201
|
Chen W, Yuan Y, Jiang X. Antibody and antibody fragments for cancer immunotherapy. J Control Release 2020; 328:395-406. [PMID: 32853733 DOI: 10.1016/j.jconrel.2020.08.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Antibody has become the most rapidly expanding class of pharmaceuticals for treating a wide variety of human diseases including cancers. Especially, with the fast development of cancer immunotherapy, antibody drugs have become the most promising therapeutic for curing cancers. Immune-mediated cell killing by antibodies including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC) as well as regulation of T cell function through immune checkpoint blockade. Due to the absence of Fc fragment, antibody fragments including single-chain variable fragments (scFvs) and single-domain antibodies (sdAds) are mainly applied in chimeric antigen receptors (CAR) T cell therapy for redirecting T cells to tumors and T cell activation by immune checkpoint blockade. In this review, the cancer immunity is first discussed. Then the principal mechanisms of antibody-based immunotherapy will be reviewed. Next, the antibody and antibody fragments applied for cancer immunotherapy will be summarized. Bispecific and multispecific antibodies and a combination of cancer immunotherapy with other tumor treatments will also be mentioned. Finally, an outlook and perspective of antibody-based cancer immunotherapy will be given. This review would provide a comprehensive guidance for the researchers who are interested in and intended to involve in the antibodies- or antibody fragments-based tumor immunity.
Collapse
Affiliation(s)
- Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Yang Yuan
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
202
|
Zou X, Zhang D, Song Y, Liu S, Long Q, Yao L, Li W, Duan Z, Wu D, Liu L. HRG switches TNFR1-mediated cell survival to apoptosis in Hepatocellular Carcinoma. Theranostics 2020; 10:10434-10447. [PMID: 32929358 PMCID: PMC7482824 DOI: 10.7150/thno.47286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Tumor necrosis factor receptor 1 (TNFR1) signaling plays a pleiotropic role in the development of hepatocellular carcinoma (HCC). The formation of TNFR1-complex I supports cell survival while TNFR1-complex II leads to apoptosis, and the underlying mechanisms of the transformation of these TNFR1 complexes in HCC remain poorly defined. Methods: The interaction protein of TNFR1 was identified by GST pulldown assay, immunoprecipitation and mass spectrometry. In vitro and in vivo assay were performed to explore the biological features and mechanisms underlying the regulation of TNFR1 signals by histidine-rich glycoprotein (HRG). Data from the public databases and HCC samples were utilized to analyze the expression and clinical relevance of HRG. Results: HRG directly interacted with TNFR1 and stabilized TNFR1 protein by decreasing the Lys(K)-48 ubiquitination mediated-degradation. The formation of TNFR1-complex II was prompted by HRG overexpression via upregulating Lys(K)-63 ubiquitination of TNFR1. Besides, overexpression of HRG suppressed expression of pro-survival genes by impairing the activation of NF-κB signaling in the presence of TNFR1. Moreover, downregulation of HRG was a result of feedback inhibition of NF-κB activation in HCC. In line with the pro-apoptotic switch of TNFR1 signaling after HRG induction, overexpression of HRG inhibited cell proliferation and increased apoptosis in HCC. Conclusions: Our findings illustrate a crucial role for HRG in suppressing HCC via inclining TNFR1 to a pro-apoptotic cellular phenotype. Restoring HRG expression in HCC tissues might be a promising pharmacological approach to blocking tumor progression by shifting cellular fate from cell survival to apoptosis.
Collapse
Affiliation(s)
- Xuejing Zou
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongyan Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yang Song
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Long
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liheng Yao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhijiao Duan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehua Wu
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
203
|
Yang C, Shi S, Su Y, Tong JS, Li L. P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells. J Cell Mol Med 2020; 24:10830-10841. [PMID: 32735377 PMCID: PMC7521273 DOI: 10.1111/jcmm.15708] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Overexpression of P2X7R has been observed in several tumours and is related to cancer advancement and metastasis. However, the role of P2X7R in colorectal cancer (CRC) patients is not well understood. In the current study, overexpression of P2X7R and the effects at the molecular and functional levels in CRC were assessed in a mouse orthotopic model. Functional assays, such as the CCK‐8 assay, wound healing and transwell assay, were used to determine the biological role of P2X7R in CRC cells. CSC‐related genes and properties were detected via sphere formation and real‐time PCR assays. The underlying mechanisms were explored by Western blotting, real‐time PCR and Flow cytometry. In this study, we found that overexpression of P2X7R increases in the in vivo growth of tumours. P2X7R overexpression also increased CD31, VEGF and concurrent angiogenesis. P2X7R up‐regulates aldehyde dehydrogenase‐1 (ALDH1) and CSC characteristics. Transplanted tumour cells with P2X7R overexpression stimulated cytokines to recruit tumour‐associated macrophage (TAMs) to increase the growth of tumours. We also found that the NF‐κB signalling pathway is involved in P2X7R‐induced cytokine up‐regulation. P2X7R promotes NF‐κB–dependent cytokine induction, which leads to TAM recruitment to control tumour growth and advancement and remodelling of the stroma. Our findings demonstrate that P2X7R plays a key role in TAM recruitment, which may be a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Shi
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Su
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing-Shan Tong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Liangjun Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
204
|
Lebegge E, Arnouk SM, Bardet PMR, Kiss M, Raes G, Van Ginderachter JA. Innate Immune Defense Mechanisms by Myeloid Cells That Hamper Cancer Immunotherapy. Front Immunol 2020; 11:1395. [PMID: 32733461 PMCID: PMC7363805 DOI: 10.3389/fimmu.2020.01395] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Over the past decade, cancer immunotherapy has been steering immune responses toward cancer cell eradication. However, these immunotherapeutic approaches are hampered by the tumor-promoting nature of myeloid cells, including monocytes, macrophages, and neutrophils. Despite the arsenal of defense strategies against foreign invaders, myeloid cells succumb to the instructions of an established tumor. Interestingly, the most primordial defense responses employed by myeloid cells against pathogens, such as complement activation, antibody-dependent cell cytotoxicity and phagocytosis, actually seem to favor cancer progression. In this review, we discuss how rudimentary defense mechanisms deployed by myeloid cells can promote tumor progression.
Collapse
Affiliation(s)
- Els Lebegge
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sana M Arnouk
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Pauline M R Bardet
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Máté Kiss
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
205
|
Advances in Anti-Cancer Immunotherapy: Car-T Cell, Checkpoint Inhibitors, Dendritic Cell Vaccines, and Oncolytic Viruses, and Emerging Cellular and Molecular Targets. Cancers (Basel) 2020; 12:cancers12071826. [PMID: 32645977 PMCID: PMC7408985 DOI: 10.3390/cancers12071826] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Unlike traditional cancer therapies, such as surgery, radiation and chemotherapy that are typically non-specific, cancer immunotherapy harnesses the high specificity of a patient’s own immune system to selectively kill cancer cells. The immune system is the body’s main cancer surveillance system, but cancers may evade destruction thanks to various immune-suppressing mechanisms. We therefore need to deploy various immunotherapy-based strategies to help bolster the anti-tumour immune responses. These include engineering T cells to express chimeric antigen receptors (CARs) to specifically recognise tumour neoantigens, inactivating immune checkpoints, oncolytic viruses and dendritic cell (DC) vaccines, which have all shown clinical benefit in certain cancers. However, treatment efficacy remains poor due to drug-induced adverse events and immunosuppressive tendencies of the tumour microenvironment. Recent preclinical studies have unveiled novel therapies such as anti-cathepsin antibodies, galectin-1 blockade and anti-OX40 agonistic antibodies, which may be utilised as adjuvant therapies to modulate the tumour microenvironment and permit more ferocious anti-tumour immune response.
Collapse
|
206
|
Lapuente-Santana Ó, Eduati F. Toward Systems Biomarkers of Response to Immune Checkpoint Blockers. Front Oncol 2020; 10:1027. [PMID: 32670886 PMCID: PMC7326813 DOI: 10.3389/fonc.2020.01027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with checkpoint blockers (ICBs), aimed at unleashing the immune response toward tumor cells, has shown a great improvement in overall patient survival compared to standard therapy, but only in a subset of patients. While a number of recent studies have significantly improved our understanding of mechanisms playing an important role in the tumor microenvironment (TME), we still have an incomplete view of how the TME works as a whole. This hampers our ability to effectively predict the large heterogeneity of patients' response to ICBs. Systems approaches could overcome this limitation by adopting a holistic perspective to analyze the complexity of tumors. In this Mini Review, we focus on how an integrative view of the increasingly available multi-omics experimental data and computational approaches enables the definition of new systems-based predictive biomarkers. In particular, we will focus on three facets of the TME toward the definition of new systems biomarkers. First, we will review how different types of immune cells influence the efficacy of ICBs, not only in terms of their quantification, but also considering their localization and functional state. Second, we will focus on how different cells in the TME interact, analyzing how inter- and intra-cellular networks play an important role in shaping the immune response and are responsible for resistance to immunotherapy. Finally, we will describe the potential of looking at these networks as dynamic systems and how mathematical models can be used to study the rewiring of the complex interactions taking place in the TME.
