201
|
Baicalin clears inflammation by enhancing macrophage efferocytosis via inhibition of RhoA/ROCK signaling pathway and regulating macrophage polarization. Int Immunopharmacol 2022; 105:108532. [DOI: 10.1016/j.intimp.2022.108532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022]
|
202
|
Müller MB, Hübner M, Li L, Tomasi S, Ließke V, Effinger D, Hirschberger S, Pogoda K, Sperandio M, Kreth S. Cell-Crossing Functional Network Driven by microRNA-125a Regulates Endothelial Permeability and Monocyte Trafficking in Acute Inflammation. Front Immunol 2022; 13:826047. [PMID: 35401562 PMCID: PMC8986987 DOI: 10.3389/fimmu.2022.826047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Opening of the endothelial barrier and targeted infiltration of leukocytes into the affected tissue are hallmarks of the inflammatory response. The molecular mechanisms regulating these processes are still widely elusive. In this study, we elucidate a novel regulatory network, in which miR-125a acts as a central hub that regulates and synchronizes both endothelial barrier permeability and monocyte migration. We found that inflammatory stimulation of endothelial cells induces miR-125a expression, which consecutively inhibits a regulatory network consisting of the two adhesion molecules VE-Cadherin (CDH5) and Claudin-5 (CLDN5), two regulatory tyrosine phosphatases (PTPN1, PPP1CA) and the transcription factor ETS1 eventually leading to the opening of the endothelial barrier. Moreover, under the influence of miR-125a, endothelial expression of the chemokine CCL2, the most predominant ligand for the monocytic chemokine receptor CCR2, was strongly enhanced. In monocytes, on the other hand, we detected markedly repressed expression levels of miR-125a upon inflammatory stimulation. This induced a forced expression of its direct target gene CCR2, entailing a strongly enhanced monocyte chemotaxis. Collectively, cell-type-specific differential expression of miR-125a forms a synergistic functional network controlling monocyte trafficking across the endothelial barrier towards the site of inflammation. In addition to the known mechanism of miRNAs being shuttled between cells via extracellular vesicles, our study uncovers a novel dimension of miRNA function: One miRNA, although disparately regulated in the cells involved, directs a biologic process in a synergistic and mutually reinforcing manner. These findings provide important new insights into the regulation of the inflammatory cascade and may be of great use for future clinical applications.
Collapse
Affiliation(s)
- Martin Bernhard Müller
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
| | - Max Hübner
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
| | - Lei Li
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
| | - Stephanie Tomasi
- Department of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, Ludwig Maximilians University München Ludwig Maximilians University (LMU): Munich, Munich, Germany
| | - Valena Ließke
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
| | - David Effinger
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
| | - Simon Hirschberger
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
| | - Kristin Pogoda
- Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany
| | - Markus Sperandio
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Ludwig Maximilians University München, Faculty of Medicine, Munich, Germany
| | - Simone Kreth
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
- *Correspondence: Simone Kreth,
| |
Collapse
|
203
|
Sousa A, Bradshaw TD, Ribeiro D, Fernandes E, Freitas M. Pro-inflammatory effects of silver nanoparticles in the intestine. Arch Toxicol 2022; 96:1551-1571. [PMID: 35296919 DOI: 10.1007/s00204-022-03270-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
Nanotechnology is a promising technology of the twenty-first century, being a rapidly evolving field of research and industrial innovation widely applied in our everyday life. Silver nanoparticles (AgNP) are considered the most commercialized nanosystems worldwide, being applied in diverse sectors, from medicine to the food industry. Considering their unique physical, chemical and biological properties, AgNP have gained access into our daily life, with an exponential use in food industry, leading to an increased inevitable human oral exposure. With the growing use of AgNP, several concerns have been raised, in recent years, about their potential hazards to human health, more precisely their pro-inflammatory effects within the gastrointestinal system. Therefore a review of the literature has been undertaken to understand the pro-inflammatory potential of AgNP, after human oral exposure, in the intestine. Despite the paucity of information reported in the literature about this issue, existing studies indicate that AgNP exert a pro-inflammatory action, through generation of oxidative stress, accompanied by mitochondrial dysfunction, interference with transcription factors and production of cytokines. However, further studies are needed to elucidate the mechanistic pathways and molecular targets involved in the intestinal pro-inflammatory effects of AgNP.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - Tracey D Bradshaw
- Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, 9700-042, Angra do Heroísmo, Açores, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal.
| |
Collapse
|
204
|
Tian Y, Wang TS, Bu H, Shao G, Zhang W, Zhang L. Role of Exosomal miR-223 in Chronic Skeletal Muscle Inflammation. Orthop Surg 2022; 14:644-651. [PMID: 35293669 PMCID: PMC9002075 DOI: 10.1111/os.13232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
As skeletal muscle is one of the largest organs in the body, its damage can directly reflect a decline in somatic function, thus, further affecting daily life and health. Inflammation is a prerequisite for the repair of injured skeletal muscles. Chronic inflammation induced by inadequate repair in skeletal muscle aggravates tissue injury. Exosomes regulate inflammatory responses to facilitate the repair of skeletal muscle injury. Moreover, exosomal miR‐223 with high specificity is the most abundant miRNA in peripheral blood and regarded as biomarkers for inflammation post skeletal muscle injury, which warrants further investigation. Available studies have demonstrated that exosomal miR‐223 negatively correlates with TNF‐α levels in serum and regulates the canonical inflammatory NF‐κB signaling pathway. miR‐223 is a negative feedback regulator with great potential for adjusting inflammatory imbalance and promoting skeletal muscle repair. The research on the regulation of negative feedback factors in the inflammatory signaling pathway is essential in biology and medicine. Therefore, this review mainly elaborates the formation, heterogeneity and markers of exosomes and points out exosomal miR‐223 as a beneficial role in chronic skeletal muscle inflammation and can be expected to be a potential therapeutic target for skeletal muscle damage.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture-Moxibustion and Tuina, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Tie-Shan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - He Bu
- Department of Acupuncture-Moxibustion and Tuina, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Guo Shao
- Center for Translational Medicine and Department of Laboratory Medicine, the Third People's Hospital of Longgang District, Shenzhen, China
| | - Wei Zhang
- Department of Pathology, the First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Li Zhang
- Department of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
205
|
Effects of Resistance Training on C-Reactive Protein and Inflammatory Cytokines in Elderly Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063434. [PMID: 35329121 PMCID: PMC8950894 DOI: 10.3390/ijerph19063434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
Chronic low-grade inflammation that accompanies aging is associated with adverse health outcomes and may exacerbate the severity of infectious disease such as COVID-19. Resistance training (RT) has the potential to improve chronic low-grade inflammation, but the evidence remains inconclusive. This study evaluated the effects of RT on chronic low-grade inflammation in elderly adults. MEDLINE, EMBASE, Cochrane Library, CINAHL, RISS, NDSL, and KoreaMed were searched. We included studies that assessed the effect of RT on C-reactive protein (CRP), interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α in those aged ≥60 years. The effect size was estimated using fixed or random-effects models. Subgroup analysis was performed regarding age, health status, training method, number of exercises, intensity, weekly frequency, and duration. In the 18 randomized controlled trials (539 patients) included, RT was effective in alleviating CRP (effect size = −0.72, 95% confidence interval = −1.06 to −0.38, p < 0.001), IL-10 (−3.34, −6.16 to −0.53, p = 0.02), and TNF-α (−0.56, −1.08 to −0.03, p = 0.04) in elderly adults and tended to reduce IL-6 (−0.59, −1.18 to 0.00, p = 0.05). Subgroup analyses showed CRP reduction regardless of age, training method, number of exercises, intensity, weekly frequency, and duration. RT can be used to ameliorate chronic low-grade inflammation in elderly adults.
Collapse
|
206
|
Lubschinski TL, Pollo LAE, Mohr ETB, da Rosa JS, Nardino LA, Sandjo LP, Biavatti MW, Dalmarco EM. Effect of Aryl-Cyclohexanones and their Derivatives on Macrophage Polarization In Vitro. Inflammation 2022; 45:1612-1630. [PMID: 35247115 DOI: 10.1007/s10753-022-01646-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/13/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Macrophages are critical in both tissue homeostasis and inflammation, and shifts in their polarization have been indicated as pivotal for the resolution of inflammatory processes. Inflammation is a complex and necessary component of the immune response to stimuli that are harmful to host homeostasis and is regulated by cellular and molecular events that remain a source of ongoing investigation. Among the compounds studied that have potential against autoimmune and inflammatory diseases, cannabinoids are currently highlighted. In this work, nineteen aryl-cyclohexanones diesters and their derivatives were synthesized based on the aryl-cyclohexane skeleton of phytocannabinoids, such as cannabidiol (CBD), and were evaluated for their anti-inflammatory and macrophage polarization potential. The results showed that Compound 4 inhibited the production of nitric oxide in RAW 264.7 macrophages. Furthermore, it reduced the levels of pro-inflammatory cytokines IL-12p70, TNF-α, IFN-γ, MCP-1, and IL-6 while, at the same time, was able to increase the production of anti-inflammatory cytokines IL-4, IL-10, and IL-13. Compound 4 also reduced macrophage apoptosis, increased the expression of the CD206 (mannose receptor) and at the same time, decreased the expression of CD284 (TLR-4 receptor) on the surface of these cells. Finally, it increased the phagocytic capacity and inhibited the phosphorylation of the p65 of NF-kβ. In conclusion, Compound 4, identified as diethyl-4-hydroxy-2-(4-methoxyphenyl)-4-methyl-6-oxocyclohexane-1-3-dicarboxylate, showed significant anti-inflammatory effect, while demonstrating the ability to transform phenotypically macrophages from the M1 phenotype (pro-inflammatory) to the M2 phenotype (anti-inflammatory). This led us to hypothesize that the main mechanism of anti-inflammatory effect of this molecule is linked to its immune modulation capacity.
