus on fibrin, von Willebrand factor, and neutrophil extracellular traps (NETs). Though distinct RBC-rich and platelet-rich areas were found, AIS patient thrombi were overwhelmingly platelet-rich, with 90% of thrombi containing <40% total RBC-rich contents (1.5 to 37%). Structurally, RBC-rich areas were simple, consisting of tightly packed RBCs in thin fibrin meshwork with sparsely populated nucleated cells and lacked any substantial von Willebrand factor (VWF). Platelet-rich areas were structurally more complex with thick fibrin meshwork associated with VWF. Plenty of leukocytes populated the platelet-rich areas, particularly in the periphery and border areas between platelet-rich and RBC-rich areas. Platelet-rich areas showed abundant activated neutrophils (myeloperoxidase+ and neutrophil-elastase+) containing citrullinated histone-decorated DNA. Citrullinated histone-decorated DNA also accumulated extracellularly, pointing to NETosis by the activated neutrophils. Notably, NETs-containing areas showed strong reactivity to VWF, platelets, and high-mobility group box 1 (HMGB1), signifying a close interplay between these components.
Collapse
|
241
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
242
|
Everts PA, Mazzola T, Mautner K, Randelli PS, Podesta L. Modifying Orthobiological PRP Therapies Are Imperative for the Advancement of Treatment Outcomes in Musculoskeletal Pathologies. Biomedicines 2022; 10:biomedicines10112933. [PMID: 36428501 PMCID: PMC9687216 DOI: 10.3390/biomedicines10112933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Autologous biological cellular preparations have materialized as a growing area of medical advancement in interventional (orthopedic) practices and surgical interventions to provide an optimal tissue healing environment, particularly in tissues where standard healing is disrupted and repair and ultimately restoration of function is at risk. These cellular therapies are often referred to as orthobiologics and are derived from patient's own tissues to prepare point of care platelet-rich plasma (PRP), bone marrow concentrate (BMC), and adipose tissue concentrate (ATC). Orthobiological preparations are biological materials comprised of a wide variety of cell populations, cytokines, growth factors, molecules, and signaling cells. They can modulate and influence many other resident cells after they have been administered in specific diseased microenvironments. Jointly, the various orthobiological cell preparations are proficient to counteract persistent inflammation, respond to catabolic reactions, and reinstate tissue homeostasis. Ultimately, precisely delivered orthobiologics with a proper dose and bioformulation will contribute to tissue repair. Progress has been made in understanding orthobiological technologies where the safety and relatively easy manipulation of orthobiological treatment tools has been demonstrated in clinical applications. Although more positive than negative patient outcome results have been registered in the literature, definitive and accepted standards to prepare specific cellular orthobiologics are still lacking. To promote significant and consistent clinical outcomes, we will present a review of methods for implementing dosing strategies, using bioformulations tailored to the pathoanatomic process of the tissue, and adopting variable preparation and injection volume policies. By optimizing the dose and specificity of orthobiologics, local cellular synergistic behavior will increase, potentially leading to better pain killing effects, effective immunomodulation, control of inflammation, and (neo) angiogenesis, ultimately contributing to functionally restored body movement patterns.
