201
|
Gao M, Chen M, Chen Q, Zhu S, Wang H, Yang W, Wang X, Wang Q, Gu L. Integration of parallel metabolomics and transcriptomics reveals metabolic patterns in porcine oocytes during maturation. Front Endocrinol (Lausanne) 2023; 14:1131256. [PMID: 36817597 PMCID: PMC9929430 DOI: 10.3389/fendo.2023.1131256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Well-controlled metabolism is the prerequisite for optimal oocyte development. To date, numerous studies have focused mainly on the utilization of exogenous substrates by oocytes, whereas the underlying mechanism of intrinsic regulation during meiotic maturation is less characterized. Herein, we performed an integrated analysis of parallel metabolomics and transcriptomics by isolating porcine oocytes at three time points, cooperatively depicting the global picture of the metabolic patterns during maturation. In particular, we identified the novel metabolic features during porcine oocyte meiosis, such as the fall in bile acids, the active one-carbon metabolism and a progressive decline in nucleotide metabolism. Collectively, the current study not only provides a comprehensive multiple omics data resource, but also may facilitate the discovery of molecular biomarkers that could be used to predict and improve oocyte quality.
Collapse
Affiliation(s)
- Ming Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuzhen Chen
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hengjie Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Weizheng Yang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Ling Gu, ; Qiang Wang, ; Xi Wang,
| |
Collapse
|
202
|
Sun Y, Wen M, Liu Y, Wang Y, Jing P, Gu Z, Jiang T, Wang W. The human microbiome: A promising target for lung cancer treatment. Front Immunol 2023; 14:1091165. [PMID: 36817461 PMCID: PMC9936316 DOI: 10.3389/fimmu.2023.1091165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and insights into its underlying mechanisms as well as potential therapeutic strategies are urgently needed. The microbiome plays an important role in human health, and is also responsible for the initiation and progression of lung cancer through its induction of inflammatory responses and participation in immune regulation, as well as for its role in the generation of metabolic disorders and genotoxicity. Here, the distribution of human microflora along with its biological functions, the relationship between the microbiome and clinical characteristics, and the role of the microbiome in clinical treatment of lung cancer were comprehensively reviewed. This review provides a basis for the current understanding of lung cancer mechanisms with a focus on the microbiome, and contributes to future decisions on treatment management.
Collapse
Affiliation(s)
- Ying Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yue Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Pengyu Jing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Zhongping Gu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Wenchen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
203
|
Xie J, Li H, Zhang X, Yang T, Yue M, Zhang Y, Chen S, Cui N, Yuan C, Li J, Zhu SJ, Liu W. Akkermansia muciniphila protects mice against an emerging tick-borne viral pathogen. Nat Microbiol 2023; 8:91-106. [PMID: 36604506 DOI: 10.1038/s41564-022-01279-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/26/2022] [Indexed: 01/07/2023]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by a phlebovirus in the Bunyaviridae family. Infection can result in systemic inflammatory response syndrome with a high fatality rate, and there are currently no treatments or vaccines available. The microbiota has been implicated in host susceptibility to systemic viral infection and disease outcomes, but whether the gut microbiota is implicated in severe fever with thrombocytopenia syndrome virus (SFTSV) infection is unknown. Here, we analysed faecal and serum samples from patients with SFTS using 16S ribosomal RNA-sequencing and untargeted metabolomics, respectively. We found that the gut commensal Akkermansia muciniphila increased in relative abundance over the course of infection and was reduced in samples from deceased patients. Using germ-free or oral antibiotic-treated mice, we found that A. muciniphila produces the β-carboline alkaloid harmaline, which protects against SFTSV infection by suppressing NF-κB-mediated systemic inflammation. Harmaline indirectly modulated the virus-induced inflammatory response by specifically enhancing bile acid-CoA: amino acid N-acyltransferase expression in hepatic cells to increase conjugated primary bile acids, glycochenodeoxycholic acid and taurochenodeoxycholic acid. These bile acids induced transmembrane G-protein coupled receptor-5-dependent anti-inflammatory responses. These results indicate the probiotic potential of A. muciniphila in mitigating SFTSV infection.
Collapse
Affiliation(s)
- Jinyan Xie
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xiaoai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Tong Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Mengjia Yue
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Yunfa Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Shuxian Chen
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China
| | - Ning Cui
- The 990 Hospital, People's Liberation Army, Xinyang, P. R. China
| | - Chun Yuan
- The 990 Hospital, People's Liberation Army, Xinyang, P. R. China
| | - Jingyun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Shu Jeffrey Zhu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, P. R. China.
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, P. R. China.
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China.
- School of Public Health, Peking University, Beijing, P. R. China.
| |
Collapse
|
204
|
Manoharan N, Parasuraman R, Jayamurali D, Govindarajulu SN. The therapeutic role of microbial metabolites in human health and diseases. RECENT ADVANCES AND FUTURE PERSPECTIVES OF MICROBIAL METABOLITES 2023:1-38. [DOI: 10.1016/b978-0-323-90113-0.00002-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
205
|
Sah DK, Arjunan A, Park SY, Jung YD. Bile acids and microbes in metabolic disease. World J Gastroenterol 2022; 28:6846-6866. [PMID: 36632317 PMCID: PMC9827586 DOI: 10.3748/wjg.v28.i48.6846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
Bile acids (BAs) serve as physiological detergents that enable the intestinal absorption and transportation of nutrients, lipids and vitamins. BAs are primarily produced by humans to catabolize cholesterol and play crucial roles in gut metabolism, microbiota habitat regulation and cell signaling. BA-activated nuclear receptors regulate the enterohepatic circulation of BAs which play a role in energy, lipid, glucose, and drug metabolism. The gut microbiota plays an essential role in the biotransformation of BAs and regulates BAs composition and metabolism. Therefore, altered gut microbial and BAs activity can affect human metabolism and thus result in the alteration of metabolic pathways and the occurrence of metabolic diseases/syndromes, such as diabetes mellitus, obesity/hypercholesterolemia, and cardiovascular diseases. BAs and their metabolites are used to treat altered gut microbiota and metabolic diseases. This review explores the increasing body of evidence that links alterations of gut microbial activity and BAs with the pathogenesis of metabolic diseases. Moreover, we summarize existing research on gut microbes and BAs in relation to intracellular pathways pertinent to metabolic disorders. Finally, we discuss how therapeutic interventions using BAs can facilitate microbiome functioning and ease metabolic diseases.
Collapse
Affiliation(s)
- Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Archana Arjunan
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| | - Sun Young Park
- Department of Internal Medicine, Chonnam National University, Gwangju 501190, South Korea
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University, Gwangju 501190, South Korea
| |
Collapse
|
206
|
Qiao X, Zhang K, Li X, Lv Z, Wei W, Zhou R, Yan L, Pan Y, Yang S, Sun X, Li P, Xu C, Feng Y, Tian Z. Gut microbiota and fecal metabolic signatures in rat models of disuse-induced osteoporosis. Front Cell Infect Microbiol 2022; 12:1018897. [PMID: 36590590 PMCID: PMC9798431 DOI: 10.3389/fcimb.2022.1018897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background Assessing the correlation between gut microbiota (GM) and bone homeostasis has increasingly attracted research interest. Meanwhile, GM dysbiosis has been found to be associated with abnormal bone metabolism. However, the function of GM in disuse-induced osteoporosis (DIO) remains poorly understood. In our research, we evaluated the characteristics of GM and fecal metabolomics to explore their potential correlations with DIO pathogenesis. Methods DIO rat models and controls (CON) underwent micro-CT, histological analyses, and three-point bending tests; subsequently, bone microstructures and strength were observed. ELISAs were applied for the measurement of the biochemical markers of bone turnover while GM abundance was observed using 16S rDNA sequencing. Metabolomic analyses were used to analyze alterations fecal metabolites. The potential correlations between GM, metabolites, and bone loss were then assessed. Results In the DIO group, the abundance of GM was significantly altered compared to that in the CON group. Moreover, DIO significantly altered fecal metabolites. More specifically, an abnormally active pathway associated with bile acid metabolism, as well as differential bacterial genera related to bone/tissue volume (BV/TV), were identified. Lithocholic acid, which is the main secondary bile acid produced by intestinal bacteria, was then found to have a relationship with multiple differential bacterial genera. Alterations in the intestinal flora and metabolites in feces, therefore, may be responsible for DIO-induced bone loss. Conclusions The results indicated that changes in the abundance of GM abundance and fecal metabolites were correlated with DIO-induced bone loss, which might provide new insights into the DIO pathogenesis. The detailed regulatory role of GM and metabolites in DIO-induced bone loss needs to be explored further.
Collapse
Affiliation(s)
- Xiaochen Qiao
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
- Department of Orthopedics, JinZhong Hospital Affiliated to Shanxi Medical University, Jinzhong, Shanxi, China
| | - Kun Zhang
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Xiaoyan Li
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhi Lv
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Wenhao Wei
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Ruhao Zhou
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Lei Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yongchun Pan
- Department of Orthopedics, Third People’s Hospital of Datong City, Datong, Shanxi, China
| | - Sen Yang
- Department of Orthopedics, The Second People’s Hospital of Changzhi, Changzhi, Shanxi, China
| | - Xiaojuan Sun
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Pengcui Li
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Chaojian Xu
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Yi Feng
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| | - Zhi Tian
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Shanxi Key laboratory of Bone and Soft Tissue Injury Repair, Taiyuan, Shanxi, China
| |
Collapse
|
207
|
Shen B, Zhou C, Gu T, Shen Z, Guo Y, Dai W, Liu Y, Zhang J, Lu L, Dong H. Kuhuang alleviates liver fibrosis by modulating gut microbiota-mediated hepatic IFN signaling and bile acid synthesis. Front Pharmacol 2022; 13:1080226. [PMID: 36582518 PMCID: PMC9792617 DOI: 10.3389/fphar.2022.1080226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Liver fibrosis is a common outcome of the pathological progression of chronic liver disease; however, no specific and effective therapeutic agent has been approved for its treatment. We investigated the effects of Kuhuang on liver fibrosis and the underlying mechanisms of action. Materials and methods: To induce hepatic fibrosis, either 3,5-diethoxycarbonyl-1,4-dihydro-collidine (DDC) diet was administered, or bile duct ligation (BDL) surgery was performed on C57BL/6 mice. Kuhuang was orally administered to mice for 7 days before and after bile duct ligation or 4 weeks with a DDC diet. Hematoxylin and eosin, Sirius red staining, and immunohistochemical analyses were performed to evaluate hepatic pathology. Hepatic interferon-β (IFN-β) levels were measured using an enzyme-linked immunosorbent assay. RNA sequencing was performed to examine the gene expression profiles of liver tissues. The mRNA expression of inflammatory, profibrotic, and bile acid (BA)-related genes was further validated by qRT-PCR. A targeted metabolomics assay revealed the alteration of the hepatic bile acid (BA) composition. The composition of the gut microbiota was determined via 16S rRNA sequencing. Results: Treatment with Kuhuang attenuated liver fibrosis and reduced the inflammatory response in bile duct ligation and DDC mouse models. In addition, the hepatic IFN signaling pathway was activated following Kuhuang treatment. Kuhuang treatment also significantly decreased hepatic levels of both primary and secondary BAs. In addition, Kuhuang treatment altered gut microbiota composition, with an increased abundance of interferon-inducing Akkermansia and decreased abundance of bile salt hydrolase-producing Lactobacillus, Clostridium, and Bifidobacterium. Furthermore, the abundance of Akkermansia was positively correlated with the hepatic mRNA expression levels of Ifna4, Ifnb, and Isg15, whereas that of Lactobacillus, Clostridium - sensu - stricto - 1, and Bifidobacterium was positively correlated with levels of bile acid synthesis-related genes. Conclusion: Our results suggest that Kuhuang plays a protective role during the progression of liver fibrosis, potentially by altering the composition of the gut microbiota, which consequently activates interferon signaling and inhibits bile acid synthesis in the liver.