Collapse
Affiliation(s)
- Tainá L Lubschinski
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Luiz A E Pollo
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Eduarda T B Mohr
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Julia S da Rosa
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Luigi A Nardino
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Louis P Sandjo
- Department of Chemistry, CFM, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Maique W Biavatti
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil
| | - Eduardo M Dalmarco
- Department of Clinical Analysis, Center of Health Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-970, Brazil.
| |
Collapse
|
207
|
Tian Y, Li Y, Liu J, Lin Y, Jiao J, Chen B, Wang W, Wu S, Li C. Photothermal therapy with regulated Nrf2/NF-κB signaling pathway for treating bacteria-induced periodontitis. Bioact Mater 2022; 9:428-445. [PMID: 34820581 PMCID: PMC8586811 DOI: 10.1016/j.bioactmat.2021.07.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is an inflammatory disease initiated by bacterial infection, developed by excessive immune response, and aggravated by high level of reactive oxygen species (ROS). Hence, herein, a versatile metal-organic framework (MOF)-based nanoplatform is prepared using mesoporous Prussian blue (MPB) nanoparticles to load BA, denoted as MPB-BA. The established MPB-BA nanoplatform serves as a shelter and reservoir for vulnerable immunomodulatory drug BA, which possesses antioxidant, anti-inflammatory and anti-bacterial effects. Thus, MPB-BA can exert its antioxidant, anti-inflammatory functions through scavenging intracellular ROS to switch macrophages from M1 to M2 phenotype so as to relieve inflammation. The underlying molecular mechanism lies in the upregulation of phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2) to scavenge ROS and subsequently inhibit the nuclear factor kappa-B (NF-κB) signal pathway. Moreover, MPB-BA also exhibited efficient photothermal antibacterial activity against periodontal pathogens under near-infrared (NIR) light irradiation. In vivo RNA sequencing results revealed the high involvement of both antioxidant and anti-inflammatory pathways after MPB-BA application. Meanwhile, micro-CT and immunohistochemical staining of p-Nrf2 and p-P65 further confirmed the superior therapeutic effects of MPB-BA than minocycline hydrochloride. This work may provide an insight into the treatment of periodontitis by regulating Nrf2/NF-κB signaling pathway through photothermal bioplatform-assisted immunotherapy.
Collapse
Affiliation(s)
- Yujuan Tian
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Jialin Liu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Yi Lin
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Jian Jiao
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Bo Chen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wanmeng Wang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Shuilin Wu
- School of Materials Science & Engineering, Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| |
Collapse
|
208
|
Mao Z, Xiong J, Wang P, An J, Zhang F, Liu Z, Seung Kim J. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214356] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
209
|
Bond NG, Fahlberg MD, Yu S, Rout N, Tran D, Fitzpatrick-Schmidt T, Sprehe LM, Scheef EA, Mudd JC, Schaub R, Kaur A. Immunomodulatory potential of in vivo natural killer T (NKT) activation by NKTT320 in Mauritian-origin cynomolgus macaques. iScience 2022; 25:103889. [PMID: 35243248 PMCID: PMC8866157 DOI: 10.1016/j.isci.2022.103889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Invariant natural killer T-lymphocytes (iNKT) are unique immunomodulatory innate T cells with an invariant TCRα recognizing glycolipids presented on MHC class-I-like CD1d molecules. Activated iNKT rapidly secrete pro-and anti-inflammatory cytokines, potentiate immunity, and modulate inflammation. Here, we report the effects of in vivo iNKT activation in Mauritian-origin cynomolgus macaques by a humanized monoclonal antibody, NKTT320, that binds to the invariant region of the iNKT TCR. NKTT320 led to rapid iNKT activation, increased polyfunctionality, and elevation of multiple plasma analytes within 24 hours. Flow cytometry and RNA-Seq confirmed downstream activation of multiple immune subsets, enrichment of JAK/STAT and PI3K/AKT pathway genes, and upregulation of inflammation-modulating genes. NKTT320 also increased iNKT frequency in adipose tissue and did not cause iNKT anergy. Our data indicate that NKTT320 has a sustained effect on in vivo iNKT activation, potentiation of innate and adaptive immunity, and resolution of inflammation, which supports its future use as an immunotherapeutic. NKTT320 rapidly activates iNKT in vivo, modulating downstream immune function In vivo NKTT320 treatment modulates pro- and anti-inflammatory genes NKTT320 treatment results in activation of innate and adaptive immune subsets NKTT320 has promise as an immunotherapeutic with translational potential
Collapse
|
210
|
Zhuang Y, Wang L, Guo J, Sun D, Wang Y, Liu W, Xu HE, Zhang C. Molecular recognition of formylpeptides and diverse agonists by the formylpeptide receptors FPR1 and FPR2. Nat Commun 2022; 13:1054. [PMID: 35217703 PMCID: PMC8881469 DOI: 10.1038/s41467-022-28586-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
The formylpeptide receptors (FPRs) mediate pattern recognition of formylated peptides derived from invading pathogens or mitochondria from dead host cells. They can also sense other structurally distinct native peptides and even lipid mediators to either promote or resolve inflammation. Pharmacological targeting of FPRs represents a novel therapeutic approach in treating inflammatory diseases. However, the molecular mechanisms underlying FPR ligand recognition are elusive. We report cryo-EM structures of Gi-coupled FPR1 and FPR2 bound to a formylpeptide and Gi-coupled FPR2 bound to two synthetic peptide and small-molecule agonists. Together with mutagenesis data, our structures reveal the molecular mechanism of formylpeptide recognition by FPRs and structural variations of FPR1 and FPR2 leading to their different ligand preferences. Structural analysis also suggests that diverse FPR agonists sample a conserved activation chamber at the bottom of ligand-binding pockets to activate FPRs. Our results provide a basis for rational drug design on FPRs.
Collapse
Affiliation(s)
- Youwen Zhuang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Lei Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jia Guo
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dapeng Sun
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yue Wang
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Weiyi Liu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
211
|
Al-hadlaq SM, Balto HA, Hassan WM, Marraiki NA, El-Ansary AK. Biomarkers of non-communicable chronic disease: an update on contemporary methods. PeerJ 2022; 10:e12977. [PMID: 35233297 PMCID: PMC8882335 DOI: 10.7717/peerj.12977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/31/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic diseases constitute a major global burden with significant impact on health systems, economies, and quality of life. Chronic diseases include a broad range of diseases that can be communicable or non-communicable. Chronic diseases are often associated with modifications of normal physiological levels of various analytes that are routinely measured in serum and other body fluids, as well as pathological findings, such as chronic inflammation, oxidative stress, and mitochondrial dysfunction. Identification of at-risk populations, early diagnosis, and prediction of prognosis play a major role in preventing or reducing the burden of chronic diseases. Biomarkers are tools that are used by health professionals to aid in the identification and management of chronic diseases. Biomarkers can be diagnostic, predictive, or prognostic. Several individual or grouped biomarkers have been used successfully in the diagnosis and prediction of certain chronic diseases, however, it is generally accepted that a more sophisticated approach to link and interpret various biomarkers involved in chronic disease is necessary to improve our current procedures. In order to ensure a comprehensive and unbiased coverage of the literature, first a primary frame of the manuscript (title, headings and subheadings) was drafted by the authors working on this paper. Second, based on the components drafted in the preliminary skeleton a comprehensive search of the literature was performed using the PubMed and Google Scholar search engines. Multiple keywords related to the topic were used. Out of screened papers, only 190 papers, which are the most relevant, and recent articles were selected to cover the topic in relation to etiological mechanisms of different chronic diseases, the most recently used biomarkers of chronic diseases and finally the advances in the applications of multivariate biomarkers of chronic diseases as statistical and clinically applied tool for the early diagnosis of chronic diseases was discussed. Recently, multivariate biomarkers analysis approach has been employed with promising prospect. A brief discussion of the multivariate approach for the early diagnosis of the most common chronic diseases was highlighted in this review. The use of diagnostic algorithms might show the way for novel criteria and enhanced diagnostic effectiveness inpatients with one or numerous non-communicable chronic diseases. The search for new relevant biomarkers for the better diagnosis of patients with non-communicable chronic diseases according to the risk of progression, sickness, and fatality is ongoing. It is important to determine whether the newly identified biomarkers are purely associations or real biomarkers of underlying pathophysiological processes. Use of multivariate analysis could be of great importance in this regard.
Collapse
Affiliation(s)
- Solaiman M. Al-hadlaq
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Hanan A. Balto
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - Wail M. Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, KS, United States of America
| | - Najat A. Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afaf K. El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
212
|
Lu X, Su H, Zhang J, Wang N, Wang H, Liu J, Zhao W. Resorufin-based fluorescent probe with elevated water solubility for visualizing fluctuant peroxynitrite in progression of inflammation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120620. [PMID: 34802934 DOI: 10.1016/j.saa.2021.120620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Inflammation is a significant protective response in biological systems and associated with various diseases. Peroxynitrite (ONOO-) as a highly active oxidant participates in the inflammatory process of organisms. Thus, it is necessary to construct novel fluorescent probes for exploring inflammation-related diseases through detecting endogenous ONOO-. Resorufin-based fluorescent probes for testing ONOO- were rare and suffered from poor water solubility. In this work, we elaborately designed three resorufin-based incorporating isatin derivatives probes RF-ITs and successfully obtained two highly selective probes RF-IT-OC and RF-IT-EG for ONOO-. Comparing the other two probes, RF-IT-EG containing triethylene glycol monomethyl ether on isatin moiety displayed better water solubility (3.2 mg/L), faster response rate (60 s), larger signal-to-noise ratio (103-fold) and lower detection limit (87 nM) for monitoring ONOO-. The cells imaging results manifested that probe RF-IT-EG could be applied to trace endogenous ONOO- with inappreciable cytotoxicity. Moreover, the RF-IT-EG was capable of tracking the fluctuation of endogenous ONOO- in LPS-stimulated inflamed mouse leg models. This work will provide a faithful and promising probe for illustrating the roles of ONOO- in various inflammation-related diseases.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Huihui Su
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.
| | - Nannan Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Han Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jinying Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Weili Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China; School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, P. R. China.
| |
Collapse
|
213
|
Merlin J, Park J, Vandekolk TH, Fabb SA, Allinne J, Summers RJ, Langmead CJ, Riddy DM. Multi-pathway in vitro pharmacological characterisation of specialised pro-resolving G protein-coupled receptors (SPM-GPCRs). Mol Pharmacol 2022; 101:246-256. [DOI: 10.1124/molpharm.121.000422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
|
214
|
IL-34 Downregulation-associated M1/M2 Macrophage Imbalance is Related to Inflammaging in Sun-exposed Human Skin. JID INNOVATIONS 2022; 2:100112. [PMID: 35521044 PMCID: PMC9062483 DOI: 10.1016/j.xjidi.2022.100112] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 01/18/2023] Open
Abstract
Macrophages can be polarized into two subsets: a proinflammatory (M1) or an anti-inflammatory (M2) phenotype. In this study, we show that an increased M1-to-M2 ratio associated with a decrease in IL-34 induces skin inflammaging. The total number of macrophages in the dermis did not change, but the number of M2 macrophages was significantly decreased. Thus, the M1-to-M2 ratio was significantly increased in sun-exposed aged skin and positively correlated with the percentage of p21+ and p16+ senescent cells in the dermis. The supernatant of M1 macrophages increased the percentages of senescence-associated β-galactosidase‒positive cells, whereas the supernatant of M2 macrophages decreased the percentages of senescence-associated β-galactosidase‒positive cells in vitro. Among the mechanisms that could explain the increase in the M1-to-M2 ratio, we found that the number of IL-34+ cells was decreased in aged skin and negatively correlated with the M1-to-M2 ratio. Furthermore, IL-34 induced the expression of CD206 and IL-10, which are M2 macrophage markers, in an in vitro assay. Our results suggest that a reduction in epidermal IL-34 in aged skin may skew the M1/M2 balance in the dermis and lead to low-grade chronic inflammation and inflammaging.