Collapse
Affiliation(s)
- Peter A. Everts
- Education & Research Division, Gulf Coast Biologics, Fort Myers, FL 33916, USA
- Correspondence: ; Tel.: +1-239-961-6457
| | - Timothy Mazzola
- Breakthrough Regenerative Orthopedics, Boulder, CO 80305, USA
| | - Kenneth Mautner
- Department of Physical Medicine and Rehabilitation, Emory University, Atlanta, GA 30329, USA
| | - Pietro S. Randelli
- Instituto Orthopedico Gaetano Pini, Milan University, 20122 Milan, Italy
| | | |
Collapse
|
243
|
Sharma S, Tyagi T, Antoniak S. Platelet in thrombo-inflammation: Unraveling new therapeutic targets. Front Immunol 2022; 13:1039843. [PMID: 36451834 PMCID: PMC9702553 DOI: 10.3389/fimmu.2022.1039843] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
In the broad range of human diseases, thrombo-inflammation appears as a clinical manifestation. Clinically, it is well characterized in context of superficial thrombophlebitis that is recognized as thrombosis and inflammation of superficial veins. However, it is more hazardous when developed in the microvasculature of injured/inflamed/infected tissues and organs. Several diseases like sepsis and ischemia-reperfusion can cause formation of microvascular thrombosis subsequently leading to thrombo-inflammation. Thrombo-inflammation can also occur in cases of antiphospholipid syndrome, preeclampsia, sickle cell disease, bacterial and viral infection. One of the major contributors to thrombo-inflammation is the loss of normal anti-thrombotic and anti-inflammatory potential of the endothelial cells of vasculature. This manifest itself in the form of dysregulation of the coagulation pathway and complement system, pathologic platelet activation, and increased recruitment of leukocyte within the microvasculature. The role of platelets in hemostasis and formation of thrombi under pathologic and non-pathologic conditions is well established. Platelets are anucleate cells known for their essential role in primary hemostasis and the coagulation pathway. In recent years, studies provide strong evidence for the critical involvement of platelets in inflammatory processes like acute ischemic stroke, and viral infections like Coronavirus disease 2019 (COVID-19). This has encouraged the researchers to investigate the contribution of platelets in the pathology of various thrombo-inflammatory diseases. The inhibition of platelet surface receptors or their intracellular signaling which mediate initial platelet activation and adhesion might prove to be suitable targets in thrombo-inflammatory disorders. Thus, the present review summarizes the concept and mechanism of platelet signaling and briefly discuss their role in sterile and non-sterile thrombo-inflammation, with the emphasis on role of platelets in COVID-19 induced thrombo-inflammation. The aim of this review is to summarize the recent developments in deciphering the role of the platelets in thrombo-inflammation and discuss their potential as pharmaceutical targets.
Collapse
Affiliation(s)
- Swati Sharma
- UNC Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Silvio Antoniak
- UNC Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
244
|
Weng W, Cheng F, Zhang J. Specific signature biomarkers highlight the potential mechanisms of circulating neutrophils in aneurysmal subarachnoid hemorrhage. Front Pharmacol 2022; 13:1022564. [PMID: 36438795 PMCID: PMC9685413 DOI: 10.3389/fphar.2022.1022564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating hemorrhagic stroke with high disability and mortality. Neuroinflammation and the immunological response after aSAH are complex pathophysiological processes that have not yet been fully elucidated. Therefore, attention should be paid to exploring the inflammation-related genes involved in the systemic response to the rupture of intracranial aneurysms. Methods: The datasets of gene transcriptomes were downloaded from the Gene Expression Omnibus database. We constructed a gene co-expression network to identify cluster genes associated with aSAH and screened out differentially expressed genes (DEGs). The common gene was subsequently applied to identify hub genes by protein-protein interaction analysis and screen signature genes by machine learning algorithms. CMap analysis was implemented to identify potential small-molecule compounds. Meanwhile, Cibersort and ssGSEA were used to evaluate the immune cell composition, and GSEA reveals signal biological pathways. Results: We identified 602 DEGs from the GSE36791. The neutrophil-related module associated with aSAH was screened by weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis. Several small molecular compounds were predicted based on neutrophil-related genes. MAPK14, ITGAM, TLR4, and FCGR1A have been identified as crucial genes involved in the peripheral immune activation related to neutrophils. Six significant genes (CST7, HSP90AB1, PADI4, PLBD1, RAB32, and SLAMF6) were identified as signature biomarkers by performing the LASSO analysis and SVM algorithms. The constructed machine learning model appears to be robust by receiver-operating characteristic curve analysis. The immune feature analysis demonstrated that neutrophils were upregulated post-aSAH and PADI4 was positively correlated with neutrophils. The NETs pathway was significantly upregulated in aSAH. Conclusion: We identified core regulatory genes influencing the transcription profiles of circulating neutrophils after the rupture of intracranial aneurysms using bioinformatics analysis and machine learning algorithms. This study provides new insight into the mechanism of peripheral immune response and inflammation after aSAH.