Collapse
Affiliation(s)
- Óscar Lapuente-Santana
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
207
|
Morrissey ME, Byrne R, Nulty C, McCabe NH, Lynam-Lennon N, Butler CT, Kennedy S, O'Toole D, Larkin J, McCormick P, Mehigan B, Cathcart MC, Lysaght J, Reynolds JV, Ryan EJ, Dunne MR, O'Sullivan J. The tumour microenvironment of the upper and lower gastrointestinal tract differentially influences dendritic cell maturation. BMC Cancer 2020; 20:566. [PMID: 32552799 PMCID: PMC7302160 DOI: 10.1186/s12885-020-07012-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Background Only 10–30% of oesophageal and rectal adenocarcinoma patients treated with neoadjuvant chemoradiotherapy have a complete pathological response. Inflammatory and angiogenic mediators in the tumour microenvironment (TME) may enable evasion of anti-tumour immune responses. Methods The TME influence on infiltrating dendritic cells (DCs) was modelled by treating immature monocyte-derived DCs with Tumour Conditioned Media (TCM) from distinct gastrointestinal sites, prior to LPS-induced maturation. Results Cell line conditioned media from gastrointestinal cell lines inhibited LPS-induced DC markers and TNF-α secretion. TCM generated from human tumour biopsies from oesophageal, rectal and colonic adenocarcinoma induced different effects on LPS-induced DC markers - CD54, CD80, HLA-DR, CD86 and CD83 were enhanced by oesophageal cancer; CD80, CD86 and CD83 were enhanced by rectal cancer, whereas CD54, HLA-DR, CD86, CD83 and PD-L1 were inhibited by colonic cancer. Notably, TCM from all GI cancer types inhibited TNF-α secretion. Additionally, TCM from irradiated biopsies inhibited DC markers. Profiling the TCM showed that IL-2 levels positively correlated with maturation marker CD54, while Ang-2 and bFGF levels negatively correlated with CD54. Conclusion This study identifies that there are differences in DC maturational capacity induced by the TME of distinct gastrointestinal cancers. This could potentially have implications for anti-tumour immunity and response to radiotherapy.
Collapse
Affiliation(s)
- Maria E Morrissey
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Róisín Byrne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Celina Nulty
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Niamh H McCabe
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Niamh Lynam-Lennon
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Clare T Butler
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susan Kennedy
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Dermot O'Toole
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
| | | | | | | | - Mary-Clare Cathcart
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Joanne Lysaght
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - John V Reynolds
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.,Oesophageal Unit, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, Education and Research Centre, St. Vincent's University Hospital, Elm Park, Dublin 4, Ireland.,Department of Biological Sciences, Health Research Institute, University of Limerick, Castletroy, Co., Limerick, Ireland
| | - Margaret R Dunne
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
208
|
Wang M, Yang Y, Liao Z. Diabetes and cancer: Epidemiological and biological links. World J Diabetes 2020; 11:227-238. [PMID: 32547697 PMCID: PMC7284016 DOI: 10.4239/wjd.v11.i6.227] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
The incidence of diabetes and cancer has increased significantly in recent years. Furthermore, there are many common risk factors for both diabetes and cancer, such as obesity, sedentary lifestyle, smoking, and ageing. A large body of epidemiological evidence has indicated that diabetes is considered as an independent risk factor for increased rates of heterogeneous types of cancer occurrence and death. The incidence and mortality of various types of cancer, such as pancreas, liver, colorectal, breast, endometrial, and bladder cancers, have a modest growth in diabetics. However, diabetes may work as a protective factor for prostate cancer. Although the underlying biological mechanisms have not been totally understood, studies have validated that insulin/insulin-like growth factor (IGF) axis (including insulin resistance, hyperinsulinemia, and IGF), hyperglycemia, inflammatory cytokines, and sex hormones provide good circumstances for cancer cell proliferation and metastasis. Insulin/IGF axis activates several metabolic and mitogenic signaling pathways; hyperglycemia provides energy for cancer cell growth; inflammatory cytokines influence cancer cell apoptosis. Thus, these three factors affect all types of cancer, while sex hormones only play important roles in breast cancer, endometrial cancer, and prostate cancer. This minireview consolidates and discusses the epidemiological and biological links between diabetes and various types of cancer.
Collapse
Affiliation(s)
- Mina Wang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing 100010, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingying Yang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna 17177, Sweden
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna 17177, Sweden
| |
Collapse
|
209
|
Yang Y, Wang C, Sun H, Jiang Z, Zhang Y, Pan Z. Apatinib prevents natural killer cell dysfunction to enhance the efficacy of anti-PD-1 immunotherapy in hepatocellular carcinoma. Cancer Gene Ther 2020; 28:89-97. [PMID: 32533100 DOI: 10.1038/s41417-020-0186-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/09/2022]
Abstract
Apatinib, a selective vascular endothelial growth factor receptor 2-tyrosine kinase inhibitor, has demonstrated activity against a wide range of solid tumors, including advanced hepatocellular carcinoma (HCC). Preclinical and preliminary clinical results have confirmed the synergistic antitumor effects of apatinib in combination with anti-programmed death-1 (PD-1) blockade. However, the immunologic mechanism of this combination therapy remains unclear. Here, using a syngeneic HCC mouse model, we demonstrated that treatment with apatinib resulted in attenuation of tumor growth and increased tumor vessel normalization. Moreover, our results indicated that natural killer cells, but not CD4+ or CD8+ T cells mediated the therapeutic efficacy of apatinib in HCC mouse models. As expected, the combined administration of apatinib and anti-PD-1 antibody into tumor-bearing mice generated potent immune responses resulting in a remarkable reduction of tumor growth. Furthermore, increased interferon-γ and decreased tumor necrosis factor-α and interleukin-6 levels were observed, suggesting the potential benefits of combination therapy with PD-1 blockade and apatinib in HCC.
Collapse
Affiliation(s)
- Yinli Yang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Cong Wang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Haiyan Sun
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhansheng Jiang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zhang
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhanyu Pan
- Department of Integrative Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China. .,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
210
|
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK, Brunner C. NF-κB and Its Role in Checkpoint Control. Int J Mol Sci 2020; 21:ijms21113949. [PMID: 32486375 PMCID: PMC7312739 DOI: 10.3390/ijms21113949] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade.
Collapse
|
211
|
Checkpoint inhibitors (CPI) and autoimmune chronic inflammatory diseases (ACIDs): tolerance and loss of tolerance in the occurrence of immuno-rheumatologic manifestations. Clin Immunol 2020; 214:108395. [DOI: 10.1016/j.clim.2020.108395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022]
|
212
|
Lafont E. Stress Management: Death Receptor Signalling and Cross-Talks with the Unfolded Protein Response in Cancer. Cancers (Basel) 2020; 12:E1113. [PMID: 32365592 PMCID: PMC7281445 DOI: 10.3390/cancers12051113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout tumour progression, tumour cells are exposed to various intense cellular stress conditions owing to intrinsic and extrinsic cues, to which some cells are remarkably able to adapt. Death Receptor (DR) signalling and the Unfolded Protein Response (UPR) are two stress responses that both regulate a plethora of outcomes, ranging from proliferation, differentiation, migration, cytokine production to the induction of cell death. Both signallings are major modulators of physiological tissue homeostasis and their dysregulation is involved in tumorigenesis and the metastastic process. The molecular determinants of the control between the different cellular outcomes induced by DR signalling and the UPR in tumour cells and their stroma and their consequences on tumorigenesis are starting to be unravelled. Herein, I summarize the main steps of DR signalling in relation to its cellular and pathophysiological roles in cancer. I then highlight how the UPR and DR signalling control common cellular outcomes and also cross-talk, providing potential opportunities to further understand the development of malignancies.
Collapse
Affiliation(s)
- Elodie Lafont
- Inserm U1242, Université de Rennes, 35042 Rennes, France;
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| |
Collapse
|
213
|
Kostine M, Finckh A, Bingham CO, Visser K, Leipe J, Schulze-Koops H, Choy EH, Benesova K, Radstake TRDJ, Cope AP, Lambotte O, Gottenberg JE, Allenbach Y, Visser M, Rusthoven C, Thomasen L, Jamal S, Marabelle A, Larkin J, Haanen JBAG, Calabrese LH, Mariette X, Schaeverbeke T. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis 2020; 80:36-48. [PMID: 32327425 PMCID: PMC7788064 DOI: 10.1136/annrheumdis-2020-217139] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Background Rheumatic and musculoskeletal immune-related adverse events (irAEs) are observed in about 10% of patients with cancer receiving checkpoint inhibitors (CPIs). Given the recent emergence of these events and the lack of guidance for rheumatologists addressing them, a European League Against Rheumatism task force was convened to harmonise expert opinion regarding their identification and management. Methods First, the group formulated research questions for a systematic literature review. Then, based on literature and using a consensus procedure, 4 overarching principles and 10 points to consider were developed. Results The overarching principles defined the role of rheumatologists in the management of irAEs, highlighting the shared decision-making process between patients, oncologists and rheumatologists. The points to consider inform rheumatologists on the wide spectrum of musculoskeletal irAEs, not fulfilling usual classification criteria of rheumatic diseases, and their differential diagnoses. Early referral and facilitated access to rheumatologist are recommended, to document the target organ inflammation. Regarding therapeutic, three treatment escalations were defined: (1) local/systemic glucocorticoids if symptoms are not controlled by symptomatic treatment, then tapered to the lowest efficient dose, (2) conventional synthetic disease-modifying antirheumatic drugs, in case of inadequate response to glucocorticoids or for steroid sparing and (3) biological disease-modifying antirheumatic drugs, for severe or refractory irAEs. A warning has been made on severe myositis, a life-threatening situation, requiring high dose of glucocorticoids and close monitoring. For patients with pre-existing rheumatic disease, baseline immunosuppressive regimen should be kept at the lowest efficient dose before starting immunotherapies. Conclusion These statements provide guidance on diagnosis and management of rheumatic irAEs and aim to support future international collaborations.