Collapse
|
215
|
Reinertsen AF, Primdahl KG, De Matteis R, Dalli J, Hansen TV. Stereoselective Synthesis, Configurational Assignment and Biological Evaluations of the Lipid Mediator RvD2 n-3 DPA. Chemistry 2022; 28:e202103857. [PMID: 34890076 PMCID: PMC9305452 DOI: 10.1002/chem.202103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/10/2022]
Abstract
Herein we report the first total synthesis of RvD2n-3 DPA , an endogenously formed mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid. The key steps are the Midland Alpine borane reduction, Sonogashira cross-coupling reactions, and a Z-selective alkyne reduction protocol, yielding RvD2n-3 DPA methyl ester in 13 % yield over 12 steps (longest linear sequence). The physical property data (UV chromophore, chromatography and MS/MS fragmentation) of the synthetic lipid mediator matched those obtained from biologically produced material. Moreover, synthetic RvD2n-3 DPA also carried the potent biological activities of enhancing macrophage uptake of Staphylococcus aureus and zymosan A bioparticles.
Collapse
Affiliation(s)
- Amalie F. Reinertsen
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| | - Karoline G. Primdahl
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| | - Roberta De Matteis
- Lipid Mediator UnitCenter for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of MedicineQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUnited Kingdom
| | - Jesmond Dalli
- Lipid Mediator UnitCenter for Biochemical PharmacologyWilliam Harvey Research InstituteBarts and The London School of MedicineQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUnited Kingdom
| | - Trond V. Hansen
- Department of PharmacySection for Pharmaceutical ChemistryUniversity of OsloP.O. Box 10680316OsloNorway
| |
Collapse
|
216
|
Khumalo GP, Van Wyk BE, Feng Y, Cock IE. A review of the traditional use of southern African medicinal plants for the treatment of inflammation and inflammatory pain. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114436. [PMID: 34289396 DOI: 10.1016/j.jep.2021.114436] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation is a serious global concern due to its debilitating symptoms, resulting in considerable suffering and lost productivity. Chronic and auto-immune inflammatory diseases are of particular concern. Several pharmaceutical therapies are already available. However, the use of non-steroidal anti-inflammatory drugs (NSAID's) is accompanied by harmful and toxic side effects. Hence, the search for safer alternative therapeutics with limited side effects is imperative. The use of medicinal plants is common practice amongst the southern African population and may provide targets for drug development. AIM OF THE STUDY This study aims to review and document the medicinal uses and pharmacological properties of southern African medicinal plants used for inflammation and pain-related ailments. MATERIAL AND METHODS An extensive literature review was undertaken to identify southern African plants used traditionally to treat inflammation. A variety of ethnobotanical books and grey literature, as well as ScienceDirect, Google Scholar and Scopus search engines were used as sources of information. RESULTS This review identified 555 medicinal plants from 118 families which were traditionally used in southern Africa to treat inflammation and pain. Fabaceae was the most prominent family with 63 species, followed by Asteraceae (54 species) and Apocynaceae (33 species). The top category of ailments indicated include non-specific inflammation with 150 species, followed by inflammatory pain (148 species), headache (114 species) and toothache (114 species). CONCLUSION Despite a large number of southern African medicinal plants used to treat inflammation and pain, relatively few have been screened for their anti-inflammatory properties. Furthermore, biologically active plant extracts have been tested against relatively few inflammatory markers and considerable further work is required.
Collapse
Affiliation(s)
- Gugulethu P Khumalo
- Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; Griffith Research Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Ben Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Yunjiang Feng
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; Griffith Research Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Ian E Cock
- Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
217
|
Yan W, Ma D, Liu Y, Sun W, Cheng D, Li G, Zhou S, Wang Y, Wang H, Ni C. PTX3 alleviates hard metal-induced acute lung injury through potentiating efferocytosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113139. [PMID: 34995911 DOI: 10.1016/j.ecoenv.2021.113139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Prolonged exposure to hard metal dust results in hard metal lung disease (HMLD) characterized by respiratory symptoms. Understanding the pathogenesis and pathological process of HMLD would be helpful for its early diagnosis and treatment. In this study, we established a mouse model of hard metal-induced acute lung injury through one-time intratracheal instillation of WC-Co dust suspension. We found that WC-Co treatment damaged the lungs of mice, leading to increased production of IL-1β, TNF-α, IL-6 and IL-18, inflammatory cells infiltration and apoptosis. In vitro, WC-Co induced cytotoxicity, inflammatory response and apoptosis in macrophages (PMA-treated THP-1) and epithelial cells (A549) in a dose-dependent manner. Moreover, RNA-sequence and validation experiments verified that Pentraxin 3 (PTX3), an important mediator in the regulation of inflammation, was elevated both in vivo and in vitro induced by WC-Co. Functional experiments confirmed the PTX3, which was located on the membrane of apoptotic cells, promoted macrophage efferocytosis efficiently. This progress could help block the lung inflammation and contribute to the rapid recovery of WC-Co-induced acute lung injury. These observations provide a further understanding of the molecular mechanism of WC-Co-induced pulmonary injury and disclose PTX3 as a new potential therapeutic approach to relieve WC-Co-induced acute lung injury via efferocytosis.
Collapse
Affiliation(s)
- Weiwen Yan
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongyu Ma
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yi Liu
- Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Wenqing Sun
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Demin Cheng
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guanru Li
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Siyun Zhou
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yue Wang
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanqiang Wang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Chunhui Ni
- Center for Global Health, Key Laboratory of Modern Toxicology of Ministry of Education, Department of Occupational Medical and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
218
|
(E)-1-(3-Benzoyl-4-phenyl-1H-pyrrol-1-yl)-3-phenylprop-2-en-1-one. MOLBANK 2022. [DOI: 10.3390/m1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the last decade, there has been an increasing effort to fight inflammatory conditions establishing new multitarget approaches. Chronic inflammation is implicated in many multifactorial diseases, constituting a great economic burden and a chronic health problem. In an attempt to develop new potent multifunctional anti-inflammatory agents, a cinnamic-pyrrole hybrid (6) was synthesized and screened for its antioxidant and anti-Lipoxygenase potential. The new compound, in comparison with its pyrrole precursor (4), showed improved biological activities. In silico calculations were performed to predict its drug-likeness. The examined derivative is considered orally bioavailable according to Lipinski’s rule of five. Compound 6 could be used as a lead for the synthesis of more effective hybrids.
Collapse
|
219
|
Peckert-Maier K, Royzman D, Langguth P, Marosan A, Strack A, Sadeghi Shermeh A, Steinkasserer A, Zinser E, Wild AB. Tilting the Balance: Therapeutic Prospects of CD83 as a Checkpoint Molecule Controlling Resolution of Inflammation. Int J Mol Sci 2022; 23:732. [PMID: 35054916 PMCID: PMC8775349 DOI: 10.3390/ijms23020732] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.
Collapse
Affiliation(s)
- Katrin Peckert-Maier
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| | | | | | | | | | | | | | | | - Andreas B. Wild
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität—Erlangen-Nürnberg, 91052 Erlangen, Germany; (D.R.); (P.L.); (A.M.); (A.S.); (A.S.S.); (A.S.); (E.Z.)
| |
Collapse
|
220
|
Resolution of Inflammation in Acute Graft-Versus-Host-Disease: Advances and Perspectives. Biomolecules 2022; 12:biom12010075. [PMID: 35053223 PMCID: PMC8773806 DOI: 10.3390/biom12010075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Inflammation is an essential reaction of the immune system to infections and sterile tissue injury. However, uncontrolled or unresolved inflammation can cause tissue damage and contribute to the pathogenesis of various inflammatory diseases. Resolution of inflammation is driven by endogenous molecules, known as pro-resolving mediators, that contribute to dampening inflammatory responses, promoting the resolution of inflammation and the recovery of tissue homeostasis. These mediators have been shown to be useful to decrease inflammatory responses and tissue damage in various models of inflammatory diseases. Graft-versus-host disease (GVHD) is a major unwanted reaction following allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is characterized by an exacerbated inflammatory response provoked by antigen disparities between transplant recipient and donor. There is no fully effective treatment or prophylaxis for GVHD. This review explores the effects of several pro-resolving mediators and discusses their potential use as novel therapies in the context of GVHD.
