201
|
Dubol M, Wikström J, Lanzenberger R, Epperson CN, Sundström-Poromaa I, Comasco E. Grey matter correlates of affective and somatic symptoms of premenstrual dysphoric disorder. Sci Rep 2022; 12:5996. [PMID: 35397641 PMCID: PMC8994757 DOI: 10.1038/s41598-022-07109-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Ovarian hormones fluctuations across the menstrual cycle are experienced by about 58% of women in their fertile age. Maladaptive brain sensitivity to these changes likely leads to the severe psychological, cognitive, and physical symptoms repeatedly experienced by women with Premenstrual Dysphoric Disorder (PMDD) during the late luteal phase of the menstrual cycle. However, the neuroanatomical correlates of these symptoms are unknown. The relationship between grey matter structure and PMDD symptom severity was delineated using structural magnetic resonance imaging during the late luteal phase of fifty-one women diagnosed with PMDD, combined with Voxel- and Surface-Based Morphometry, as well as subcortical volumetric analyses. A negative correlation was found between depression-related symptoms and grey matter volume of the bilateral amygdala. Moreover, the severity of affective and somatic PMDD symptoms correlated with cortical thickness, gyrification, sulcal depth, and complexity metrics, particularly in the prefrontal, cingulate, and parahippocampal gyri. The present findings provide the first evidence of grey matter morphological characteristics associated with PMDD symptomatology in brain regions expressing ovarian hormone receptors and of relevance to cognitive-affective functions, thus potentially having important implications for understanding how structural brain characteristics relate to PMDD symptomatology.
Collapse
Affiliation(s)
- Manon Dubol
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, POB 593, 75124, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - C Neill Epperson
- Department of Psychiatry, Department of Family Medicine, University of Colorado School of Medicine-Anschutz Medical Campus, Aurora, USA
| | | | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, POB 593, 75124, Uppsala, Sweden.
| |
Collapse
|
202
|
Drudik K, Zlatkina V, Petrides M. Morphological patterns and spatial probability maps of the superior parietal sulcus in the human brain. Cereb Cortex 2022; 33:1230-1245. [PMID: 35388402 PMCID: PMC9930623 DOI: 10.1093/cercor/bhac132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
The superior parietal sulcus (SPS) is the defining sulcus within the superior parietal lobule (SPL). The morphological variability of the SPS was examined in individual magnetic resonance imaging (MRI) scans of the human brain that were registered to the Montreal Neurological Institute (MNI) standard stereotaxic space. Two primary morphological patterns were consistently identified across hemispheres: (i) the SPS was identified as a single sulcus, separating the anterior from the posterior part of the SPL and (ii) the SPS was found as a complex of multiple sulcal segments. These morphological patterns were subdivided based on whether the SPS or SPS complex remained distinct or merged with surrounding parietal sulci. The morphological variability and spatial extent of the SPS were quantified using volumetric and surface spatial probabilistic mapping. The current investigation established consistent morphological patterns in a common anatomical space, the MNI stereotaxic space, to facilitate structural and functional analyses within the SPL.
Collapse
Affiliation(s)
- Kristina Drudik
- Corresponding author: Kristina Drudik, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Veronika Zlatkina
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| |
Collapse
|
203
|
Cristofaro M, Giardino PL, Malizia AP, Mastrogiorgio A. Affect and Cognition in Managerial Decision Making: A Systematic Literature Review of Neuroscience Evidence. Front Psychol 2022; 13:762993. [PMID: 35356322 PMCID: PMC8959627 DOI: 10.3389/fpsyg.2022.762993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
How do affect and cognition interact in managerial decision making? Over the last decades, scholars have investigated how managers make decisions. However, what remains largely unknown is the interplay of affective states and cognition during the decision-making process. We offer a systematization of the contributions produced on the role of affect and cognition in managerial decision making by considering the recent cross-fertilization of management studies with the neuroscience domain. We implement a Systematic Literature Review of 23 selected contributions dealing with the role of affect and cognition in managerial decisions that adopted neuroscience techniques/points of view. Collected papers have been analyzed by considering the so-called reflexive (X-) and reflective (C-) systems in social cognitive neuroscience and the type of decisions investigated in the literature. Results obtained help to support an emerging "unified" mind processing theory for which the two systems of our mind are not in conflict and for which affective states have a driving role toward cognition. A research agenda for future studies is provided to scholars who are interested in advancing the investigation of affect and cognition in managerial decision making, also through neuroscience techniques - with the consideration that these works should be at the service of the behavioral strategy field.
Collapse
Affiliation(s)
- Matteo Cristofaro
- Department of Management and Law, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Andrea P Malizia
- Molecular Mind Laboratory (MoMiLab), IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Antonio Mastrogiorgio
- Laboratory for the Analysis of CompleX Economic Systems (AXES), IMT School for Advanced Studies Lucca, Lucca, Italy
| |
Collapse
|
204
|
Atlas of type 2 dopamine receptors in the human brain: Age and sex dependent variability in a large PET cohort. Neuroimage 2022; 255:119149. [PMID: 35367652 DOI: 10.1016/j.neuroimage.2022.119149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The dopamine system contributes to a multitude of functions ranging from reward and motivation to learning and movement control, making it a key component in goal-directed behavior. Altered dopaminergic function is observed in neurological and psychiatric conditions. Numerous factors have been proposed to influence dopamine function, but due to small sample sizes and heterogeneous data analysis methods in previous studies their specific and joint contributions remain unresolved. METHODS In this cross-sectional register-based study we investigated how age, sex, body mass index (BMI), as well as cerebral hemisphere and regional volume influence striatal type 2 dopamine receptor (D2R) availability in the human brain. We analyzed a large historical dataset (n=156, 120 males and 36 females) of [11C]raclopride PET scans performed between 2004 and 2018. RESULTS Striatal D2R availability decreased through age for both sexes (2-5 % in striatal ROIs per 10 years) and was higher in females versus males throughout age (7-8% in putamen). BMI and striatal D2R availability were weakly associated. There was no consistent lateralization of striatal D2R. The observed effects were independent of regional volumes. These results were validated using two different spatial normalization methods, and the age and sex effects also replicated in an independent sample (n=135). CONCLUSIONS D2R availability is dependent on age and sex, which may contribute to the vulnerability of neurological and psychiatric conditions involving altering D2R expression.
Collapse
|
205
|
Wei DY, O'Daly O, Zelaya FO, Goadsby PJ. Areas of cerebral blood flow changes on arterial spin labelling with the use of symmetric template during nitroglycerin triggered cluster headache attacks. Neuroimage Clin 2022; 33:102920. [PMID: 34972033 PMCID: PMC8724947 DOI: 10.1016/j.nicl.2021.102920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022]
Abstract
Cluster headache is a severe unilateral primary headache disorder; however, the brain is asymmetric, therefore using a symmetric template before flipping in the x-axis allows for ipsilateral analysis of attacks without loss of coherence across the group. Increases in cerebral blood flow beyond pain anticipation, processing and modulation areas, including hypothalamic regions and ipsilateral pons, have a crucial pathophysiological role in cluster headache attacks. The pain experienced during cluster headache attacks is so severe that it “switches off” areas involved in the default brain network.
Background Cluster headache is a rare, strictly unilateral, severe episodic primary headache disorder. Due to the unpredictable and episodic nature of the attacks, nitroglycerin has been used to trigger attacks for research purposes to further our understanding of cluster headache pathophysiology. Objectives We aimed to identify regions of significant cerebral blood flow (CBF) changes during nitroglycerin triggered cluster headache attacks, using MRI with arterial spin labelling (ASL). Methods Thirty-three subjects aged 18–60 years with episodic and chronic cluster headache were recruited and attended an open clinical screening visit without scanning to receive an intravenous nitroglycerin infusion (0.5 μg/kg/min over 20 min). Those for whom nitroglycerin successfully triggered a cluster headache attack, were invited to attend two subsequent scanning visits. They received either single-blinded intravenous nitroglycerin (0.5 μg/kg/min) or an equivalent volume of single-blinded intravenous 0.9% sodium chloride over a 20-minute infusion. Whole-brain CBF maps were acquired using a 3 Tesla MRI scanner pre-infusion and post-infusion. As cluster headache is a rare condition and purely unilateral disorder, an analysis strategy to ensure all the image data corresponded to symptomatology in the same hemisphere, without losing coherence across the group, was adopted. This consisted of spatially normalising all CBF maps to a standard symmetric reference template before flipping the images about the anterior-posterior axis for those CBF maps of subjects who experienced their headache in the right hemisphere. This procedure has been employed in previous studies and generated a group data set with expected features on the left hemisphere only. Results Twenty-two subjects successfully responded to the nitroglycerin infusion and experienced triggered cluster headache attacks. A total of 20 subjects completed the placebo scanning visit, 20 completed the nitroglycerin scanning visit, and 18 subjects had completed both the nitroglycerin and placebo scanning visits. In a whole-brain analysis, we identified regions of significantly elevated CBF in the medial frontal gyrus, superior frontal gyrus, inferior frontal gyrus and cingulate gyrus, ipsilateral to attack side, in CBF maps acquired during cluster headache attack; compared with data from the placebo session. We also identified significantly reduced CBF in the precuneus, cuneus, superior parietal lobe and occipital lobe contralateral to the attack side. Of particular interest to this field of investigation, both the hypothalamus and ipsilateral ventral pons showed higher CBF in a separate region of interest analysis. Conclusion Our data demonstrate that severe cluster headache leads to significant increases in regional cerebral perfusion, likely to reflect changes in neuronal activity in several regions of the brain, including the hypothalamus and the ventral pons. These data contribute to our understanding of cluster headache pathophysiology; and suggest that non-invasive ASL technology may be valuable in future mechanistic studies of this debilitating condition.
Collapse
Affiliation(s)
- Diana Y Wei
- Headache Group, Wolfson Centre for Age-Related Diseases, King's College London, UK; NIHR Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK
| | - Owen O'Daly
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fernando O Zelaya
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Peter J Goadsby
- Headache Group, Wolfson Centre for Age-Related Diseases, King's College London, UK; NIHR Wellcome Trust King's Clinical Research Facility, King's College Hospital, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
206
|
Wu X, Kong X, Vatansever D, Liu Z, Zhang K, Sahakian BJ, Robbins TW, Feng J, Thompson P, Zhang J. Dynamic changes in brain lateralization correlate with human cognitive performance. PLoS Biol 2022; 20:e3001560. [PMID: 35298460 PMCID: PMC8929635 DOI: 10.1371/journal.pbio.3001560] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Hemispheric lateralization constitutes a core architectural principle of human brain organization underlying cognition, often argued to represent a stable, trait-like feature. However, emerging evidence underlines the inherently dynamic nature of brain networks, in which time-resolved alterations in functional lateralization remain uncharted. Integrating dynamic network approaches with the concept of hemispheric laterality, we map the spatiotemporal architecture of whole-brain lateralization in a large sample of high-quality resting-state fMRI data (N = 991, Human Connectome Project). We reveal distinct laterality dynamics across lower-order sensorimotor systems and higher-order associative networks. Specifically, we expose 2 aspects of the laterality dynamics: laterality fluctuations (LF), defined as the standard deviation of laterality time series, and laterality reversal (LR), referring to the number of zero crossings in laterality time series. These 2 measures are associated with moderate and extreme changes in laterality over time, respectively. While LF depict positive association with language function and cognitive flexibility, LR shows a negative association with the same cognitive abilities. These opposing interactions indicate a dynamic balance between intra and interhemispheric communication, i.e., segregation and integration of information across hemispheres. Furthermore, in their time-resolved laterality index, the default mode and language networks correlate negatively with visual/sensorimotor and attention networks, which are linked to better cognitive abilities. Finally, the laterality dynamics are associated with functional connectivity changes of higher-order brain networks and correlate with regional metabolism and structural connectivity. Our results provide insights into the adaptive nature of the lateralized brain and new perspectives for future studies of human cognition, genetics, and brain disorders. Hemispheric lateralization constitutes a core architectural principle of human brain organization, often argued to represent a stable, trait-like feature, but how does this fit with our increasing appreciation of the inherently dynamic nature of brain networks? This neuroimaging study reveals the dynamic nature of functional brain lateralization at resting-state and its relationship with language function and cognitive flexibility.