Collapse
Affiliation(s)
- Marie Kostine
- Rheumatology, University Hospital of Bordeaux, Bordeaux, France
| | - Axel Finckh
- Division of Rheumatology, University Hospital of Geneva, Geneva, Switzerland
| | | | - Karen Visser
- Rheumatology, Haga Hospital, Den Haag, The Netherlands
| | - Jan Leipe
- Department of Medicine V, Division of Rheumatology, University Hospital Centre, Mannheim, Germany.,Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| | - Hendrik Schulze-Koops
- Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| | - Ernest H Choy
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | - Andrew P Cope
- Academic Department of Rheumatology, King's College London, London, UK
| | - Olivier Lambotte
- Internal Medicine and Clinical Immunology, Hopital Bicetre, Le Kremlin-Bicetre, France
| | | | - Yves Allenbach
- Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Marianne Visser
- EULAR PARE Patient Research Partners, Amsterdam, The Netherlands
| | - Cindy Rusthoven
- EULAR PARE Patient Research Partners, Amsterdam, The Netherlands
| | | | - Shahin Jamal
- Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - James Larkin
- Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - John B A G Haanen
- The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | | | - Xavier Mariette
- Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux universitaires Paris-Sud - Hôpital Bicêtre, Le Kremlin Bicêtre, France.,3Université Paris-Sud, Center for Immunology of Viral Infections and Auto-immune Diseases (IMVA), Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | |
Collapse
|
214
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
215
|
Lai X, Hao W, Friedman A. TNF-α inhibitor reduces drug-resistance to anti-PD-1: A mathematical model. PLoS One 2020; 15:e0231499. [PMID: 32310956 PMCID: PMC7170257 DOI: 10.1371/journal.pone.0231499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Drug resistance is a primary obstacle in cancer treatment. In many patients who at first respond well to treatment, relapse occurs later on. Various mechanisms have been explored to explain drug resistance in specific cancers and for specific drugs. In this paper, we consider resistance to anti-PD-1, a drug that enhances the activity of anti-cancer T cells. Based on results in experimental melanoma, it is shown, by a mathematical model, that resistances to anti-PD-1 can be significantly reduced by combining it with anti-TNF-α. The model is used to simulate the efficacy of the combined therapy with different range of doses, different initial tumor volume, and different schedules. In particular, it is shown that under a course of treatment with 3-week cycles where each drug is injected in the first day of either week 1 or week 2, injecting anti-TNF-α one week after anti-PD-1 is the most effective schedule in reducing tumor volume.
Collapse
Affiliation(s)
- Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, P. R. China
| | - Wenrui Hao
- Department of Mathematics, Pennsylvania State University, State College, PA, United States of America
| | - Avner Friedman
- Mathematical Bioscience Institute & Department of Mathematics, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
216
|
Wilski NA, Stotesbury C, Del Casale C, Montoya B, Wong E, Sigal LJ, Snyder CM. STING Sensing of Murine Cytomegalovirus Alters the Tumor Microenvironment to Promote Antitumor Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 204:2961-2972. [PMID: 32284333 DOI: 10.4049/jimmunol.1901136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/18/2020] [Indexed: 01/04/2023]
Abstract
CMV has been proposed to play a role in cancer progression and invasiveness. However, CMV has been increasingly studied as a cancer vaccine vector, and multiple groups, including ours, have reported that the virus can drive antitumor immunity in certain models. Our previous work revealed that intratumoral injections of wild-type murine CMV (MCMV) into B16-F0 melanomas caused tumor growth delay in part by using a viral chemokine to recruit macrophages that were subsequently infected. We now show that MCMV acts as a STING agonist in the tumor. MCMV infection of tumors in STING-deficient mice resulted in normal recruitment of macrophages to the tumor, but poor recruitment of CD8+ T cells, reduced production of inflammatory cytokines and chemokines, and no delay in tumor growth. In vitro, expression of type I IFN was dependent on both STING and the type I IFNR. Moreover, type I IFN alone was sufficient to induce cytokine and chemokine production by macrophages and B16 tumor cells, suggesting that the major role for STING activation was to produce type I IFN. Critically, viral infection of wild-type macrophages alone was sufficient to restore tumor growth delay in STING-deficient animals. Overall, these data show that MCMV infection and sensing in tumor-associated macrophages through STING signaling is sufficient to promote antitumor immune responses in the B16-F0 melanoma model.
Collapse
Affiliation(s)
- Nicole A Wilski
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Colby Stotesbury
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christina Del Casale
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Brian Montoya
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Eric Wong
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Luis J Sigal
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
217
|
Abstract
Immune checkpoint inhibitors (ICIs) are monoclonal antibodies that target inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or its ligand, programmed cell death protein ligand 1 (PD-L1), and lead to immune activation in the tumor micro-environment. ICIs can induce durable treatment responses in patients with advanced cancers, but they are commonly associated with immune related adverse events (irAEs) such as rash, colitis, hepatitis, pneumonitis, and endocrine and musculoskeletal disorders. Almost all patients experience some form of irAE, but high grade irAEs occur in approximately half of those on combination therapy (eg, anti-CTLA-4 plus anti-PD-1), and up to one quarter receiving ICI monotherapy. Fatal irAEs occur in approximately 1.2% of patients on CTLA-4 blockade and 0.4% of patients receiving PD-1 or PD-L1 blockade, and case fatality rates are highest for myocarditis and myositis. IrAEs typically occur in the first three months after ICI initiation, but can occur as early as one day after the first dose to years after ICI initiation. The mainstay of treatment is with corticosteroids, but tumor necrosis factor inhibitors are commonly used for refractory irAEs. Although ICIs are generally discontinued when high grade irAEs occur, ICI discontinuation alone is rarely adequate to resolve irAEs. Consensus guidelines have been published to help guide management, but will likely be modified as our understanding of irAEs grows.
Collapse
Affiliation(s)
- Karmela K Chan
- Weill Cornell Medicine, Hospital for Special Surgery, New York, USA
| | - Anne R Bass
- Weill Cornell Medicine, Hospital for Special Surgery, New York, USA
| |
Collapse
|
218
|
Steven NM, Fisher BA. Management of rheumatic complications of immune checkpoint inhibitor therapy - an oncological perspective. Rheumatology (Oxford) 2020; 58:vii29-vii39. [PMID: 31816079 PMCID: PMC6900910 DOI: 10.1093/rheumatology/kez536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (CPIs) are an effective treatment for many cancers but cause diverse immune-related adverse events (IrAEs). Rheumatological IrAEs include arthralgia, arthritis, tenosynovitis, myositis, polymyalgia rheumatica and sicca syndrome. CPI use can unmask RA as well as causing flares of prior autoimmune or connective tissue disease. Oncologists categorize and grade IrAEs using the Common Terminology Criteria for Adverse Events and manage them according to international guidelines. However, rheumatological events are unfamiliar territory: oncologists need to work with rheumatologists to elicit and assess symptoms, signs, results of imaging and autoantibody testing and to determine the use of steroids and DMARDs. Myositis may overlap with myasthenic crisis and myocarditis and can be life-threatening. Treatment should be offered on balance of risk and benefit, including whether to continue CPI treatment and recognizing the uncertainty over whether glucocorticoids and DMARDs might compromise cancer control.
Collapse
Affiliation(s)
- Neil M Steven
- Institute of Immunology and Immunotherapy, Birmingham, UK.,Cancer Centre, University Hospital Birmingham, Birmingham, UK
| | - Benjamin A Fisher
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,National Institute of Health Research Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospital Birmingham, Birmingham, UK
| |
Collapse
|
219
|
Leipe J, Mariette X. Management of rheumatic complications of ICI therapy: a rheumatology viewpoint. Rheumatology (Oxford) 2020; 58:vii49-vii58. [PMID: 31816078 PMCID: PMC6900914 DOI: 10.1093/rheumatology/kez360] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Since immune checkpoint inhibitors became the standard of care for an increasing number of indications, more patients have been exposed to these drugs and physicians are more challenged with the management of a unique spectrum of immune-related adverse events (irAEs) associated with immune checkpoint inhibitors. Those irAEs of autoimmune or autoinflammatory origin, or both, can involve any organ or tissue, but most commonly affect the dermatological, gastrointestinal and endocrine systems. Rheumatic/systemic irAEs seem to be less frequent (although underreporting in clinical trials is probable), but information on their management is highly relevant given that they can persist longer than other irAEs. Their management consists of anti-inflammatory treatment including glucocorticoids, synthetic and biologic immunomodulatory/immunosuppressive drugs, symptomatic therapies as well as holding or, rarely, discontinuation of immune checkpoint inhibitors. Here, we summarize the management of rheumatic/systemic irAEs based on data from clinical trials but mainly from published case reports and series, contextualize them and propose perspectives for their treatment.
Collapse
Affiliation(s)
- Jan Leipe
- Department of Medicine V, Division of Rheumatology, University Medical Centre, Mannheim, Munich, Germany.,Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| | - Xavier Mariette
- Department of Rheumatology, Université Paris-Sud, AP-HP, Hôpitaux Universitaires Paris-Sud, Centre for Immunology of Viral Infections and Autoimmune Diseases, INSERM UMR1184, Le Kremlin Bicêtre, France
| |
Collapse
|
220
|
Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH. A review of cancer immunotherapy: from the past, to the present, to the future. ACTA ACUST UNITED AC 2020; 27:S87-S97. [PMID: 32368178 DOI: 10.3747/co.27.5223] [Citation(s) in RCA: 540] [Impact Index Per Article: 135.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compared with previous standards of care (including chemotherapy, radiotherapy, and surgery), cancer immunotherapy has brought significant improvements for patients in terms of survival and quality of life. Immunotherapy has now firmly established itself as a novel pillar of cancer care, from the metastatic stage to the adjuvant and neoadjuvant settings in numerous cancer types. In this review article, we highlight how the history of cancer immunotherapy paved the way for discoveries that are now part of the standard of care. We also highlight the current pitfalls and limitations of cancer checkpoint immunotherapy and how novel research in the fields of personalized cancer vaccines, autoimmunity, the microbiome, the tumour microenvironment, and metabolomics is aiming to solve those challenges.