Collapse
|
221
|
Chua XY, Chong JR, Cheng AL, Lee JH, Ballard C, Aarsland D, Francis PT, Lai MKP. Elevation of inactive cleaved annexin A1 in the neocortex is associated with amyloid, inflammatory and apoptotic markers in neurodegenerative dementias. Neurochem Int 2022; 152:105251. [PMID: 34861326 DOI: 10.1016/j.neuint.2021.105251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/25/2021] [Accepted: 11/27/2021] [Indexed: 12/25/2022]
Abstract
Inflammation is usually a tightly regulated process whose termination by mediators including Annexin A1 (AnxA1) results in the resolution of inflammatory responses. In neurodegenerative dementias, chronic neuroinflammation, along with accumulation of aggregated β-amyloid (Aβ) peptides and apoptosis, has long been recognized to be a pathological hallmark; but it is unclear whether a failure of inflammation resolution contributes to this pathophysiological process. In this study, we measured AnxA1 immunoreactivities in postmortem neocortex (Brodmann areas BA9 and BA40) of well characterized Alzheimer's disease (AD), Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB) patients as well as aged controls. Inactive cleaved AnxA1 was found to be elevated in AD and DLB in BA40. Levels of cleaved AnxA1 also positively correlated with amyloidogenic brain Aβ, anti-inflammatory markers such as IL10 and IL13, as well as with the pro-apoptotic marker cleaved caspase-3 in BA40. Our findings suggest that elevated cleaved AnxA1 in neurodegenerative dementias may reflect a failure of inflammation resolution in certain regions of the diseased brain, and also support a mechanistic link between AnxA1 and amyloid pathology, neuroinflammation and apoptosis.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory, Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Ai Ling Cheng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Jasinda H Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Dag Aarsland
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Paul T Francis
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory, Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; College of Medicine and Health, University of Exeter, Exeter, UK.
| |
Collapse
|
222
|
Jensen KN, Heijink M, Giera M, Freysdottir J, Hardardottir I. Dietary Fish Oil Increases the Number of CD11b+CD27− NK Cells at the Inflammatory Site and Enhances Key Hallmarks of Resolution of Murine Antigen-Induced Peritonitis. J Inflamm Res 2022; 15:311-324. [PMID: 35058705 PMCID: PMC8765547 DOI: 10.2147/jir.s342399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose To determine the effects of dietary omega-3 polyunsaturated fatty acids (PUFAs) on recruitment of natural killer (NK) cells and resolution responses in antigen-induced peritonitis in mice. Methods Mice were fed fish oil-enriched or control diets, immunized twice and challenged intraperitoneally with methylated bovine serum albumin. Prior to and at different time-points following inflammation induction, expression of surface molecules on peritoneal cells was determined by flow cytometry, concentration of soluble mediators in peritoneal fluid by ELISA or Luminex, and of lipid mediators by LC-MS/MS, and number of apoptotic cells in mesenteric lymph nodes by TUNEL staining. Results Mice fed the fish oil diet had higher number of CD11b+CD27− NK cells as well as a higher proportion of CD107a+ NK cells in their peritoneum 6 h after inflammation induction than mice fed the control diet. They also had higher numbers of CCR5+ NK cells and higher concentrations of CCL5 and CXCL12. Additionally, a higher fraction of apoptotic neutrophils but lower fraction of CD47+ neutrophils were present in the peritoneum of mice fed the fish oil diet 6 h after inflammation induction and the fish oil fed mice had a shorter resolution interval. They also had lower concentrations of pro-inflammatory mediators but higher concentrations of the anti-inflammatory/pro-resolution mediators TGF-β, IGF-1, and soluble TNF RII, as well as higher ratios of hydroxyeicosapentaenoic acid (HEPE) to hydroxyeicosatetraenoic acid (HETE) than mice fed the control diet. Conclusion The results demonstrate that dietary fish oil increases the number of mature NK cells at the inflamed site in antigen-induced peritonitis and enhances several key hallmarks of resolution of inflammation, casting light on the potential mechanisms involved.
Collapse
Affiliation(s)
- Kirstine Nolling Jensen
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jona Freysdottir
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Faculty of Medicine, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali – The National University Hospital of Iceland, Reykjavik, Iceland
- Correspondence: Ingibjorg Hardardottir Tel +354 525 4885 Email
| |
Collapse
|
223
|
Wang C, Chen J, Wang P, Qing S, Li W, Lu J. Endogenous Protective Factors and Potential Therapeutic Agents for Diabetes-Associated Atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:821028. [PMID: 35557850 PMCID: PMC9086429 DOI: 10.3389/fendo.2022.821028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
The complications of macrovascular atherosclerosis are the leading cause of disability and mortality in patients with diabetes. It is generally believed that the pathogenesis of diabetic vascular complications is initiated by the imbalance between injury and endogenous protective factors. Multiple endogenous protective factors secreted by endothelium, liver, skeletal muscle and other tissues are recognized of their importance in combating injury factors and maintaining the homeostasis of vasculatures in diabetes. Among them, glucagon-like peptide-1 based drugs were clinically proven to be effective and recommended as the first-line medicine for the treatment of type 2 diabetic patients with high risks or established arteriosclerotic cardiovascular disease (CVD). Some molecules such as irisin and lipoxins have recently been perceived as new protective factors on diabetic atherosclerosis, while the protective role of HDL has been reinterpreted since the failure of several clinical trials to raise HDL therapy on cardiovascular events. The current review aims to summarize systemic endogenous protective factors for diabetes-associated atherosclerosis and discuss their mechanisms and potential therapeutic strategy or their analogues. In particular, we focus on the existing barriers or obstacles that need to be overcome in developing new therapeutic approaches for macrovascular complications of diabetes.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Pin Wang
- Department of Pharmacology, Naval Medical University, Shanghai, China
| | - Shengli Qing
- Department of Pharmacology, Naval Medical University, Shanghai, China
| | - Wenwen Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Jin Lu, ; Wenwen Li,
| | - Jin Lu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Jin Lu, ; Wenwen Li,
| |
Collapse
|
224
|
Platelets in COVID-19 disease: friend, foe, or both? Pharmacol Rep 2022; 74:1182-1197. [PMID: 36463349 PMCID: PMC9726679 DOI: 10.1007/s43440-022-00438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/07/2022]
Abstract
Immuno-thrombosis of COVID-19 results in the activation of platelets and coagulopathy. Antiplatelet therapy has been widely used in COVID-19 patients to prevent thrombotic events. However, recent analysis of clinical trials does not support the major effects of antiplatelet therapy on mortality in hospitalized COVID-19 patients, despite the indisputable evidence for an increased risk of thrombotic complications in COVID-19 disease. This apparent paradox calls for an explanation. Platelets have an important role in sensing and orchestrating host response to infection, and several platelet functions related to host defense response not directly related to their well-known hemostatic function are emerging. In this paper, we aim to review the evidence supporting the notion that platelets have protective properties in maintaining endothelial barrier integrity in the course of an inflammatory response, and this role seems to be of particular importance in the lung. It might, thus, well be that the inhibition of platelet function, if affecting the protective aspect of platelet activity, might diminish clinical benefits resulting from the inhibition of the pro-thrombotic phenotype of platelets in immuno-thrombosis of COVID-19. A better understanding of the platelet-dependent mechanisms involved in the preservation of the endothelial barrier is necessary to design the antiplatelet therapeutic strategies that inhibit the pro-thrombotic activity of platelets without effects on the vaso-protective function of platelets safeguarding the pulmonary endothelial barrier during multicellular host defense in pulmonary circulation.
Collapse
|
225
|
Tian G, Gu X, Bao K, Yu X, Zhang Y, Xu Y, Zheng J, Hong M. Anti-Inflammatory Effects and Mechanisms of Pudilan Antiphlogistic Oral Liquid. ACS OMEGA 2021; 6:34512-34524. [PMID: 34963936 PMCID: PMC8697401 DOI: 10.1021/acsomega.1c04797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 05/13/2023]
Abstract
Pudilan antiphlogistic oral liquid (PDL) is a commercial traditional Chinese medicine widely used in the treatment of a variety of inflammatory diseases. However, the specific mechanisms of PDL's anti-inflammatory effects have not been fully understood. In this research, five classic inflammatory models and a network pharmacology-based strategy were utilized to evaluate its anti-inflammatory efficacy and elucidate its multicomponent and multitarget mode of the anti-inflammatory mechanism. A systems pharmacology approach was carried out via a holistic process of active compound screening, target acquisition, network construction, and further analysis. The potential component-target-associated anti-inflammatory mechanisms of PDL were further verified both in vivo and in vitro. The results showed that PDL exhibited a proven anti-inflammatory effect on multiple types of inflammatory models, including β-hemolytic streptococcus-induced acute pharyngitis, LPS-induced acute lung injury, xylene-induced ear swelling, carrageenan-induced paw edema, and acetic acid-induced capillary permeability-increasing models. Systems pharmacology analysis predicted 45 ingredients of PDL that interact with 185 targets, of which 38 overlapped with the inflammation-related targets. Furthermore, KEGG pathway analysis showed that the predicted targets were mainly involved in hypoxia-inducible factor (HIF)-1, tumor necrosis factor (TNF), nuclear factor kappa-B (NF-κB), and NOD-like receptor (NLR) pathways. Both in vivo and in vitro experiments clarified that PDL has anti-inflammatory potency by inhibiting PI3K and p38 phosphorylation and activating the NLRP3 inflammasome. Our results suggested that PDL has an efficient and extensive anti-inflammatory effect, and its anti-inflammatory mechanisms may involve multiple inflammatory-associated signaling pathways, including HIF-1- and TNF-mediated pathways and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Gang Tian
- Jumpcan
Pharmaceutical Co., Ltd, Taixing 225441, China
| | - Xiaoqun Gu
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Kaifan Bao
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuerui Yu
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yuheng Zhang
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Yifan Xu
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
| | - Jie Zheng
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- Department
of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Hong
- Jiangsu
Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia
Medica, School of Pharmacy, Nanjing University
of Chinese Medicine, Nanjing 210023, China
- . Phone: +86 15805191595. Fax: +86 25 85811248
| |
Collapse
|
226
|
Ansari J, Gavins FNE. Neutrophils and Platelets: Immune Soldiers Fighting Together in Stroke Pathophysiology. Biomedicines 2021; 9:biomedicines9121945. [PMID: 34944761 PMCID: PMC8698717 DOI: 10.3390/biomedicines9121945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Neutrophils and platelets exhibit a diverse repertoire of functions in thromboinflammatory conditions such as stroke. Most cerebral ischemic events result from longstanding chronic inflammation secondary to underlying pathogenic conditions, e.g., hypertension, diabetes mellitus, obstructive sleep apnea, coronary artery disease, atrial fibrillation, morbid obesity, dyslipidemia, and sickle cell disease. Neutrophils can enable, as well as resolve, cerebrovascular inflammation via many effector functions including neutrophil extracellular traps, serine proteases and reactive oxygen species, and pro-resolving endogenous molecules such as Annexin A1. Like neutrophils, platelets also engage in pro- as well as anti-inflammatory roles in regulating cerebrovascular inflammation. These anucleated cells are at the core of stroke pathogenesis and can trigger an ischemic event via adherence to the hypoxic cerebral endothelial cells culminating in aggregation and clot formation. In this article, we review and highlight the evolving role of neutrophils and platelets in ischemic stroke and discuss ongoing preclinical and clinical strategies that may produce viable therapeutics for prevention and management of stroke.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Neurology, Louisiana State University Health Shreveport, Shreveport, LA 71130, USA
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| | - Felicity N. E. Gavins
- The Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| |
Collapse
|
227
|
Yamashita H, Ohbuchi K, Nagino M, Ebata T, Tsuchiya K, Kushida H, Yokoyama Y. Comprehensive metabolome analysis for the pharmacological action of inchinkoto, a hepatoprotective herbal medicine. Metabolomics 2021; 17:106. [PMID: 34855010 DOI: 10.1007/s11306-021-01824-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The precise pharmacological action of inchinkoto (ICKT, Yin-Chen-Hao-Tang in Chinese), a hepatoprotective herbal medicine, on total metabolic pathways has not been well investigated. OBJECTIVES The aim of this study was to explore the serum metabolites reflecting the pharmacological activity of ICKT, and mechanism of action of ICKT using serum metabolome analysis. METHODS 54 patients with obstructive jaundice due to malignancies were included in this study. ICKT was administered for 3 days. Serum and bile samples were collected before and 1 h after ICKT administration on days 1 and 4. Serum metabolome analysis including ICKT components were performed. RESULTS The levels of total/direct bilirubin, C-reactive protein, γ-glutamyl transpeptidase, and albumin in the serum were significantly improved after ICKT administration. In the serum metabolome analysis, inosine was the only elevated metabolite on days 1 and 4. Most of the metabolites which were significantly changed after ICKT administration were lipid mediators, and all decreased on day 1. Notably, the levels of many lipid mediators were increased on day 4. The difference in serum aspartic acid 1 h after ICKT administration was significantly correlated with a decrease in the levels of total bilirubin in the serum on day 4. CONCLUSIONS Using metabolome analysis, we demonstrated several metabolic changes that may be associated with the pharmacological mechanisms of ICKT. The biological implications of these metabolites should be further investigated in basic research studies.