Collapse
Affiliation(s)
- Xinran Wu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Zhejiang, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Zhaowen Liu
- Psychiatric & Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kai Zhang
- School of Computer Science and Technology, East China Normal University, Shanghai, China
| | - Barbara J. Sahakian
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Shanghai, China
| | - Paul Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
207
|
Zhao X, Kang H, Zhou Z, Hu Y, Li J, Li S, Li J, Zhu W. Interhemispheric functional connectivity asymmetry is distinctly affected in left and right mesial temporal lobe epilepsy. Brain Behav 2022; 12:e2484. [PMID: 35166072 PMCID: PMC8933759 DOI: 10.1002/brb3.2484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The differences of functional connectivity (FC) and functional asymmetry between left and right mesial temporal lobe epilepsy with hippocampal sclerosis (LMTLE and RMTLE) have not been completely clarified yet. The purpose of the present study is to investigate the FC changes and the FC asymmetric patterns of MTLE, and to compare the differences in FC and functional asymmetry between LMTLE and RMTLE. METHODS In total, 12 LMTLE, 11 RMTLE patients, and 23 healthy controls (HC) were included. Region of interest (ROI)-based analysis was used to evaluate FC. The right functional connectivity (rFC) and left functional connectivity (lFC) of each ROI were calculated. Asymmetry index (AI) was calculated based on the following formula: AI=100×(rFC-lFC)/[(rFC+lFC)/2]${\rm{AI\ }} = {\rm{\ }}100{\rm{\ }} \times {\rm{\ }}( {{\rm{rFC}} - {\rm{lFC}}} )/[ {( {{\rm{rFC}} + {\rm{lFC}}} )/2} ]$ . Paired t-test and univariate analysis of variance were used to analyze FC asymmetry. Linear correlation analysis was performed between significant FC changes and lateralized ROIs and epilepsy onset age and duration. RESULTS LMTLE and RMTLE patients showed different patterns of alteration in FC and functional asymmetry when compared with controls. RMTLE presented more extensive FC abnormalities than LMTLE. Regions in ipsilateral temporal lobe presented as central regions of abnormalities in both patient groups. In addition, the asymmetric characteristics of FC were reduced in MTLE compared with HC, with even more pronounced reduction for RMTLE group. Meanwhile, ROIs presented FC AI differences among the three groups were mostly involving left temporal lobe (L_hippo, L_amyg, L_TP, L_aMTG, and L_pTFusC). No correlation was found between significant FC changes and lateralized ROIs and epilepsy onset age and duration. CONCLUSION The FC and asymmetric features of MTLE are altered and involve both the temporal lobe and extra-temporal lobe. Furthermore, the altered FC and asymmetric features were distinctly affected in LMTLE and RMTLE compared to controls.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
208
|
Chen X, Lu B, Li HX, Li XY, Wang YW, Castellanos FX, Cao LP, Chen NX, Chen W, Cheng YQ, Cui SX, Deng ZY, Fang YR, Gong QY, Guo WB, Hu ZJY, Kuang L, Li BJ, Li L, Li T, Lian T, Liao YF, Liu YS, Liu ZN, Lu JP, Luo QH, Meng HQ, Peng DH, Qiu J, Shen YD, Si TM, Tang YQ, Wang CY, Wang F, Wang HN, Wang K, Wang X, Wang Y, Wang ZH, Wu XP, Xie CM, Xie GR, Xie P, Xu XF, Yang H, Yang J, Yao SQ, Yu YQ, Yuan YG, Zhang KR, Zhang W, Zhang ZJ, Zhu JJ, Zuo XN, Zhao JP, Zang YF, Yan CG, Chen X, Cao LP, Chen W, Cheng YQ, Fang YR, Gong QY, Guo WB, Kuang L, Li BJ, Li T, Liu YS, Liu ZN, Lu JP, Luo QH, Meng HQ, Peng DH, Qiu J, Shen YD, Si TM, Tang YQ, Wang CY, Wang F, Wang HN, Wang K, Wang X, Wang Y, Wu XP, Xie CM, Xie GR, Xie P, Xu XF, Yang H, Yang J, Yao SQ, Yu YQ, Yuan YG, Zhang KR, Zhang W, Zhang ZJ, Zhu JJ, Zuo XN, Zhao JP, Zang YF, et alChen X, Lu B, Li HX, Li XY, Wang YW, Castellanos FX, Cao LP, Chen NX, Chen W, Cheng YQ, Cui SX, Deng ZY, Fang YR, Gong QY, Guo WB, Hu ZJY, Kuang L, Li BJ, Li L, Li T, Lian T, Liao YF, Liu YS, Liu ZN, Lu JP, Luo QH, Meng HQ, Peng DH, Qiu J, Shen YD, Si TM, Tang YQ, Wang CY, Wang F, Wang HN, Wang K, Wang X, Wang Y, Wang ZH, Wu XP, Xie CM, Xie GR, Xie P, Xu XF, Yang H, Yang J, Yao SQ, Yu YQ, Yuan YG, Zhang KR, Zhang W, Zhang ZJ, Zhu JJ, Zuo XN, Zhao JP, Zang YF, Yan CG, Chen X, Cao LP, Chen W, Cheng YQ, Fang YR, Gong QY, Guo WB, Kuang L, Li BJ, Li T, Liu YS, Liu ZN, Lu JP, Luo QH, Meng HQ, Peng DH, Qiu J, Shen YD, Si TM, Tang YQ, Wang CY, Wang F, Wang HN, Wang K, Wang X, Wang Y, Wu XP, Xie CM, Xie GR, Xie P, Xu XF, Yang H, Yang J, Yao SQ, Yu YQ, Yuan YG, Zhang KR, Zhang W, Zhang ZJ, Zhu JJ, Zuo XN, Zhao JP, Zang YF, Yan CG. The DIRECT consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder. PSYCHORADIOLOGY 2022; 2:32-42. [PMID: 38665141 PMCID: PMC10917197 DOI: 10.1093/psyrad/kkac005] [Show More Authors] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023]
Abstract
Despite a growing neuroimaging literature on the pathophysiology of major depressive disorder (MDD), reproducible findings are lacking, probably reflecting mostly small sample sizes and heterogeneity in analytic approaches. To address these issues, the Depression Imaging REsearch ConsorTium (DIRECT) was launched. The REST-meta-MDD project, pooling 2428 functional brain images processed with a standardized pipeline across all participating sites, has been the first effort from DIRECT. In this review, we present an overview of the motivations, rationale, and principal findings of the studies so far from the REST-meta-MDD project. Findings from the first round of analyses of the pooled repository have included alterations in functional connectivity within the default mode network, in whole-brain topological properties, in dynamic features, and in functional lateralization. These well-powered exploratory observations have also provided the basis for future longitudinal hypothesis-driven research. Following these fruitful explorations, DIRECT has proceeded to its second stage of data sharing that seeks to examine ethnicity in brain alterations in MDD by extending the exclusive Chinese original sample to other ethnic groups through international collaborations. A state-of-the-art, surface-based preprocessing pipeline has also been introduced to improve sensitivity. Functional images from patients with bipolar disorder and schizophrenia will be included to identify shared and unique abnormalities across diagnosis boundaries. In addition, large-scale longitudinal studies targeting brain network alterations following antidepressant treatment, aggregation of diffusion tensor images, and the development of functional magnetic resonance imaging-guided neuromodulation approaches are underway. Through these endeavours, we hope to accelerate the translation of functional neuroimaging findings to clinical use, such as evaluating longitudinal effects of antidepressant medications and developing individualized neuromodulation targets, while building an open repository for the scientific community.
Collapse
Affiliation(s)
- Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Bin Lu
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
| | - Hui-Xian Li
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
| | - Xue-Ying Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences , Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences , Beijing 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences , Beijing 101408, China
| | - Yu-Wei Wang
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine , New York, NY 10016, USA
- Nathan Kline Institute for Psychiatric Research , Orangeburg, New York, NY 10962, USA
| | - Li-Ping Cao
- Affiliated Brain Hospital of Guangzhou Medical University , Guangzhou 510370, China
| | | | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310020, Zhejiang, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University , Kunming, Yunnan 650032, China
| | - Shi-Xian Cui
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences , Beijing 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences , Beijing 101408, China
| | - Zhao-Yu Deng
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
| | - Yi-Ru Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine , Shanghai 200030, China
| | - Qi-Yong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University , Chengdu, Sichuan 610044, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences , Chengdu, Sichuan 610052, China
| | - Wen-Bin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University , Changsha 410011, Hunan, China
| | - Zheng-Jia-Yi Hu
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400042, China
| | - Bao-Juan Li
- Xijing Hospital of Air Force Military Medical University , Xi'an, Shaanxi 710032, China
| | - Le Li
- Center for Cognitive Science of Language, Beijing Language and Culture University , Beijing 100083, China
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine , Hangzhou, Zhejiang 310063, China
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University , Chengdu, Sichuan 610044, China
| | - Tao Lian
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
| | - Yi-Fan Liao
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University , Suzhou, Jiangsu 215003, China
| | - Zhe-Ning Liu
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University , Changsha 410011, Hunan, China
| | - Jian-Ping Lu
- Shenzhen Kangning Hospital , Shenzhen, Guangzhou 518020, China
| | - Qing-Hua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400042, China
| | - Hua-Qing Meng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400042, China
| | - Dai-Hui Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine , Shanghai 200030, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University , Chongqing 400715, China
| | - Yue-Di Shen
- Department of Diagnostics, Affiliated Hospital, Hangzhou Normal University Medical School , Hangzhou, Zhejiang 311121, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital) & Key Laboratory of Mental Health, Ministry of Health (Peking University) , Beijing 100191, China
| | - Yan-Qing Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University , Shenyang, Liaoning 110122, China
| | - Chuan-Yue Wang
- Beijing Anding Hospital, Capital Medical University , Beijing 100120, China
| | - Fei Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University , Shenyang, Liaoning 110122, China
- Early Intervention Unit, Department of Psychiatry , Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210024, China
| | - Hua-Ning Wang
- Xijing Hospital of Air Force Military Medical University , Xi'an, Shaanxi 710032, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University , Hefei, Anhui 230022, China
| | - Xiang Wang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University , Changsha 410011, Hunan, China
| | - Ying Wang
- The First Affiliated Hospital of Jinan University , Guangzhou, Guangdong 250024, China
| | - Zi-Han Wang
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
| | - Xiao-Ping Wu
- Xi'an Central Hospital , Xi'an, Shaanxi 710004, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University , Nanjing, Jiangsu 210009, China
| | - Guang-Rong Xie
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University , Changsha 410011, Hunan, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University , Chongqing 400016, China
- Chongqing Key Laboratory of Neurobiology , Chongqing 400000, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing 400042, China
| | - Xiu-Feng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University , Kunming, Yunnan 650032, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China
| | - Jian Yang
- Chongqing Key Laboratory of Neurobiology , Chongqing 400000, China
| | - Shu-Qiao Yao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University , Changsha 410011, Hunan, China
| | - Yong-Qiang Yu
- The First Affiliated Hospital of Anhui Medical University , Hefei, Anhui 230032, China
| | - Yong-Gui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University , Nanjing, Jiangsu 210009, China
| | - Ke-Rang Zhang
- First Hospital of Shanxi Medical University , Taiyuan, Shanxi 030001, China
| | - Wei Zhang
- West China Hospital of Sichuan University , Chengdu, Sichuan 610044, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University , Nanjing, Jiangsu 210009, China
| | - Jun-Juan Zhu
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine , Shanghai 200025, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University , Beijing 100091, China
- National Basic Science Data Center , Beijing 100038, China
| | - Jing-Ping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University , Changsha 410011, Hunan, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University , Hangzhou, Zhejiang 310018, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments , Hangzhou, Zhejiang 310000, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
- International Big-Data Center for Depression Research, Chinese Academy of Sciences , Beijing 100101, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences , Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences , Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences , Beijing 101408, China
- Sino-Danish Center for Education and Research, Graduate University of Chinese Academy of Sciences , Beijing 101408, China
| | | |
Collapse
|
209
|
Pugh ZH, Choo S, Leshin JC, Lindquist KA, Nam CS. Emotion depends on context, culture and their interaction: evidence from effective connectivity. Soc Cogn Affect Neurosci 2022; 17:206-217. [PMID: 34282842 PMCID: PMC8847905 DOI: 10.1093/scan/nsab092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Situated models of emotion hypothesize that emotions are optimized for the context at hand, but most neuroimaging approaches ignore context. For the first time, we applied Granger causality (GC) analysis to determine how an emotion is affected by a person's cultural background and situation. Electroencephalographic recordings were obtained from mainland Chinese (CHN) and US participants as they viewed and rated fearful and neutral images displaying either social or non-social contexts. Independent component analysis and GC analysis were applied to determine the epoch of peak effect for each condition and to identify sources and sinks among brain regions of interest. We found that source-sink couplings differed across culture, situation and culture × situation. Mainland CHN participants alone showed preference for an early-onset source-sink pairing with the supramarginal gyrus as a causal source, suggesting that, relative to US participants, CHN participants more strongly prioritized a scene's social aspects in their response to fearful scenes. Our findings suggest that the neural representation of fear indeed varies according to both culture and situation and their interaction in ways that are consistent with norms instilled by cultural background.
Collapse
Affiliation(s)
- Zachary H Pugh
- Department of Psychology, North Carolina State University, Raleigh, NC 27695, USA
| | - Sanghyun Choo
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Joseph C Leshin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chang S Nam
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
210
|
From Hemispheric Asymmetry through Sensorimotor Experiences to Cognitive Outcomes in Children with Cerebral Palsy. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent neuroimaging studies allowed us to explore abnormal brain structures and interhemispheric connectivity in children with cerebral palsy (CP). Behavioral researchers have long reported that children with CP exhibit suboptimal performance in different cognitive domains (e.g., receptive and expressive language skills, reading, mental imagery, spatial processing, subitizing, math, and executive functions). However, there has been very limited cross-domain research involving these two areas of scientific inquiry. To stimulate such research, this perspective paper proposes some possible neurological mechanisms involved in the cognitive delays and impairments in children with CP. Additionally, the paper examines the ways motor and sensorimotor experience during the development of these neural substrates could enable more optimal development for children with CP. Understanding these developmental mechanisms could guide more effective interventions to promote the development of both sensorimotor and cognitive skills in children with CP.