Collapse
Affiliation(s)
- K Esfahani
- Departments of Medicine and Oncology, Segal Cancer Centre, Sir Mortimer B. Davis Jewish General Hospital, Rossy Cancer Network, McGill University, Montreal, QC
| | - L Roudaia
- Departments of Medicine and Oncology, Segal Cancer Centre, Sir Mortimer B. Davis Jewish General Hospital, Rossy Cancer Network, McGill University, Montreal, QC
| | - N Buhlaiga
- Departments of Medicine and Oncology, Segal Cancer Centre, Sir Mortimer B. Davis Jewish General Hospital, Rossy Cancer Network, McGill University, Montreal, QC
| | - S V Del Rincon
- Department of Oncology, Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, QC
| | - N Papneja
- Departments of Medicine and Oncology, Segal Cancer Centre, Sir Mortimer B. Davis Jewish General Hospital, Rossy Cancer Network, McGill University, Montreal, QC
| | - W H Miller
- Departments of Medicine and Oncology, Segal Cancer Centre, Sir Mortimer B. Davis Jewish General Hospital, Rossy Cancer Network, McGill University, Montreal, QC
| |
Collapse
|
221
|
Boland P, Pavlick AC, Weber J, Sandigursky S. Immunotherapy to treat malignancy in patients with pre-existing autoimmunity. J Immunother Cancer 2020; 8:e000356. [PMID: 32303614 PMCID: PMC7204615 DOI: 10.1136/jitc-2019-000356] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2020] [Indexed: 12/12/2022] Open
Abstract
In the past 10 years, immune checkpoint inhibitors (ICIs) have become an additional pillar of cancer therapy by activating the immune system to treat a number of different malignancies. Many patients receiving ICIs develop immune-related adverse events (irAEs) that mimic some features of classical autoimmune diseases. Unfortunately, patients with underlying autoimmune conditions, many of whom have an increased risk for malignancy, have been excluded from clinical trials of ICIs due to a concern that they will have an increased risk of irAEs. Retrospective data from patients with autoimmune diseases and concomitant malignancy treated with ICIs are encouraging and suggest that ICIs may be tolerated safely in patients with specific autoimmune diseases, but there are no prospective data to guide management. In this manuscript, we review the relationship between pre-existing autoimmune disease and irAEs from checkpoint inhibitors. In addition, we assess the likelihood of autoimmune disease exacerbations in patients with pre-existing autoimmunity receiving ICI.
Collapse
Affiliation(s)
- Patrick Boland
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Anna C Pavlick
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Jeffrey Weber
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
| | - Sabina Sandigursky
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, New York, USA
- Department of Internal Medicine, Division of Rheumatology, NYU Langone Health, New York, New York, USA
| |
Collapse
|
222
|
Haanen J, Ernstoff MS, Wang Y, Menzies AM, Puzanov I, Grivas P, Larkin J, Peters S, Thompson JA, Obeid M. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: review of the literature and personalized risk-based prevention strategy. Ann Oncol 2020; 31:724-744. [PMID: 32194150 DOI: 10.1016/j.annonc.2020.03.285] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023] Open
Abstract
Patients with cancer and with preexisting active autoimmune diseases (ADs) have been excluded from immunotherapy clinical trials because of concerns for high susceptibility to the development of severe adverse events resulting from exacerbation of their preexisting ADs. However, a growing body of evidence indicates that immune-checkpoint inhibitors (ICIs) may be safe and effective in this patient population. However, baseline corticosteroids and other nonselective immunosuppressants appear to negatively impact drug efficacy, whereas retrospective and case report data suggest that use of specific immunosuppressants may not have the same consequences. Therefore, we propose here a two-step strategy. First, to lower the risk of compromising ICI efficacy before their initiation, nonselective immunosuppressants could be replaced by specific selective immunosuppressant drugs following a short rotation phase. Subsequently, combining ICI with the selective immunosuppressant could prevent exacerbation of the AD. For the most common active ADs encountered in the context of cancer, we propose specific algorithms to optimize ICI therapy. These preventive strategies go beyond current practices and recommendations, and should be practiced in ICI-specialized clinics, as these require multidisciplinary teams with extensive knowledge in the field of clinical immunology and oncology. In addition, we challenge the exclusion from ICI therapy for patients with cancer and active ADs and propose the implementation of an international registry to study such novel strategies in a prospective fashion.
Collapse
Affiliation(s)
- J Haanen
- Netherlands Cancer Institute, Division of Medical Oncology, Amsterdam, The Netherlands
| | - M S Ernstoff
- Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - Y Wang
- Department of Gastroenterology, Hepatology & Nutrition, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia; Royal North Shore and Mater Hospitals, Sydney, Australia
| | - I Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, USA
| | - P Grivas
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - J Larkin
- Royal Marsden NHS Foundation Trust, London, UK
| | - S Peters
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV) and Lausanne University, Lausanne, Switzerland
| | - J A Thompson
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, USA; National Cancer Institute/NIH, Bethesda, USA
| | - M Obeid
- Department of Medicine, Service of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Vaccine and Immunotherapy Center, Centre Hospitalier Universitaire Vaudois (CHUV), Centre d'Immunothérapie et de Vaccinologie, Lausanne, Switzerland.
| |
Collapse
|
223
|
Dougan M. Gastrointestinal and Hepatic Complications of Immunotherapy: Current Management and Future Perspectives. Curr Gastroenterol Rep 2020; 22:15. [PMID: 32185493 DOI: 10.1007/s11894-020-0752-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Checkpoint inhibitor (CPI) immunotherapy has transformed the treatment of multiple cancers over the past decade, leading to durable remissions, but also to severe inflammatory toxicities. These toxicities, termed immune-related adverse events (irAEs), can affect any organ system in the body, but commonly induce inflammation in barrier organs. Gastrointestinal (GI) and hepatic irAEs are among the most frequent and most severe from contemporary immunotherapies, with inflammation in the colon and or small intestines (entero)colitis as the single most common GI irAE. The aim of this review is to describe the evidence supporting our current understanding of CPI enterocolitis and hepatitis, as well as the management of these entities. RECENT FINDINGS Although most patients who develop enterocolitis recover without long-term GI sequelae, enterocolitis is still an important reason for treatment discontinuation, which, in patients with metastatic cancer, can be a life-threatening outcome. At present, we have almost no prospective, randomized data regarding the management of CPI enterocolitis, and current management algorithms are based on expert opinion and small retrospective studies with a high likelihood of bias. Retrospective studies have defined colonic ulceration as a predictor of colitis responsiveness to corticosteroids, and have defined microscopic colitis as a subtype of CPI enterocolitis with a distinct treatment response. Corticosteroids appear to be effective for 60-70% of patients with CPI enterocolitis, with about a third of patients requiring escalation to a biologic agent such as infliximab or vedolizumab. Yet proper sequencing of these treatments to minimize risk and maximize treatment benefit has not been established, and we do not know how treatment of colitis influences cancer outcomes. CPI enterocolitis and hepatitis are important causes of treatment interruption and discontinue, and significant morbidity in patients undergoing immunotherapy. As guidelines for diagnosis and management rely heavily on expert opinion, we have an urgent need for randomized and prospective trials that use both colitis and cancer outcomes to determine optimal management strategies.
Collapse
Affiliation(s)
- Michael Dougan
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
224
|
Otano I, Alvarez M, Minute L, Ochoa MC, Migueliz I, Molina C, Azpilikueta A, de Andrea CE, Etxeberria I, Sanmamed MF, Teijeira Á, Berraondo P, Melero I. Human CD8 T cells are susceptible to TNF-mediated activation-induced cell death. Theranostics 2020; 10:4481-4489. [PMID: 32292509 PMCID: PMC7150490 DOI: 10.7150/thno.41646] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/21/2020] [Indexed: 01/17/2023] Open
Abstract
Activation-induced cell death (AICD) is a complex immunoregulatory mechanism that causes the demise of a fraction of T-lymphocytes upon antigen-driven activation. In the present study we investigated the direct role of TNF in AICD of CD8 T lymphocytes. Methods: Human peripheral mononuclear cells were isolated from healthy donors and fresh tumor-infiltrating lymphocytes were obtained from cancer patients undergoing surgery. T cells were activated with anti-CD3/CD28 mAbs or with a pool of virus peptides, in combination with clinical-grade TNF blocking agents. Results: A portion of CD8 T cells undergoes apoptosis upon CD3/CD28 activation in a manner that is partially prevented by the clinically used anti-TNF agents infliximab and etanercept. TNF-mediated AICD was also observed upon activation of virus-specific CD8 T cells and tumor-infiltrating CD8 T lymphocytes. The mechanism of TNF-driven T cell death involves TNFR2 and production of mitochondrial oxygen free radicals which damage DNA. Conclusion: The use of TNF blocking agents reduces oxidative stress, hyperpolarization of mitochondria, and the generation of DNA damage in CD8 T celss undergoing activation. The fact that TNF mediates AICD in human tumor-reactive CD8 T cells suggests that the use of TNF-blocking agents can be exploited in immunotherapy strategies.