Collapse
Affiliation(s)
- Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Gu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiming Dai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Liu
- Suzhou Leiyunshang Pharmacology Group, Shanghai, China
| | - Jie Zhang
- Suzhou Leiyunshang Pharmacology Group, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Lungen Lu, ; Hui Dong,
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Lungen Lu, ; Hui Dong,
| |
Collapse
|
208
|
Zheng J, Peng X, Zhu T, Huang S, Chen C, Chen G, Liu S, Ouyang G. Detection of bile acids in small volume human bile samples via an amino metal-organic framework composite based solid-phase microextraction probe. J Chromatogr A 2022; 1685:463634. [DOI: 10.1016/j.chroma.2022.463634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
209
|
Zhang N, Wang J, Bakker W, Zheng W, Baccaro M, Murali A, van Ravenzwaay B, Rietjens IMCM. In vitro models to detect in vivo bile acid changes induced by antibiotics. Arch Toxicol 2022; 96:3291-3303. [PMID: 36074177 PMCID: PMC9584874 DOI: 10.1007/s00204-022-03373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
Abstract
Bile acid homeostasis plays an important role in many biological activities through the bile-liver-gut axis. In this study, two in vitro models were applied to further elucidate the mode of action underlying reported in vivo bile acid changes induced by antibiotics (colistin sulfate, tobramycin, meropenem trihydrate, and doripenem hydrate). 16S rRNA analysis of rat fecal samples anaerobically incubated with these antibiotics showed that especially tobramycin induced changes in the gut microbiota. Furthermore, tobramycin was shown to inhibit the microbial deconjugation of taurocholic acid (TCA) and the transport of TCA over an in vitro Caco-2 cell layer used as a model to mimic intestinal bile acid reuptake. The effects induced by the antibiotics in the in vitro model systems provide novel and complementary insight explaining the effects of the antibiotics on microbiota and fecal bile acid levels upon 28-day in vivo treatment of rats. In particular, our results provide insight in the mode(s) of action underlying the increased levels of TCA in the feces upon tobramycin exposure. Altogether, the results of the present study provide a proof-of-principle on how in vitro models can be used to elucidate in vivo effects on bile acid homeostasis, and to obtain insight in the mode(s) of action underlying the effect of an antibiotic, in this case tobramycin, on bile acid homeostasis via effects on intestinal bile acid metabolism and reuptake.
Collapse
Affiliation(s)
- Nina Zhang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Jingxuan Wang
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Weijia Zheng
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marta Baccaro
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | | | | | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
210
|
Giannini C, Mastromauro C, Scapaticci S, Gentile C, Chiarelli F. Role of bile acids in overweight and obese children and adolescents. Front Endocrinol (Lausanne) 2022; 13:1011994. [PMID: 36531484 PMCID: PMC9747777 DOI: 10.3389/fendo.2022.1011994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Bile acids (BAs) are amphipathic molecules synthetized in the liver. They are primarily involved in the digestion of nutrients. Apart from their role in dietary lipid absorption, BAs have progressively emerged as key regulators of systemic metabolism and inflammation. In the last decade, it became evident that BAs are particularly important for the regulation of glucose, lipid, and energy metabolism. Indeed, the interest in role of BA in metabolism homeostasis is further increased due to the global public health increase in obesity and related complications and a large number of research postulating that there is a close mutual relationship between BA and metabolic disorders. This strong relationship seems to derive from the role of BAs as signaling molecules involved in the regulation of a wide spectrum of metabolic pathways. These actions are mediated by different receptors, particularly nuclear farnesoid X receptor (FXR) and Takeda G protein coupled receptor 5 (TGR5), which are probably the major effectors of BA actions. These receptors activate transcriptional networks and signaling cascades controlling the expression and activity of genes involved in BA, lipid and carbohydrate metabolism, energy expenditure, and inflammation. The large correlation between BAs and metabolic disorders offers the possibility that modulation of BAs could be used as a therapeutic approach for the treatment of metabolic diseases, including obesity itself. The aim of this review is to describe the main physiological and metabolic actions of BA, focusing on its signaling pathways, which are important in the regulation of metabolism and might provide new BA -based treatments for metabolic diseases.
Collapse
Affiliation(s)
- Cosimo Giannini
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | | | | | | | | |
Collapse
|
211
|
Wu F, Lei H, Chen G, Chen C, Song Y, Cao Z, Zhang C, Zhang C, Zhou J, Lu Y, Zhang L. Multiomics Analyses Reveal That Long-Term Intake of Hesperetin-7- O-glucoside Modulates the Gut Microbiota and Bile Acid Metabolism in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14831-14840. [PMID: 36383360 DOI: 10.1021/acs.jafc.2c05053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hesperetin-7-O-glucoside (Hes-7-G) is a typical flavonoid monoglucoside, which can be generated from hesperidin with the removal of rhamnose by hydrolysis. Untargeted and targeted metabolomics together with 16S rRNA gene sequencing were employed to explore the exact absorption site of Hes-7-G and its beneficial effect in mice. Intestinal 1H nuclear magnetic resonance (NMR)-based metabolomics screening showed that Hes-7-G is mainly metabolized in the small intestine of mice, especially the ileum segment. Quantification analysis of bile acids (BAs) in the liver, intestinal tract, feces, and serum of mice suggests that Hes-7-G intake accelerates the processes of biosynthesis and excretion of BAs, thus promoting digestion and lowing hepatic cholesterol and triglyceride. 16S rRNA gene sequencing reveals that Hes-7-G significantly elevates the diversity of the gut microbiota in mice, especially those bacteria associated with BA secondary metabolism. These results demonstrated that long-term dietary Hes-7-G plays beneficial roles in health by modulating the gut bacteria and BA metabolism in mice.
Collapse
Affiliation(s)
- Fang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
| | - Gui Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cui Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Company, Limited, Foshan, Guangdong 528225, People's Republic of China
- Engineering Research Academy of High Value Utilization of Green Plants, Meizhou, Guangdong 514021, People's Republic of China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
- Golden Health (Guangdong) Biotechnology Company, Limited, Foshan, Guangdong 528225, People's Republic of China
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan, Hubei 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
212
|
Deng W, Zhang L, Du Q, Li Y, Chen J, Du L, Chen D. The association of serum total bile acid with new-onset hypertension during pregnancy. BMC Pregnancy Childbirth 2022; 22:879. [DOI: 10.1186/s12884-022-05211-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
There has been considerable interest in the interrelationship between the liver and hypertension. The relationship between serum total bile acid (TBA) and hypertension has been reported. Moreover, intrahepatic cholestasis of pregnancy was correlated to gestation hypertension. However, the association between maternal serum TBA level in the normal range and new-onset hypertension disorders during pregnancy remains unclear. The present study aimed to evaluate the relationship between maternal serum TBA level in the normal range and the risk, disease severity and adverse pregnancy outcomes of new-onset hypertension during pregnancy.
Method
Using the electronic medical records on all pregnant women from the Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, between 2014 and 2020, we conducted a retrospective cohort study of 2581 singleton pregnant women with maternal serum TBA levels in the normal range. Patients were grouped into the non-hypertension during pregnancy (1071), gestational hypertension (480) and preeclampsia (1030) groups.
Result
We found that maternal serum TBA levels were significantly higher in the preeclampsia and gestational hypertension groups than in the non-hypertension group (p < 0.01). Multiple logistic regression analysis showed that TBA level was independently and significantly associated with preeclampsia and gestational hypertension (odds ratio: 1.37, 95% confidence interval [CI]: 1.27–1.48, p = 0.001, odds ratio: 1.34, 95% confidence interval [CI]: 1.24–1.46, p = 0.005, respectively). Moreover, elevated TBA level was positively associated with the risk of severe PE and negatively with mild PE (p < 0.01). In addition, maternal serum TBA levels were negatively related to birth weight (p < 0.001).
Conclusions
These results suggest that maternal serum TBA in the normal range also might be a valuable biomarker for disease severity in preeclampsia and gestational hypertension. Additionally, our results also indicate associations of serum total bile acid levels in the normal range with an increased risk of fetal growth restriction and low birth weight among offspring. These results suggest that TBA could serve as a prognostic biomarker for new-onset hypertension during pregnancy.
Collapse
|
213
|
Marotta C, Ahmad A, Luo E, Oosterhaven J, van Marle S, Adda N. EDP-297: A novel, farnesoid X receptor agonist-Results of a phase I study in healthy subjects. Clin Transl Sci 2022; 16:338-351. [PMID: 36369848 PMCID: PMC9926082 DOI: 10.1111/cts.13453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
EDP-297 is a farnesoid X receptor agonist under development for treating nonalcoholic steatohepatitis. The pharmacokinetic (PK), pharmacodynamic (PD), food effect, and safety were evaluated in a single ascending dose (SAD) and multiple ascending dose (MAD) phase I study. Healthy subjects received single EDP-297 doses of 20-600 μg or once daily doses of 5-90 μg for 14 days. Safety, PKs, and PDs were assessed, including fibroblast growth factor 19 (FGF-19) and 7-α-hydroxy-4-cholesten-3-one (C4). Among 82 subjects, EDP-297 was generally well-tolerated. Pruritus was observed in four subjects in the SAD phase and seven subjects in the MAD phase; four severe cases occurred at 90 μg in the MAD phase, including one that led to drug discontinuation. A grade 2 elevation in alanine aminotransferase occurred with 90 μg. Mean lipid values remained within normal range. Plasma exposures of EDP-297 increased with SADs and MADs, with mean half-life following multiple doses of 9-12.5 h. No food effect was observed. Mean FGF-19 increased and C4 decreased up to 95% and 92%, respectively. EDP-297 was generally well-tolerated up to 60 μg MAD, with linear PKs suitable for once daily oral dosing, target engagement, and no food effect.