Collapse
Affiliation(s)
- Hiromasa Yamashita
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Katsuya Ohbuchi
- Tsumura Advanced Technology Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Masato Nagino
- Department of Gastrointestinal Surgery, Aichi Cancer Center, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuaki Tsuchiya
- Tsumura Advanced Technology Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Hirotaka Kushida
- Tsumura Advanced Technology Research Laboratories, Tsumura & CO., Ibaraki, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
228
|
Abstract
IMPORTANCE Allostatic overload, a biomarker of wear and tear, could be the potential pathway through which food insecurity leads to increased morbidity risk. OBJECTIVE To assess the association of food insecurity with allostatic load (AL) among US adults aged 50 years or older. DESIGN, SETTING, AND PARTICIPANTS A multiwave longitudinal cohort study was conducted using data from the 2006 to 2014 waves of the Health and Retirement Study in a national cohort study setting. The data comprise 26 509 person-years observations from 14 394 noninstitutionalized individuals aged 50 years or older during the study period. Data were analyzed from September 1 to December 14, 2020. EXPOSURES Moderate food insecurity (not enough money to buy the food needed) and severe food insecurity (reduced food intake due to financial constraints) measured at the household level. MAIN OUTCOMES AND MEASURES The AL score (0-9, with higher scores indicating a greater risk of physiologic dysregulation) and binary indicators of dysregulated inflammatory (C-reactive protein), cardiovascular (systolic and diastolic blood pressure, pulse rate, and cystatin C), and metabolic (hemoglobin A1c, body mass index, waist-to-height ratio, total cholesterol to high-density lipoprotein cholesterol ratio) systems. RESULTS Of 14 394 participants included in the analysis, the median age was 60 (IQR, 56-69) years, 8143 (56.6%) were women, 517 (3.6%) were moderately food insecure, and 804 (5.6%) were severely food insecure. In adjusted models, the incidence rate of AL was 1.05 (95% CI, 1.00-1.09) times higher for the participants with moderate food insecurity and 1.11 (95% CI, 1.07-1.15) times higher for the participants with severe food insecurity, compared with those who were food secure. The increased incidence rate of AL among participants with severe food insecurity was associated with C-reactive protein level (odds ratio [OR], 1.22; 95% CI, 1.04-1.44), cystatin C level (OR, 1.23; 95% CI, 1.01-1.51), hemoglobin A1c level (OR, 1.27; 95% CI, 1.01-1.59), body mass index (OR, 1.84; 95% CI, 1.41-2.40), waist-to-height ratio (OR, 1.54; 95% CI, 1.26-1.88), and total to high-density lipoprotein cholesterol ratio (OR, 1.32; 95% CI, 1.10-1.59) inflated to the high-risk range. The interaction between moderate food insecurity and Supplemental Nutrition Assistance Program (SNAP) enrollment (β = -0.18; P = .001) and the interaction between severe food insecurity and SNAP enrollment (β = -0.09; P = .02) were associated with a reduction in AL. CONCLUSIONS AND RELEVANCE In this national cohort study of US adults aged 50 years or older, food insecurity was associated with higher AL, mainly through dysregulation of the inflammatory and metabolic systems. SNAP enrollment may modify this association between food insecurity and AL.
Collapse
Affiliation(s)
- Tae-Young Pak
- Department of Consumer Science and Convergence Program for Social Innovation, Sungkyunkwan University, Seoul, South Korea
| | - GwanSeon Kim
- College of Agriculture, Arkansas State University, Jonesboro
| |
Collapse
|
229
|
Possemiers H, Pham TT, Coens M, Pollenus E, Knoops S, Noppen S, Vandermosten L, D’haese S, Dillemans L, Prenen F, Schols D, Franke-Fayard B, Van den Steen PE. Skeleton binding protein-1-mediated parasite sequestration inhibits spontaneous resolution of malaria-associated acute respiratory distress syndrome. PLoS Pathog 2021; 17:e1010114. [PMID: 34843584 PMCID: PMC8659713 DOI: 10.1371/journal.ppat.1010114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/09/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria is a hazardous disease caused by Plasmodium parasites and often results in lethal complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Parasite sequestration in the microvasculature is often observed, but its role in malaria pathogenesis and complications is still incompletely understood. We used skeleton binding protein-1 (SBP-1) KO parasites to study the role of sequestration in experimental MA-ARDS. The sequestration-deficiency of these SBP-1 KO parasites was confirmed with bioluminescence imaging and by measuring parasite accumulation in the lungs with RT-qPCR. The SBP-1 KO parasites induced similar lung pathology in the early stage of experimental MA-ARDS compared to wildtype (WT) parasites. Strikingly, the lung pathology resolved subsequently in more than 60% of the SBP-1 KO infected mice, resulting in prolonged survival despite the continuous presence of the parasite. This spontaneous disease resolution was associated with decreased inflammatory cytokine expression measured by RT-qPCR and lower expression of cytotoxic markers in pathogenic CD8+ T cells in the lungs of SBP-1 KO infected mice. These data suggest that SBP-1-mediated parasite sequestration and subsequent high parasite load are not essential for the development of experimental MA-ARDS but inhibit the resolution of the disease. Malaria is still a severe global disease with more than 200 million cases and 400 000 deaths each year. Plasmodium falciparum is the species responsible for most malaria deaths globally. The propensity of these parasites to sequester in peripheral vascular beds is assumed to play an important role in disease severity and mortality. Although sequestration has been observed in lungs of malaria patients, its role in the pathogenesis of MA-ARDS, a severe lung complication in malaria, was previously unknown. Therefore, we used sequestration-deficient SBP-1 KO Plasmodium berghei NK65 parasites to study the role of sequestration in experimental MA-ARDS. We observed that MA-ARDS developed similarly in WT and SBP-1 KO infected mice, but the majority of SBP-1 KO-infected mice were able to resolve the lung pathology despite the continuous presence of the parasite. This coincided with a prolonged survival, a decrease in inflammatory cytokine expression and lower expression of cytotoxicity markers in pathogenic CD8+ T cells. These results give important new insights in the role of parasite sequestration in malaria pathology.
Collapse
Affiliation(s)
- Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- Currently at Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Belgium
| | - Marion Coens
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Sigrid D’haese
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- Currently at Neuro-Aging & Viro-Immunotherapy (NAVI), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Luna Dillemans
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
| | | | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical research, KU Leuven, Belgium
- * E-mail:
| |
Collapse
|
230
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222312803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
231
|
Toll-Like Receptors as Drug Targets in the Intestinal Epithelium. Handb Exp Pharmacol 2021; 276:291-314. [PMID: 34783909 DOI: 10.1007/164_2021_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) receptors are responsible for initiation of inflammatory responses by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) or in molecules released following tissue damage in disease states. Expressed in the intestinal epithelium, they initiate an intracellular signalling cascade in response to molecular patterns resulting in the activation of transcription factors and the release of cytokines, chemokines and vasoactive molecules. Intestinal epithelial cells are exposed to microorganisms on a daily basis and form part of the primary defence against pathogens by using TLRs. TLRs and their accessory molecules are subject to tight regulation in these cells so as to not overreact or react in unnecessary circumstances. TLRs have more recently been associated with chronic inflammatory diseases as a result of inappropriate regulation, this can be damaging and lead to chronic inflammatory diseases such as inflammatory bowel disease (IBD). Targeting Toll-like receptors offers a potential therapeutic approach for IBD. In this review, the current knowledge on the TLRs is reviewed along with their association with intestinal diseases. Finally, compounds that target TLRs in animal models of IBD, clinic trials and their future merit as targets are discussed.
Collapse
|
232
|
Tomas L, Prica F, Schulz C. Trafficking of Mononuclear Phagocytes in Healthy Arteries and Atherosclerosis. Front Immunol 2021; 12:718432. [PMID: 34759917 PMCID: PMC8573388 DOI: 10.3389/fimmu.2021.718432] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Monocytes and macrophages play essential roles in all stages of atherosclerosis – from early precursor lesions to advanced stages of the disease. Intima-resident macrophages are among the first cells to be confronted with the influx and retention of apolipoprotein B-containing lipoproteins at the onset of hypercholesterolemia and atherosclerosis development. In this review, we outline the trafficking of monocytes and macrophages in and out of the healthy aorta, as well as the adaptation of their migratory behaviour during hypercholesterolemia. Furthermore, we discuss the functional and ontogenetic composition of the aortic pool of mononuclear phagocytes and its link to the atherosclerotic disease process. The development of mouse models of atherosclerosis regression in recent years, has enabled scientists to investigate the behaviour of monocytes and macrophages during the resolution of atherosclerosis. Herein, we describe the dynamics of these mononuclear phagocytes upon cessation of hypercholesterolemia and how they contribute to the restoration of tissue homeostasis. The aim of this review is to provide an insight into the trafficking, fate and disease-relevant dynamics of monocytes and macrophages during atherosclerosis, and to highlight remaining questions. We focus on the results of rodent studies, as analysis of cellular fates requires experimental manipulations that cannot be performed in humans but point out findings that could be replicated in human tissues. Understanding of the biology of macrophages in atherosclerosis provides an important basis for the development of therapeutic strategies to limit lesion formation and promote plaque regression.