Collapse
|
225
|
Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai R. Macrophage and Tumor Cell Cross-Talk Is Fundamental for Lung Tumor Progression: We Need to Talk. Front Oncol 2020; 10:324. [PMID: 32219066 PMCID: PMC7078651 DOI: 10.3389/fonc.2020.00324] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Regardless of the promising results of certain immune checkpoint blockers, current immunotherapeutics have met a bottleneck concerning response rate, toxicity, and resistance in lung cancer patients. Accumulating evidence forecasts that the crosstalk between tumor and immune cells takes center stage in cancer development by modulating tumor malignancy, immune cell infiltration, and immune evasion in the tumor microenvironment (TME). Cytokines and chemokines secreted by this crosstalk play a major role in cancer development, progression, and therapeutic management. An increased infiltration of Tumor-associated macrophages (TAMs) was observed in most of the human cancers, including lung cancer. In this review, we emphasize the role of cytokines and chemokines in TAM-tumor cell crosstalk in the lung TME. Given the role of cytokines and chemokines in immunomodulation, we propose that TAM-derived cytokines and chemokines govern the cancer-promoting immune responses in the TME and offer a new immunotherapeutic option for lung cancer treatment.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Martina Barbara Schaefer
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
226
|
Miyawaki T, Naito T, Kodama A, Nishioka N, Miyawaki E, Mamesaya N, Kawamura T, Kobayashi H, Omori S, Wakuda K, Ono A, Kenmotsu H, Murakami H, Notsu A, Mori K, Harada H, Endo M, Takahashi K, Takahashi T. Desensitizing Effect of Cancer Cachexia on Immune Checkpoint Inhibitors in Patients With Advanced NSCLC. JTO Clin Res Rep 2020; 1:100020. [PMID: 34589927 PMCID: PMC8474252 DOI: 10.1016/j.jtocrr.2020.100020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction Programmed cell death 1 (PD-1) inhibitors have become standard treatment for patients with advanced NSCLC. However, few studies have focused on the impact of cancer cachexia on the efficacy of PD-1 or programmed death-ligand 1 (PD-L1) inhibitors among patients with NSCLC. Methods We retrospectively reviewed medical records of patients with advanced NSCLC who received PD-1 or PD-L1 inhibitor monotherapy from May 2016 to December 2018. We defined cancer cachexia as unintentional weight loss greater than 5% over 6 months and high PD-L1 as greater than 50% expression on tumor cells. We evaluated the objective response rates (ORRs) and progression-free survival (PFS). Results Among 108 patients, 52 had cancer cachexia. Patients with cachexia had a lower ORR (15% versus 57%, p < 0.001) and shorter PFS (2.3 mo versus 12.0 mo, p < 0.001) than those without cachexia. Patients with low PD-L1 expression had a lower ORR (14% versus 53%, p < 0.001) and shorter PFS (2.8 mo versus 10.8 mo, p = 0.002) than those with high PD-L1 expression. Multivariate analysis revealed cancer cachexia and low PD-L1 expression as independent negative predictors of PFS. Among patients with cachexia, there was no significant difference in the ORR (p = 0.514) or PFS (p = 0.992) on the basis of PD-L1 expression. Conclusions Our findings indicate that cancer cachexia might be a negative predictor of the efficacy of PD-1 or PD-L1 inhibitors and reduce the impact of PD-L1 expression on the effect of PD-1 or PD-L1 inhibitors in patients with advanced NSCLC. Further clinical and basic studies are needed.
Collapse
Affiliation(s)
- Taichi Miyawaki
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan.,Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Akihro Kodama
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Naoya Nishioka
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Eriko Miyawaki
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takahisa Kawamura
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Haruki Kobayashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shota Omori
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazushige Wakuda
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Akira Ono
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Haruyasu Murakami
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Akifumi Notsu
- Division of Clinical Research Promotion Unit, Shizuoka Cancer Center, Shizuoka, Japan
| | - Keita Mori
- Division of Clinical Research Promotion Unit, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hideyuki Harada
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masahiro Endo
- Division of Diagnostic Radiology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
227
|
Immunotherapy, Inflammation and Colorectal Cancer. Cells 2020; 9:cells9030618. [PMID: 32143413 PMCID: PMC7140520 DOI: 10.3390/cells9030618] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type, and third highest in mortality rates among cancer-related deaths in the United States. Originating from intestinal epithelial cells in the colon and rectum, that are impacted by numerous factors including genetics, environment and chronic, lingering inflammation, CRC can be a problematic malignancy to treat when detected at advanced stages. Chemotherapeutic agents serve as the historical first line of defense in the treatment of metastatic CRC. In recent years, however, combinational treatment with targeted therapies, such as vascular endothelial growth factor, or epidermal growth factor receptor inhibitors, has proven to be quite effective in patients with specific CRC subtypes. While scientific and clinical advances have uncovered promising new treatment options, the five-year survival rate for metastatic CRC is still low at about 14%. Current research into the efficacy of immunotherapy, particularly immune checkpoint inhibitor therapy (ICI) in mismatch repair deficient and microsatellite instability high (dMMR-MSI-H) CRC tumors have shown promising results, but its use in other CRC subtypes has been either unsuccessful, or not extensively explored. This Review will focus on the current status of immunotherapies, including ICI, vaccination and adoptive T cell therapy (ATC) in the treatment of CRC and its potential use, not only in dMMR-MSI-H CRC, but also in mismatch repair proficient and microsatellite instability low (pMMR-MSI-L).
Collapse
|
228
|
TNFα Blockade in Checkpoint Inhibition: The Good, the Bad, or the Ugly? Clin Cancer Res 2020; 26:2085-2086. [DOI: 10.1158/1078-0432.ccr-20-0387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022]
|
229
|
De Guillebon E, Dardenne A, Saldmann A, Séguier S, Tran T, Paolini L, Lebbe C, Tartour E. Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. Int J Cancer 2020; 147:1509-1518. [DOI: 10.1002/ijc.32889] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/28/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Antoine Dardenne
- Department of Gastro‐enterology and Gastro‐intestinal OncologyHopital Européen Georges Pompidou, APHP Paris France
| | - Antonin Saldmann
- Université de Paris, PARCC, INSERM Paris France
- Department of Immunology, AP‐HPHopital Européen Georges Pompidou Paris France
| | - Sylvie Séguier
- Université de Paris, PARCC, INSERM Paris France
- Faculté de Chirurgie DentaireHôpital Louis Mourier Montrouge France
| | - Thi Tran
- Université de Paris, PARCC, INSERM Paris France
| | - Lea Paolini
- Université de Paris, PARCC, INSERM Paris France
| | - Celeste Lebbe
- Department of DermatologySaint‐Louis University Hospital Paris France
- Université de Paris, INSERM U976 Paris France
| | - Eric Tartour
- Université de Paris, PARCC, INSERM Paris France
- Department of Immunology, AP‐HPHopital Européen Georges Pompidou Paris France
- Equipe Labellisée Ligue Contre le Cancer Paris France
| |
Collapse
|
230
|
Abstract
Immune checkpoint inhibitors have revolutionized treatment and overall survival for several different types of cancer. Antibodies to cytotoxic T-lymphocyte-associated protein 4 and to programmed cell death protein 1 and its ligand enhance cytotoxic T-cell survival, thus augmenting antitumor action and consequently inducing immune-related adverse events, of which the most relevant is diarrhea and colitis. This review compiles recent data on pathophysiology, clinical manifestations, and treatment of immune-mediated colitis (IMC). The pathogenesis of IMC is not completely understood, but recent studies have focused on the role of regulatory T cells and interactions with the gut microbiome. While sharing similarities with inflammatory bowel disease, IMC is considered a distinct form of colitis with acute onset and rapid progression leading to potential complications including bowel perforation and death. Prompt recognition and management of IMC is imperative for optimal outcomes. Although prospective clinical trials are lacking to guide therapy, recent guidelines recommend early endoscopic evaluation to establish the diagnosis and prompt initiation of corticosteroids. Response to first-line therapy should be assessed early to determine the need of escalation to biologic agents. With treatment, most patients will experience full resolution of symptoms, and subsequent rechallenge with anti-programmed cell death protein 1 or anti-programmed death-ligand 1 inhibitors can be considered.
Collapse
|
231
|
Ho WJ, Yarchoan M, Charmsaz S, Munday RM, Danilova L, Sztein MB, Fertig EJ, Jaffee EM. Multipanel mass cytometry reveals anti-PD-1 therapy-mediated B and T cell compartment remodeling in tumor-draining lymph nodes. JCI Insight 2020; 5:132286. [PMID: 31855578 DOI: 10.1172/jci.insight.132286] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Anti-programmed cell death protein 1 (anti-PD-1) therapy has become an immunotherapeutic backbone for treating many cancer types. Although many studies have aimed to characterize the immune response to anti-PD-1 therapy in the tumor and in the peripheral blood, relatively less is known about the changes in the tumor-draining lymph nodes (TDLNs). TDLNs are primary sites of tumor antigen exposure that are critical to both regulation and cross-priming of the antitumor immune response. We used multipanel mass cytometry to obtain a high-parameter proteomic (39 total unique markers) immune profile of the TDLNs in a well-studied PD-1-responsive, immunocompetent mouse model. Based on combined hierarchal gating and unsupervised clustering analyses, we found that anti-PD-1 therapy enhances remodeling of both B and T cell compartments toward memory phenotypes. Functionally, expression of checkpoint markers was increased in conjunction with production of IFN-γ, TNF-α, or IL-2 in key cell types, including B and T cell subtypes, and rarer subsets, such as Tregs and NKT cells. A deeper profiling of the immunologic changes that occur in the TDLN milieu during effective anti-PD-1 therapy may lead to the discovery of novel biomarkers for monitoring response and provide key insights toward developing combination immunotherapeutic strategies.