Collapse
Affiliation(s)
| | - Alaa Ahmad
- Enanta Pharmaceuticals, Inc.WatertownMassachusettsUSA
| | - Ed Luo
- Enanta Pharmaceuticals, Inc.WatertownMassachusettsUSA
| | | | | | - Nathalie Adda
- Enanta Pharmaceuticals, Inc.WatertownMassachusettsUSA
| |
Collapse
|
214
|
Liao XX, Wu XY, Zhou YL, Li JJ, Wen YL, Zhou JJ. Gut microbiome metabolites as key actors in atherosclerosis co-depression disease. Front Microbiol 2022; 13:988643. [PMID: 36439791 PMCID: PMC9686300 DOI: 10.3389/fmicb.2022.988643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/24/2022] [Indexed: 02/26/2024] Open
Abstract
Cardiovascular diseases, mainly characterized by atherosclerosis (AS), and depression have a high comorbidity rate. However, previous studies have been conducted under a single disease, and there is a lack of studies in comorbid states to explore the commonalities in the pathogenesis of both diseases. Modern high-throughput technologies have made it clear that the gut microbiome can affect the development of the host's own disorders and have shown that their metabolites are crucial to the pathophysiology of AS and depression. The aim of this review is to summarize the current important findings on the role of gut microbiome metabolites such as pathogen-associated molecular patterns, bile acids, tryptophan metabolites, short-chain fatty acids, and trimethylamine N -oxide in depression and AS disease, with the aim of identifying potential biological targets for the early diagnosis and treatment of AS co-depression disorders.
Collapse
Affiliation(s)
- Xing-Xing Liao
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yun Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yu-Long Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jia-Jun Li
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - You-Liang Wen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhou
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
215
|
Hu L, Wang X, Bao Z, Xu Q, Qian M, Jin Y. The fungicide prothioconazole and its metabolite prothioconazole-desthio disturbed the liver-gut axis in mice. CHEMOSPHERE 2022; 307:136141. [PMID: 36007749 DOI: 10.1016/j.chemosphere.2022.136141] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The triazole fungicide prothioconazole (PTC) can cause adverse effects in animals, and its main metabolite prothioconazole-desthio (PTC-d) is even much more harmful. However, the toxic effects of PTC and PTC-d on the liver-gut axis of mice are still unknown. In the present experiment, we found that oral exposure to PTC and PTC-d increased total bile acids (TBAs) levels in the serum, liver, and feces. Correspondingly, the transcription of genes involved in bile acids (BAs) disposition was significantly influenced by PTC or PTC-d exposure. Furthermore, the BAs composition of serum BAs was analyzed by LC-MS, and the results indicated that PTC and PTC-d exposure changed the BAs composition, lowered the ratio of conjugated/unconjugated BAs, elevated the ratio of CA/b-MCA, and enhanced the hydrophobicity of BAs pool. 16s RNA gene sequencing of the DNA from colonic contents uncovered that PTC and PTC-d exposure altered the relative abundance and constitution of intestinal microbiota, increasing the relative level of Lactobacillus with bile salt hydrolase (BSH) activity. Furthermore, PTC and PTC-d exposure impaired the gut barrier function, causing an increase in mucus secretion. In particular, the effects of PTC-d on some endpoints in the BAs metabolism and gut barrier function had been proven to be more significant than the parent compound PTC. All these findings draw attention to the health risk of PTC and PTC-d exposure in regulating BAs metabolism, which might lead to some metabolic disorders and occur of related diseases in animals.
Collapse
Affiliation(s)
- Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
216
|
Arifuzzaman M, Won TH, Li TT, Yano H, Digumarthi S, Heras AF, Zhang W, Parkhurst CN, Kashyap S, Jin WB, Putzel GG, Tsou AM, Chu C, Wei Q, Grier A, Worgall S, Guo CJ, Schroeder FC, Artis D. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 2022; 611:578-584. [PMID: 36323778 PMCID: PMC10576985 DOI: 10.1038/s41586-022-05380-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Dietary fibres can exert beneficial anti-inflammatory effects through microbially fermented short-chain fatty acid metabolites<sup>1,2</sup>, although the immunoregulatory roles of most fibre diets and their microbiota-derived metabolites remain poorly defined. Here, using microbial sequencing and untargeted metabolomics, we show that a diet of inulin fibre alters the composition of the mouse microbiota and the levels of microbiota-derived metabolites, notably bile acids. This metabolomic shift is associated with type 2 inflammation in the intestine and lungs, characterized by IL-33 production, activation of group 2 innate lymphoid cells and eosinophilia. Delivery of cholic acid mimics inulin-induced type 2 inflammation, whereas deletion of the bile acid receptor farnesoid X receptor diminishes the effects of inulin. The effects of inulin are microbiota dependent and were reproduced in mice colonized with human-derived microbiota. Furthermore, genetic deletion of a bile-acid-metabolizing enzyme in one bacterial species abolishes the ability of inulin to trigger type 2 inflammation. Finally, we demonstrate that inulin enhances allergen- and helminth-induced type 2 inflammation. Taken together, these data reveal that dietary inulin fibre triggers microbiota-derived cholic acid and type 2 inflammation at barrier surfaces with implications for understanding the pathophysiology of allergic inflammation, tissue protection and host defence.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tae Hyung Won
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sreehaas Digumarthi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Andrea F Heras
- Gale and Ira Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Sanchita Kashyap
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory Garbès Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medicine, New York, NY, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Qianru Wei
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alex Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Stefan Worgall
- Gale and Ira Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
217
|
Chen K, Gao Z, Ding Q, Tang C, Zhang H, Zhai T, Xie W, Jin Z, Zhao L, Liu W. Effect of natural polyphenols in Chinese herbal medicine on obesity and diabetes: Interactions among gut microbiota, metabolism, and immunity. Front Nutr 2022; 9:962720. [PMID: 36386943 PMCID: PMC9651142 DOI: 10.3389/fnut.2022.962720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/20/2022] [Indexed: 08/30/2023] Open
Abstract
With global prevalence, metabolic diseases, represented by obesity and type 2 diabetes mellitus (T2DM), have a huge burden on human health and medical expenses. It is estimated that obese population has doubled in recent 40 years, and population with diabetes will increase 1.5 times in next 25 years, which has inspired the pursuit of economical and effective prevention and treatment methods. Natural polyphenols are emerging as a class of natural bioactive compounds with potential beneficial effects on the alleviation of obesity and T2DM. In this review, we investigated the network interaction mechanism of "gut microbial disturbance, metabolic disorder, and immune imbalance" in both obesity and T2DM and systemically summarized their multiple targets in the treatment of obesity and T2DM, including enrichment of the beneficial gut microbiota (genera Bifidobacterium, Akkermansia, and Lactobacillus) and upregulation of the levels of gut microbiota-derived metabolites [short-chain fatty acids (SCFAs)] and bile acids (BAs). Moreover, we explored their effect on host glucolipid metabolism, the AMPK pathway, and immune modulation via the inhibition of pro-inflammatory immune cells (M1-like Mϕs, Th1, and Th17 cells); proliferation, recruitment, differentiation, and function; and related cytokines (TNF-α, IL-1β, IL-6, IL-17, and MCP-1). We hope to provide evidence to promote the clinical application of natural polyphenols in the management of obesity and T2DM.
Collapse
Affiliation(s)
- Keyu Chen
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiyou Ding
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haiyu Zhang
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiangang Zhai
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Weinan Xie
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zishan Jin
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenke Liu
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
218
|
Dai Z, Li S, Meng Y, Zhao Q, Zhang Y, Suonan Z, Sun Y, Shen Q, Liao X, Xue Y. Capsaicin Ameliorates High-Fat Diet-Induced Atherosclerosis in ApoE−/− Mice via Remodeling Gut Microbiota. Nutrients 2022; 14:nu14204334. [PMID: 36297020 PMCID: PMC9611743 DOI: 10.3390/nu14204334] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Capsaicin is a pungent alkaloid abundantly present in peppers with outstanding biological activities, including the anti-atherosclerosis effect. Previous studies revealed that gut microbiota played an important role in the beneficial effects of capsaicin, but whether it is essential for the anti-atherosclerosis effect of capsaicin is unclear. This study evaluated the anti-atherosclerosis effect of capsaicin in ApoE−/− mice and further explored the role of depleting gut microbiota in the improvement of atherosclerosis. The results showed that capsaicin administration could prevent the development of atherosclerosis and improve serum lipids and inflammation, while antibiotic intervention abolished the alleviation of atherosclerosis by capsaicin. In addition, capsaicin administration could significantly increase the abundance of Turicibacter, Odoribacter, and Ileibacterium in feces, and decrease the abundance of deoxycholic acid, cholic acid, hypoxanthine, and stercobilin in cecal content. Our study provides evidence that gut microbiota plays a critical role in the anti-atherosclerosis effect of capsaicin.
Collapse
Affiliation(s)
- Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Siqi Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yantong Meng
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qingyu Zhao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhuoma Suonan
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuge Sun
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xiaojun Liao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737524
| |
Collapse
|
219
|
Xu X, Wang M, Wang Z, Chen Q, Chen X, Xu Y, Dai M, Wu B, Li Y. The bridge of the gut-joint axis: Gut microbial metabolites in rheumatoid arthritis. Front Immunol 2022; 13:1007610. [PMID: 36275747 PMCID: PMC9583880 DOI: 10.3389/fimmu.2022.1007610] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint destruction, synovitis, and pannus formation. Gut microbiota dysbiosis may exert direct pathogenic effects on gut homeostasis. It may trigger the host's innate immune system and activate the "gut-joint axis", which exacerbates the RA. However, although the importance of the gut microbiota in the development and progression of RA is widely recognized, the mechanisms regulating the interactions between the gut microbiota and the host immune system remain incompletely defined. In this review, we discuss the role of gut microbiota-derived biological mediators, such as short-chain fatty acids, bile acids, and tryptophan metabolites, in maintaining intestinal barrier integrity, immune balance and bone destruction in RA patients as the bridge of the gut-joint axis.