Collapse
|
245
|
Zhu D, Lu Y, Wang Y, Wang Y. PAD4 and Its Inhibitors in Cancer Progression and Prognosis. Pharmaceutics 2022; 14:2414. [PMID: 36365233 PMCID: PMC9699117 DOI: 10.3390/pharmaceutics14112414] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 07/24/2023] Open
Abstract
The systemic spread of malignancies and the risk of cancer-associated thrombosis are major clinical challenges in cancer therapy worldwide. As an important post-translational modification enzyme, peptidyl arginine deiminase 4 (PAD4) could mediate the citrullination of protein in different components (including nucleus and cytoplasm, etc.) of a variety of cells (tumor cells, neutrophils, macrophages, etc.), thus participating in gene regulation, neutrophil extracellular trap (NET) and macrophage extracellular trap (MET). Thereby, PAD4 plays an important role in enhancing the growth of primary tumors and facilitating the distant metastasis of cancer cells. In addition, it is related to the formation of cancer-associated thrombosis. Therefore, the development of PAD4-specific inhibitors may be a promising strategy for treating cancer, and it may improve patient prognosis. In this review, we describe PAD4 involvement in gene regulation, protein citrullination, and NET formation. We also discuss its potential role in cancer and cancer-associated thrombosis, and we summarize the development and application of PAD4 inhibitors.
Collapse
Affiliation(s)
- Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| |
Collapse
|
246
|
Schrottmaier WC, Kral-Pointner JB, Salzmann M, Mussbacher M, Schmuckenschlager A, Pirabe A, Brunnthaler L, Kuttke M, Maier B, Heber S, Datler H, Ekici Y, Niederreiter B, Heber U, Blomgren B, Gorki AD, Söderberg-Nauclér C, Payrastre B, Gratacap MP, Knapp S, Schabbauer G, Assinger A. Platelet p110β mediates platelet-leukocyte interaction and curtails bacterial dissemination in pneumococcal pneumonia. Cell Rep 2022; 41:111614. [PMID: 36351402 DOI: 10.1016/j.celrep.2022.111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Phosphatidylinositol 3-kinase catalytic subunit p110β is involved in tumorigenesis and hemostasis. However, it remains unclear if p110β also regulates platelet-mediated immune responses, which could have important consequences for immune modulation during anti-cancer treatment with p110β inhibitors. Thus, we investigate how platelet p110β affects inflammation and infection. Using a mouse model of Streptococcus pneumoniae-induced pneumonia, we find that both platelet-specific p110β deficiency and pharmacologic inhibition of p110β with TGX-221 exacerbate disease pathogenesis by preventing platelet-monocyte and neutrophil interactions, diminishing their infiltration and enhancing bacterial dissemination. Platelet p110β mediates neutrophil phagocytosis of S. pneumoniae in vitro and curtails bacteremia in vivo. Genetic deficiency or inhibition of platelet p110β also impairs macrophage recruitment in an independent model of sterile peritonitis. Our results demonstrate that platelet p110β dysfunction exacerbates pulmonary infection by impeding leukocyte functions. Thereby, our findings provide important insights into the immunomodulatory potential of PI3K inhibitors in bacterial infection.