Collapse
Affiliation(s)
- Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy
| | - Mark Yarchoan
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy
| | | | - Ludmila Danilova
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy.,Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health.,Graduate Program in Molecular Microbiology and Immunology, Graduate Program in Life Sciences.,Department of Pediatrics, and.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Elana J Fertig
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy.,McKusick-Nathans Institute for Genetic Medicine, and.,Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering and.,Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center.,Bloomberg-Kimmel Institute for Cancer Immunotherapy.,Department of Pediatrics, and.,Pancreatic Cancer Precision Medicine Program and.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
232
|
Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y, Zhou Y, Liao Q, Wang H, Xiang B, Zhou M, Li X, Li G, Li Y, Zeng Z, Xiong W. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer 2020; 19:19. [PMID: 32000802 PMCID: PMC6993488 DOI: 10.1186/s12943-020-1144-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in a variety of tumors, but resistance during treatment is a major issue. In this review, we describe the utility of PD-L1 expression levels, mutation burden, immune cell infiltration, and immune cell function for predicting the efficacy of PD-1/PD-L1 blockade therapy. Furthermore, we explore the mechanisms underlying immunotherapy resistance caused by PD-L1 expression on tumor cells, T cell dysfunction, and T cell exhaustion. Based on these mechanisms, we propose combination therapeutic strategies. We emphasize the importance of patient-specific treatment plans to reduce the economic burden and prolong the life of patients. The predictive indicators, resistance mechanisms, and combination therapies described in this review provide a basis for improved precision medicine.
Collapse
Affiliation(s)
- Daixi Ren
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuze Hua
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boyao Yu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Ye
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ziheng He
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chunwei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xiaoxu Wei
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yunhua Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yujuan Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
233
|
Verheijden RJ, May AM, Blank CU, Aarts MJB, van den Berkmortel FWPJ, van den Eertwegh AJM, de Groot JWB, Boers-Sonderen MJ, van der Hoeven JJM, Hospers GA, Piersma D, van Rijn RS, Ten Tije AJ, van der Veldt AAM, Vreugdenhil G, van Zeijl MCT, Wouters MWJM, Haanen JBAG, Kapiteijn E, Suijkerbuijk KPM. Association of Anti-TNF with Decreased Survival in Steroid Refractory Ipilimumab and Anti-PD1-Treated Patients in the Dutch Melanoma Treatment Registry. Clin Cancer Res 2020; 26:2268-2274. [PMID: 31988197 DOI: 10.1158/1078-0432.ccr-19-3322] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/03/2019] [Accepted: 01/22/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE Unleashing the immune system by PD-1 and/or CTLA-4 blockade can cause severe immune-related toxicity necessitating immunosuppressive treatment. Whether immunosuppression for toxicity impacts survival is largely unknown. EXPERIMENTAL DESIGN Using data from the prospective nationwide Dutch Melanoma Treatment Registry (DMTR), we analyzed the association between severe toxicity and overall survival (OS) in 1,250 patients with advanced melanoma who were treated with immune checkpoint inhibitors (ICI) in first line between 2012 and 2017. Furthermore, we analyzed whether toxicity management affected survival in these patients. RESULTS A total of 1,250 patients were included, of whom 589 received anti-PD1 monotherapy, 576 ipilimumab, and 85 combination therapy. A total of 312 patients (25%) developed severe (grade ≥3) toxicity. Patients experiencing severe ICI toxicity had a significantly prolonged survival with a median OS of 23 months compared with 15 months for patients without severe toxicity [hazard ratio (HRadj) = 0.77; 95% confidence interval (CI), 0.63-0.93]. Among patients experiencing severe toxicity, survival was significantly decreased in patients who received anti-TNF ± steroids for steroid-refractory toxicity compared with patients who were managed with steroids only (HRadj = 1.61; 95% CI, 1.03-2.51), with a median OS of 17 and 27 months, respectively. CONCLUSIONS Patients experiencing severe ICI toxicity have a prolonged OS. However, this survival advantage is abrogated when anti-TNF is administered for steroid-refractory toxicity. Further prospective studies are needed to assess the effect of different immunosuppressive regimens on checkpoint inhibitor efficacy.See related commentary by Weber and Postow, p. 2085.
Collapse
Affiliation(s)
- Rik J Verheijden
- Department of Medical Oncology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands
| | - Anne M May
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christian U Blank
- Department of Medical and Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Alfonsus J M van den Eertwegh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Marye J Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Geke A Hospers
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Rozemarijn S van Rijn
- Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Albert J Ten Tije
- Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands
| | - Astrid A M van der Veldt
- Departments of Medical Oncology and Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Gerard Vreugdenhil
- Department of Internal Medicine, Maxima Medical Center, Eindhoven, The Netherlands
| | - Michiel C T van Zeijl
- Dutch Institute for Clinical Auditing, Leiden, The Netherlands; Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel W J M Wouters
- Department of Medical and Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - John B A G Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht Cancer Center, Utrecht, The Netherlands.
| |
Collapse
|
234
|
Pan H, Lu L, Cui J, Yang Y, Wang Z, Fan X. Immunological analyses reveal an immune subtype of uveal melanoma with a poor prognosis. Aging (Albany NY) 2020; 12:1446-1464. [PMID: 31954372 PMCID: PMC7053626 DOI: 10.18632/aging.102693] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
Uveal melanoma is an aggressive intraocular malignancy that often exhibits low immunogenicity. Metastatic uveal melanoma samples frequently exhibit monosomy 3 or BAP1 deficiency. In this study, we used bioinformatic methods to investigate the immune infiltration of uveal melanoma samples in public datasets. We first performed Gene Set Enrichment/Variation Analyses to detect immunological pathways that are altered in tumors with monosomy 3 or BAP1 deficiency. We then conducted an unsupervised clustering analysis to identify distinct immunologic molecular subtypes of uveal melanoma. We used CIBERSORT and ESTIMATE with RNA-seq data from The Cancer Genome Atlas and the GSE22138 microarray dataset to determine the sample-level immune subpopulations and immune scores of uveal melanoma samples. The Kaplan-Meier method and log-rank test were used to assess the prognostic value of particular immune cells and genes in uveal melanoma samples. Through these approaches, we discovered uveal melanoma-specific immunologic features, which may provide new insights into the tumor microenvironment and enhance the development of immunotherapies in the future.
Collapse
Affiliation(s)
- Hui Pan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Linna Lu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Junqi Cui
- Department of Pathology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuan Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhaoyang Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
235
|
Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, Nguyen F, Vuillier C, Dumont A, Moreau-Aubry A, Frapin M, David L, Loussouarn D, Kerdraon O, Campone M, Jézéquel P, Juin PP, Barillé-Nion S. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun 2020; 11:259. [PMID: 31937780 PMCID: PMC6959316 DOI: 10.1038/s41467-019-13689-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023] Open
Abstract
A fascinating but uncharacterized action of antimitotic chemotherapy is to collectively prime cancer cells to apoptotic mitochondrial outer membrane permeabilization (MOMP), while impacting only on cycling cell subsets. Here, we show that a proapoptotic secretory phenotype is induced by activation of cGAS/STING in cancer cells that are hit by antimitotic treatment, accumulate micronuclei and maintain mitochondrial integrity despite intrinsic apoptotic pressure. Organotypic cultures of primary human breast tumors and patient-derived xenografts sensitive to paclitaxel exhibit gene expression signatures typical of type I IFN and TNFα exposure. These cytokines induced by cGAS/STING activation trigger NOXA expression in neighboring cells and render them acutely sensitive to BCL-xL inhibition. cGAS/STING-dependent apoptotic effects are required for paclitaxel response in vivo, and they are amplified by sequential, but not synchronous, administration of BH3 mimetics. Thus anti-mitotic agents propagate apoptotic priming across heterogeneously sensitive cancer cells through cytosolic DNA sensing pathway-dependent extracellular signals, exploitable by delayed MOMP targeting.
Collapse
Affiliation(s)
- Steven Lohard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Nathalie Bourgeois
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Laurent Maillet
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Fabien Gautier
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Aurélie Fétiveau
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Hamza Lasla
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Frédérique Nguyen
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- Oniris, site Chantrerie, CS40706, 44307, Cedex 3, Nantes, France
| | - Céline Vuillier
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Alison Dumont
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
| | - Agnès Moreau-Aubry
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Morgane Frapin
- UMR 1280 PhAN, Université de Nantes, INRA, Nantes, France
| | - Laurent David
- Nantes Université, CHU Nantes, Inserm, CRTI, UMR 1064, ITUN, Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, FED 4203, Inserm UMS 016, CNRS UMS 3556, Nantes, France
| | | | - Olivier Kerdraon
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Mario Campone
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Pascal Jézéquel
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
- SIRIC ILIAD, Nantes, Angers, France
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France
| | - Philippe P Juin
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
- SIRIC ILIAD, Nantes, Angers, France.
- Institut de Cancérologie de l'Ouest, 15 Rue André Boquel, 49055, Angers, Pays de la Loire, France.
| | - Sophie Barillé-Nion
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.