Collapse
Affiliation(s)
- Xiaoyu Xu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zikang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Qian Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xixuan Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Yingyue Xu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Min Dai
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Bin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yanping Li
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
220
|
Wei X, Yin F, Wu M, Xie Q, Zhao X, Zhu C, Xie R, Chen C, Liu M, Wang X, Ren R, Kang G, Zhu C, Cong J, Wang H, Wang X. G protein-coupled receptor 35 attenuates nonalcoholic steatohepatitis by reprogramming cholesterol homeostasis in hepatocytes. Acta Pharm Sin B 2022; 13:1128-1144. [PMID: 36970193 PMCID: PMC10031266 DOI: 10.1016/j.apsb.2022.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Fat accumulation "sensitizes" the liver to insult and leads to nonalcoholic steatohepatitis (NASH). G protein-coupled receptor 35 (GPR35) is involved in metabolic stresses, but its role in NAFLD is unknown. We report that hepatocyte GPR35 mitigates NASH by regulating hepatic cholesterol homeostasis. Specifically, we found that GPR35 overexpression in hepatocytes protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of GPR35 had the opposite effect. Administration of the GPR35 agonist kynurenic acid (Kyna) suppressed HFCF diet-induced steatohepatitis in mice. Kyna/GPR35 induced expression of StAR-related lipid transfer protein 4 (STARD4) through the ERK1/2 signaling pathway, ultimately resulting in hepatic cholesterol esterification and bile acid synthesis (BAS). The overexpression of STARD4 increased the expression of the BAS rate-limiting enzymes cytochrome P450 family 7 subfamily A member 1 (CYP7A1) and CYP8B1, promoting the conversion of cholesterol to bile acid. The protective effect induced by GPR35 overexpression in hepatocytes disappeared in hepatocyte STARD4-knockdown mice. STARD4 overexpression in hepatocytes reversed the aggravation of HFCF diet-induced steatohepatitis caused by the loss of GPR35 expression in hepatocytes in mice. Our findings indicate that the GPR35-STARD4 axis is a promising therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Fan Yin
- Department of Pharmacy, Huainan First People's Hospital, the First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Miaomiao Wu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qianqian Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xueqin Zhao
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Ruiqian Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Chongqing Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Menghua Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xueying Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Ruixue Ren
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Guijie Kang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Chenwen Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
| | - Jingjing Cong
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230036, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
- Corresponding authors.
| | - Xuefu Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
- Corresponding authors.
| |
Collapse
|
221
|
Wupperfeld D, Fricker G, Bois De Fer B, Frank L, Wehrle A, Popovic B. Essential phospholipids decrease apoptosis and increase membrane transport in human hepatocyte cell lines. Lipids Health Dis 2022; 21:91. [PMID: 36153592 PMCID: PMC9508738 DOI: 10.1186/s12944-022-01698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 09/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Essential phospholipids (EPL) have hepatoprotective effects across many liver diseases/conditions. The impact of EPL on hepatocyte function in vitro was investigated.
Methods
Effects of noncytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), and its constituents, polyenylphosphatidylcholine (PPC) and phosphatidylinositol (PI) (both at 0.1 and 1 mg/ml), on membrane fluidity, apoptosis and extracellular transport versus controls were investigated in human hepatocyte cell lines (HepG2, HepaRG, steatotic HepaRG).
Results
Significantly increased membrane fluidity occurred with all 3 phospholipids (PLs) in HepG2 cultures, and with PI (1 mg/ml) in steatotic HepaRG cells. Significantly decreased tamoxifen-induced apoptosis was observed in HepG2 cells with EPL, PPC and PI. Breast cancer resistance protein (BCRP) activity was significantly increased by EPL and PI in HepG2 cells. Multidrug resistance-associated protein 2 (MRP-2) activity was unaffected by any PL in HepG2 cells, and significantly increased by EPL, PI and PPC (1 mg/ml) in HepaRG cells, and by PI (1 mg/ml) in steatotic HepaRG cells. Bile salt export protein (BSEP) activity in HepG2 cells and steatotic HepaRG cells was significantly increased by EPL (0.25 mg/ml), and PPC (both concentrations), but not by PI. The PLs had no effects on HepaRG cell BSEP activity. P-glycoprotein (P-GP) activity was significantly increased by all compounds in HepG2 cells. PI (1 mg/ml) significantly increased P-GP activity in HepaRG and steatotic HepaRG cells.
Conclusions
EPL, PPC, and PI increased hepatocyte membrane fluidity, decreased apoptosis and increased hepatocellular export, all of which may improve liver function. These in-vitro investigations provide valuable insights into the mechanism of action of EPL.
Collapse
|
222
|
Bai Y, Zhao T, Gao M, Zou Y, Lei X. A Novel Gene Alignment in Dorea sp. AM58-8 Produces 7-Dehydroxy-3β Bile Acids from Primary Bile Acids. Biochemistry 2022; 61:2870-2878. [PMID: 36130198 DOI: 10.1021/acs.biochem.2c00264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bile acids are essential metabolites and signaling molecules in mammals. Primary bile acids are synthesized from cholesterol in the liver. At the same time, the microbiota in the mammalian gut has many interactions with bile acid, including various biotransformation processes such as 7-dehydroxylation and 3-epimerization. 7-Dehydroxylation is mediated by a bile acid-inducible (bai) operon, while 7-dehydroxylation and 3-epimerization are independently observed in only a few strains. Herein, we describe a novel microbe, Dorea sp. AM58-8, that can accomplish a two-step transformation and turn primary bile acids into both 3α secondary bile acids like deoxycholic acid and lithocholic acid, and 3β secondary bile acids like isodeoxycholic acid and isolithocholic acid. We subsequently characterized BaiA, BaiB, BaiE, and their substrate profiles biochemically. The potential bai gene clusters in the metagenomes were further mined. Their evolution, potential functions, and possible regulatory pathways were predicted using bioinformatics based on our understanding of the 7-dehydroxylation pathway in Dorea sp. AM58-8. This study of Dorea sp. AM58-8 also helps us distinguish the inactive bacteria that seem to have the 7-dehydroxylation pathway proteins and discover the 7-dehydroxylation pathway in other mammalian gut microbes.
Collapse
Affiliation(s)
- Yingjie Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Tianhu Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Mengyu Gao
- BGI-Beijing, Beijing 100101, China.,BGI-Shenzhen, Shenzhen 518116, China
| | - Yuanqiang Zou
- BGI-Shenzhen, Shenzhen 518116, China.,Shenzhen Engineering Laboratory of Detection and Intervention of the Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518116, China.,Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China.,Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
223
|
Shao J, Ge T, Tang C, Wang G, Pang L, Chen Z. Synergistic anti-inflammatory effect of gut microbiota and lithocholic acid on liver fibrosis. Inflamm Res 2022; 71:1389-1401. [DOI: 10.1007/s00011-022-01629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
|
224
|
Xiao C, Wang JT, Su C, Miao Z, Tang J, Ouyang Y, Yan Y, Jiang Z, Fu Y, Shuai M, Gou W, Xu F, Yu EYW, Liang Y, Liang X, Tian Y, Wang J, Huang F, Zhang B, Wang H, Chen YM, Zheng JS. Associations of dietary diversity with the gut microbiome, fecal metabolites, and host metabolism: results from 2 prospective Chinese cohorts. Am J Clin Nutr 2022; 116:1049-1058. [PMID: 36100971 PMCID: PMC9535526 DOI: 10.1093/ajcn/nqac178] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/28/2022] [Accepted: 06/21/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Dietary diversity is essential for human health. The gut ecosystem provides a potential link between dietary diversity, host metabolism, and health, yet this mechanism is poorly understood. OBJECTIVES Here, we aimed to investigate the relation between dietary diversity and the gut environment as well as host metabolism from a multiomics perspective. METHODS Two independent longitudinal Chinese cohorts (a discovery and a validation cohort) were included in the present study. Dietary diversity was evaluated with FFQs. In the discovery cohort (n = 1916), we performed shotgun metagenomic and 16S ribosomal ribonucleic acid (rRNA) sequencing to profile the gut microbiome. We used targeted metabolomics to quantify fecal and serum metabolites. The associations between dietary diversity and the microbial composition were replicated in the validation cohort (n = 1320). RESULTS Dietary diversity was positively associated with α diversity of the gut microbiota. We identified dietary diversity-related gut environment features, including the microbial structure (β diversity), 68 microbial genera, 18 microbial species, 8 functional pathways, and 13 fecal metabolites. We further found 332 associations of dietary diversity and related gut environment features with circulating metabolites. Both the dietary diversity and diversity-related features were inversely correlated with 4 circulating secondary bile acids. Moreover, 16 mediation associations were observed among dietary diversity, diversity-related features, and the 4 secondary bile acids. CONCLUSIONS These results suggest that high dietary diversity is associated with the gut microbial environment. The identified key microbes and metabolites may serve as hypotheses to test for preventing metabolic diseases.
Collapse
Affiliation(s)
- Congmei Xiao
- College of Life Sciences, Zhejiang University, Hangzhou, China,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jia-ting Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chang Su
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China,Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jun Tang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yifei Ouyang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China,Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Menglei Shuai
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Wanglong Gou
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Evan Y-W Yu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Epidemiology & Biostatistics, School of Public Health, Southeast University, Nanjing, China,CAPHRI Care and Public Health Research Institute, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Yuhui Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Xinxiu Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yunyi Tian
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jiali Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China,Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Feifei Huang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China,Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Bing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China,Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | - Huijun Wang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China,Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China
| | | | | |
Collapse
|
225
|
Chen Y, Zhu L, Hu W, Wang Y, Wen X, Yang J. Simiao Wan modulates the gut microbiota and bile acid metabolism during improving type 2 diabetes mellitus in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154264. [PMID: 35752076 DOI: 10.1016/j.phymed.2022.154264] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Gut microbiota coupled with their metabolites (bile acids, BAs) get involved in diabetic pathogenesis. Simiao Wan is a famous traditional Chinese formula consisting on Phellodendron chinense C.K.Schneid. (Rutaceae), Atractylodes lancea (Thunb.) DC. (Asteraceae), Achyranthes bidentata Blume (Amaranthaceae) and Coix lacryma-jobi var. ma-yuen (Rom.Caill.) Stapf (Poaceae), and used to treat gouty arthritis and hyperuricemia for thousands of years. However, the mechanisms underlying its beneficial efficacy on diabetes still needs to be explored. PURPOSE Our study was performed to reveal the effects of the 75% ethanol extraction of Simiao Wan (SMW) on diabetes, gut microbiota and bile acids (BAs) in diabetic mice. METHODS The effects of SMW on diabetes were evaluated in mice treated by high-fat diet (HFD)/streptozotocin (STZ). The 16S rDNA sequencing and BAs metabolomics were performed to assess the changes of BAs profiles and gut microbiota induced by SMW. Western blot and real-time quantitative PCR were conducted to evaluate the possible mechanism of SMW. RESULTS SMW significantly improved insulin resistance and hepatic lipid accumulation in HFD/STZ mice. It remarkably enriched in the bacteria Allobaculum, Clostridium, Akkermansia, Lactobacilus and Bilophila whereas decreased Coprococcus and Halomonas in diabetic mice. Furthermore, the profiles of BAs were also modulated by SMW, indicated by the reduction of conjugated BAs and 12α-OH/non-12α-OH BAs ratio in liver as well as the increase of primary BAs in feces. SMW also activated farnesoid X receptor and inhibited sterol regulatory element-binding protein-1 expression, contributing to its beneficial actions on lipid accumulation in liver. CONCLUSION Our results showed that SMW exerted its beneficial effects on insulin resistance and hepatic lipid accumulation indirectly through regulating profiles of gut microbe and BAs.