Collapse
Affiliation(s)
- Waltraud Cornelia Schrottmaier
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Julia Barbara Kral-Pointner
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Manuel Salzmann
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Marion Mussbacher
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria; Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Anna Schmuckenschlager
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Anita Pirabe
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Laura Brunnthaler
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Mario Kuttke
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Barbara Maier
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Stefan Heber
- Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Datler
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Yasemin Ekici
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrike Heber
- Department of Pathology and Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Bo Blomgren
- Department of Clinical Sciences, Danderyd Hospital, Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anna-Dorothea Gorki
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Solna, Centre for Molecular Medicine, Microbial Pathogenesis Unit, Karolinska University Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Bernard Payrastre
- INSERM UMR1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 31024 Toulouse, France
| | - Marie-Pierre Gratacap
- INSERM UMR1297, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III Paul Sabatier, 31024 Toulouse, France
| | - Sylvia Knapp
- Department of Medicine I, Research Division of Infection Biology, Medical University Vienna, 1090 Vienna, Austria
| | - Gernot Schabbauer
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Alice Assinger
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| |
Collapse
|
247
|
Neutrophil Extracellular Traps in Asthma: Friends or Foes? Cells 2022; 11:cells11213521. [PMID: 36359917 PMCID: PMC9654069 DOI: 10.3390/cells11213521] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Asthma is a chronic inflammatory disease characterized by variable airflow limitation and airway hyperresponsiveness. A plethora of immune and structural cells are involved in asthma pathogenesis. The roles of neutrophils and their mediators in different asthma phenotypes are largely unknown. Neutrophil extracellular traps (NETs) are net-like structures composed of DNA scaffolds, histones and granular proteins released by activated neutrophils. NETs were originally described as a process to entrap and kill a variety of microorganisms. NET formation can be achieved through a cell-death process, termed NETosis, or in association with the release of DNA from viable neutrophils. NETs can also promote the resolution of inflammation by degrading cytokines and chemokines. NETs have been implicated in the pathogenesis of various non-infectious conditions, including autoimmunity, cancer and even allergic disorders. Putative surrogate NET biomarkers (e.g., double-strand DNA (dsDNA), myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (CitH3)) have been found in different sites/fluids of patients with asthma. Targeting NETs has been proposed as a therapeutic strategy in several diseases. However, different NETs and NET components may have alternate, even opposite, consequences on inflammation. Here we review recent findings emphasizing the pathogenic and therapeutic potential of NETs in asthma.
Collapse
|
248
|
Nteliopoulos G, Nikolakopoulou Z, Chow BHN, Corless R, Nguyen B, Dimarakis I. Lung injury following cardiopulmonary bypass: a clinical update. Expert Rev Cardiovasc Ther 2022; 20:871-880. [PMID: 36408601 DOI: 10.1080/14779072.2022.2149492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Cardiopulmonary bypass (CPB) is an integral component of cardiac surgery; however, one of its most critical complications is acute lung injury induced by multiple factors including systemic inflammatory response. AREAS COVERED The objective of this review is to investigate the multiple factors that can lead to CPB-induced lung injury. These include contact of blood components with the artificial surface of the CPB circuit, local and systemic inflammatory response syndrome (SIRS), lung ischemia/re-perfusion injury, arrest of ventilation, and circulating endotoxins. We also focus on possible interventions to curtail the negative impact of CPB, such as off-pump surgery, impregnation of the circuit with less biologically active substances, leukocyte depletion filters and ultrafiltration, and pharmacological agents such as steroids and aprotinin. EXPERT OPINION Although many aspects of CPB are proposed to contribute to lung injury, its overall role is still not clear. Multiple interventions have been introduced to reduce the risk of pulmonary dysfunction, with many of these interventions having shown promising results, significantly attenuating inflammatory mediators and improving post-operative outcome. However, since lung injury is multifactorial and affected by inextricably linked components, multiple interventions tackling each of them is required.