Collapse
Affiliation(s)
- Lukas Tomas
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Filip Prica
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, University Hospital, Ludwig Maximilian University, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
233
|
Li C, Wu M, Gu L, Yin M, Li H, Yuan W, Lin J, Wang Q, Xu Q, Jiang N, Zhao G. α- MSH plays anti-inflammatory and anti-fungal role in Aspergillus Fumigatus keratitis. Curr Eye Res 2021; 47:343-351. [PMID: 34766863 DOI: 10.1080/02713683.2021.2006235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the anti-inflammatory and anti-fungal role of α-melanocyte stimulating hormone (α-MSH) in Aspergillus Fumigatus (A. fumigatus) keratitis. METHOD Corneas of C57BL/6 mice were infected with A. Fumigatus. α-MSH (5 ul, 1x10-4mmol/ml) was given by subconjunctival injection from day 1 to day 3 post infection (p.i.). After 3 days p.i., clinical score was recored and HE staining was tested. Fungal load in mice corneas was observed by plate counting. Pro-inflammatory mediators and pattern recognition receptors (PRRs) were detected. The numbers of neutrophils and macrophages were tested by immunofluorescence staining. The role of α-MSH in RAW264.7 cells after A. fumigatus stimulation were evaluated by PCR and Western blot, and MPKA protein levels including total-JNK (T-JNK), phosphorylated-JNK (P-JNK), total-ERK (T-ERK) and phosphorylated-ERK (P-ERK) were tested via Western blot with or without α-MSH treatment. RESULTS Compared with PBS control group, α-MSH treatment alleviated disease response and decreased clinical score at 3 days p.i. HE staining showed less infiltration in corneal tissue after α-MSH treatment. Plate counting experiment showed that number of viable fungus in corneas of α-MSH treated group was less than control group. mRNA levels of IL-1β, TNF-α, IL-6, MIP-2, LOX-1, Dectin-1 and iNOS were decreased. Protein levels of IL-1β, TNF-α, IL-6 and Dectin-1 were decreased. α-MSH treatment also decreased the infiltrating neutrophils and macrophages. The levels of pro-inflammatory cytokines, Dectin-1 and LOX-1 stimulated by A. fumigatus, were also suppressed by pretreatment of α-MSH in RAW264.7 cells. The ratio of P-JNK/T-JNK and P-ERK/T-ERK were down regulated in α-MSH group compared with PBS control group. CONCLUSION α-MSH alleviates the severity and decreases fungal load of A. fumigatus keratitis in mice. Migration of neutrophils and macrophages are restrained. α-MSH downregulates the expression of dectin-1 and the ratio of P-JNK/T-JNK and P-ERK/T-ERK in A. fumigatus infection.
Collapse
Affiliation(s)
- Cui Li
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Mengqi Wu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Lingwen Gu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Min Yin
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Hui Li
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Wu Yuan
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Jing Lin
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Qian Wang
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Qiang Xu
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Nan Jiang
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| | - Guiqiu Zhao
- Department of Ophthalmology The Affiliated Hospital of Qingdao University Qingdao, China, 266003
| |
Collapse
|
234
|
Antonioli L, Pacher P, Haskó G. Adenosine and inflammation: it's time to (re)solve the problem. Trends Pharmacol Sci 2021; 43:43-55. [PMID: 34776241 DOI: 10.1016/j.tips.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Resolution of inflammation requires proresolving molecular pathways triggered as part of the host response during the inflammatory phase. Adenosine and its receptors, which are collectively called the adenosine system, shape inflammatory cell activity during the active phase of inflammation, leading these immune cells toward a functional repolarization, thus contributing to the onset of resolution. Strategies based on the resolution of inflammation have shaped a new area of pharmacology referred to as 'resolution pharmacology' and in this regard, the adenosine system represents an interesting target to design novel pharmacological tools to 'resolve' the inflammatory process. In this review, we outline the role of the adenosine system in driving the events required for an effective transition from the proinflammatory phase to the onset and establishment of resolution.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
235
|
Probiotics in Counteracting the Role of Neutrophils in Cancer Metastasis. Vaccines (Basel) 2021; 9:vaccines9111306. [PMID: 34835236 PMCID: PMC8621509 DOI: 10.3390/vaccines9111306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are known for their role geared towards pathogen clearance by different mechanisms that they initiate, primarily by the release of neutrophil extracellular traps (NETs). However, their immune-surveillance capacity accompanied with plasticity in existing as interchangeable subsets, discovered recently, has revealed their property to contribute to complex cancer pathologies including tumor initiation, growth, angiogenesis and metastasis. Although there is a growing body of evidence suggesting a critical balance between the protumoral and antitumoral neutrophil phenotypes, an in-depth signaling pathway analysis would aid in determination of anticipatory, diagnostic and therapeutic targets. This review presents a comprehensive overview of the potential pathways involved in neutrophil-triggered cancer metastasis and introduces the influence of the microbial load and avenues for probiotic intervention.
Collapse
|
236
|
Wang B, Liu P, Huang H, Wang X, Zhang M, Huang J, Lu F, Chen J, Liu Y, Kang Z. Carbon dots up-regulate heme oxygenase-1 expression towards acute lung injury therapy. J Mater Chem B 2021; 9:9005-9011. [PMID: 34617947 DOI: 10.1039/d1tb01283e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pneumonia is a kind of inflammation, which can cause high morbidity and mortality, and the treatment of pneumonia has received widespread attention. Heme oxygenase-1 (HMOX1) is a cell protective enzyme and can generate an anti-inflammatory response. Here, we demonstrate that degradable carbon dots (from L-ascorbic acid, CDs-1) can up-regulate the expression of HMOX1 in animal cells and tissues, which has a therapeutic effect on LPS-induced acute lung injury in mice. It was confirmed from in vitro experiments that CDs-1 could significantly up-regulate the expression of mRNA and the protein of HMOX1, which can increase the expression of HMOX1 by 5 times in a short time, decreasing the reactive oxygen species level in a cellular inflammation model induced by LPS. Furthermore, a series of in vivo comparative experiments show that CDs-1 could effectively treat acute lung injury and improve the survival rate of mice to 80%. Our work provides a practical way for the treatment of acute inflammation and the promising application of CDs in anti-inflammation.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Peipei Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Xiting Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Mengling Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Jian Huang
- School of Biology & Basic Medical Science, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China. .,Chinese Institute for Brain Research, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing, 102206, China.
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China. .,Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
| |
Collapse
|
237
|
Apoptotic cell-derived metabolites in efferocytosis-mediated resolution of inflammation. Cytokine Growth Factor Rev 2021; 62:42-53. [PMID: 34742632 DOI: 10.1016/j.cytogfr.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
The resolution of inflammation, as part of standard host defense mechanism, is the process to guarantee timely termination of inflammatory responses and eventual restoration of tissue homeostasis . It is mainly achieved via efferocytosis, during which pro-resolving macrophages clear apoptotic neutrophils at the inflammatory site. Unfortunately, impaired resolution can be the leading cause of chronic inflammatory disorders and some autoimmune diseases. Existing studies have provided relatively comprehensive understandings about the recognition and uptake of apoptotic neutrophils by macrophages during early phases of efferocytosis. However, lack of information concerns macrophage metabolism of apoptotic cell-derived metabolites after being released from phagolysosomes or the relationship between such metabolism and efferocytosis. Notwithstanding, three recent studies have revealed macrophage metabolism of cholesterol, fatty acids and arginine, as well as their respective functions in the context of inflammation-resolution. This review provides an overview of the resolution of inflammation, efferocytosis and the key players involved, followed by a focus on the metabolism of apoptotic cell-derived metabolites within efferocytes. Hypotheses of more potential apoptotic cell-derived metabolites and their possible roles in the resolution are also formulated. Understanding the effect of these metabolites further advances the concept that apoptotic cells act as active players to regulate resolution, and also suggests novel therapeutic strategies for diseases driven by defective resolution and even cancer that may be treated through enhanced efferocytosis.
Collapse
|
238
|
Gwak SY, Kim SJ, Park J, Kim SH, Joe Y, Lee HN, Kim W, Muna IA, Na HK, Chung HT, Surh YJ. Potential Role of Heme Oxygenase-1 in the Resolution of Experimentally Induced Colitis through Regulation of Macrophage Polarization. Gut Liver 2021; 16:246-258. [PMID: 34737242 PMCID: PMC8924814 DOI: 10.5009/gnl210058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022] Open
Abstract
Background/Aims Heme oxygenase-1 (HO-1) plays a central role in cellular defense against inflammatory insults, and its induction in macrophages potentiates their efferocytic activity. In this study, we explored the potential role of macrophage HO-1 in the resolution of experimentally induced colitis. Methods To induce colitis, male C57BL/6 mice were treated with 2% dextran sulfate sodium (DSS) in the drinking water for 7 days. To investigate efferocytosis, apoptotic colon epithelial CCD 841 CoN cells were coincubated with bone marrow-derived macrophages (BMDMs). Results Administration of the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blunted the resolution of DSS-induced intestinal inflammation and expression of the proresolving M2 macrophage marker CD206. BMDMs treated with apoptotic colonic epithelial cells showed significantly elevated expression of HO-1 and its regulator Nrf2. Under the same experimental conditions, the proportion of CD206-expressing macrophages was also enhanced. ZnPP treatment abrogated the upregulation of CD206 expression in BMDMs engulfing apoptotic colonic epithelial cells. This result was verified with BMDMs isolated from HO-1-knockout mice. BMDMs, when stimulated with lipopolysaccharide, exhibited increased expression of CD86, a marker of M1 macrophages. Coculture of lipopolysaccharide-stimulated BMDMs with apoptotic colonic epithelial cell debris dampened the expression of CD86 as well as the pro-inflammatory cytokines in an HO-1-dependent manner. Genetic ablation as well as pharmacologic inhibition of HO-1 significantly reduced the proportion of efferocytic BMDMs expressing the scavenger receptor CD36. Conclusions HO-1 plays a key role in the resolution of experimentally induced colitis by modulating the polarization of macrophages.