Collapse
Affiliation(s)
- Yimeng Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Lijuan Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Wenxin Hu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Yuping Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China
| | - Xiaodong Wen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China.
| | - Jie Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian road, Nanjing, China.
| |
Collapse
|
226
|
Chrysavgis L, Giannakodimos I, Chatzigeorgiou A, Tziomalos K, Papatheodoridis G, Cholongitas E. The role of fibroblast growth factor 19 in the pathogenesis of nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2022; 16:835-849. [PMID: 36124827 DOI: 10.1080/17474124.2022.2127408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/19/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) has emerged as the predominant cause of chronic liver injury worldwide. Bile acids and their receptors are profoundly implicated in the pathogenesis of NAFLD and its progression to nonalcoholic steatohepatitis and cirrhosis. AREAS COVERED We conducted extensive literature search using PubMed database, and we summarized the relevant literature. We provided an overview of the fibroblast growth factor 19 (FGF-19)-farnesoid X receptor (FXR) axis and summarized the latest findings derived from animal and human studies concerning the impact of FGF-19 on NAFLD. EXPERT OPINION FGF-19, a nutritionally regulated endocrine post-prandial hormone, governs bile acid metabolism, lipid oxidation, lipogenesis, and energy homeostasis. As no approved medication for NAFLD exists, FGF-19 seems to be a propitious therapeutic opportunity for NAFLD, since its administration was associated with ameliorated results in hepatic steatosis, liver inflammation and fibrosis. Furthermore, promising results have been derived from clinical trials concerning the beneficial efficacy of FGF-19 on histological findings and laboratory parameters of NAFLD. However, we should bear in mind the pleiotropic effects of FGF-19 on various metabolically active tissues along with its potential tumorigenic reservoir. Further clinical research is required to determine the clinical application of FGF-19-based therapies on NAFLD.
Collapse
Affiliation(s)
- Lampros Chrysavgis
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Ilias Giannakodimos
- First Department of Internal Medicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
227
|
Characterization and quantification of representative bile acids in ileal contents and feces of diet-induced obese mice by UPLC-MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
228
|
Zhang Y, Gu Y, Jiang J, Cui X, Cheng S, Liu L, Huang Z, Liao R, Zhao P, Yu J, Wang J, Jia Y, Jin W, Zhou F. Stigmasterol attenuates hepatic steatosis in rats by strengthening the intestinal barrier and improving bile acid metabolism. NPJ Sci Food 2022; 6:38. [PMID: 36030278 PMCID: PMC9420112 DOI: 10.1038/s41538-022-00156-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stigmasterol (ST) has been shown to improve both lipid and bile acid (BA) metabolism. However, the mechanism(s) by which ST prevents dyslipidemia via BA metabolism, and the potential involvement of other regulatory mechanisms, remains unclear. Here, we found that ST treatment effectively alleviates lipid metabolism disorder induced by a high-fat diet (HFD). Moreover, we also show that fecal microbiota transplantation from ST-treated rats displays similar protective effects in rats fed on an HFD. Our data confirm that the gut microbiota plays a key role in attenuating HFD-induced fat deposition and metabolic disorders. In particular, ST reverses HFD-induced gut microbiota dysbiosis in rats by reducing the relative abundance of Erysipelotrichaceae and Allobaculum bacteria in the gut. In addition, ST treatment also modifies the serum and fecal BA metabolome profiles in rats, especially in CYP7A1 mediated BA metabolic pathways. Furthermore, chenodeoxycholic acid combined with ST improves the therapeutic effects in HFD-induced dyslipidemia and hepatic steatosis. In addition, this treatment strategy also alters BA metabolism profiles via the CYP7A1 pathway and gut microbiota. Taken together, ST exerts beneficial effects against HFD-induced hyperlipidemia and obesity with the underlying mechanism being partially related to both the reprogramming of the intestinal microbiota and metabolism of BAs in enterohepatic circulation. This study provides a theoretical basis for further study of the anti-obesity effects of ST and consideration of the gut microbiota as a potential target for the treatment of HFD-induced dyslipidemia.
Collapse
Affiliation(s)
- Yaxin Zhang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Yuyan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaobing Cui
- Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Linling Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiyong Huang
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Rongxin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Jieying Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China.
| | - Fenghua Zhou
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
229
|
Li Y, Wang K, Ding J, Sun S, Ni Z, Yu C. Influence of the gut microbiota on endometriosis: Potential role of chenodeoxycholic acid and its derivatives. Front Pharmacol 2022; 13:954684. [PMID: 36071850 PMCID: PMC9442031 DOI: 10.3389/fphar.2022.954684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
The gut microbiota (GM) has received extensive attention in recent years, and its key role in the establishment and maintenance of health and in the development of diseases has been confirmed. A strong correlation between the GM and the progression of endometriosis (EMS) has been observed in emerging research. Alterations in the composition and function of the GM have been described in many studies on EMS. In contrast, the GM in the environment of EMS, especially the GM metabolites, such as bile acids and short-chain fatty acids that are related to the pathogenesis of EMS, can promote disease progression. Chenodeoxycholic acid (CDCA), as one of the primary bile acids produced in the liver, is metabolized by various enzymes derived from the GM and is critically important in maintaining intestinal homeostasis and regulating lipid and carbohydrate metabolism and innate immunity. Given that the complexity of CDCA as a signalling molecule and the interaction between the GM and EMS have not been clarified, the role of the CDCA and GM in EMS should be understood from a novel perspective. However, few articles on the relationship between CDCA and EMS have been reviewed. Therefore, we review the available and possible potential links between CDCA, the GM and EMS and put forward the hypothesis that CDCA and its derivative obeticholic acid can improve the symptoms of EMS through the GM.
Collapse
Affiliation(s)
- Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kaili Wang
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jie Ding
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shuai Sun
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhexin Ni
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Zhexin Ni, ; Chaoqin Yu,
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- *Correspondence: Zhexin Ni, ; Chaoqin Yu,
| |
Collapse
|
230
|
Ding L, Ren S, Song Y, Zang C, Liu Y, Guo H, Yang W, Guan H, Liu J. Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice. Front Nutr 2022; 9:935612. [PMID: 35978956 PMCID: PMC9376456 DOI: 10.3389/fnut.2022.935612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Corn silk (CS) is known to reduce cholesterol levels, but its underlying mechanisms remain elusive concerning the gut microbiota and metabolites. The aim of our work was to explore how altered gut microbiota composition and metabolite profile are influenced by CS intervention in mice using integrated 16S ribosomal RNA (rRNA) sequencing and an untargeted metabolomics methodology. The C57BL/6J mice were fed a normal control diet, a high-fat diet (HFD), and HFD supplemented with the aqueous extract of CS (80 mg/mL) for 8 weeks. HFD-induced chronic inflammation damage is alleviated by CS extract intervention and also resulted in a reduction in body weight, daily energy intake as well as serum and hepatic total cholesterol (TC) levels. In addition, CS extract altered gut microbial composition and regulated specific genera viz. Allobaculum, Turicibacter, Romboutsia, Streptococcus, Sporobacter, Christensenella, ClostridiumXVIII, and Rikenella. Using Spearman’s correlation analysis, we determined that Turicibacter and Rikenella were negatively correlated with hypercholesterolemia-related parameters. Fecal metabolomics analysis revealed that CS extract influences multiple metabolic pathways like histidine metabolism-related metabolites (urocanic acid, methylimidazole acetaldehyde, and methiodimethylimidazoleacetic acid), sphingolipid metabolism-related metabolites (sphinganine, 3-dehydrosphinganine, sphingosine), and some bile acids biosynthesis-related metabolites including chenodeoxycholic acid (CDCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and glycoursodeoxycholic acid (GUDCA). As a whole, the present study indicates that the modifications in the gut microbiota and subsequent host bile acid metabolism may be a potential mechanism for the antihypercholesterolemic effects of CS extract.
Collapse
Affiliation(s)
- Lin Ding
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Shan Ren
- College of Basic Medical, Qiqihar Medical University, Qiqihar, China
| | - Yaoxin Song
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Chuangang Zang
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Yuchao Liu
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Hao Guo
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Wenqing Yang
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China.,Qiqihar Academy of Medical Sciences, Qiqihar, China
| |
Collapse
|
231
|
Qing Y, Wang P, Cui G, Zhang J, Liang K, Xia Z, Wang P, He L, Jia W. Targeted metabolomics reveals aberrant profiles of serum bile acids in patients with schizophrenia. SCHIZOPHRENIA 2022; 8:65. [PMID: 35982185 PMCID: PMC9388515 DOI: 10.1038/s41537-022-00273-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022]
Abstract
Emerging evidence indicates that bile acids (BAs), which are signaling molecules that regulate metabolism and inflammation, appear to be dysregulated in schizophrenia (SZ). Further investigation is warranted to comprehensively characterize BA profiles in SZ. To address this, we analyzed serum BA profiles in 108 drug-free patients with SZ and in 108 healthy controls (HCs), divided into a discovery set (n = 119) and a validation set (n = 97), using ultraperformance liquid chromatography triple quadrupole mass spectrometry. Forty serum BAs were detected and absolutely quantified using calibration curves. Global BA profiling showed differences in SZ and HC groups in both discovery and validation sets. The concentrations of chenodeoxycholic acid, ursodeoxycholic acid, 3β-chenodeoxycholic acid, 7-ketolithocholic acid, 3-dehydrocholic acid, total BAs, and unconjugated BAs were significantly lower in patients with SZ compared with HCs in the two sample sets. The BA deconjugation potentials by gut microbiota and the affinity index of the farnesoid X receptor (FXR) were notably decreased in SZ patients compared to those of HCs. Conjugated BAs and BA deconjugation potentials differed in SZ patients with first versus recurrent episodes, although similar BA profiles were observed in both groups. In addition, a panel of 8 BA variables acted as a potential auxiliary diagnostic biomarker in discriminating SZ patients from HCs, with area under the curve values for receiver operating characteristic curves of 0.758 and 0.732 and for precision-recall curves of 0.750 and 0.714 in the discovery and validation sets, respectively. This study has provided compelling evidence of comprehensive characteristics of circulating BA metabolism in patients with SZ and promoted a deeper understanding of the role of BAs in the pathophysiology of this disease, possibly via the gut microbiota-FXR signaling pathway.
Collapse
|
232
|
Stierwalt HD, Morris EM, Maurer A, Apte U, Phillips K, Li T, Meers GME, Koch LG, Britton SL, Graf G, Rector RS, Mercer K, Shankar K, Thyfault JP. Rats with high aerobic capacity display enhanced transcriptional adaptability and upregulation of bile acid metabolism in response to an acute high-fat diet. Physiol Rep 2022; 10:e15405. [PMID: 35923133 PMCID: PMC9350427 DOI: 10.14814/phy2.15405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 06/09/2023] Open
Abstract
Rats selectively bred for the high intrinsic aerobic capacity runner (HCR) or low aerobic capacity runner (LCR) show pronounced differences in susceptibility for high-fat/high sucrose (HFHS) diet-induced hepatic steatosis and insulin resistance, replicating the protective effect of high aerobic capacity in humans. We have previously shown multiple systemic differences in energy and substrate metabolism that impacts steatosis between HCR and LCR rats. This study aimed to investigate hepatic-specific mechanisms of action via changes in gene transcription. Livers of HCR rats had a greater number of genes that significantly changed in response to 3-day HFHS compared with LCR rats (171 vs. 75 genes: >1.5-fold, p < 0.05). HCR and LCR rats displayed numerous baseline differences in gene expression while on a low-fat control diet (CON). A 3-day HFHS diet resulted in greater expression of genes involved in the conversion of excess acetyl-CoA to cholesterol and bile acid (BA) synthesis compared with the CON diet in HCR, but not LCR rats. These results were associated with higher fecal BA loss and lower serum BA concentrations in HCR rats. Exercise studies in rats and mice also revealed higher hepatic expression of cholesterol and BA synthesis genes. Overall, these results suggest that high aerobic capacity and exercise are associated with upregulated BA synthesis paired with greater fecal excretion of cholesterol and BA, an effect that may play a role in protection against hepatic steatosis in rodents.