Collapse
|
211
|
Wu F, Zhao H, Zhang Y, Wang M, Liu C, Wang X, Cheng Y, Jin C, Yang J, Li X. Morphologic Variants of the Hand Motor Cortex in Developing Brains from Neonates through Childhood Assessed by MR Imaging. AJNR Am J Neuroradiol 2022; 43:292-298. [PMID: 34992126 PMCID: PMC8985685 DOI: 10.3174/ajnr.a7386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Knowledge of anatomic markers of the hand motor cortex is essential in the evaluation and treatment of motor neurologic diseases for both adults and developing populations. However, hand motor cortex variants in developing brains remain to be investigated. Our objective was to observe morphologic variants of the hand motor cortex in developing brains from neonates through childhood. MATERIALS AND METHODS In this study, 542 participants (0∼15 years of age) were retrospectively enrolled and divided into different age groups. The hand motor cortex morphology was evaluated on the basis of 3D T1WI. Variations in hand motor cortex variants were compared among different age groups. Inter-gender and interhemispheric differences of hand motor cortex variants were also evaluated. RESULTS Various hand motor cortex variants could be observed in developing brains, even in the neonatal period. One new morphologic shape, "immature Ω," was found in neonates and infants. The proportion of this new shape decreased dramatically during the first year after birth, then disappeared after 1 year of age. It persisted for a longer time in the right hemisphere and in males. However, sex or hemispheric effects on the distribution of the proportion of variants were not statistically significant. Furthermore, the proportion of concordance of the bilateral hand motor cortex showed an increasing trend with age (P = .006), higher in females than males. CONCLUSIONS Various hand motor cortex variants already existed at birth. The distribution of proportions of different variants developmentally varied during the first year after birth and became stable after 1 year of age. The concordance of the bilateral hand motor cortex could be influenced by age and sex.
Collapse
Affiliation(s)
- F. Wu
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Department of Radiology (F.W.), Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - H. Zhao
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Y. Zhang
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - M. Wang
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - C. Liu
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - X. Wang
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Y. Cheng
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - C. Jin
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - J. Yang
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - X. Li
- From the Department of Radiology (F.W., H.Z., Y.Z., M.W., C.L., X.W., Y.C., C.J., J.Y., X.L.), the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
212
|
Li X, Li M, Wang M, Wu F, Liu H, Sun Q, Zhang Y, Liu C, Jin C, Yang J. Mapping white matter maturational processes and degrees on neonates by diffusion kurtosis imaging with multiparametric analysis. Hum Brain Mapp 2022; 43:799-815. [PMID: 34708903 PMCID: PMC8720196 DOI: 10.1002/hbm.25689] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
White matter maturation has been characterized by diffusion tensor (DT) metrics. However, maturational processes and degrees are not fully investigated due to limitations of univariate approaches and limited specificity/sensitivity. Diffusion kurtosis imaging (DKI) provides kurtosis tensor (KT) and white matter tract integrity (WMTI) metrics, besides DT metrics. Therefore, we tried to investigate performances of DKI with the multiparametric analysis in characterizing white matter maturation. Developmental changes in metrics were investigated by using tract-based spatial statistics and the region of interest analysis on 50 neonates with postmenstrual age (PMA) from 37.43 to 43.57 weeks. Changes in metrics were combined into various patterns to reveal different maturational processes. Mahalanobis distance based on DT metrics (DM,DT ) and that combing DT and KT metrics (DM,DT-KT ) were computed, separately. Performances of DM,DT-KT and DM,DT were compared in revealing correlations with PMA and the neurobehavioral score. Compared with DT metrics, WMTI metrics demonstrated additional changing patterns. Furthermore, variations of DM,DT-KT across regions were in agreement with the maturational sequence. Additionally, DM,DT-KT demonstrated stronger negative correlations with PMA and the neurobehavioral score in more regions than DM,DT . Results suggest that DKI with the multiparametric analysis benefits the understanding of white matter maturational processes and degrees on neonates.
Collapse
Affiliation(s)
- Xianjun Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengxuan Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fan Wu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heng Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qinli Sun
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuli Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Congcong Liu
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chao Jin
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Biomedical Engineering, The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
213
|
Hanalioglu S, Bahadir S, Isikay I, Celtikci P, Celtikci E, Yeh FC, Oguz KK, Khaniyev T. Group-Level Ranking-Based Hubness Analysis of Human Brain Connectome Reveals Significant Interhemispheric Asymmetry and Intraparcel Heterogeneities. Front Neurosci 2022; 15:782995. [PMID: 34992517 PMCID: PMC8724127 DOI: 10.3389/fnins.2021.782995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: Graph theory applications are commonly used in connectomics research to better understand connectivity architecture and characterize its role in cognition, behavior and disease conditions. One of the numerous open questions in the field is how to represent inter-individual differences with graph theoretical methods to make inferences for the population. Here, we proposed and tested a simple intuitive method that is based on finding the correlation between the rank-ordering of nodes within each connectome with respect to a given metric to quantify the differences/similarities between different connectomes. Methods: We used the diffusion imaging data of the entire HCP-1065 dataset of the Human Connectome Project (HCP) (n = 1,065 subjects). A customized cortical subparcellation of HCP-MMP atlas (360 parcels) (yielding a total of 1,598 ROIs) was used to generate connectivity matrices. Six graph measures including degree, strength, coreness, betweenness, closeness, and an overall “hubness” measure combining all five were studied. Group-level ranking-based aggregation method (“measure-then-aggregate”) was used to investigate network properties on population level. Results: Measure-then-aggregate technique was shown to represent population better than commonly used aggregate-then-measure technique (overall rs: 0.7 vs 0.5). Hubness measure was shown to highly correlate with all five graph measures (rs: 0.88–0.99). Minimum sample size required for optimal representation of population was found to be 50 to 100 subjects. Network analysis revealed a widely distributed set of cortical hubs on both hemispheres. Although highly-connected hub clusters had similar distribution between two hemispheres, average ranking values of homologous parcels of two hemispheres were significantly different in 71% of all cortical parcels on group-level. Conclusion: In this study, we provided experimental evidence for the robustness, limits and applicability of a novel group-level ranking-based hubness analysis technique. Graph-based analysis of large HCP dataset using this new technique revealed striking hemispheric asymmetry and intraparcel heterogeneities in the structural connectivity of the human brain.
Collapse
Affiliation(s)
- Sahin Hanalioglu
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Siyar Bahadir
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilkay Isikay
- Department of Neurosurgery, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pinar Celtikci
- Department of Radiology, Ankara City Hospital, Ankara, Turkey
| | - Emrah Celtikci
- Department of Neurosurgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kader Karli Oguz
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Taghi Khaniyev
- Department of Industrial Engineering, Faculty of Engineering, Bilkent University, Ankara, Turkey.,Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
214
|
Pimentel GA, Crestani AM, Florindo LH. Do spatial and recognition memories have a lateralized processing by the dorsal hippocampus CA3? Behav Brain Res 2022; 416:113566. [PMID: 34499937 DOI: 10.1016/j.bbr.2021.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/02/2022]
Abstract
The present study evaluated the function of the right and left CA3 of the dorsal hippocampus (dHPC) in the processing of (i) recognition memory, (ii) recent and remote spatial memory, (iii) working memory and (iv) navigation strategy. Wistar rats were divided into four experimental groups: vehicle group (VG), animals received a bilateral injection of phosphate-saline buffer (PBS) in both right and left dorsal CA3; dHPC-R group, animals received an injection of ibotenic acid (IBO) in the right dorsal CA3; dHPC-L group, animals received an IBO injection in left dorsal CA3; and dHPC-Bi group, animals received bilateral injections of IBO in both dorsal CA3. Rats were submitted to a sequence of behavioral tests: Morris water maze (MWM), object recognition test (ORT), forced T-maze and MWM 30 days after the first exposure. The results showed no evidence of functional lateralization and the dorsal CA3 does not seem to be essential for learning and memory (recent and remote) processing and allocentric navigation analyzed in the MWM and T-maze, respectively. However, rats with right or bilateral lesions in the dorsal CA3 failed to recognize the familiar object in the ORT, suggesting a lateralized processing of recognition memory. That result is unprecedented and contributes to the knowledge about the compartmentalization of HPC functions.
Collapse
Affiliation(s)
- Gabrielle Araujo Pimentel
- Department of Zoology and Botany, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil; Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265̥, São José do Rio Preto, SP 15054-000, Brazil.
| | - Ariela Maltarolo Crestani
- Department of Zoology and Botany, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil; Join Graduate Program in Physiological Sciences, Universidade Federal de São Carlos/Universidade Estadual Paulista (UFSCar/UNESP), Rodovia Washington Luiz, km 235̥, São Carlos, SP13565-905, Brazil.
| | - Luiz Henrique Florindo
- Department of Zoology and Botany, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil; Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265̥, São José do Rio Preto, SP 15054-000, Brazil; Join Graduate Program in Physiological Sciences, Universidade Federal de São Carlos/Universidade Estadual Paulista (UFSCar/UNESP), Rodovia Washington Luiz, km 235̥, São Carlos, SP13565-905, Brazil.
| |
Collapse
|
215
|
Limb Preference in Animals: New Insights into the Evolution of Manual Laterality in Hominids. Symmetry (Basel) 2022. [DOI: 10.3390/sym14010096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until the 1990s, the notion of brain lateralization—the division of labor between the two hemispheres—and its more visible behavioral manifestation, handedness, remained fiercely defined as a human specific trait. Since then, many studies have evidenced lateralized functions in a wide range of species, including both vertebrates and invertebrates. In this review, we highlight the great contribution of comparative research to the understanding of human handedness’ evolutionary and developmental pathways, by distinguishing animal forelimb asymmetries for functionally different actions—i.e., potentially depending on different hemispheric specializations. Firstly, lateralization for the manipulation of inanimate objects has been associated with genetic and ontogenetic factors, with specific brain regions’ activity, and with morphological limb specializations. These could have emerged under selective pressures notably related to the animal locomotion and social styles. Secondly, lateralization for actions directed to living targets (to self or conspecifics) seems to be in relationship with the brain lateralization for emotion processing. Thirdly, findings on primates’ hand preferences for communicative gestures accounts for a link between gestural laterality and a left-hemispheric specialization for intentional communication and language. Throughout this review, we highlight the value of functional neuroimaging and developmental approaches to shed light on the mechanisms underlying human handedness.
Collapse
|
216
|
Kong X, Postema MC, Guadalupe T, de Kovel C, Boedhoe PSW, Hoogman M, Mathias SR, van Rooij D, Schijven D, Glahn DC, Medland SE, Jahanshad N, Thomopoulos SI, Turner JA, Buitelaar J, van Erp TGM, Franke B, Fisher SE, van den Heuvel OA, Schmaal L, Thompson PM, Francks C. Mapping brain asymmetry in health and disease through the ENIGMA consortium. Hum Brain Mapp 2022; 43:167-181. [PMID: 32420672 PMCID: PMC8675409 DOI: 10.1002/hbm.25033] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA-Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi-dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive-compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders.
Collapse
Affiliation(s)
- Xiang‐Zhen Kong
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Merel C. Postema
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Tulio Guadalupe
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Carolien de Kovel
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Premika S. W. Boedhoe
- Department of Psychiatry, Amsterdam NeuroscienceAmsterdam University Medical Center, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical CenterVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Martine Hoogman
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - Samuel R. Mathias
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
| | - Dick Schijven
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Olin Neuropsychiatry Research CenterInstitute of Living, Hartford HospitalHartfordConnecticutUSA
| | - Sarah E. Medland
- Psychiatric GeneticsQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics InstituteKeck School of Medicine of the University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics InstituteKeck School of Medicine of the University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Jessica A. Turner
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
- Department of Psychology and NeuroscienceGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jan Buitelaar
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CentreNijmegenThe Netherlands
- Karakter Child and Adolescent PsychiatryNijmegenThe Netherlands
| | - Theo G. M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Simon E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| | - Odile A. van den Heuvel
- Department of Psychiatry, Amsterdam NeuroscienceAmsterdam University Medical Center, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical CenterVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleVictoriaAustralia
- Centre for Youth Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Paul M. Thompson
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Clyde Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviorRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
217
|
Chen YC, Arnatkevičiūtė A, McTavish E, Pang JC, Chopra S, Suo C, Fornito A, Aquino KM. The individuality of shape asymmetries of the human cerebral cortex. eLife 2022; 11:75056. [PMID: 36197720 PMCID: PMC9668337 DOI: 10.7554/elife.75056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/04/2022] [Indexed: 01/05/2023] Open
Abstract
Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Monash Data Futures Institute, Monash UniversityMelbourneAustralia
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Eugene McTavish
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Healthy Brain and Mind Research Centre, Faculty of Health Sciences, Australian Catholic UniversityFitzroyAustralia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Department of Psychology, Yale UniversityNew HavenUnited States
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Kevin M Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,School of Physics, University of SydneySydneyAustralia,Center of Excellence for Integrative Brain Function, University of SydneySydneyAustralia,BrainKey IncSan FranciscoUnited States
| | | |
Collapse
|
218
|
Structural Asymmetries in Normal Brain Anatomy: A Brief Overview. Ann Anat 2022; 241:151894. [DOI: 10.1016/j.aanat.2022.151894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
|
219
|
Tank R, Ward J, Flegal KE, Smith DJ, Bailey MES, Cavanagh J, Lyall DM. Association between polygenic risk for Alzheimer's disease, brain structure and cognitive abilities in UK Biobank. Neuropsychopharmacology 2022; 47:564-569. [PMID: 34621014 PMCID: PMC8674313 DOI: 10.1038/s41386-021-01190-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Previous studies testing associations between polygenic risk for late-onset Alzheimer's disease (LOAD-PGR) and brain magnetic resonance imaging (MRI) measures have been limited by small samples and inconsistent consideration of potential confounders. This study investigates whether higher LOAD-PGR is associated with differences in structural brain imaging and cognitive values in a relatively large sample of non-demented, generally healthy adults (UK Biobank). Summary statistics were used to create PGR scores for n = 32,790 participants using LDpred. Outcomes included 12 structural MRI volumes and 6 concurrent cognitive measures. Models were adjusted for age, sex, body mass index, genotyping chip, 8 genetic principal components, lifetime smoking, apolipoprotein (APOE) e4 genotype and socioeconomic deprivation. We tested for statistical interactions between APOE e4 allele dose and LOAD-PGR vs. all outcomes. In fully adjusted models, LOAD-PGR was associated with worse fluid intelligence (standardised beta [β] = -0.080 per LOAD-PGR standard deviation, p = 0.002), matrix completion (β = -0.102, p = 0.003), smaller left hippocampal total (β = -0.118, p = 0.002) and body (β = -0.069, p = 0.002) volumes, but not other hippocampal subdivisions. There were no significant APOE x LOAD-PGR score interactions for any outcomes in fully adjusted models. This is the largest study to date investigating LOAD-PGR and non-demented structural brain MRI and cognition phenotypes. LOAD-PGR was associated with smaller hippocampal volumes and aspects of cognitive ability in healthy adults and could supplement APOE status in risk stratification of cognitive impairment/LOAD.