Collapse
Affiliation(s)
- Shin-Young Gwak
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul, Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Seung Hyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Ha-Na Lee
- Laboratory of Immunology, Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Wonki Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ishrat Aklima Muna
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul, Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
239
|
Feng XY, Hu HD, Chen J, Long C, Yang L, Wang L. Acute neuroinflammation increases excitability of prefrontal parvalbumin interneurons and their functional recruitment during novel object recognition. Brain Behav Immun 2021; 98:48-58. [PMID: 34403738 DOI: 10.1016/j.bbi.2021.08.216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 01/09/2023] Open
Abstract
There is an emerging body of literature suggesting that unlike the chronic neuroinflammatory response, acute neuroinflammation is self-regulated and is beneficial for central nervous system homeostasis and cognitive integrity. However, the neurophysiological alterations upon acute neuroinflammation and their implications on cognitive function remain poorly understood. In the present study, we reliably established a mouse model of acute and self-limiting neuroinflammation by administering a single intraperitoneal injection of low-dose lipopolysaccharide, which induced reversible sickness behavior and increased pro-inflammatory cytokine expression in the medial prefrontal cortex (mPFC). During acute neuroinflammation, fast-spiking parvalbumin-expressing interneurons (PV interneurons) in the mPFC exhibited a hyperexcitable phenotype exemplified by increased input resistance, decreased rheobase current, and a higher frequency of action potentials. Furthermore, PV interneurons in the prelimbic subregion of the mPFC were excessively recruited into circuits supporting novel object recognition memory, which remained intact after acute neuroinflammation. Together, our findings suggest that alterations in PV neuronal excitability resulting from acute neuroinflammation may mediate neuronal recruitment and confer a beneficial outcome on functional integrity of NOR circuit in the mPFC.
Collapse
Affiliation(s)
- Xiao-Yi Feng
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China
| | - Hai-Dong Hu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Jian Chen
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| | - Lei Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, PR China.
| |
Collapse
|
240
|
Scott TE, Qin CX, Drummond GR, Hobbs AJ, Kemp-Harper BK. Innovative Anti-Inflammatory and Pro-resolving Strategies for Pulmonary Hypertension: High Blood Pressure Research Council of Australia Award 2019. Hypertension 2021; 78:1168-1184. [PMID: 34565184 DOI: 10.1161/hypertensionaha.120.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension is a rare, ostensibly incurable, and etiologically diverse disease with an unacceptably high 5-year mortality rate (≈50%), worse than many cancers. Irrespective of pathogenic origin, dysregulated immune processes underlie pulmonary hypertension pathobiology, particularly pertaining to pulmonary vascular remodeling. As such, a variety of proinflammatory pathways have been mooted as novel therapeutic targets. One such pathway involves the family of innate immune regulators known as inflammasomes. In addition, a new and emerging concept is differentiating between anti-inflammatory approaches versus those that promote pro-resolving pathways. This review will briefly introduce inflammasomes and examine recent literature concerning their role in pulmonary hypertension. Moreover, it will explore the difference between inflammation-suppressing and pro-resolution approaches and how this links to inflammasomes. Finally, we will investigate new avenues for targeting inflammation in pulmonary hypertension via more targeted anti-inflammatory or inflammation resolving strategies.
Collapse
Affiliation(s)
- Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute (T.E.S., B.K.K.-H.), Monash University, Parkville, VIC, Australia
- Monash University, Clayton, VIC, Australia and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (T.E.S., C.X.Q.), Monash University, Parkville, VIC, Australia
| | - Cheng Xue Qin
- Monash University, Clayton, VIC, Australia and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (T.E.S., C.X.Q.), Monash University, Parkville, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (C.X.Q.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia (G.R.D.)
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.J.H.)
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute (T.E.S., B.K.K.-H.), Monash University, Parkville, VIC, Australia
| |
Collapse
|
241
|
Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Adv Drug Deliv Rev 2021; 178:113965. [PMID: 34508793 DOI: 10.1016/j.addr.2021.113965] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/26/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
242
|
Dai J, He Y, Jiang M, Niu M, Li B, Wu Z, Bao J, Wen L, Wang X, Hu G. Reg4 regulates pancreatic regeneration following pancreatitis via modulating the Notch signaling. J Cell Physiol 2021; 236:7565-7577. [PMID: 33899235 DOI: 10.1002/jcp.30397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic regeneration after acute pancreatitis is critical in the normal restoration of pancreatic exocrine function, the inhibition of which can cause severe complications including pancreatic exocrine insufficiency. However, the regulators of pancreatic regeneration and the underlying mechanisms remain uncovered. Here, using the inducible Tet-on system, we found that regenerating family member 4 (Reg4) knockdown significantly impaired pancreatic regeneration after pancreatitis. Both acinar-to-ductal metaplasia and the resolution of pancreatitis during regeneration were affected by Reg4 knockdown. Further investigations confirmed that Reg4 exerted its function through regulating Notch activation both in vitro and in vivo. Our study revealed Reg4 as a new regulator and potential therapeutic target for pancreatic regeneration.
Collapse
Affiliation(s)
- Juanjuan Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Intensive Care Unit, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yan He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Jiang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Head and Neck, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Mengya Niu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingpeng Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
243
|
Yuan J, Li L, Yang Q, Ran H, Wang J, Hu K, Pu W, Huang J, Wen L, Zhou L, Jiang Y, Xiong X, Zhang J, Zhou Z. Targeted Treatment of Ischemic Stroke by Bioactive Nanoparticle-Derived Reactive Oxygen Species Responsive and Inflammation-Resolving Nanotherapies. ACS NANO 2021; 15:16076-16094. [PMID: 34606239 DOI: 10.1021/acsnano.1c04753] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stroke is a primary cause of death and disability worldwide, while effective and safe drugs remain to be developed for its clinical treatment. Herein, we report bioactive nanoparticle-derived multifunctional nanotherapies for ischemic stroke, which are engineered from a pharmacologically active oligosaccharide material (termed as TPCD) prepared by covalently conjugating a radical-scavenging compound (Tempol) and a hydrogen-peroxide-eliminating moiety of phenylboronic acid pinacol ester (PBAP) on β-cyclodextrin. Of note, combined functional moieties of Tempol and PBAP on β-cyclodextrin contribute to antioxidative and anti-inflammatory activities of TPCD. Cellularly, TPCD nanoparticles (i.e., TPCD NPs) reduced oxygen-glucose deprivation-induced overproduction of oxidative mediators, increased antioxidant enzyme expression, and suppressed microglial-mediated inflammation, thereby inhibiting neuronal apoptosis. After intravenous (i.v.) delivery, TPCD NPs could efficiently accumulate at the cerebral ischemic injury site of mice with middle cerebral artery occlusion (MCAO), showing considerable distribution in cells relevant to the pathogenesis of stroke. Therapeutically, TPCD NPs significantly decreased infarct volume and accelerated recovery of neurological function in MCAO mice. Mechanistically, efficacy of TPCD NPs is achieved by its antioxidative, anti-inflammatory, and antiapoptotic effects. Furthermore, TPCD NPs can function as a reactive oxygen species labile nanovehicle to efficiently load and triggerably release an inflammation-resolving peptide Ac2-26, giving rise to an inflammation-resolving nanotherapy (i.e., ATPCD NP). Compared to TPCD NP, ATPCD NP demonstrated notably enhanced in vivo efficacies, largely resulting from its additional inflammation-resolving activity. Consequently, TPCD NP-derived nanomedicines can be further developed as promising targeted therapies for stroke and other inflammation-associated cerebrovascular diseases.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qinghua Yang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hong Ran
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Wang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaiyao Hu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jialu Huang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Wen
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Linke Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ying Jiang
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
244
|
Geng S, Zhang Y, Yi Z, Lu R, Li L. Resolving monocytes generated through TRAM deletion attenuate atherosclerosis. JCI Insight 2021; 6:e149651. [PMID: 34499622 PMCID: PMC8564896 DOI: 10.1172/jci.insight.149651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
Polarization of low-grade inflammatory monocytes facilitates the pathogenesis of atherosclerosis. However, underlying mechanisms as well as approaches for resolving monocyte polarization conducive to the regression of atherosclerosis are not well established. In this report, we demonstrate that TRIF-related adaptor molecule (TRAM) mediated monocyte polarization in vivo and in vitro. TRAM controlled monocyte polarization through activating Src family kinase c-SRC, which not only induces STAT1/STAT5-regulated inflammatory mediators CCR2 and SIRP-α but also suppresses PPARγ-regulated resolving mediator CD200R. Enhanced PPARγ and Pex5 due to TRAM deficiency facilitated peroxisome homeostasis and reduction of cellular reactive oxygen species, further contributing to the establishment of a resolving monocyte phenotype. TRAM-deficient monocytes propagated the resolving phenotype to neighboring monocytes through CD200R-mediated intercellular communication. At the translational level, we show that TRAM-deficient mice were resistant to high-fat diet-induced pathogenesis of atherosclerosis. We further document that intravenous transfusion of TRAM-deficient resolving monocytes into atherosclerotic mice potently reduced the progression of atherosclerosis. Together, our data reveal that targeting TRAM may facilitate the effective generation of resolving monocytes conducive for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences and
| | - Yao Zhang
- Department of Biological Sciences and
| | - Ziyue Yi
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| | - Ran Lu
- Department of Biological Sciences and
| | - Liwu Li
- Department of Biological Sciences and
- Graduate Program of Genetics, Biotechnology and Computational Biology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
245
|
Puzzovio PG, Levi-Schaffer F. Latest Progresses in Allergic Diseases Biomarkers: Asthma and Atopic Dermatitis. Front Pharmacol 2021; 12:747364. [PMID: 34658882 PMCID: PMC8514744 DOI: 10.3389/fphar.2021.747364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
In the last years, the understanding of the pathologic mechanisms of asthma and atopic dermatitis, both characterized by allergic inflammation, has greatly improved. However, it is evident that both diseases present with high heterogeneity, which complicates the diagnosis and the therapeutic approach of the patients. Moreover, some of the currently available strategies to treat asthma and atopic dermatitis are still mostly controlling the symptoms, but not to lead towards full healing, thus having these two diseases labelled as unmet clinical needs by WHO. Therefore, the "one-size-fits-all" strategy is outdated for asthma and atopic dermatitis, and there is the need of better methods to clearly diagnose the disease and tailor the therapy according to the specific symptomatology. In this regard, the use of biomarkers has been advanced in order to characterize both diseases according to their clinical signs and to facilitate the subsequent treatment. Despite the advancements made in this regard, there is still need for better and more sensitive biomarkers and for less invasive sampling methodologies, with the aim to diagnose specifically each manifestation of asthma and atopic dermatitis and to provide the best treatment with the least suffering for the patients.