Collapse
Affiliation(s)
- Harrison D. Stierwalt
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
- Research ServiceKansas City VA Medical CenterKansas CityMissouriUSA
| | - E. Matthew Morris
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | - Adrianna Maurer
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and TherapeuticsUniversity of Kansas Medical CenterKansas CityMissouriUSA
| | | | - Tiangang Li
- Department of PhysiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOklahomaUSA
| | - Grace M. E. Meers
- Division of Gastroenterology and HepatologyUniversity of MissouriColumbiaMissouriUSA
- Division of Nutrition and Exercise PhysiologyColumbiaMissouriUSA
| | - Lauren G. Koch
- Physiology and PharmacologyThe University of ToledoToledoOhioUSA
| | | | - Greg Graf
- Department of Pharmaceutical SciencesSaha Cardiovascular Research Center, University of KentuckyLexingtonKentuckyUSA
| | - R. Scott Rector
- Division of Gastroenterology and HepatologyUniversity of MissouriColumbiaMissouriUSA
- Division of Nutrition and Exercise PhysiologyColumbiaMissouriUSA
- Research ServiceHarry S Truman Memorial VA HospitalColumbiaMissouriUSA
| | - Kelly Mercer
- Arkansas Children's Nutrition CenterUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Kartik Shankar
- Section of Nutrition, Department of PediatricsUniversity of Colorado School of Medicine Anschutz Medical CampusAuroraColoradoUSA
| | - John P. Thyfault
- Molecular and Integrative PhysiologyUniversity of Kansas Medical CenterKansas CityMissouriUSA
- Research ServiceKansas City VA Medical CenterKansas CityMissouriUSA
| |
Collapse
|
233
|
Liu J, Wei Y, Jia W, Can C, Wang R, Yang X, Gu C, Liu F, Ji C, Ma D. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biol 2022; 56:102452. [PMID: 36084349 PMCID: PMC9465103 DOI: 10.1016/j.redox.2022.102452] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Bile acids are steroid synthesized in liver, which are essential for fat emulsification, cholesterol excretion and gut microbial homeostasis. However, the role of bile acids in leukemia progression remains unclear. We aim at exploring the effects and mechanisms of chenodeoxycholic acid (CDCA), a type of bile acids, on acute myeloid leukemia (AML) progression. Results Here, we found that CDCA was decreased in feces and plasma of AML patients, positively correlated with the diversity of gut microbiota, and negatively associated with AML prognosis. We further demonstrated that CDCA suppressed AML progression both in vivo and in vitro. Mechanistically, CDCA bound to mitochondria to cause mitochondrial morphology damage containing swelling and reduction of cristae, decreased mitochondrial membrane potential and elevated mitochondrial calcium level, which resulted in the production of excessive reactive oxygen species (ROS). Elevated ROS further activated p38 MAPK signaling pathway, which collaboratively promoted the accumulation of lipid droplets (LDs) through upregulating the expression of the diacylglycerol O-acyltransferase 1 (DGAT1). As the consequence of the abundance of ROS and LDs, lipid peroxidation was enhanced in AML cells. Moreover, we uncovered that CDCA inhibited M2 macrophage polarization and suppressed the proliferation-promoting effects of M2 macrophages on AML cells in co-cultured experiments. Conclusion Our findings demonstrate that CDCA suppresses AML progression through synergistically promoting LDs accumulation and lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway caused by mitochondrial dysfunction in leukemia cells and inhibiting M2 macrophage polarization.
Collapse
Affiliation(s)
- Jinting Liu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Yihong Wei
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Wenbo Jia
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Can Can
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Chaoyang Gu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Fabao Liu
- Advanced Medical Research Institute, Shandong University, Shandong, 250012, PR China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
234
|
Poša M, Pilipović A, Popović K, Kumar D. Thermodynamics of trimethyltetradecylammonium bromide – Sodium deoxycholate binary mixed micelle formation in aqueous solution: Regular solution theory with mutual compensation of excess configurational and excess conformational entropy. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
235
|
Duszka K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022; 11:2337. [PMID: 35954180 PMCID: PMC9367564 DOI: 10.3390/cells11152337] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Taurine is the most abundant free amino acid in the body, and is mainly derived from the diet, but can also be produced endogenously from cysteine. It plays multiple essential roles in the body, including development, energy production, osmoregulation, prevention of oxidative stress, and inflammation. Taurine is also crucial as a molecule used to conjugate bile acids (BAs). In the gastrointestinal tract, BAs deconjugation by enteric bacteria results in high levels of unconjugated BAs and free taurine. Depending on conjugation status and other bacterial modifications, BAs constitute a pool of related but highly diverse molecules, each with different properties concerning solubility and toxicity, capacity to activate or inhibit receptors of BAs, and direct and indirect impact on microbiota and the host, whereas free taurine has a largely protective impact on the host, serves as a source of energy for microbiota, regulates bacterial colonization and defends from pathogens. Several remarkable examples of the interaction between taurine and gut microbiota have recently been described. This review will introduce the necessary background information and lay out the latest discoveries in the interaction of the co-reliant triad of BAs, taurine, and microbiota.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
236
|
Guo X, Okpara ES, Hu W, Yan C, Wang Y, Liang Q, Chiang JYL, Han S. Interactive Relationships between Intestinal Flora and Bile Acids. Int J Mol Sci 2022; 23:8343. [PMID: 35955473 PMCID: PMC9368770 DOI: 10.3390/ijms23158343] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/01/2023] Open
Abstract
The digestive tract is replete with complex and diverse microbial communities that are important for the regulation of multiple pathophysiological processes in humans and animals, particularly those involved in the maintenance of intestinal homeostasis, immunity, inflammation, and tumorigenesis. The diversity of bile acids is a result of the joint efforts of host and intestinal microflora. There is a bidirectional relationship between the microbial community of the intestinal tract and bile acids in that, while the microbial flora tightly modulates the metabolism and synthesis of bile acids, the bile acid pool and composition affect the diversity and the homeostasis of the intestinal flora. Homeostatic imbalances of bile acid and intestinal flora systems may lead to the development of a variety of diseases, such as inflammatory bowel disease (IBD), colorectal cancer (CRC), hepatocellular carcinoma (HCC), type 2 diabetes (T2DM), and polycystic ovary syndrome (PCOS). The interactions between bile acids and intestinal flora may be (in)directly involved in the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Edozie Samuel Okpara
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China; (W.H.); (Y.W.); (Q.L.)
| | - John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; (X.G.); (E.S.O.); (C.Y.)
| |
Collapse
|
237
|
Liu J, Liu J, Meng C, Huang C, Liu F, Xia C. Oleanolic acid alleviates ANIT-induced cholestatic liver injury by activating Fxr and Nrf2 pathways to ameliorate disordered bile acids homeostasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154173. [PMID: 35605478 DOI: 10.1016/j.phymed.2022.154173] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cholestasis is a clinical syndrome with high incidence and few effective treatments. Oleanolic acid (OA) is a triterpenoid compound with anti-cholestatic effects. Studies using bile duct ligation or lithocholic acid modeling have shown that the alleviating effect of OA on cholerosis is related to the regulation of nuclear factor erythroid 2 related factor (Nrf2) or farnesoid X receptor (Fxr). PURPOSE This study aims to investigate the underlying mechanism of OA against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury based on Nrf2 and Fxr dual signaling pathways. METHODS The ANIT-induced rats model was used with or without OA treatment. Serum biochemical indexes, liver histopathological changes and glutathione level were examined. Bile acids (BAs) targeted metabolomics based on UHPLC-MS/MS were performed. siRNA, RT-qPCR and western blot analysis were used to prove the role of Fxr and Nrf2 pathway in OA's anti-cholestatic liver injury in vivo and in vitro. RESULTS OA significantly alleviated ANIT-induced liver injury in rats, reduced primary bile acids, accelerated metabolism of BAs and reduced the intrahepatic accumulation of BAs. The expressions of bile salt export pump (Bsep), Na+-taurocholic cotransport polypeptide (Ntcp), UDP-glucuronyl transferase 1a1 (Ugt1a1) and Fxr in rat liver were markedly up-regulated, the activation of Nrf2 was promoted, and the expression of cholesterol 7α-hydroxylase (Cyp7a1) was decreased after OA treatment. Moreover, Fxr or Nrf2 silencing attenuated the regulation of OA on BAs homeostasis related transporters and enzymes in rat primary hepatocytes. CONCLUSION OA may regulate BAs-related transporters and metabolic enzymes by activating Fxr and Nrf2 pathways, thus alleviating the cholestatic liver injury induced by ANIT.
Collapse
Affiliation(s)
- Jianming Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Jiawei Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chao Meng
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chao Huang
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Fanglan Liu
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China
| | - Chunhua Xia
- Institute of Clinical Pharmacology, School of Pharmacy, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
238
|
Abstract
ABSTRACT Gastric intestinal metaplasia (GIM) is a precancerous lesion of gastric cancer (GC) and is considered an irreversible point of progression for GC. Helicobacter pylori infection can cause GIM, but its eradication still does not reverse the process. Bile reflux is also a pathogenic factor in GIM and can continuously irritate the gastric mucosa, and bile acids in refluxed fluid have been widely reported to be associated with GIM. This paper reviews in detail the relationship between bile reflux and GIM and the mechanisms by which bile acids induce GIM.