Collapse
Affiliation(s)
- Rachana Tank
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Kristin E Flegal
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Daniel J Smith
- Centre for Clinical Brain Sciences, Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jonathan Cavanagh
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Donald M Lyall
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK.
| |
Collapse
|
220
|
Kong X, Francks C. Reproducibility in the absence of selective reporting: An illustration from large-scale brain asymmetry research. Hum Brain Mapp 2022; 43:244-254. [PMID: 32841457 PMCID: PMC8675427 DOI: 10.1002/hbm.25154] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022] Open
Abstract
The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes.
Collapse
Affiliation(s)
- Xiang‐Zhen Kong
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
| | - Clyde Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
221
|
Kubicka AM, Charlier P, Balzeau A. The Internal Cranial Anatomy of a Female With Endocrine Disorders From a Mediaeval Population. Front Endocrinol (Lausanne) 2022; 13:862047. [PMID: 35498425 PMCID: PMC9048198 DOI: 10.3389/fendo.2022.862047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Gigantism and acromegaly have been observed in past populations; however, analyses usually focus on the morphological features of the post-cranial skeleton. The aim of this study is to characterize the internal anatomical features of the skull (brain endocast anatomy and asymmetry, frontal pneumatization, cranial thickness, sella turcica size) of an adult individual from the 11-14th centuries with these two diseases, in comparison with non-pathological individuals from the same population. The material consisted of 33 adult skulls from a mediaeval population, one of them belonging to an adult female with endocrine disorders (OL-23/77). Based on the CT scans, the internal cranial anatomy was analysed. The sella turcica of OL-23/77 is much larger than in the comparative sample. The endocast of the individual OL-23/77 shows a left frontal/left occipital petalia, while the comparative population mostly had right frontal/left occipital petalias. The asymmetry in petalia location in OL-23/77 comes within the range of variation observed in the comparative population. The individual has high values for cranial thickness. The frontal sinuses of the specimen analysed are similar in size and shape to the comparative sample only for data scaled to the skull length. Enlarged sella turcica is typical for individuals with acromegaly/gigantism. The pattern of the left frontal/left occipital petalia in the specimen OL-23/77 is quite rare. The position of the endocranial petalias has not influenced the degree of asymmetry in the specimen. Despite the large bone thickness values, skull of OL-23/77 does not show any abnormal features. The skull/endocast relationship in this individual shows some peculiarities in relation to its large size, while other internal anatomical features are within the normal range of variation of the comparative sample.
Collapse
Affiliation(s)
- Anna Maria Kubicka
- Department of Zoology, Poznań University of Life Sciences, Poznań, Poland
- PaleoFED Team, Unité Mixte de Recherche (UMR) 7194, Centre National de la Recherche Scientifique (CNRS), Département Homme et Environnement, Muséum National d’Histoire Naturelle, Musée de l’Homme, Paris, France
- *Correspondence: Anna Maria Kubicka,
| | - Philippe Charlier
- Laboratoire Anthropologie, Archéologie, Biologie (LAAB), Unité de Formation à la Recherche (UFR) des Sciences de la Santé, Université Paris-Saclay (UVSQ) & Musée du quai Branly - Jacques Chirac, Montigny-le-Bretonneux, France
- Direction, Département de la Recherche et de L’Enseignement Musée du quai Branly - Jacques Chirac, Paris, France
| | - Antoine Balzeau
- PaleoFED Team, Unité Mixte de Recherche (UMR) 7194, Centre National de la Recherche Scientifique (CNRS), Département Homme et Environnement, Muséum National d’Histoire Naturelle, Musée de l’Homme, Paris, France
- Royal Museum for Central Africa, Department of African Zoology, Tervuren, Belgium
| |
Collapse
|
222
|
Zlatkina V, Sprung-Much T, Petrides M. Spatial probability maps of the segments of the postcentral sulcus in the human brain. Cereb Cortex 2021; 32:3651-3668. [PMID: 34963136 PMCID: PMC9433426 DOI: 10.1093/cercor/bhab439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The postcentral sulcus is the posterior boundary of the postcentral gyrus where the somatosensory cortex is represented. In the human brain, the postcentral sulcus is composed of five distinct segments that are related to the somatosensory representation of different parts of the body. Segment 1 of the postcentral sulcus, located near the dorsomedial boundary of each hemisphere, is associated with toe/leg representations, segment 2 with arm/hand representations, segment 3 with blinking, and segments 4 and 5, which are near the lateral fissure and the parietal operculum, with the mouth and tongue representations. The variability in location and spatial extent of these five segments were quantified in 40 magnetic resonance imaging (MRI) anatomical brain scans registered to the stereotaxic space of the Montreal Neurological Institute (MNI space), in the form of volumetric (using MINC Toolkit) and surface (using FreeSurfer) spatial probability maps. These probability maps can be used by researchers and clinicians to improve the localization of the segments of the postcentral sulcus in MRI images of interest and also to improve the interpretation of the location of activation peaks generated in functional neuroimaging studies investigating somatosensory cortex.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Address correspondence to Veronika Zlatkina, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Trisanna Sprung-Much
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
223
|
Becker Y, Loh KK, Coulon O, Meguerditchian A. The Arcuate Fasciculus and language origins: Disentangling existing conceptions that influence evolutionary accounts. Neurosci Biobehav Rev 2021; 134:104490. [PMID: 34914937 DOI: 10.1016/j.neubiorev.2021.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
The Arcuate Fasciculus (AF) is of considerable interdisciplinary interest, because of its major implication in language processing. Theories about language brain evolution are based on anatomical differences in the AF across primates. However, changing methodologies and nomenclatures have resulted in conflicting findings regarding interspecies AF differences: Historical knowledge about the AF originated from human blunt dissections and later from monkey tract-tracing studies. Contemporary tractography studies reinvestigate the fasciculus' morphology, but remain heavily bound to unclear anatomical priors and methodological limitations. First, we aim to disentangle the influences of these three epistemological steps on existing AF conceptions, and to propose a contemporary model to guide future work. Second, considering the influence of various AF conceptions, we discuss four key evolutionary changes that propagated current views about language evolution: 1) frontal terminations, 2) temporal terminations, 3) greater Dorsal- versus Ventral Pathway expansion, 4) lateralisation. We conclude that new data point towards a more shared AF anatomy across primates than previously described. Language evolution theories should incorporate this continuous AF evolution across primates.
Collapse
Affiliation(s)
- Yannick Becker
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France.
| | - Kep Kee Loh
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France; Station de Primatologie CNRS, Rousset, France
| |
Collapse
|
224
|
Nava E, de Hevia MD, Bulf H, Macchi Cassia V. Signatures of functional visuospatial asymmetries in early infancy. J Exp Child Psychol 2021; 215:105326. [PMID: 34883319 DOI: 10.1016/j.jecp.2021.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Adults present a large number of asymmetries in visuospatial behavior that are known to be supported by functional brain lateralization. Although there is evidence of lateralization for motor behavior and language processing in infancy, no study has explored visuospatial attention biases in the early stages of development. In this study, we tested for the presence of a leftward visuospatial bias (i.e., pseudoneglect) in 4- and 5-month-old infants using an adapted version of the line bisection task. Infants were trained to identify the center of a horizontal line (Experiment 1) while their eye gazes were monitored using a remote eye-tracking procedure to measure their potential gazing error. Infants exhibited a robust pseudoneglect, gazing leftward with respect to the veridical midpoint of the horizontal line. To investigate whether infants' pseudoneglect generalizes to any given object or is dependent on the horizontal dimension, in Experiment 2 we assessed infants' gaze deployment in vertically oriented lines. No leftward bias was found, suggesting that early visuospatial attention biases in infancy are constrained by the orientation of the visual plane in which the information is organized. The interplay between biological and cultural factors that might contribute to the early establishment of the observed leftward bias in the allocation of visuospatial attention is discussed.
Collapse
Affiliation(s)
- Elena Nava
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Maria Dolores de Hevia
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Hermann Bulf
- Department of Psychology, University of Milano-Bicocca, 20126 Milano, Italy
| | | |
Collapse
|
225
|
Gao L, Xiao Y, Xu H. Gray matter asymmetry in asymptomatic carotid stenosis. Hum Brain Mapp 2021; 42:5665-5676. [PMID: 34498785 PMCID: PMC8559457 DOI: 10.1002/hbm.25645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Even clinically “asymptomatic” carotid stenosis is associated with multidomain cognitive impairment, gray matter (GM) atrophy, and silent lesion. However, the links between them remain unclear. Using structural MRI data, we examined GM asymmetry index (AI) and white matter hyperintensity (WMH) in 24 patients with severe asymptomatic carotid stenosis (SACS), 24 comorbidity‐matched controls, and independent samples of 84 elderly controls and 22 young adults. As compared to controls, SACS patients showed worse verbal memories, higher WMH burden, and right‐lateralized GM in posterior middle temporal and mouth‐somatomotor regions. These clusters extended to pars triangularis, lateral temporal, and cerebellar regions, when compared with young adults. Further, a full‐path of WMH burden (X), GM volume (atrophy, M1), AI (asymmetry, M2), and neuropsychological variables (Y) through a serial mediation model was analyzed. This analysis identified that left‐dominated GM atrophy and right‐lateralized asymmetry in the posterior middle temporal cortex mediated the relationship between WMH burden and recall memory in SACS patients. These results suggest that the unbalanced hemispheric atrophy in the posterior middle temporal cortex is crucial to mediating relationship between WMH burden and verbal recall memories, which may underlie accelerated aging and cognitive deterioration in patients with SACS and other vascular cognitive impairment.
Collapse
Affiliation(s)
- Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, China
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, China
| |
Collapse
|
226
|
Chen Y, Jiang Y, Kong X, Zhao C, Zhong S, Yang L, Feng T, Peng S, Bi Y, Corbetta M, Gong G. Common and unique structural plasticity after left and right hemisphere stroke. J Cereb Blood Flow Metab 2021; 41:3350-3364. [PMID: 34415210 PMCID: PMC8669287 DOI: 10.1177/0271678x211036606] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Strokes to the left and right hemisphere lead to distinctive behavioral profiles. Are left and right hemisphere strokes (LHS and RHS) associated with distinct or common poststroke neuroplasticity patterns? Understanding this issue would reveal hemispheric neuroplasticity mechanisms in response to brain damage. To this end, we investigated poststroke structural changes (2 weeks to 3 months post-onset) using longitudinal MRI data from 69 LHS and 55 RHS patients and 31 demographic-matched healthy control participants. Both LHS and RHS groups showed statistically common plasticity independent of the lesioned hemisphere, including 1) gray matter (GM) expansion in the ipsilesional and contralesional precuneus, and contralesional superior frontal gyrus; 2) GM shrinkage in the ipsilesional medial orbital frontal gyrus and middle cingulate cortex. On the other hand, only RHS patients had significant GM expansion in the ipsilesional medial superior and orbital frontal cortex. Importantly, these common and unique GM changes post-stroke largely overlapped with highly-connected cortical hub regions in healthy individuals. Moreover, they correlated with behavioral recovery, indicating that post-stroke GM volumetric changes in cortical hubs reflect compensatory rather than maladaptive mechanisms. These results highlight the importance of structural neuroplasticity in hub regions of the cortex, along with the hemispheric specificity, for stroke recovery.