Collapse
Affiliation(s)
- Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
246
|
Javdani M, Barzegar A, Khosravian P, Hashemnia M. Evaluation of Inflammatory Response Due to Use of Controlled Release Drug Delivery System of Chitosan Hydrogel Loaded with Buprenorphine and Ketorolac in Rat with Experimental Proximal Tibial Epiphysis Defect. J INVEST SURG 2021; 35:996-1011. [PMID: 34666588 DOI: 10.1080/08941939.2021.1989728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Aims:A controlled release drug delivery system loaded with buprenorphine and ketorolac was synthesized and used in the experimental model of bone defect and while evaluating the inflammatory response, the repair process in the defects was investigated.Materials and methods:To determine the effectiveness of the synthesized the mentioned systems, 5 groups were defined; the control group, the chitosan hydrogel receiving group (chitosan group), the ketorolac-loaded chitosan hydrogel group (ketorolac group), the buprenorphine-loaded chitosan hydrogel receiving group (buprenorphine group), and the chitosan hydrogel-loading group loaded with a combination of ketorolac and buprenorphine (ketorolac-buprenorphine group).Results:The results showed that the population of leukocytes (tWBC) and neutrophils on different days of the study in the control group compared to other groups had a significant increase (P < 0.05) while on day 7 of the study in the ketorolac group these parameters decreased significantly compared to other groups (P < 0.05). While examining the histological changes in the experimental defect created in the proximal tibia of rats at different times, some inflammatory indices such as total and differential leukocyte population, plasma concentrations of TNF-α and IL-6 were compared in different groups (P < 0.05). The various evaluated data showed that among the different groups, in the control and ketorolac-buprenorphine groups, there was the lowest and highest control of inflammatory response and bone repair, respectively.Conclusion:In the ketorolac group due to the impact of ketorolac on leukocyte populations the best bone healing can be expected among the different treatment groups.
Collapse
Affiliation(s)
- Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Abolfazl Barzegar
- Veterinary Medicine Student, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Pegah Khosravian
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hashemnia
- Department of pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
247
|
Sarr D, Oliveira LJ, Russ BN, Owino SO, Middii JD, Mwalimu S, Ambasa L, Almutairi F, Vulule J, Rada B, Moore JM. Myeloperoxidase and Other Markers of Neutrophil Activation Associate With Malaria and Malaria/HIV Coinfection in the Human Placenta. Front Immunol 2021; 12:682668. [PMID: 34737733 PMCID: PMC8562302 DOI: 10.3389/fimmu.2021.682668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/17/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction Placental malaria (PM) is characterized by accumulation of inflammatory leukocytes in the placenta, leading to poor pregnancy outcomes. Understanding of the underlying mechanisms remains incomplete. Neutrophils respond to malaria parasites by phagocytosis, generation of oxidants, and externalization of Neutrophil Extracellular Traps (NETs). NETs drive inflammation in malaria but evidence of NETosis in PM has not been reported. Neutrophil activity in the placenta has not been directly investigated in the context of PM and PM/HIV-co-infection. Methods Using peripheral and placental plasma samples and placental tissue collected from Kenyan women at risk for malaria and HIV infections, we assessed granulocyte levels across all gravidities and markers of neutrophil activation, including NET formation, in primi- and secundigravid women, by ELISA, western blot, immunohistochemistry and immunofluorescence. Results Reduced peripheral blood granulocyte numbers are observed with PM and PM/HIV co-infection in association with increasing parasite density and placental leukocyte hemozoin accumulation. In contrast, placental granulocyte levels are unchanged across infection groups, resulting in enhanced placental: peripheral count ratios with PM. Within individuals, PM- women have reduced granulocyte counts in placental relative to peripheral blood; in contrast, PM stabilizes these relative counts, with HIV coinfection tending to elevate placental counts relative to the periphery. In placental blood, indicators of neutrophil activation, myeloperoxidase (MPO) and proteinase 3 (PRTN3), are significantly elevated with PM and, more profoundly, with PM/HIV co-infection, in association with placental parasite density and hemozoin-bearing leukocyte accumulation. Another neutrophil marker, matrix metalloproteinase (MMP9), together with MPO and PRTN3, is elevated with self-reported fever. None of these factors, including the neutrophil chemoattractant, CXCL8, differs in relation to infant birth weight or gestational age. CXCL8 and MPO levels in the peripheral blood do not differ with infection status nor associate with birth outcomes. Indicators of NETosis in the placental plasma do not vary with infection, and while structures consistent with NETs are observed in placental tissue, the results do not support an association with PM. Conclusions Granulocyte levels are differentially regulated in the peripheral and placental blood in the presence and absence of PM. PM, both with and without pre-existing HIV infection, enhances neutrophil activation in the placenta. The impact of local neutrophil activation on placental function and maternal and fetal health remains unclear. Additional investigations exploring how neutrophil activation and NETosis participate in the pathogenesis of malaria in pregnant women are needed.
Collapse
Affiliation(s)
- Demba Sarr
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lilian J. Oliveira
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Brittany N. Russ
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Simon O. Owino
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Faculty of Science, Department of Zoology, Maseno University, Maseno, Kenya
| | - Joab D. Middii
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Kisumu Specialists Hospital Laboratory, Kisumu, Kenya
| | - Stephen Mwalimu
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
| | - Linda Ambasa
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
- #1 Heartsaved Adult Family Care, Marysville, WA, United States
| | - Faris Almutairi
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - John Vulule
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Julie M. Moore
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya
- University of Georgia/Kenya Medical Research Institute Placental Malaria Study, Siaya District Hospital, Siaya, Kenya
| |
Collapse
|
248
|
Nam HH, Nan L, Choo BK. Anti-Inflammation and Protective Effects of Anethum graveolens L. (Dill Seeds) on Esophageal Mucosa Damages in Reflux Esophagitis-Induced Rats. Foods 2021; 10:foods10102500. [PMID: 34681549 PMCID: PMC8535990 DOI: 10.3390/foods10102500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/17/2022] Open
Abstract
Anethum graveolens L. (dill seeds) are important medicinal and functional foods in Europe and central and south Asia, often used as a seasoning in daily diets. Anethum graveolens L. seeds (AGS) are used to treat indigestion and have shown physiological activities such as those against hypoglycemia and gastroesophageal disease. This study explored the protective effects of AGS extract on mucosal damages and inflammation in reflux esophagitis rats. AGS inhibited cellular inflammation including NO production and the expression of inflammatory proteins (iNOS and COX2 etc.), cytokines (IL-1β and TNF-α) and nuclear transfer factor related to NF-κB signaling caused by LPS stimulation in vitro. Furthermore, reflux esophagitis-induced rats were used to observe the anti-inflammatory effect of AGS. Tissue staining and inflammation-related protein expression of rats with acute reflux esophagitis indicated that AGS improved this inflammatory response, such as COX-2 and TNF-α in mucosa. In conclusion, AGS have good physiological activity and the possibility of being used as a medicinal food and a functional resource for the prevention and therapy of gastroesophageal diseases.
Collapse
Affiliation(s)
- Hyeon-Hwa Nam
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju-si 58245, Korea;
| | - Li Nan
- Agricultural College, Yanbian University, Yanji 133002, China;
| | - Byung-Kil Choo
- Department of Crop Science & Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-2526
| |
Collapse
|
249
|
Liu L, Yang C, Candelario-Jalil E. Role of BET Proteins in Inflammation and CNS Diseases. Front Mol Biosci 2021; 8:748449. [PMID: 34604312 PMCID: PMC8481655 DOI: 10.3389/fmolb.2021.748449] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins consist of four mammalian members (BRD2, BRD3, BRD4, and BRDT), which play a pivotal role in the transcriptional regulation of the inflammatory response. Dysregulated inflammation is a key pathological process in various CNS disorders through multiple mechanisms, including NF-κB and Nrf2 pathways, two well-known master regulators of inflammation. A better mechanistic understanding of the BET proteins’ role in regulating the inflammatory process is of great significance since it could reveal novel therapeutic targets to reduce neuroinflammation associated with many CNS diseases. In this minireview, we first outline the structural features of BET proteins and summarize genetic and pharmacological approaches for BET inhibition, including novel strategies using proteolysis-targeting chimeras (PROTACs). We emphasize in vitro and in vivo evidence of the interplay between BET proteins and NF-κB and Nrf2 signaling pathways. Finally, we summarize recent studies showing that BET proteins are essential regulators of inflammation and neuropathology in various CNS diseases.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
250
|
Burtscher B, Manco Urbina PA, Diacci C, Borghi S, Pinti M, Cossarizza A, Salvarani C, Berggren M, Biscarini F, Simon DT, Bortolotti CA. Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors. Adv Healthc Mater 2021; 10:e2100955. [PMID: 34423579 PMCID: PMC11469060 DOI: 10.1002/adhm.202100955] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/16/2021] [Indexed: 01/08/2023]
Abstract
An overview of cytokine biosensing is provided, with a focus on the opportunities provided by organic electronic platforms for monitoring these inflammation biomarkers which manifest at ultralow concentration levels in physiopathological conditions. Specifically, two of the field's state-of-the-art technologies-organic electrochemical transistors (OECTs) and electrolyte gated organic field effect transistors (EGOFETs)-and their use in sensing cytokines and other proteins associated with inflammation are a particular focus. The overview will include an introduction to current clinical and "gold standard" quantification techniques and their limitations in terms of cost, time, and required infrastructure. A critical review of recent progress with OECT- and EGOFET-based protein biosensors is presented, alongside a discussion onthe future of these technologies in the years and decades ahead. This is especially timely as the world grapples with limited healthcare diagnostics during the Coronavirus disease (COVID-19)pandemic where one of the worst-case scenarios for patients is the "cytokine storm." Clearly, low-cost point-of-care technologies provided by OECTs and EGOFETs can ease the global burden on healthcare systems and support professionals by providing unprecedented wealth of data that can help to monitor disease progression in real time.
Collapse
Affiliation(s)
- Bernhard Burtscher
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | | | - Chiara Diacci
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Simone Borghi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and AdultsUniversity of Modena and Reggio EmiliaVia Campi 287Modena41125Italy
| | - Carlo Salvarani
- Rheumatology UnitUniversity of Modena and Reggio EmiliaMedical SchoolAzienda Ospedaliero‐UniversitariaPoliclinico di ModenaModena41124Italy
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Fabio Biscarini
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
- Center for Translation NeurophysiologyIstituto Italiano di TecnologiaVia Fossato di Mortara 17–19Ferrara44100Italy
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Carlo A. Bortolotti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaVia Campi 103Modena41125Italy
| |
Collapse
|