Collapse
|
239
|
Zhan X, He M, Pei J, Fan W, Mwangi CN, Zhang P, Chai X, Jiang M. Natural Phenylethanoid Supplementation Alleviates Metabolic Syndrome in Female Mice Induced by High-Fructose Diet. Front Pharmacol 2022; 13:850777. [PMID: 35928270 PMCID: PMC9343882 DOI: 10.3389/fphar.2022.850777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Tyrosol (T), hydroxytyrosol (H), and salidroside (S) are typical phenylethanoids and also powerful dietary antioxidants. This study aimed at evaluating the influence of three natural phenylethanoids, which are dietary phenylethanoids of natural origins, on reversing gut dysbiosis and attenuating nonalcoholic fatty liver features of the liver induced by metabolic syndrome (MetS) mice. C57BL/6J female mice induced with high-fructose diet were established and administrated with salidroside, tyrosol, and hydroxytyrosol for 12 weeks, respectively. Biochemical analysis showed that S, T, and H significantly improved glucose metabolism and lipid metabolism, including reduced levels of total cholesterol insulin (INS), uric acid, low-density lipoprotein cholesterol (LDL-C), and aspartate aminotransferase (ALT). Histopathological observation of the liver confirmed the protective effects of S, T, and H against hepatic steatosis, which were demonstrated by the results of metabolomic analysis, such as the improvement in glycolysis, purine metabolism, bile acid, fatty acid metabolism, and choline metabolism. Additionally, 16S rRNA gene sequence data revealed that S, T, and H could enhance the diversity of gut microbiota. These findings suggested that S, T, and H probably suppress lipid accumulation and have hepatoprotective effects and improve intestinal microflora disorders to attenuate metabolic syndromes.
Collapse
Affiliation(s)
- Xiujun Zhan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Mingshuai He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Jierong Pei
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Wenjing Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Charity Ngina Mwangi
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Peng Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xin Chai
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- *Correspondence: Miaomiao Jiang,
| |
Collapse
|
240
|
Quantitative Profiling of Bile Acids in Feces of Humans and Rodents by Ultra-High-Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Metabolites 2022; 12:metabo12070633. [PMID: 35888757 PMCID: PMC9323729 DOI: 10.3390/metabo12070633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
A simple, sensitive, and reliable quantification and identification method was developed and validated for simultaneous analysis of 58 bile acids (BAs) in human and rodent (mouse and rat) fecal samples. The method involves an extraction step with a 5% ammonium–ethanol aqueous solution; the BAs were quantified by high-resolution mass spectrometry (ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry, UPLC–Q-TOF). The recoveries were 80.05–120.83%, with coefficient variations (CVs) of 0.01–9.82% for three biological species. The limits of detection (LODs) were in the range of 0.01–0.24 μg/kg, and the limits of quantification (LOQs) ranged from 0.03 to 0.81 μg/kg. In addition, the analytical method was used to identify and quantify BAs in end-stage renal disease (ESRD) patients, C57BL/6 mice, and Sprague-Dawley (SD) rats. The fecal BA profile and analysis of BA indices in these samples provide valuable information for further BA metabolic disorder research.
Collapse
|
241
|
Vitto VAM, Bianchin S, Zolondick AA, Pellielo G, Rimessi A, Chianese D, Yang H, Carbone M, Pinton P, Giorgi C, Patergnani S. Molecular Mechanisms of Autophagy in Cancer Development, Progression, and Therapy. Biomedicines 2022; 10:1596. [PMID: 35884904 PMCID: PMC9313210 DOI: 10.3390/biomedicines10071596] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionarily conserved and tightly regulated process that plays an important role in maintaining cellular homeostasis. It involves regulation of various genes that function to degrade unnecessary or dysfunctional cellular components, and to recycle metabolic substrates. Autophagy is modulated by many factors, such as nutritional status, energy level, hypoxic conditions, endoplasmic reticulum stress, hormonal stimulation and drugs, and these factors can regulate autophagy both upstream and downstream of the pathway. In cancer, autophagy acts as a double-edged sword depending on the tissue type and stage of tumorigenesis. On the one hand, autophagy promotes tumor progression in advanced stages by stimulating tumor growth. On the other hand, autophagy inhibits tumor development in the early stages by enhancing its tumor suppressor activity. Moreover, autophagy drives resistance to anticancer therapy, even though in some tumor types, its activation induces lethal effects on cancer cells. In this review, we summarize the biological mechanisms of autophagy and its dual role in cancer. In addition, we report the current understanding of autophagy in some cancer types with markedly high incidence and/or lethality, and the existing therapeutic strategies targeting autophagy for the treatment of cancer.
Collapse
Affiliation(s)
- Veronica Angela Maria Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Silvia Bianchin
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Alicia Ann Zolondick
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI 96816, USA; (A.A.Z.); (H.Y.); (M.C.)
- Department of Molecular Biosciences and Bioengineering, University of Hawai’i at Manoa, Honolulu, HI 96816, USA
| | - Giulia Pellielo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Diego Chianese
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Haining Yang
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI 96816, USA; (A.A.Z.); (H.Y.); (M.C.)
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI 96816, USA; (A.A.Z.); (H.Y.); (M.C.)
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Medical Science, University of Ferrara, 44121 Ferrara, Italy; (V.A.M.V.); (S.B.); (G.P.); (A.R.); (D.C.); (P.P.)
| |
Collapse
|
242
|
Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19:432-450. [PMID: 35165436 DOI: 10.1038/s41575-021-00566-7] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Bile acids (BAs) can regulate their own metabolism and transport as well as other key aspects of metabolic homeostasis via dedicated (nuclear and G protein-coupled) receptors. Disrupted BA transport and homeostasis results in the development of cholestatic disorders and contributes to a wide range of liver diseases, including nonalcoholic fatty liver disease and hepatocellular and cholangiocellular carcinoma. Furthermore, impaired BA homeostasis can also affect the intestine, contributing to the pathogenesis of irritable bowel syndrome, inflammatory bowel disease, and colorectal and oesophageal cancer. Here, we provide a summary of the role of BAs and their disrupted homeostasis in the development of gastrointestinal and hepatic disorders and present novel insights on how targeting BA pathways might contribute to novel treatment strategies for these disorders.
Collapse
|
243
|
Fu K, Ma C, Wang C, Zhou H, Gong L, Zhang Y, Li Y. Forsythiaside A alleviated carbon tetrachloride-induced liver fibrosis by modulating gut microbiota composition to increase short-chain fatty acids and restoring bile acids metabolism disorder. Biomed Pharmacother 2022; 151:113185. [PMID: 35623173 DOI: 10.1016/j.biopha.2022.113185] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022] Open
Abstract
Liver fibrosis is a chronic and progressive disease with complex pathogenesis related to bile acids (BAs) and gut microbiota. Forsythiaside A (FTA), isolated from the traditional Chinese medicine Forsythiae Fructus (Lian Qiao), is a natural hepatoprotective agent. The purpose of this study was to investigate the protective effect of FTA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Liver fibrosis was induced in mice by intraperitoneal injection of 2 mL/kg CCl4 three times a week for 4 weeks. FTA attenuated CCl4-induced liver fibrosis in mice, which was proved by the results of Masson and Sirius red staining, liver hydroxyproline, hyaluronic acid, laminin, type III procollagen, and type IV collagen assays. FTA inhibited hepatic stellate cell activation, and reduced hepatic inflammation and oxidative stress in mice treated with CCl4. What's more, FTA ameliorated CCl4-induced gut dysbiosis, maintained intestinal barrier function, increased the production of short-chain fatty acids (SCFAs), and improved endotoxemia, as manifested by decreased serum lipopolysaccharide levels and increased expression of ileal tight junction proteins. Besides, FTA can modulate the genes related to bile acid metabolism to alter the distribution of fecal BAs in fibrotic mice. In a word, FTA can improve liver fibrosis by inhibiting inflammation and oxidative stress, regulating gut microbiota and BA metabolism, and increasing the content of SCFAs. The results of this study provided an important reference for the study on the mechanisms by which natural products prevent liver fibrosis.
Collapse
Affiliation(s)
- Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
244
|
Guan Y, Xu F, Zhang X, Fu X, Wang J, Song S, Sun Y, Yuan Q, Zhu F. Roles of ursodeoxycholic acid in the bile biochemistry and metabolomics in patients with choledocholithiasis: a prospective study. Metabolomics 2022; 18:46. [PMID: 35778620 DOI: 10.1007/s11306-022-01906-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Recurrence after the endoscopic treatment of common bile duct stones (CBDS) is related to bile metabolism and bile compositions. Ursodeoxycholic acid (UDCA) has been proved effective in reducing the recurrence of CBDS. However, the detailed effects of UDCA on bile metabolism are still not extensively explored. OBJECTIVES This study aimed to analyze the role of UDCA in patients with choledocholithiasis (CDC) from the perspective of biochemistry and metabolomics. METHODS A total of 89 patients with CDC who underwent endoscopic retrograde cholangiopancreatography were prospectively examined and randomly assigned to control and UDCA groups. The biochemical detections (cholesterol, bilirubin, and so on) were performed on the collected bile. Moreover, the metabolomics analysis was conducted based on bile from 20 patients in the UDCA group. RESULTS The bile levels of cholesterol and endotoxins significantly decreased after UDCA treatment. Regarding bile metabolomics, the levels of 25 metabolites changed significantly after UDCA treatment. The pathway enrichment analysis showed that the UDCA addition evoked a common response related to phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; arachidonic acid metabolism; and terpenoid backbone biosynthesis. CONCLUSIONS UDCA treatment within a short time interval (7 days) did not improve the circulating laboratory values in patients with CDC who had undergone endoscopy surgery. However, relevant decreases in the bile levels of cholesterol and endotoxin were observed. UDCA evoked a common response related to lipid metabolism and amino acid metabolism, which probably reduced the bile level of cholesterol, protected hepatocytes, and corrected the abnormality of lipid metabolism caused by CDC.
Collapse
Affiliation(s)
- Yaping Guan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Fei Xu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Xiaodong Zhang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Xiao Fu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Jing Wang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Sentao Song
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Yan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Qiongying Yuan
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China
| | - Feng Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Pudong New District, Shanghai, 200120, China.
| |
Collapse
|
245
|
Kasai Y, Kessoku T, Tanaka K, Yamamoto A, Takahashi K, Kobayashi T, Iwaki M, Ozaki A, Nogami A, Honda Y, Ogawa Y, Kato S, Imajo K, Higurashi T, Hosono K, Yoneda M, Usuda H, Wada K, Kawanaka M, Kawaguchi T, Torimura T, Kage M, Hyogo H, Takahashi H, Eguchi Y, Aishima S, Kobayashi N, Sumida Y, Honda A, Oyamada S, Shinoda S, Saito S, Nakajima A. Association of Serum and Fecal Bile Acid Patterns With Liver Fibrosis in Biopsy-Proven Nonalcoholic Fatty Liver Disease: An Observational Study. Clin Transl Gastroenterol 2022; 13:e00503. [PMID: 35616321 PMCID: PMC10476812 DOI: 10.14309/ctg.0000000000000503] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION No reports on both blood and fecal bile acids (BAs) in patients with nonalcoholic fatty liver disease (NAFLD) exist. We simultaneously assessed the serum and fecal BA patterns in healthy participants and those with NAFLD. METHODS We collected stool samples from 287 participants from 5 hospitals in Japan (healthy control [HC]: n = 88; mild fibrosis: n = 104; and advanced fibrosis group: n = 95). Blood samples were collected and analyzed for serum BAs and 7α-hydroxy-4-cholesten-3-one (C4)-a surrogate marker for BA synthesis ability-from 141 patients. Concentrations of BAs, including cholic acid (CA), deoxycholic acid (DCA), chenodeoxycholic acid, ursodeoxycholic acid, and lithocholic acid (LCA), were measured using liquid chromatography-mass spectrometry. RESULTS The total fecal BA concentration was significantly higher in the NAFLD group with worsening of fibrosis than in the HC group. Most of the fecal BAs were secondary and unconjugated. In the fecal BA fraction, CA, DCA, chenodeoxycholic acid, ursodeoxycholic acid, and LCA were significantly higher in the NAFLD than in the HC group. The total serum BA concentration was higher in the NAFLD group with worsening of fibrosis than in the HC group. In the serum BA fraction, CA, LCA, and C4 concentrations were significantly higher in the NAFLD than in the HC group. DISCUSSION Fecal and serum BA and C4 concentrations were high in patients with NAFLD with worsening of fibrosis, suggesting involvement of abnormal BA metabolism in NAFLD with fibrosis progression. Abnormalities in BA metabolism may be a therapeutic target in NAFLD with fibrosis.