Collapse
Affiliation(s)
- Yijun Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangyu Kong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Suyu Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tao Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Department of Rehabilitation, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shaoling Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Maurizio Corbetta
- Department of Neuroscience, Neurology Clinic, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Neurology, Radiology, and Neuroscience, Washington University in St. Louis, St. Louis, USA
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
227
|
Evidence That Methylphenidate Treatment Evokes Anxiety-Like Behavior Through Glucose Hypometabolism and Disruption of the Orbitofrontal Cortex Metabolic Networks. Neurotox Res 2021; 39:1830-1845. [PMID: 34797528 DOI: 10.1007/s12640-021-00444-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder without a consensus about the consequences. Here, we evaluate the effect of MPH treatment on glucose metabolism and metabolic network in the rat brain, as well as on performance in behavioral tests. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 44th postnatal day. Fluorodeoxyglucose-18 was used to investigate cerebral metabolism, and a cross-correlation matrix was used to examine the brain metabolic network in MPH-treated rats using micro-positron emission tomography imaging. Performance in the light-dark transition box, eating-related depression, and sucrose preference tests was also evaluated. While MPH provoked glucose hypermetabolism in the auditory, parietal, retrosplenial, somatosensory, and visual cortices, hypometabolism was identified in the left orbitofrontal cortex. MPH-treated rats show a brain metabolic network more efficient and connected, but careful analyses reveal that the MPH interrupts the communication of the orbitofrontal cortex with other brain areas. Anxiety-like behavior was also observed in MPH-treated rats. This study shows that glucose metabolism evaluated by micro-positron emission tomography in the brain can be affected by MPH in different ways according to the region of the brain studied. It may be related, at least in part, to a rewiring in the brain the metabolic network and behavioral changes observed, representing an important step in exploring the mechanisms and consequences of MPH treatment.
Collapse
|
228
|
Ondobaka S, De Doncker W, Ward N, Kuppuswamy A. Neural effective connectivity explains subjective fatigue in stroke. Brain 2021; 145:285-294. [PMID: 34791073 PMCID: PMC8967104 DOI: 10.1093/brain/awab287] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
Persistent fatigue is a major debilitating symptom in many psychiatric and neurological conditions, including stroke. Post-stroke fatigue has been linked to low corticomotor excitability. Yet, it remains elusive as to what the neuronal mechanisms are that underlie motor cortex excitability and chronic persistence of fatigue. In this cross-sectional observational study, in two experiments we examined a total of 59 non-depressed stroke survivors with minimal motoric and cognitive impairments using ‘resting-state’ MRI and single- and paired-pulse transcranial magnetic stimulation. In the first session of Experiment 1, we assessed resting motor thresholds—a typical measure of cortical excitability—by applying transcranial magnetic stimulation to the primary motor cortex (M1) and measuring motor-evoked potentials in the hand affected by stroke. In the second session, we measured their brain activity with resting-state MRI to assess effective connectivity interactions at rest. In Experiment 2 we examined effective inter-hemispheric connectivity in an independent sample of patients using paired-pulse transcranial magnetic stimulation. We also assessed the levels of non-exercise induced, persistent fatigue using Fatigue Severity Scale (FSS-7), a self-report questionnaire that has been widely applied and validated across different conditions. We used spectral dynamic causal modelling in Experiment 1 and paired-pulse transcranial magnetic stimulation in Experiment 2 to characterize how neuronal effective connectivity relates to self-reported post-stroke fatigue. In a multiple regression analysis, we used the balance in inhibitory connectivity between homologue regions in M1 as the main predictor, and have included lesioned hemisphere, resting motor threshold and levels of depression as additional predictors. Our novel index of inter-hemispheric inhibition balance was a significant predictor of post-stroke fatigue in Experiment 1 (β = 1.524, P = 7.56 × 10−5, confidence interval: 0.921 to 2.127) and in Experiment 2 (β = 0.541, P = 0.049, confidence interval: 0.002 to 1.080). In Experiment 2, depression scores and corticospinal excitability, a measure associated with subjective fatigue, also significantly accounted for variability in fatigue. We suggest that the balance in inter-hemispheric inhibitory effects between primary motor regions can explain subjective post-stroke fatigue. Findings provide novel insights into neural mechanisms that underlie persistent fatigue.
Collapse
Affiliation(s)
- Sasha Ondobaka
- CoreMind ltd, NW1 8NP, London, UK.,Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, WC1N 3BG London, UK
| | - William De Doncker
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Nick Ward
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, WC1N 3BG London, UK.,NHNN, University College London, WC1N 3BG London, UK
| | - Annapoorna Kuppuswamy
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, WC1N 3BG London, UK
| |
Collapse
|
229
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
230
|
Asymmetry of brain structure and function: 40 years after Sperry's Nobel Prize. Brain Struct Funct 2021; 227:421-424. [PMID: 34779912 DOI: 10.1007/s00429-021-02426-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
231
|
Raja R, Na X, Glasier CM, Badger TM, Bellando J, Ou X. Associations between Cortical Asymmetry and Domain Specific Cognitive Functions in Healthy Children. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3127-3132. [PMID: 34891904 PMCID: PMC9179091 DOI: 10.1109/embc46164.2021.9630831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cortical asymmetry and functional lateralization form intriguing and fundamental features of human brain organization, and is complicated by individual differences and evolvement with age. While many studies have investigated neuroanatomical differences between hemispheres as well as functional lateralization of the brain for different age groups, few have looked into the associations between cortical asymmetry and development of cognitive functions in children. In this study, we aimed to identify relationships between hemispheric asymmetry in brain cortex measured by MRI and cognitive development in healthy young children evaluated by a comprehensive battery of neuropsychological tests. Structural MRI data were obtained from 71 children in the age range of 7.5 to 8.5 years. Structural lateralization index (SLI), a reflection of the brain asymmetry, was computed for each of the 3 cortical morphometry measurements: cortical thickness, surface area and gray matter volume. A total of 34 bilateral regions were studied for the whole brain cortex as defined by the Desikan atlas. Region-wise SLI was correlated with domain specific cognitive scores using partial correlation analysis controlled for the potential confounding effects of age and sex. Significant correlations were identified between test scores of multiple cognitive domains and SLI of several cortical regions. Specifically, SLI of total surface area of precuneus and insula significantly correlated with measures of executive function behavior; significant relationships were also found between SLI of mean cortical thickness of superior parietal cortex and memory and language tests scores; in addition, SLI of parahippocampal gyrus also showed significant correlations with language test scores for all 3 morphometry features. These findings revealed regional hemispheric asymmetries that may be linked to specific cognitive abilities in children.Clinical relevance- This study shows associations between structural lateralization in different brain cortical regions and variations in specific cognitive functions in healthy children.
Collapse
Affiliation(s)
- Rajikha Raja
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Xiaoxu Na
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Charles M. Glasier
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Thomas M. Badger
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205 USA
| | - Jayne Bellando
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Xiawei Ou
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
- Arkansas Children’s Nutrition Center, Little Rock, AR 72205 USA
| |
Collapse
|
232
|
Nam H, Pae C, Eo J, Oh MK, Park HJ. Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework. PLoS One 2021; 16:e0258992. [PMID: 34673832 PMCID: PMC8530290 DOI: 10.1371/journal.pone.0258992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022] Open
Abstract
Systematic evaluation of cortical differences between humans and macaques calls for inter-species registration of the cortex that matches homologous regions across species. For establishing homology across brains, structural landmarks and biological features have been used without paying sufficient attention to functional homology. The present study aimed to determine functional homology between the human and macaque cortices, defined in terms of functional network properties, by proposing an iterative functional network-based registration scheme using surface-based spherical demons. The functional connectivity matrix of resting-state functional magnetic resonance imaging (rs-fMRI) among cortical parcellations was iteratively calculated for humans and macaques. From the functional connectivity matrix, the functional network properties such as principal network components were derived to estimate a deformation field between the human and macaque cortices. The iterative registration procedure updates the parcellation map of macaques, corresponding to the human connectome project’s multimodal parcellation atlas, which was used to derive the macaque’s functional connectivity matrix. To test the plausibility of the functional network-based registration, we compared cortical registration using structural versus functional features in terms of cortical regional areal change. We also evaluated the interhemispheric asymmetry of regional area and its inter-subject variability in humans and macaques as an indirect validation of the proposed method. Higher inter-subject variability and interhemispheric asymmetry were found in functional homology than in structural homology, and the assessed asymmetry and variations were higher in humans than in macaques. The results emphasize the significance of functional network-based cortical registration across individuals within a species and across species.
Collapse
Affiliation(s)
- Haewon Nam
- Department of Liberal Arts, Hongik University, Sejong, Republic of Korea
| | - Chongwon Pae
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Jinseok Eo
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Maeng-Keun Oh
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hae-Jeong Park
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Center for Systems and Translational Brain Sciences, Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
- Department of Nuclear Medicine, Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Cognitive Science, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
233
|
Fraser MA, Walsh EI, Shaw ME, Anstey KJ, Cherbuin N. Longitudinal Effects of Physical Activity Change on Hippocampal Volumes over up to 12 Years in Middle and Older Age Community-Dwelling Individuals. Cereb Cortex 2021; 32:2705-2716. [PMID: 34671805 DOI: 10.1093/cercor/bhab375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022] Open
Abstract
The objectives of this study were to investigate the long-term associations between changes in physical activity levels and hippocampal volumes over time, while considering the influence of age, sex, and APOE-ε4 genotype. We investigated the effects of change in physical activity on hippocampal volumes in 411 middle age (mean age = 47.2 years) and 375 older age (mean age = 63.1 years) adults followed up to 12 years. An annual volume decrease was observed in the left (middle age: 0.46%; older age: 0.51%) but not in the right hippocampus. Each additional 10 metabolic equivalents (METs, ~2 h of moderate exercise) increase in weekly physical activity was associated with 0.33% larger hippocampal volume in middle age (equivalent to ~1 year of typical aging). In older age, each additional MET was associated with 0.05% larger hippocampal volume; however, the effects declined with time by 0.005% per year. For older age APOE-ε4 carriers, each additional MET was associated with a 0.10% increase in hippocampal volume. No sex effects of physical activity change were found. Increasing physical activity has long-term positive effects on hippocampal volumes and appears especially beneficial for older APOE-ε4 carriers. To optimize healthy brain aging, physical activity programs should focus on creating long-term exercise habits.
Collapse
Affiliation(s)
- Mark A Fraser
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Erin I Walsh
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Population Health Exchange, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Marnie E Shaw
- ANU College of Engineering & Computer Science, Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Kaarin J Anstey
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Ageing Futures Institute, University of New South Wales, Sydney, New South Wales 2052, Australia.,Neuroscience Research Australia, Sydney, New South Wales 2031, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
234
|
Kagan MS, Mongerson CRL, Zurakowski D, Jennings RW, Bajic D. Infant study of hemispheric asymmetry after long-gap esophageal atresia repair. Ann Clin Transl Neurol 2021; 8:2132-2145. [PMID: 34662511 PMCID: PMC8607454 DOI: 10.1002/acn3.51465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVES Previous studies have demonstrated that infants are typically born with a left-greater-than-right forebrain asymmetry that reverses throughout the first year of life. We hypothesized that critically ill term-born and premature patients following surgical and critical care for long-gap esophageal atresia (LGEA) would exhibit alteration in expected forebrain asymmetry. METHODS Term-born (n = 13) and premature (n = 13) patients, and term-born controls (n = 23) <1 year corrected age underwent non-sedated research MRI following completion of LGEA treatment via Foker process. Structural T1- and T2-weighted images were collected, and ITK-SNAP was used for forebrain tissue segmentation and volume acquisition. Data were presented as absolute (cm3 ) and normalized (% total forebrain) volumes of the hemispheres. All measures were checked for normality, and group status was assessed using a general linear model with age at scan as a covariate. RESULTS Absolute volumes of both forebrain hemispheres were smaller in term-born and premature patients in comparison to controls (p < 0.001). Normalized hemispheric volume group differences were detected by T1-weighted analysis, with premature patients demonstrating right-greater-than-left hemisphere volumes in comparison to term-born patients and controls (p < 0.01). While normalized group differences were very subtle (a right hemispheric predominance of roughly 2% of forebrain volume), they represent a deviation from the expected pattern of hemispheric brain asymmetry. INTERPRETATION Our pilot quantitative MRI study of hemispheric volumes suggests that premature patients might be at risk of altered expected left-greater-than-right forebrain asymmetry following repair of LGEA. Future neurobehavioral studies in infants born with LGEA are needed to elucidate the functional significance of presented anatomical findings.
Collapse
Affiliation(s)
- Mackenzie S Kagan
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA
| | - Chandler R L Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA
| | - David Zurakowski
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA.,Harvard Medical School, Harvard University, 25 Shattuck St., Boston, Massachusetts, 02115, USA
| | - Russell W Jennings
- Harvard Medical School, Harvard University, 25 Shattuck St., Boston, Massachusetts, 02115, USA.,Department of Surgery, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA.,Esophageal and Airway Treatment Center, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, Massachusetts, 02115, USA.,Harvard Medical School, Harvard University, 25 Shattuck St., Boston, Massachusetts, 02115, USA
| |
Collapse
|
235
|
Liu MN, Pantouw JG, Yang KC, Hu LY, Liou YJ, Lirng JF, Chou YH. Sub-regional hippocampal volumes in first-episode drug-naïve major depression disorder. Neurosci Lett 2021; 763:136178. [PMID: 34416346 DOI: 10.1016/j.neulet.2021.136178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/20/2023]
Abstract
Hippocampal volume reduction was reported to underlie depressive symptomatology, however, the evidence to date remains inconsistent. For the complex intrinsic organization of hippocampus, the hippocampal volumes can be further divided into subfields or axial parts. The current study aimed to explore the alterations of hippocampal sub-regional volumes in first episode drug-naïve major depressive disorder (MDD) by two segmentation methods. Thirty-five first-episode drug-naïve MDD and 35 age- and gender-matched healthy controls (HC) were recruited. Volumes of three sub-regions of hippocampus along the longitudinal axis (head, body and tail) were analyzed manually and eight transverse subfields were automatically determined using FreeSurfer. An asymmetric index (AI) of volumes was defined as (∣Left - Right∣/∣Left + Right∣) * 100. There were significant reductions in the volumes of bilateral hippocampal head in MDD compared to HC. The volumes of eight subfields were not different between groups. MDD patients had higher AI values in the subfield of cornu ammonis 4/dentate gyrus than HC. The change in hippocampal sub-regional volumes might be an imaging biomarker in the first-episode, drug-naïve patients with MDD. Current findings may contribute to developing new diagnostic and therapeutic strategies for major depression.