- SIRIC ILIAD, Nantes, Angers, France.
| |
Collapse
|
236
|
Calabrese L, Mariette X. Chronic inflammatory arthritis following checkpoint inhibitor therapy for cancer: game changing implications. Ann Rheum Dis 2020; 79:309-311. [DOI: 10.1136/annrheumdis-2019-216510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
|
237
|
Dougan M, Pietropaolo M. Time to dissect the autoimmune etiology of cancer antibody immunotherapy. J Clin Invest 2020; 130:51-61. [PMID: 31895048 PMCID: PMC6934191 DOI: 10.1172/jci131194] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has transformed the treatment landscape for a wide range of human cancers. Immune checkpoint inhibitors (ICIs), monoclonal antibodies that block the immune-regulatory "checkpoint" receptors CTLA-4, PD-1, or its ligand PD-L1, can produce durable responses in some patients. However, coupled with their success, these treatments commonly evoke a wide range of immune-related adverse events (irAEs) that can affect any organ system and can be treatment-limiting and life-threatening, such as diabetic ketoacidosis, which appears to be more frequent than initially described. The majority of irAEs from checkpoint blockade involve either barrier tissues (e.g., gastrointestinal mucosa or skin) or endocrine organs, although any organ system can be affected. Often, irAEs resemble spontaneous autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid disease, type 1 diabetes mellitus (T1D), and autoimmune pancreatitis. Yet whether similar molecular or pathologic mechanisms underlie these apparent autoimmune adverse events and classical autoimmune diseases is presently unknown. Interestingly, evidence links HLA alleles associated with high risk for autoimmune disease with ICI-induced T1D and colitis. Understanding the genetic risks and immunologic mechanisms driving ICI-mediated inflammatory toxicities may not only identify therapeutic targets useful for managing irAEs, but may also provide new insights into the pathoetiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
238
|
Su D, Tsai HI, Xu Z, Yan F, Wu Y, Xiao Y, Liu X, Wu Y, Parvanian S, Zhu W, Eriksson JE, Wang D, Zhu H, Chen H, Cheng F. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles 2019; 9:1709262. [PMID: 33133428 PMCID: PMC7580831 DOI: 10.1080/20013078.2019.1709262] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Excessive and persistent inflammation after injury lead to chronic wounds, increased tissue damage or even aggressive carcinogenic transformation. Effective wound repair could be achieved by inhibiting overactive immune cells to the injured site. In this study, we obtained high concentration of PD-L1 in exosomes from either genetically engineered cells overexpressing PD-L1 or IFN-γ stimulated cells. We found that exosomal PD-L1 is specially bound to PD-1 on T cell surface, and suppressed T cell activation. Interestingly, exosomal PD-L1 promoted the migration of epidermal cells and dermal fibroblasts when pre-incubated with T cells. We further embedded exosomes into thermoresponsive PF-127 hydrogel, which was gelatinized at body temperature to release exosomes to the surroundings in a sustained manner. Of importance, in a mouse skin excisional wound model, exosomal PD-L1 significantly fastened wound contraction and reepithelialization when embedded in hydrogel during inflammation phase. Finally, exosomal PD-L1 inhibited cytokine production of CD8+ T cells and suppressed CD8+ T cell numbers in spleen and peripheral lymph nodes. Taken together, these data provide evidence on exosomal PD-L1 exerting immune inhibitory effects and promoting tissue repair.
Collapse
Affiliation(s)
- Dandan Su
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hsiang-I Tsai
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zhanxue Xu
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Fuxia Yan
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yingyi Wu
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Youmei Xiao
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Xiaoyan Liu
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yanping Wu
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Sepideh Parvanian
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Wangshu Zhu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - John E Eriksson
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Dongqing Wang
- Department of medical imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of medical imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongbo Chen
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Fang Cheng
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
239
|
Moreira RS, Bicker J, Musicco F, Persichetti A, Pereira AMPT. Anti-PD-1 immunotherapy in advanced metastatic melanoma: State of the art and future challenges. Life Sci 2019; 240:117093. [PMID: 31760100 DOI: 10.1016/j.lfs.2019.117093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
Immunotherapy with immune checkpoint inhibitors, such as anti-PD-1 drugs, is an area in increasing development for its efficacy and advantages in the treatment of advanced metastatic melanoma. In fact, immunotherapy has been the target of several and recent studies in different types of cancer, namely in melanoma, a globally growing threat. Contributing to the increasing incidence of this cancer is climate change, particularly global warming of the past century, which has increased the tendency to spend more time outdoors and, consequently, exposure to sunlight and ultraviolet radiation. Among the most relevant risk factors for melanoma is the increase in ultraviolet radiation due to ozone layer depletion, one of the main factors responsible for the incidence of new cases. Anti-PD-1 agents like Nivolumab and Pembrolizumab allow a more effective treatment, enhancing the duration of the responses to therapy and prolonging the survival of the patient. However, recent studies about safety and tolerability have stated that, although these drugs present less adverse effects and toxicity, they may lead to specific autoimmune-mediated adverse events. Overall, immunotherapy with anti-PD-1 agents represents a highly promising area in the treatment of some types of cancer such as melanoma.
Collapse
Affiliation(s)
- Rita S Moreira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CIBIT/ICNAS - Coimbra Institute for Biomedical Imaging and Translational Research, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Felice Musicco
- Regina Elena San Gallicano IRCCS di Roma, 00144 Roma, Italy.
| | | | - André M P T Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
240
|
Montfort A, Dufau C, Colacios C, Andrieu-Abadie N, Levade T, Filleron T, Delord JP, Ayyoub M, Meyer N, Ségui B. Anti-TNF, a magic bullet in cancer immunotherapy? J Immunother Cancer 2019; 7:303. [PMID: 31727152 PMCID: PMC6857159 DOI: 10.1186/s40425-019-0802-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Immune checkpoint blockers (ICB) have revolutionized cancer therapy. However, complete response is observed in a minority of patients and most patients develop immune-related adverse events (irAEs). These include colitis, which can be treated with anti-tumor necrosis factor (TNF) antibodies such as Infliximab. In a recent issue of the Journal for ImmunoTherapy of Cancer, Badran et al. reported that co-administering Infliximab together with ICB to five cancer patients prevents colitis recurrence, with four of them exhibiting overall disease stability. The basis for this treatment strategy stemmed from our pre-clinical demonstration that TNF contributes to resistance to anti-PD-1 therapy. In agreement with this concept, we have shown that TNF blockers improve the anti-tumor therapeutic activity of ICB in mice and based on these findings we are currently evaluating the combination in melanoma patients enrolled in the TICIMEL clinical trial. Herein, (i) we discuss the scientific rationale for combining anti-TNF and ICB in cancer patients, (ii) comment on the paper published by Badran et al. and (iii) provide the TICIMEL clinical trial design.
Collapse
Affiliation(s)
- Anne Montfort
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France
| | - Carine Dufau
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France
| | - Céline Colacios
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France
| | - Nathalie Andrieu-Abadie
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France
| | - Thierry Levade
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France.,Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, 31059, Toulouse, France
| | - Thomas Filleron
- Biostatistics Unit, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31059, Toulouse, France
| | - Jean-Pierre Delord
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31059, Toulouse, France
| | - Maha Ayyoub
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France.,Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31059, Toulouse, France
| | - Nicolas Meyer
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France.,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France.,Centre Hospitalier Universitaire, Institut Universitaire du Cancer de Toulouse, 31059, Toulouse, France
| | - Bruno Ségui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), 2 avenue Hubert Curien, CS 53717, 31037, Toulouse Cedex 1, France. .,Université Toulouse III - Paul Sabatier, 31062, Toulouse, France.
| |
Collapse
|
241
|
Kwak SY, Lee S, Han HD, Chang S, Kim KP, Ahn HJ. PLGA Nanoparticles Codelivering siRNAs against Programmed Cell Death Protein-1 and Its Ligand Gene for Suppression of Colon Tumor Growth. Mol Pharm 2019; 16:4940-4953. [DOI: 10.1021/acs.molpharmaceut.9b00826] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seo Young Kwak
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | | | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungju 27478, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | | | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| |
Collapse
|
242
|
Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 2019; 17:1-12. [PMID: 31611651 DOI: 10.1038/s41423-019-0306-1] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023] Open
Abstract
Tumor-promoting inflammation and the avoidance of immune destruction are hallmarks of cancer. While innate immune cells, such as neutrophils, monocytes, and macrophages, are critical mediators for sterile and nonsterile inflammation, persistent inflammation, such as that which occurs in cancer, is known to disturb normal myelopoiesis. This disturbance leads to the generation of immunosuppressive myeloid cells, such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). Due to their potent suppressive activities against effector lymphocytes and their abundance in the tumor microenvironment, immunosuppressive myeloid cells act as a major barrier to cancer immunotherapy. Indeed, various therapeutic approaches directed toward immunosuppressive myeloid cells are actively being tested in preclinical and clinical studies. These include anti-inflammatory agents, therapeutic blockade of the mobilization and survival of myeloid cells, and immunostimulatory adjuvants. More recently, immune checkpoint molecules expressed on tumor-infiltrating myeloid cells have emerged as potential therapeutic targets to redirect these cells to eliminate tumor cells. In this review, we discuss the complex crosstalk between cancer-related inflammation and immunosuppressive myeloid cells and possible therapeutic strategies to harness antitumor immune responses.