Collapse
Affiliation(s)
| | - Zacharoula Nikolakopoulou
- Department of Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, UK
| | - Bobby Hiu Nam Chow
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | | | - Bao Nguyen
- Department of Cardiothoracic Surgery, Derriford Hospital, Plymouth, UK
| | - Ioannis Dimarakis
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Wythenshawe Hospital, Manchester, UK
| |
Collapse
|
249
|
Thompson-Souza GA, Vasconcelos CRI, Neves JS. Eosinophils: Focus on DNA extracellular traps. Life Sci 2022; 311:121191. [DOI: 10.1016/j.lfs.2022.121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
250
|
Zhang K, Hu Y, Li R, Li T. Single-cell atlas of murine adrenal glands reveals immune-adrenal crosstalk during systemic <i>Candida albicans</i> infection. Front Immunol 2022; 13:966814. [PMID: 36389688 PMCID: PMC9664004 DOI: 10.3389/fimmu.2022.966814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Fungal sepsis remains a major health threat with high mortality, where the adrenal gland stress response has been rarely reported. <i>Candida albicans</i> (<i>C.albicans</i>) is the most common opportunistic fungal pathogen of life-threatening disseminated candidiasis and fungal sepsis. In the present study, we performed single-cell RNA sequencing (scRNA-Seq) using the 10x Genomics platform to analyze the changes in murine adrenal transcriptome following systemic <i>C.albicans</i> infection. A total of 16 021 cells were categorized into 18 transcriptionally distinct clusters, representing adrenocortical cells, endothelial cells, various immune cells, mesenchymal cells, smooth muscle cells, adrenal capsule, chromaffin cells, neurons and glials. As the main cell component in the adrenal gland responsible for steroidogenesis, the adrenocortical cells dramatically diminished and were further grouped into 10 subclusters, which differently distributed in the infected and uninfected samples. Pseudo-time analysis revealed transitions of the adrenocortical cells from the initial normal states to active or dysfunctional states following systemic <i>C.albicans</i> infection <i>via</i> two trajectory paths. Endothelial cells in the highly vascularized organ of adrenal gland further proliferated following infection, with the upregulation of genes positively regulating angiogenesis and downregulation of protective genes of endothelial cells. Immune cells were also excessively infiltrated in adrenal glands of <i>C.albicans</i>-infected mice. Macrophages dominated the immune microenvironments in murine adrenal glands both before and after <i>C.albicans</i> infection, mediating the crosstalk among the steroid-producing cells, endothelial cells and immune cells within the adrenal gland. NLR family, pyrin domain containing 3 (NLRP3, encoded by <i>Nlrp3</i>) and complement receptor 3 (CR3, encoded by <i>Itgam</i>) were found to be significantly upregulated on the adrenal macrophages upon systemic <i>C.albicans</i> infection and might play critical roles in mediating the myeloid response. Meanwhile, the number and strength of the interactions between the infiltrating immune cells and adrenal resident cells were unveiled by cell-cell communication analysis to be dramatically increased after systemic <i>C.albicans</i> infection, indicating that the immune-adrenal crosstalk might contribute to the compromised functions of adrenal cells. Overall, our comprehensive picture of the murine adrenal gland microenvironment in systemic <i>C.albicans</i> infection provides deeper insights into the immune-adrenal cell communications during fungal sepsis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China,National Clinical Research Center for Skin and Immune Diseases, Beijing, China,Research Center for Medical Mycology, Peking University, Beijing, China,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
| | - Yuzhe Hu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China,Key Laboratory of Medical Immunology, National Health Commission of the People's Republic of China, Beijing, China,Peking University Center for Human Disease Genomics, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China,National Clinical Research Center for Skin and Immune Diseases, Beijing, China,Research Center for Medical Mycology, Peking University, Beijing, China,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China,*Correspondence: Ting Li, ; Ruoyu Li,
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China,Key Laboratory of Medical Immunology, National Health Commission of the People's Republic of China, Beijing, China,Peking University Center for Human Disease Genomics, Beijing, China,*Correspondence: Ting Li, ; Ruoyu Li,
| |
Collapse
|