Collapse
Affiliation(s)
- Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | | | - Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Li-Yu Hu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jiing-Feng Lirng
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112201, Taiwan; Center for Quality Management, Taipei Veterans General Hospital, Taipei 112201, Taiwan.
| |
Collapse
|
236
|
Baizer JS, Webster CJ, Witelson SF. Individual variability in the size and organization of the human arcuate nucleus of the medulla. Brain Struct Funct 2021; 227:159-176. [PMID: 34613435 DOI: 10.1007/s00429-021-02396-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
The arcuate nucleus (Arc) of the medulla is found in almost all human brains and in a small percentage of chimpanzee brains. It is absent in the brains of other mammalian species including mice, rats, cats, and macaque monkeys. The Arc is classically considered a precerebellar relay nucleus, receiving input from the cerebral cortex and projecting to the cerebellum via the inferior cerebellar peduncle. However, several studies have found aplasia of the Arc in babies who died of SIDS (Sudden Infant Death Syndrome), and it was suggested that the Arc is the locus of chemosensory neurons critical for brainstem control of respiration. Aplasia of the Arc, however, has also been reported in adults, suggesting that it is not critical for survival. We have examined the Arc in closely spaced Nissl-stained sections in thirteen adult human cases to acquire a better understanding of the degree of variability of its size and location in adults. We have also examined immunostained sections to look for neurochemical compartments in this nucleus. Caudally, neurons of the Arc are ventrolateral to the pyramidal tracts (py); rostrally, they are ventro-medial to the py and extend up along the midline. In some cases, the Arc is discontinuous, with a gap between sections with the ventrolaterally located and the ventromedially located neurons. In all cases, there is some degree of left-right asymmetry in Arc position, size, and shape at all rostro-caudal levels. Somata of neurons in the Arc express calretinin (CR), neuronal nitric oxide synthase (nNOS), and nonphosphorylated neurofilament protein (NPNFP). Calbindin (CB) is expressed in puncta whereas there is no expression of parvalbumin (PV) in somata or puncta. There is also immunostaining for GAD and GABA receptors suggesting inhibitory input to Arc neurons. These properties were consistent among cases. Our data show differences in location of caudal and rostral Arc neurons and considerable variability among cases in the size and shape of the Arc. The variability in size suggests that "hypoplasia" of the Arc is difficult to define. The discontinuity of the Arc in many cases suggests that establishing aplasia of the Arc requires examination of many closely spaced sections through the brainstem.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, South Campus, Buffalo, NY, 14214, USA.
| | - Charles J Webster
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, South Campus, Buffalo, NY, 14214, USA
| | - Sandra F Witelson
- Department of Psychiatry and Behavioural Neurosciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
237
|
Alterations in white matter integrity and asymmetry in patients with benign childhood epilepsy with centrotemporal spikes and childhood absence epilepsy: An automated fiber quantification tractography study. Epilepsy Behav 2021; 123:108235. [PMID: 34411950 DOI: 10.1016/j.yebeh.2021.108235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 07/19/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE To investigate whether patients with benign childhood epilepsy with centrotemporal spikes (BECTS) and childhood absence epilepsy (CAE) show distinct patterns of white matter (WM) alterations and structural asymmetry compared with healthy controls and the relationship between WM alterations and epilepsy-related clinical variables. METHODS We used automated fiber quantification to create tract profiles of fractional anisotropy (FA) and mean diffusivity (MD) in twenty-six patients with BECTS, twenty-nine patients with CAE, and twenty-four healthy controls. Group differences in FA and MD were quantified at 100 equidistant nodes along the fiber tract and these alterations and epilepsy-related clinical variables were correlated. A lateralization index (LI) representing the structural asymmetry of the fiber tract was computed and compared between both patient groups and controls. RESULTS Compared with healthy controls, the BECTS group showed widespread FA reduction in 43.75% (7/16) and MD elevation in 50% (8/16) of identified fiber tracts, and the CAE group showed regional FA reduction in 31.25% (5/16) and MD elevation in 25% (4/16) of identified fiber tracts. In the BECTS group, FA and MD in the right anterior thalamic radiation positively and negatively correlated with the number of antiepileptic drugs, respectively, and MD in the right arcuate fasciculus (AF) positively correlated with seizure frequency. In the CAE group, the LI values were significantly lower in the inferior fronto-occipital fasciculus and the AF. CONCLUSION The two childhood epilepsy syndromes display different patterns of WM alterations and structural asymmetry, suggesting that neuroanatomical differences may underlie the different profiles of BECTS and CAE.
Collapse
|
238
|
Peyvandi Karizbodagh M, Sadr-Nabavi A, Hami J, Mohammadipour A, Khoshdel-Sarkarizi H, Kheradmand H, Fallahnezhad S, Mahmoudi M, Haghir H. Developmental regulation and lateralization of N-methyl-d-aspartate (NMDA) receptors in the rat hippocampus. Neuropeptides 2021; 89:102183. [PMID: 34333368 DOI: 10.1016/j.npep.2021.102183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/01/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are expressed abundantly in the brain and play a crucial role in the regulation of central nervous system (CNS) development, learning, and memory. During early neuronal development, NMDARs modulate neurogenesis, neuronal differentiation and migration, and synaptogenesis. The present study aimed to examine the developmental expression of NMDARs subunits, NR1 and NR2B, in the developing hippocampus of neonatal rats during the first two postnatal weeks. Fifty-four male offspring were randomly divided into three age groups, postnatal days (P) 0, 7, and 14. Real-time-PCR, western blotting, and immunohistochemistry (IHC) analyses were employed to examine and compare the hippocampal expression of the NMDA receptor subunits. The highest mRNA expression of NR1 and NR2B subunits was observed at P7, regardless of its laterality. The mRNA expression of both subunits in the right hippocampus was significantly higher than that of the left one at P0 and P7. Similarly, the highest protein level expression of NR1 and NR2B subunits was also observed at P7 in both sides hippocampi. Although the protein expression of NR1 was significantly higher on the right side in all studied days, the NR2B was significantly higher in the right hippocampus only at P7. The analysis of optical density (OD) has shown a marked increase in the distribution pattern of the NR1 and NR2B subunits at P7 in all hippocampal subregions. In conclusion, there is a marked right-left asymmetry in the expression of NR1 and NR2B subunits in the developing rat hippocampus, which might be considered as a probable mechanism for the lateral differences in the structure and function of the hippocampus in rats.
Collapse
Affiliation(s)
- Mostafa Peyvandi Karizbodagh
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Hami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Institute of Anatomy and Cell Biology, Universitäsmedizin Greifswald, 17487 Greifswald, Germany
| | - Abbas Mohammadipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Khoshdel-Sarkarizi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Kheradmand
- Hazrat Rasoul Hospital, Department of Neurosurgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fallahnezhad
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, School of Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
239
|
Postema MC, Hoogman M, Ambrosino S, Asherson P, Banaschewski T, Bandeira CE, Baranov A, Bau CH, Baumeister S, Baur-Streubel R, Bellgrove MA, Biederman J, Bralten J, Brandeis D, Brem S, Buitelaar JK, Busatto GF, Castellanos FX, Cercignani M, Chaim-Avancini TM, Chantiluke KC, Christakou A, Coghill D, Conzelmann A, Cubillo AI, Cupertino RB, de Zeeuw P, Doyle AE, Durston S, Earl EA, Epstein JN, Ethofer T, Fair DA, Fallgatter AJ, Faraone SV, Frodl T, Gabel MC, Gogberashvili T, Grevet EH, Haavik J, Harrison NA, Hartman CA, Heslenfeld DJ, Hoekstra PJ, Hohmann S, Høvik MF, Jernigan TL, Kardatzki B, Karkashadze G, Kelly C, Kohls G, Konrad K, Kuntsi J, Lazaro L, Lera-Miguel S, Lesch KP, Louza MR, Lundervold AJ, Malpas CB, Mattos P, McCarthy H, Namazova-Baranova L, Rosa N, Nigg JT, Novotny SE, Weiss EO, Tuura RLO, Oosterlaan J, Oranje B, Paloyelis Y, Pauli P, Picon FA, Plessen KJ, Ramos-Quiroga JA, Reif A, Reneman L, Rosa PG, Rubia K, Schrantee A, Schweren LJ, Seitz J, Shaw P, Silk TJ, Skokauskas N, Vila JCS, Stevens MC, Sudre G, Tamm L, Tovar-Moll F, van Erp TG, Vance A, Vilarroya O, Vives-Gilabert Y, von Polier GG, Walitza S, Yoncheva YN, Zanetti MV, Ziegler GC, Glahn DC, Jahanshad N, et alPostema MC, Hoogman M, Ambrosino S, Asherson P, Banaschewski T, Bandeira CE, Baranov A, Bau CH, Baumeister S, Baur-Streubel R, Bellgrove MA, Biederman J, Bralten J, Brandeis D, Brem S, Buitelaar JK, Busatto GF, Castellanos FX, Cercignani M, Chaim-Avancini TM, Chantiluke KC, Christakou A, Coghill D, Conzelmann A, Cubillo AI, Cupertino RB, de Zeeuw P, Doyle AE, Durston S, Earl EA, Epstein JN, Ethofer T, Fair DA, Fallgatter AJ, Faraone SV, Frodl T, Gabel MC, Gogberashvili T, Grevet EH, Haavik J, Harrison NA, Hartman CA, Heslenfeld DJ, Hoekstra PJ, Hohmann S, Høvik MF, Jernigan TL, Kardatzki B, Karkashadze G, Kelly C, Kohls G, Konrad K, Kuntsi J, Lazaro L, Lera-Miguel S, Lesch KP, Louza MR, Lundervold AJ, Malpas CB, Mattos P, McCarthy H, Namazova-Baranova L, Rosa N, Nigg JT, Novotny SE, Weiss EO, Tuura RLO, Oosterlaan J, Oranje B, Paloyelis Y, Pauli P, Picon FA, Plessen KJ, Ramos-Quiroga JA, Reif A, Reneman L, Rosa PG, Rubia K, Schrantee A, Schweren LJ, Seitz J, Shaw P, Silk TJ, Skokauskas N, Vila JCS, Stevens MC, Sudre G, Tamm L, Tovar-Moll F, van Erp TG, Vance A, Vilarroya O, Vives-Gilabert Y, von Polier GG, Walitza S, Yoncheva YN, Zanetti MV, Ziegler GC, Glahn DC, Jahanshad N, Medland SE, ENIGMA ADHD Working Group, Thompson PM, Fisher SE, Franke B, Francks C. Analysis of structural brain asymmetries in attention-deficit/hyperactivity disorder in 39 datasets. J Child Psychol Psychiatry 2021; 62:1202-1219. [PMID: 33748971 PMCID: PMC8455726 DOI: 10.1111/jcpp.13396] [Show More Authors] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.