Collapse
|
243
|
Tuscano JM, Maverakis E, Groshen S, Tsao-Wei D, Luxardi G, Merleev AA, Beaven A, DiPersio JF, Popplewell L, Chen R, Kirschbaum M, Schroeder MA, Newman EM. A Phase I Study of the Combination of Rituximab and Ipilimumab in Patients with Relapsed/Refractory B-Cell Lymphoma. Clin Cancer Res 2019; 25:7004-7013. [PMID: 31481504 DOI: 10.1158/1078-0432.ccr-19-0438] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Based on the potential for ipilimumab (I) to augment T-cell activation, we hypothesize that ipilimumab would augment the efficacy of rituximab (R) in patients with relapsed/refractory (R/R) CD20+non-Hodgkin's lymphoma (NHL). This phase I study aimed to identify a recommended phase 2 dose, document toxicities, and preliminarily assess efficacy and potential predictive biomarkers. PATIENTS AND METHODS Thirty-three patients with R/R CD20+B-cell lymphoma received R at 375 mg/m2weekly for 4 weeks and I at 3 mg/kg on day 1 and every 3 weeks for four doses. Responding patients went on to maintenance with each agent given every 12 weeks. To facilitate correlative analysis, the expansion phase randomized patients to simultaneous R+I versus R with I delayed 2 weeks. RESULTS Toxicity was manageable; no dose-limiting toxicity was observed at the doses studied. When considering the entire cohort, efficacy was modest, with an objective response rate (ORR) of 24% and median progression-free survival (PFS) of 2.6 months. However, in follicular lymphoma patients, the ORR was 58% with a median PFS of 5.6 months. The randomized comparison of R with R+I demonstrated that R+I resulted in more effective B-cell depletion (BCD). Both B-cell depletion and the ratio of CD45RA-regulatory T cell (Treg) to Treg were associated with response at all time points. CONCLUSIONS The combination of R+I has manageable toxicity and encouraging efficacy in R/R follicular lymphoma. The ratio of CD45RA-Tregs to total Tregs, and peripheral BCD should be studied further as potential predictors of response.
Collapse
Affiliation(s)
- Joseph M Tuscano
- UC Davis Comprehensive Cancer Center, Sacramento, California. .,Veterans Administration Northern California Healthcare System, Sacramento, California
| | | | - Susan Groshen
- Biostatistics Core, University of Southern California/Norris Cancer Center, Los Angeles, California
| | - Denice Tsao-Wei
- Biostatistics Core, University of Southern California/Norris Cancer Center, Los Angeles, California
| | | | | | - Anne Beaven
- University of North Carolina Comprehensive Cancer Center, Chapel Hill, North Carolina
| | - John F DiPersio
- Washington University School of Medicine, St. Louis, Missouri
| | - Leslie Popplewell
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Robert Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | | | | | - Edward M Newman
- Division of Molecular Pharmacology, Department of Medical Oncology, City of Hope, Duarte, California, USA
| |
Collapse
|
244
|
Badran YR, Cohen JV, Brastianos PK, Parikh AR, Hong TS, Dougan M. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events. J Immunother Cancer 2019; 7:226. [PMID: 31439050 PMCID: PMC6704680 DOI: 10.1186/s40425-019-0711-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICI) have demonstrated remarkable efficacy as cancer therapeutics, however, their use remains limited due to the development of immune related adverse events (irAEs). Immune related enterocolitis (irEC) is among the most common severe irAEs leading to the discontinuation of ICIs. Inhibitors of tumor necrosis factor alpha (anti-TNFα) have been used to treat irEC. Recent animal studies have shown that concurrent treatment with anti-TNFα and ICIs improves tumor responses and decreases colitis severity. This approach has not yet been studied in prospective trials in humans. Here we describe, for the first time, the outcomes of patients who were treated concurrently with anti-TNFα and one or two ICIs. CASE PRESENTATIONS Five patients with different primary malignancies were treated with ipilimumab/nivolumab (2 patients), pembrolizumab (1 patient), ipilimumab (1 patient), or cemiplimab (1 patient). All patients developed irEC within 40 days of their first ICI dose. The patients presented with a combination of upper and lower gastrointestinal symptoms and subsequently underwent upper endoscopy and/or lower endoscopy. Endoscopy results demonstrated a spectrum of acute inflammatory changes across the gastrointestinal tract. Steroid therapy was used as first line treatment. To prevent prolonged steroid use and recurrence of gastrointestinal inflammation after resumption of cancer therapy, patients were treated concurrently with infliximab and ICI. Patients tolerated further ICI therapy with no recurrence of symptoms. Repeat endoscopies showed resolution of acute inflammation and restaging imaging showed no cancer progression. CONCLUSIONS Concurrent treatment with anti-TNFα and ICI appears to be safe, facilitates steroid tapering, and prevents irEC. Prospective clinical trials are needed to assess the outcomes of this treatment modality.
Collapse
Affiliation(s)
- Yousef R Badran
- Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Justine V Cohen
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Priscilla K Brastianos
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aparna R Parikh
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Theodore S Hong
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Radiation Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Michael Dougan
- Harvard Medical School, Boston, MA, 02115, USA.
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
245
|
Mittal D, Vijayan D, Smyth MJ. Overcoming Acquired PD-1/PD-L1 Resistance with CD38 Blockade. Cancer Discov 2019; 8:1066-1068. [PMID: 30181171 DOI: 10.1158/2159-8290.cd-18-0798] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of CD38 after PD-1/PD-L1 blockade increases extracellular adenosine levels and may contribute to acquired resistance to anti-PD-1/PD-L1 therapy. Cancer Discov; 8(9); 1066-8. ©2018 AACRSee related article by Chen et al., p. 1156.
Collapse
Affiliation(s)
- Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Dipti Vijayan
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
246
|
Montfort A, Colacios C, Levade T, Andrieu-Abadie N, Meyer N, Ségui B. The TNF Paradox in Cancer Progression and Immunotherapy. Front Immunol 2019; 10:1818. [PMID: 31417576 PMCID: PMC6685295 DOI: 10.3389/fimmu.2019.01818] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Anne Montfort
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Céline Colacios
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Thierry Levade
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France.,Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | | | - Nicolas Meyer
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France.,Dermatologie, Institut Universitaire du Cancer (IUCT-O) et CHU de Toulouse, Toulouse, France
| | - Bruno Ségui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
247
|
Vredevoogd DW, Kuilman T, Ligtenberg MA, Boshuizen J, Stecker KE, de Bruijn B, Krijgsman O, Huang X, Kenski JCN, Lacroix R, Mezzadra R, Gomez-Eerland R, Yildiz M, Dagidir I, Apriamashvili G, Zandhuis N, van der Noort V, Visser NL, Blank CU, Altelaar M, Schumacher TN, Peeper DS. Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold. Cell 2019; 178:585-599.e15. [PMID: 31303383 DOI: 10.1016/j.cell.2019.06.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/23/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
New opportunities are needed to increase immune checkpoint blockade (ICB) benefit. Whereas the interferon (IFN)γ pathway harbors both ICB resistance factors and therapeutic opportunities, this has not been systematically investigated for IFNγ-independent signaling routes. A genome-wide CRISPR/Cas9 screen to sensitize IFNγ receptor-deficient tumor cells to CD8 T cell elimination uncovered several hits mapping to the tumor necrosis factor (TNF) pathway. Clinically, we show that TNF antitumor activity is only limited in tumors at baseline and in ICB non-responders, correlating with its low abundance. Taking advantage of the genetic screen, we demonstrate that ablation of the top hit, TRAF2, lowers the TNF cytotoxicity threshold in tumors by redirecting TNF signaling to favor RIPK1-dependent apoptosis. TRAF2 loss greatly enhanced the therapeutic potential of pharmacologic inhibition of its interaction partner cIAP, another screen hit, thereby cooperating with ICB. Our results suggest that selective reduction of the TNF cytotoxicity threshold increases the susceptibility of tumors to immunotherapy.
Collapse
Affiliation(s)
- David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Thomas Kuilman
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Maarten A Ligtenberg
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Julia Boshuizen
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Kelly E Stecker
- Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Beaunelle de Bruijn
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Xinyao Huang
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Juliana C N Kenski
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Ruben Lacroix
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Riccardo Mezzadra
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Raquel Gomez-Eerland
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Mete Yildiz
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Ilknur Dagidir
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Georgi Apriamashvili
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Nordin Zandhuis
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Vincent van der Noort
- Division of Statistics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Nils L Visser
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Christian U Blank
- Division of Medical Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| |
Collapse
|
248
|
Benesova K, Lorenz HM, Leipe J, Jordan K. How I treat cancer: treatment of rheumatological side effects of immunotherapy. ESMO Open 2019; 4:e000529. [PMID: 31423343 PMCID: PMC6677979 DOI: 10.1136/esmoopen-2019-000529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/03/2022] Open
Affiliation(s)
- Karolina Benesova
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Hanns-Martin Lorenz
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jan Leipe
- Division of Rheumatology, Department of Medicine V, University Hospital Mannheim, Mannheim, Germany
| | - Karin Jordan
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
249
|
Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res 2019; 147:104353. [PMID: 31306775 DOI: 10.1016/j.phrs.2019.104353] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Immune system has critical roles in fighting against several diseases like cancer. Cancer cells evolve several ways to escape from the immune system to remain alive and trigger new phases of cancer progression. Regulatory T cells are one of the key components in tumor immune tolerance and contribute to the evasion of cancer cells from the immune system. Targeting regulatory T cells could provide new horizons in designing and development of effective therapeutic platforms for the treatment of various malignancies. Curcumin is the bioactive pigment of turmeric and a well-known phytochemical with a wide range of pharmacological activities. A growing body of evidence has demonstrated that curcumin affects manifold molecular pathways that are implicated in tumorigenesis and cancer metastasis. In this regard, some studies have indicated that this phytochemical could target regulatory T cells and convert them into T helper 1 cells, which possess anti-tumor effects. On the contrary, curcumin is able to increase the number of regulatory T cells in other conditions such as inflammatory bowel disease. Herein, we describe the anti-cancer roles of curcumin via targeting regulatory T cells. Moreover, we summarize the effects of curcumin on regulatory T cell population in other diseases.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
250
|
Shergold AL, Millar R, Nibbs RJ. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol Res 2019; 145:104258. [DOI: 10.1016/j.phrs.2019.104258] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
|