Collapse
Affiliation(s)
- Yuki Kasai
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Kosuke Tanaka
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Atsushi Yamamoto
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Kota Takahashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Anna Ozaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Palliative Medicine, Yokohama City University Hospital, Yokohama, Japan;
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Shingo Kato
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
- Department of Clinical Cancer Genomics, Yokohama City University Hospital, Yokohama, Japan;
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Kunihiro Hosono
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan;
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Shimane, Japan;
| | - Miwa Kawanaka
- Department of General Internal Medicine 2, Kawasaki Medical Center, Kawasaki Medical School, Okayama, Japan;
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan;
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan;
| | - Masayoshi Kage
- Kurume University Research Center for Innovative Cancer Therapy, Kurume, Japan;
| | - Hideyuki Hyogo
- Department of Gastroenterology, JA Hiroshima Kouseiren General Hospital, Hiroshima, Japan;
- Life Care Clinic Hiroshima, Hiroshima, Japan;
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan;
- Liver Center, Saga University Hospital, Saga, Japan;
| | | | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan;
| | | | - Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University School of Medicine, Aichi, Japan;
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan;
| | - Shunsuke Oyamada
- Japanese Organization for Research and Treatment of Cancer (JORTC), JORTC Data Center, Tokyo, Japan
| | - Satoru Shinoda
- Department of Biostatistics, Yokohama City University School of Medicine
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan;
| |
Collapse
|
246
|
Glucosylated nanoparticles for the oral delivery of antibiotics to the proximal small intestine protect mice from gut dysbiosis. Nat Biomed Eng 2022; 6:867-881. [PMID: 35798834 DOI: 10.1038/s41551-022-00903-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/20/2022] [Indexed: 02/05/2023]
Abstract
Orally delivered antibiotics can reach the caecum and colon, and induce gut dysbiosis. Here we show that the encapsulation of antibiotics in orally administered positively charged polymeric nanoparticles with a glucosylated surface enhances absorption by the proximal small intestine through specific interactions of glucose and the abundantly expressed sodium-dependent glucose transporter 1. This improves bioavailability of the antibiotics, and limits their exposure to flora in the large intestine and their accumulation in caecal and faecal contents. Compared with the standard administration of the same antibiotics, the oral administration of nanoparticle-encapsulated ampicillin, chloramphenicol or vancomycin in mice with bacterial infections in the lungs effectively eliminated the infections, decreased adverse effects on the intestinal microbiota by protecting the animals from dysbiosis-associated metabolic syndromes and from opportunistic pathogen infections, and reduced the accumulation of known antibiotic-resistance genes in commensal bacteria. Glucosylated nanocarriers may be suitable for the oral delivery of other drugs causing gut dysbiosis.
Collapse
|
247
|
Wen Y, Zhang G, Wu X. The role of the farnesoid X receptor in quadruple anti-tuberculosis drug-induced liver injury. Toxicology 2022; 476:153256. [PMID: 35835356 DOI: 10.1016/j.tox.2022.153256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 01/07/2023]
Abstract
Anti-tuberculosis drugs-induced liver injury may be associated with the hepatic farnesoid X receptor (FXR). However, the relationship between isoniazid, rifampicin, pyrazinamide and ethambutol (HRZE) coadministration-induced liver injury and FXR has not been clarified. The purpose of this study was to clarify the role of FXR in HRZE-induced liver injury. To measure indices of liver injury, blood samples were collected from clinical tuberculosis patients who had taken HRZE for approximately two months; in these patients serum total bile acids were increased, while other hepatic biochemical indexes showed no significant changes. When Wistar rats were orally administered isoniazid (30 or 60 mg/kg) + rifampicin (45 or 90 mg/kg) + pyrazinamide (150 or 300 mg/kg) + ethambutol (75 or 150 mg/kg) in combination for 15 days, the expression and function of FXR was up-regulated, and hepatic bile acids were decreased. However, following 30 days of HRZE treatment the expression and function of FXR was down-regulated and bile acids accumulated in the liver, suggestive of hepatotoxicity. Treatment of HepaRG cells with HRZE lead to time- and dose- dependent cytotoxicity, with the expression of FXR up-regulated in early stage, but down-regulated with prolonged HRZE treatment, consistent with the results of animal experiments. In summary, HRZE may upregulate FXR with short-term administration, but more prolonged treatment appears to suppress FXR function, resulting in hepatic bile acid accumulation.
Collapse
Affiliation(s)
- Yuanjie Wen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Guoqiang Zhang
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China
| | - Xin'an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China; Engineering Research Centre of Prevention and Control for Clinical Medication Risk, Gansu Province, China.
| |
Collapse
|
248
|
The Association between Serum Total Bile Acid Level and Long-Term Prognosis in Patients with Coronary Chronic Total Occlusion Undergoing Percutaneous Coronary Intervention. DISEASE MARKERS 2022; 2022:1434111. [PMID: 35783015 PMCID: PMC9246557 DOI: 10.1155/2022/1434111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Background and Aims Bile acids, the key products for elimination of cholesterol, play an important role in coronary artery disease (CAD). However, few studies focused on the roles of more accessible serum total bile acids (TBA) in the prediction of adverse cardiovascular events for coronary chronic artery occlusion (CTO). The aim of this study was to explore the potential relationship between serum TBA and long-term prognosis in patients with CTO undergoing percutaneous coronary intervention (PCI). Methods Baseline TBA was determined in 613 patients with CTO after PCI in the present study. All patients were divided into 3 groups according to the median (3.5 μmol/l) and the normal upper limit of the TBA (10 μmol/l). The primary endpoint was all-cause mortality, and the secondary endpoint was major adverse cardiovascular events (MACE). Results Average age in this study was 65.44 ± 9.94 years old. The median of TBA was 3.5 (2.1-6.1) μmol/l. Over a median follow-up of 33.5 months, compared to those with below 3.5 μmol/l TBA, 3.5 ~ 10 μmol/l TBA was associated with significantly reduced risk for the MACE (hazard ratio (HR): 0.59, 95% confidence interval (CI): 0.40 to 0.88; p = 0.009) even after adjustment for baseline variables. However, TBA did not predict all-cause mortality and cardiovascular death. Spline analyses showed an L-shaped relationship of the serum TBA with the incidence of MACE. Conclusions Moderate fasting serum TBA level has a predictive value for MACE even after adjusting for lifestyle and clinical risk factors in CTO patients undergoing PCI.
Collapse
|
249
|
Wang H, He S, Sun Z, Wang R, Zou X, Lu F. Targeted Profiling of Rodent Unconjugated Bile Acids by GC-MS to Reveal the Influence of High-Fat Diet. Biomed Chromatogr 2022; 36:e5428. [PMID: 35708903 DOI: 10.1002/bmc.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022]
Abstract
Unconjugated bile acids (BAs) have gained more attention than conjugated BAs in the association studies among diet, gut microbiota and diseases. Gas chromatography-mass spectrometry (GC-MS) is probably a good choice for specialized analysis of unconjugated BAs due to high separation capacity and identification convenience. However, few reports have focused on the rodent unconjugated BAs by GC-MS, and the main library for identification has not included rodent-specific BAs. We developed a GC-MS method for targeted profiling of eight main unconjugated BAs in rodent models, which showed excellent performance on sensitivity, reproducibility and accuracy. Quantitative reproducibility in terms of relative standard deviation (RSD) was in the range of 2.05%-2.91%, with detection limits of 3-55 ng/mL, quantitation limits of 9-182 ng/mL and the recovery rate of 72%-115%. All the calibration curves displayed good linearity with correlation coefficient values (R2 ) more than 0.99. Using the established method, the influence of high-fat diet on the metabolism of unconjugated BAs were revealed. Significant increasing of fecal unconjugated BAs induced by high-fat diet, would be a potential risk to gut inflammation and cancer. The study provides a convenient and targeted GC-MS method for specialized profiling of rodent unconjugated BAs in physiological and pathological studies.
Collapse
Affiliation(s)
- Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Shi He
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Zepeng Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ruijia Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xiaotong Zou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
250
|
Charkoftaki G, Tan WY, Berrios-Carcamo P, Orlicky DJ, Golla JP, Garcia-Milian R, Aalizadeh R, Thomaidis NS, Thompson DC, Vasiliou V. Liver metabolomics identifies bile acid profile changes at early stages of alcoholic liver disease in mice. Chem Biol Interact 2022; 360:109931. [PMID: 35429548 PMCID: PMC9364420 DOI: 10.1016/j.cbi.2022.109931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/18/2022]
Abstract
Alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. The liver sustains the earliest and the greatest degree of tissue injury due to chronic alcohol consumption and it has been estimated that alcoholic liver disease (ALD) accounts for almost 50% of all deaths from cirrhosis in the world. In this study, we used a modified Lieber-DeCarli (LD) diet to treat mice with alcohol and simulate chronic alcohol drinking. Using an untargeted metabolomics approach, our aim was to identify the various metabolites and pathways that are altered in the early stages of ALD. Histopathology showed minimal changes in the liver after 6 weeks of alcohol consumption. However, untargeted metabolomics analyses identified 304 metabolic features that were either up- or down-regulated in the livers of ethanol-consuming mice. Pathway analysis revealed significant alcohol-induced alterations, the most significant of which was in the FXR/RXR activation pathway. Targeted metabolomics focusing on bile acid biosynthesis showed elevated taurine-conjugated cholic acid compounds in ethanol-consuming mice. In summary, we showed that the changes in the liver metabolome manifest very early in the development of ALD, and when minimal changes in liver histopathology have occurred. Although alterations in biochemical pathways indicate a complex pathology in the very early stages of alcohol consumption, bile acid changes may serve as biomarkers of the early onset of ALD.
Collapse
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Wan Ying Tan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Pablo Berrios-Carcamo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA; Center for Regenerative Medicine, Faculty of Medicine Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA; Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, 06210, USA
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National Kapodistrian University of Athens University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National Kapodistrian University of Athens University Campus, Zografou, 15771, Athens, Greece
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|