Collapse
Affiliation(s)
- Merel C. Postema
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Sara Ambrosino
- NICHE lab, Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Cibele E. Bandeira
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandr Baranov
- Research Institute of Pediatrics and child health of Central clinical hospital of the Russian Academy of Sciences of the Ministry of Science and Higher Education of the Russian Federation, Moscow, Russia
| | - Claiton H.D. Bau
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Ramona Baur-Streubel
- Department of Biological Psychology, Clinical Psychology and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Mark A. Bellgrove
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Joseph Biederman
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA
| | - Janita Bralten
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
- The Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Silvia Brem
- The Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
- Karakter child and adolescent psychiatry University Center, Nijmegen, The Netherlands
| | - Geraldo F. Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Francisco X. Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Tiffany M. Chaim-Avancini
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Kaylita C. Chantiluke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anastasia Christakou
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, UK
| | - David Coghill
- Departments of Paediatrics and Psychiatry, University of Melbourne, Melbourne, Australia
- Murdoch Children’s Research Institute, Melbourne, Australia
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Tübingen, Germany
- PFH – Private University of Applied Sciences, Department of Psychology (Clinical Psychology II), Göttingen, Germany
| | - Ana I. Cubillo
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Renata B. Cupertino
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrick de Zeeuw
- NICHE Lab, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Alysa E. Doyle
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, USA
| | - Sarah Durston
- NICHE Lab, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Eric A. Earl
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Jeffery N. Epstein
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Thomas Ethofer
- Clinic for Psychiatry/Psychotherapy Tübingen / Department for Biomedical Magnetic Resonance, Tübingen
| | - Damien A. Fair
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
| | - Andreas J. Fallgatter
- Department of Psychiatry and Psychotherapy, University Hospital of Tuebingen, Tuebingen, Germany
- LEAD Graduate School, University of Tuebingen, Germany
| | - Stephen V. Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Germany
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Matt C. Gabel
- Department of Neuroscience, Brighton and Sussex Medical School, Falmer, Brighton, UK
| | - Tinatin Gogberashvili
- National Medical Research Center for Children’s Health, Laboratory of Neurology and Cognitive Health, Moscow, Russia
| | - Eugenio H. Grevet
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Department of Genetics, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Developmental Psychiatry Program, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jan Haavik
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Neil A. Harrison
- Department of Neuroscience, Brighton and Sussex Medical School, Falmer, Brighton, UK
- Sussex Partnership NHS Foundation Trust, Swandean, East Sussex, UK
| | - Catharina A. Hartman
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
| | - Dirk J. Heslenfeld
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter J. Hoekstra
- University of Groningen, University Medical Center Groningen, Department of Child and Adolescent Psychiatry
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Mannheim, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany
| | - Marie F. Høvik
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Bernd Kardatzki
- Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany
| | - Georgii Karkashadze
- Research Institute of Pediatrics and child health of Central clinical hospital of the Russian Academy of Sciences of the Ministry of Science and Higher Education of the Russian Federation, Moscow, Russia
| | - Clare Kelly
- School of Psychology and Department of Psychiatry at the School of Medicine, Trinity College Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Ireland
| | - Gregor Kohls
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital RWTH Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging (INM-11), Institute for Neuroscience and Medicine, Research Center Jülich, Germany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre; Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Luisa Lazaro
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Network Research Center on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Medicine, University of Barcelona, Spain
| | - Sara Lera-Miguel
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciencies, Hospital Clínic, Barcelona
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Mario R. Louza
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Astri J. Lundervold
- K.G. Jebsen Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Charles B Malpas
- Developmental Imaging Group, Murdoch Children’s Research Institute, Melbourne, Australia
- Clinical Outcomes Research Unit (CORe), Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Paulo Mattos
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro
| | - Hazel McCarthy
- Department of Psychiatry, Trinity College Dublin, Ireland
- Centre of Advanced Medical Imaging, St James’s Hospital, Dublin, Ireland
| | - Leyla Namazova-Baranova
- Research Institute of Pediatrics and child health of Central clinical hospital of the Russian Academy of Sciences of the Ministry of Science and Higher Education of the Russian Federation, Moscow, Russia
- Russian National Research Medical University Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nicolau Rosa
- Department of Child and Adolescent Psychiatry and Psychology, Institut of Neurosciencies, Hospital Clínic, Barcelona, Spain
| | - Joel T Nigg
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland OR, USA
| | | | - Eileen Oberwelland Weiss
- Translational Neuroscience, Child and Adolescent Psychiatry, University Hospital RWTH Aachen, Aachen, Germany
- Cognitive Neuroscience (INM-3), Institute for Neuroscience and Medicine, Research Center Jülich
| | - Ruth L. O’Gorman Tuura
- Center for MR Research, University Children’s Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP)
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Emma Children’s Hospital Amsterdam University Medical Centers, University of Amsterdam, Emma Neuroscience Group, department of Pediatrics, Amsterdam Reproduction & Development, Amsterdam, The Netherlands
| | - Bob Oranje
- NICHE Lab, Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy) and Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Felipe A. Picon
- Adulthood ADHD Outpatient Program (ProDAH), Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Kerstin J. Plessen
- Child and Adolescent Mental Health Centre, Capital Region Copenhagen, Denmark
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, University Hospital Lausanne, Switzerland
| | - J. Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Catalonia, Spain
- Group of Psychiatry, Mental Health and Addictions, Vall d’Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Catalonia, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Liesbeth Reneman
- Amsterdam University Medical Center, Academic Medical Center, Amsterdam, the Netherlands
| | - Pedro G.P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Department and Institute of Psychiatry, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam; the Netherlands
| | - Lizanne J.S. Schweren
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
| | - Jochen Seitz
- Child and Adolescent Psychiatry, University Hospital RWTH Aachen, Aachen, Germany
| | - Philip Shaw
- National Human Genome Research Institute and National Institute of Mental health, Bethesda, MD, USA
| | - Tim J. Silk
- Deakin University, School of Psychology, Geelong, Australia
- Murdoch Children’s Research Institute, Developmental Imaging, Melbourne, Australia
| | - Norbert Skokauskas
- Centre for child and adolescent mental health, NTNU, Norway
- Institute of Mental Health, Norwegian University of Science and Technology
| | | | - Michael C. Stevens
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
- Department of Psychiatry, Yale University School of Medicine, USA
| | - Gustavo Sudre
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Leanne Tamm
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, USA
- College of Medicine, University of Cincinnati, USA
| | - Fernanda Tovar-Moll
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- Morphological Sciences Program, Federal University of Rio de Janeiro, Rio de Janeiro
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, 5251 California Ave, Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, 309 Qureshey Research Lab, Irvine, CA, 92697, USA
| | - Alasdair Vance
- Department of Paediatrics, University of Melbourne, Australia
| | - Oscar Vilarroya
- Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Georg G. von Polier
- Child and Adolescent Psychiatry, University Hospital RWTH Aachen, Aachen, Germany
- Brain and Behavior (INM-7), Institute for Neuroscience and Medicine, Research Center Jülich, Germany
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Yuliya N. Yoncheva
- Department of Child and Adolescent Psychiatry, NYU Child Study Center, Hassenfeld Children’s Hospital at NYU Langone
| | - Marcus V. Zanetti
- Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo Brazil
| | - Georg C. Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - David C. Glahn
- Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, CT, USA
- Department of Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115-5724, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90292
| | - Sarah E. Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Paul M. Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Simon E. Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Radboud university medical center, Nijmegen, Netherlands
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
240
|
Abstract
Between the cornea and the posterior pole of the eye, there is a transepithelial potential capable of being registered through an electrooculogram (EOG). It is questionable whether electrooculographic responses are similar in both eyes despite ocular dominance in human beings. We studied the effect of different electrooculographic stimulation parameters, in terms of directionality, linear and angular velocity, contrast, and state of adaptation to light/dark, that may induce possible interocular differences in visual function. The study was carried out with electroencephalography-type surface electrodes placed in the medial, lateral, superior, and inferior positions of both human eyes to record the eye movements. We found a greater amplitude of the EOG response in the left eye than to the right eye for light bars moving from right to left (p < 0.01; t-test). The EOG response amplitude was similar in both eyes for light bars moving in vertical directions, but greater than horizontal or rotational stimuli. We conclude that vertical stimuli should be used for EOG functional evaluation of eye movements, since horizontal stimuli generate significant interocular differences.
Collapse
|
241
|
Lubben N, Ensink E, Coetzee GA, Labrie V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun 2021; 3:fcab211. [PMID: 34557668 PMCID: PMC8454206 DOI: 10.1093/braincomms/fcab211] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/16/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
The lateralization of the human brain may provide clues into the pathogenesis and progression of neurodegenerative diseases. Though differing in their presentation and underlying pathologies, neurodegenerative diseases are all devastating and share an intriguing theme of asymmetrical pathology and clinical symptoms. Parkinson’s disease, with its distinctive onset of motor symptoms on one side of the body, stands out in this regard, but a review of the literature reveals asymmetries in several other neurodegenerative diseases. Here, we review the lateralization of the structure and function of the healthy human brain and the common genetic and epigenetic patterns contributing to the development of asymmetry in health and disease. We specifically examine the role of asymmetry in Parkinson’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, and interrogate whether these imbalances may reveal meaningful clues about the origins of these diseases. We also propose several hypotheses for how lateralization may contribute to the distinctive and enigmatic features of asymmetry in neurodegenerative diseases, suggesting a role for asymmetry in the choroid plexus, neurochemistry, protein distribution, brain connectivity and the vagus nerve. Finally, we suggest how future studies may reveal novel insights into these diseases through the lens of asymmetry.
Collapse
Affiliation(s)
- Noah Lubben
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Elizabeth Ensink
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerhard A Coetzee
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Viviane Labrie
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
242
|
Cubo E, Martínez-Martín P, González-Bernal J, Casas E, Arnaiz S, Miranda J, Gámez P, Santos-García D. Effects of Motor Symptom Laterality on Clinical Manifestations and Quality of Life in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2021; 10:1611-1620. [PMID: 32741839 DOI: 10.3233/jpd-202067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The asymmetry of motor manifestations present in Parkinson's disease (PD) suggests the existence of differences between both hemispheres. As a consequence, this asymmetry might contribute to different PD clinical phenotypes. OBJECTIVE To study the relationship between motor symptom laterality with motor, non-motor symptoms (NMS), freezing of gait (FOG), and quality of life (QoL) impairment in PD. METHODS In this cross-sectional study, we measured motor symptoms severity and complications with the Unified Parkinsons' disease Rating Scale (UPDRS), FOG with the FOG questionnaire, QoL with the 39-item PD Quality of Life Questionnaire Summary Index, and NMS with the NMS, Visual Analogue Scales for Pain and Fatigue, Beck Depression Inventory-II, Impulsive-Compulsive Disorders, and PD Sleep and Cognitive Rating scales. We defined left and right motor laterality using the UPDRS part III. We used comparative, regression, and effect size analyses to evaluate the impact of asymmetry on motor and NMS, FOG, and QoL. RESULTS 342 left (LPD) and 310 right (RPD) patients, with a mean age of 62.0±8.8 years, were included. In multivariate regression analysis, LPD was associated with a greater motor (OR = 1,50, 95% CI 1.02-2.21), FOG (OR = 1.56, 95% CI 1.01-2.41), and overall NMS impairment (OR = 1.43, 95% CI 1.001-2.06), and better QoL (OR = 0.52 95% CI 0.32-0.85). Overall, only a mild effect size was found for all comparisons in which significant differences were present. CONCLUSION In this large multicenter study, motor symptom laterality seems to carry a mild but significant impact on PD clinical manifestations, and QoL.
Collapse
Affiliation(s)
- Esther Cubo
- Department of Neurology, Hospital Universitario Burgos, Burgos, Spain
| | - Pablo Martínez-Martín
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Elena Casas
- Department of Neurology, Hospital Universitario Burgos, Burgos, Spain
| | - Sandra Arnaiz
- Department of Neurology, Hospital Universitario Burgos, Burgos, Spain
| | - Javier Miranda
- Department of Neurology, Hospital Universitario Burgos, Burgos, Spain
| | - Pedro Gámez
- Department of Neurology, Hospital Universitario Burgos, Burgos, Spain
| | | | | |
Collapse
|
243
|
Sanfelici R, Ruef A, Antonucci LA, Penzel N, Sotiras A, Dong MS, Urquijo-Castro M, Wenzel J, Kambeitz-Ilankovic L, Hettwer MD, Ruhrmann S, Chisholm K, Riecher-Rössler A, Falkai P, Pantelis C, Salokangas RKR, Lencer R, Bertolino A, Kambeitz J, Meisenzahl E, Borgwardt S, Brambilla P, Wood SJ, Upthegrove R, Schultze-Lutter F, Koutsouleris N, Dwyer DB. Novel Gyrification Networks Reveal Links with Psychiatric Risk Factors in Early Illness. Cereb Cortex 2021; 32:1625-1636. [PMID: 34519351 DOI: 10.1093/cercor/bhab288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Adult gyrification provides a window into coordinated early neurodevelopment when disruptions predispose individuals to psychiatric illness. We hypothesized that the echoes of such disruptions should be observed within structural gyrification networks in early psychiatric illness that would demonstrate associations with developmentally relevant variables rather than specific psychiatric symptoms. We employed a new data-driven method (Orthogonal Projective Non-Negative Matrix Factorization) to delineate novel gyrification-based networks of structural covariance in 308 healthy controls. Gyrification within the networks was then compared to 713 patients with recent onset psychosis or depression, and at clinical high-risk. Associations with diagnosis, symptoms, cognition, and functioning were investigated using linear models. Results demonstrated 18 novel gyrification networks in controls as verified by internal and external validation. Gyrification was reduced in patients in temporal-insular, lateral occipital, and lateral fronto-parietal networks (pFDR < 0.01) and was not moderated by illness group. Higher gyrification was associated with better cognitive performance and lifetime role functioning, but not with symptoms. The findings demonstrated that gyrification can be parsed into novel brain networks that highlight generalized illness effects linked to developmental vulnerability. When combined, our study widens the window into the etiology of psychiatric risk and its expression in adulthood.
Collapse
Affiliation(s)
- Rachele Sanfelici
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max Planck School of Cognition, Leipzig, 04103, Germany
| | - Anne Ruef
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Linda A Antonucci
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Nora Penzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Aristeidis Sotiras
- Department of Radiology and Institute of Informatics, Washington University in St. Luis, st. Luis, MO63110, USA
| | - Mark Sen Dong
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Maria Urquijo-Castro
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | - Julian Wenzel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Lana Kambeitz-Ilankovic
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | | | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Katharine Chisholm
- Institute for Mental Health, University of Birmingham, Birmingham, B15 2TT, UK.,Department of Psychology, Aston University, Birmingham, B4 7ET, UK
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max-Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centrem University of Melbourne & Melbourne Health, Melbourne, 3053, Australia
| | | | - Rebekka Lencer
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, 48149, Germany.,Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, 70124, Italy
| | - Joseph Kambeitz
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50937, Germany
| | - Eva Meisenzahl
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, 40629, Germany
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, 23538, Germany.,Department of Psychiatry (Psychiatric University Hospital, UPK), University of Basel, Basel, 4002, Switzerland
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Grande Ospedale Maggiore Policlinico, Milano, 20122, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, 20122, Italy
| | - Stephen J Wood
- Centre for Youth Mental Health, University of Melbourne, Melbourne, 3052, Australia.,Orygen, Melbourne, 3052, Australia.,School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, B15 2TT, UK.,Early Intervention Service, Birmingham Women's and Children's NHS foundation Trust, Birmingham, B4 6NH, UK
| | - Frauke Schultze-Lutter
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine University, Düsseldorf, 40629, Germany.,Department of Psychology and Mental Health, Faculty of Psychology, Airlangga University, Surubaya, 60286, Indonesia.,University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, 3000, Switzerland
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany.,Max-Planck Institute of Psychiatry, Munich, 80804, Germany.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Dominic B Dwyer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian University, Munich, 80336, Germany
| | | |
Collapse
|
244
|
Wang H, Zhou H, Guo Y, Gao L, Xu H. Voxel-Wise Analysis of Structural and Functional MRI for Lateralization of Handedness in College Students. Front Hum Neurosci 2021; 15:687965. [PMID: 34483863 PMCID: PMC8414999 DOI: 10.3389/fnhum.2021.687965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022] Open
Abstract
The brain structural and functional basis of lateralization in handedness is largely unclear. This study aimed to explore this issue by using voxel-mirrored homotopic connectivity (VMHC) measured by resting-state functional MRI (R-fMRI) and gray matter asymmetry index (AI) by high-resolution anatomical images. A total of 50 healthy subjects were included, among them were 13 left-handers, 24 right-handers, and 13 mixed-handers. Structural and R-fMRI data of all subjects were collected. There were significant differences in VMHC among the three groups in lateral temporal-occipital, orbitofrontal, and primary hand motor regions. Meanwhile, there were significant differences in AI that existed in medial prefrontal, superior frontal, and superior temporal regions. Besides, the correlation analysis showed that the closer the handedness score to the extreme of the left-handedness (LH), the stronger the interhemispheric functional connectivity, as well as more leftward gray matter. In general, left/mixed-handedness (MH) showed stronger functional homotopy in the transmodal association regions that depend on the integrity of the corpus callosum, but more variable in primary sensorimotor cortices. Furthermore, the group differences in VMHC largely align with that in AI. We located the specific regions for LH/MH from the perspective of structural specification and functional integration, suggesting the plasticity of hand movement and different patterns of emotional processing.
Collapse
Affiliation(s)
- Haha Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yihao Guo
- Siemens MR Collaboration, Siemens Healthcare, Guangzhou, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
245
|
Zappalá S, Bennion NJ, Potts MR, Wu J, Kusmia S, Jones DK, Evans SL, Marshall D. Full-field MRI measurements of in-vivo positional brain shift reveal the significance of intra-cranial geometry and head orientation for stereotactic surgery. Sci Rep 2021; 11:17684. [PMID: 34480073 PMCID: PMC8417262 DOI: 10.1038/s41598-021-97150-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/13/2021] [Indexed: 11/15/2022] Open
Abstract
Positional brain shift (PBS), the sagging of the brain under the effect of gravity, is comparable in magnitude to the margin of error for the success of stereotactic interventions ([Formula: see text] 1 mm). This non-uniform shift due to slight differences in head orientation can lead to a significant discrepancy between the planned and the actual location of surgical targets. Accurate in-vivo measurements of this complex deformation are critical for the design and validation of an appropriate compensation to integrate into neuronavigational systems. PBS arising from prone-to-supine change of head orientation was measured with magnetic resonance imaging on 11 young adults. The full-field displacement was extracted on a voxel-basis via digital volume correlation and analysed in a standard reference space. Results showed the need for target-specific correction of surgical targets, as a significant displacement ranging from 0.52 to 0.77 mm was measured at surgically relevant structures. Strain analysis further revealed local variability in compressibility: anterior regions showed expansion (both volume and shape change), whereas posterior regions showed small compression, mostly dominated by shape change. Finally, analysis of correlation demonstrated the potential for further patient- and intervention-specific adjustments, as intra-cranial breadth and head tilt correlated with PBS reaching statistical significance.
Collapse
Affiliation(s)
- Stefano Zappalá
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK.
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
| | | | | | - Jing Wu
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Slawomir Kusmia
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Centre for Medical Image Computing, University College London, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Sam L Evans
- School of Engineering, Cardiff University, Cardiff, UK
| | - David Marshall
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| |
Collapse
|
246
|
Sha Z, Schijven D, Carrion-Castillo A, Joliot M, Mazoyer B, Fisher SE, Crivello F, Francks C. The genetic architecture of structural left-right asymmetry of the human brain. Nat Hum Behav 2021; 5:1226-1239. [PMID: 33723403 PMCID: PMC8455338 DOI: 10.1038/s41562-021-01069-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Left-right hemispheric asymmetry is an important aspect of healthy brain organization for many functions including language, and it can be altered in cognitive and psychiatric disorders. No mechanism has yet been identified for establishing the human brain's left-right axis. We performed multivariate genome-wide association scanning of cortical regional surface area and thickness asymmetries, and subcortical volume asymmetries, using data from 32,256 participants from the UK Biobank. There were 21 significant loci associated with different aspects of brain asymmetry, with functional enrichment involving microtubule-related genes and embryonic brain expression. These findings are consistent with a known role of the cytoskeleton in left-right axis determination in other organs of invertebrates and frogs. Genetic variants associated with brain asymmetry overlapped with those associated with autism, educational attainment and schizophrenia. Comparably large datasets will likely be required in future studies, to replicate and further clarify the associations of microtubule-related genes with variation in brain asymmetry, behavioural and psychiatric traits.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Dick Schijven
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Amaia Carrion-Castillo
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, et Université de Bordeaux, Bordeaux, France
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
247
|
Handley SE, Šuštar M, Tekavčič Pompe M. What can visual electrophysiology tell about possible visual-field defects in paediatric patients. Eye (Lond) 2021; 35:2354-2373. [PMID: 34272512 PMCID: PMC8377065 DOI: 10.1038/s41433-021-01680-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Recognising a potential visual-field (VF) defect in paediatric patients might be challenging, especially in children before the age of 5 years and those with developmental delay or intellectual disability. Visual electrophysiological testing is an objective and non-invasive technique for evaluation of visual function in paediatric patients, which can characterise the location of dysfunction and differentiate between disorders of the retina, optic nerve and visual pathway. The recording of electroretinography (ERG) and visual-evoked potentials (VEP) is possible from early days of life and requires no subjective input from the patient. As the origins of ERG and VEP tests are known, the pattern of electrophysiological changes can provide information about the VF of a child unable to perform accurate perimetry. This review summarises previously published electrophysiological findings in several common types of VF defects that can be found in paediatric patients (generalised VF defect, peripheral VF loss, central scotoma, bi-temporal hemianopia, altitudinal VF defect, quadrantanopia and homonymous hemianopia). It also shares experience on using electrophysiological testing as additional functional evidence to other tests in the clinical challenge of diagnosing or excluding VF defects in complex paediatric patients. Each type of VF defect is illustrated with one or two clinical cases.
Collapse
Affiliation(s)
- Siân E. Handley
- grid.83440.3b0000000121901201UCL Great Ormond Street Institute of Child Health, London, UK ,grid.424537.30000 0004 5902 9895Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS foundation trust, London, UK
| | - Maja Šuštar
- grid.29524.380000 0004 0571 7705Unit for Visual Electrophysiology and Paediatric Ophthalmology Department, Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Manca Tekavčič Pompe
- grid.29524.380000 0004 0571 7705Unit for Visual Electrophysiology and Paediatric Ophthalmology Department, Eye Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
248
|
Gao Q, Xiang Y, Zhang J, Luo N, Liang M, Gong L, Yu J, Cui Q, Sepulcre J, Chen H. A reachable probability approach for the analysis of spatio-temporal dynamics in the human functional network. Neuroimage 2021; 243:118497. [PMID: 34428571 DOI: 10.1016/j.neuroimage.2021.118497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
The dynamic architecture of the human brain has been consistently observed. However, there is still limited modeling work to elucidate how neuronal circuits are hierarchically and flexibly organized in functional systems. Here we proposed a reachable probability approach based on non-homogeneous Markov chains, to characterize all possible connectivity flows and the hierarchical structure of brain functional systems at the dynamic level. We proved at the theoretical level the convergence of the functional brain network system, and demonstrated that this approach is able to detect network steady states across connectivity structure, particularly in areas of the default mode network. We further explored the dynamically hierarchical functional organization centered at the primary sensory cortices. We observed smaller optimal reachable steps to their local functional regions, and differentiated patterns in larger optimal reachable steps for primary perceptual modalities. The reachable paths with the largest and second largest transition probabilities between primary sensory seeds via multisensory integration regions were also tracked to explore the flexibility and plasticity of the multisensory integration. The present work provides a novel approach to depict both the stable and flexible hierarchical connectivity organization of the human brain.
Collapse
Affiliation(s)
- Qing Gao
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yu Xiang
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiabao Zhang
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ning Luo
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Minfeng Liang
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lisha Gong
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiali Yu
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Huafu Chen
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Department of Radiology, First Affiliated Hospital to Army Medical University, Chongqing 400038, China.
| |
Collapse
|
249
|
Sun J, Gao X, Hua Q, Du R, Liu P, Liu T, Yang J, Qiu B, Ji GJ, Hu P, Wang K. Brain functional specialization and cooperation in Parkinson's disease. Brain Imaging Behav 2021; 16:565-573. [PMID: 34427879 DOI: 10.1007/s11682-021-00526-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Cerebral specialization and inter-hemispheric cooperation are two of the most prominent functional architectures of the human brain. Their dysfunctions may be related to pathophysiological changes in patients with Parkinson's disease (PD), who are characterized by unbalanced onset and progression of motor symptoms. This study aimed to characterize the two intrinsic architectures of hemispheric functions in PD using resting-state functional magnetic resonance imaging. Seventy idiopathic PD patients and 70 age-, sex-, and education-matched healthy subjects were recruited. All participants underwent magnetic resonance image scanning and clinical evaluations. The cerebral specialization (Autonomy index, AI) and inter-hemispheric cooperation (Connectivity between Functionally Homotopic voxels, CFH) were calculated and compared between groups. Compared with healthy controls, PD patients showed stronger AI in the left angular gyrus. Specifically, this difference in specialization resulted from increased functional connectivity (FC) of the ipsilateral areas (e.g., the left prefrontal area), and decreased FC in the contralateral area (e.g., the right supramarginal gyrus). Imaging-cognitive correlation analysis indicated that these connectivity were positively related to the score of Montreal Cognitive Assessment in PD patients. CFH between the bilateral sensorimotor regions was significantly decreased in PD patients compared with controls. No significant correlation between CFH and cognitive scores was found in PD patients. This study illustrated a strong leftward specialization but weak inter-hemispheric coordination in PD patients. It provided new insights to further clarify the pathological mechanism of PD.
Collapse
Affiliation(s)
- Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Xiaoran Gao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Qiang Hua
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Rongrong Du
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Pingping Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Jinying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China.
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China.
| |
Collapse
|
250
|
Liu T, Gao F, Zheng W, You Y, Zhao Z, Lv Y, Chen W, Zhang H, Ji C, Wu D. Diffusion MRI of the infant brain reveals unique asymmetry patterns during the first-half-year of development. Neuroimage 2021; 242:118465. [PMID: 34389444 DOI: 10.1016/j.neuroimage.2021.118465] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
The human brain demonstrates anatomical and functional lateralization/asymmetry between the left and right hemispheres, and such asymmetry is known to start from the early age of life. However, how the asymmetry changes with brain development during infancy remained unknown. In this study, we aimed to systematically investigate the spatiotemporal pattern of brain asymmetry in healthy preterm-born infants during the first-half-year of development, using high angular resolution diffusion MRI. Sixty-five healthy preterm-born infants (gestational age between 25.3-36.6 weeks) were scanned with postmenstrual age (PMA) ranging from term-equivalent age (TEA) to 6-months. At the regional level, we performed a region-of-interest-based analysis by segmenting the brain into 63 symmetrical pairs of regions, based on which the laterality index was assessed and correlated with PMA. At the voxel level, we performed a fixel-based analysis of each fiber component between the native and left-right flipped data, separately in TEA-1 month, 1-3 months, and 3-6 months groups. The infant brains demonstrated extensive regions with structural asymmetry during their first half-of-year of life. A distinct central-peripheral asymmetry pattern was observed in mean diffusivity, namely, leftward lateralization in the neocortex and rightward asymmetry in the deep brain regions. Besides, the posterior brain demonstrated a higher lateralization index compared with the anterior brain in all metrics, which is congruent with the brain developmental pattern from caudal to rostral. Regionally, language processing regions showed a rightward asymmetry, while visuospatial processing regions exhibited leftward lateralization in fractional anisotropy, fibre density, and fibre cross-section measurements, and most white matter regions were lateralized to the left in these measurements. The laterality index of several regions (12 out 63) demonstrated significant developmental changes in mean diffusivity. At the fixel level, the fiber cross-section of inferior fronto-occipital fasciculus showed significant leftward asymmetry and the extent of asymmetry increased with PMA. In summary, the results revealed unique spatiotemporal patterns of macro- and micro-structural asymmetry in early life, which dynamically changed with age. These findings may contribute to the understanding of brain development during infancy.
Collapse
Affiliation(s)
- Tingting Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou 310027, China
| | - Fusheng Gao
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihao Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou 310027, China
| | - Yuqing You
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Zhao
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou 310027, China
| | - Ying Lv
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weijun Chen
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chai Ji
- Department of Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Room 525, Zhou Yiqing Building, Yuquan Campus, Hangzhou 310027, China.
| |
Collapse
|