201
|
Chow EJ, Uyeki TM, Chu HY. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat Rev Microbiol 2023; 21:195-210. [PMID: 36253478 PMCID: PMC9574826 DOI: 10.1038/s41579-022-00807-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 01/14/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused substantial global morbidity and deaths, leading governments to turn to non-pharmaceutical interventions to slow down the spread of infection and lessen the burden on health care systems. These policies have evolved over the course of the COVID-19 pandemic, including after the availability of COVID-19 vaccines, with regional and country-level differences in their ongoing use. The COVID-19 pandemic has been associated with changes in respiratory virus infections worldwide, which have differed between virus types. Reductions in respiratory virus infections, including by influenza virus and respiratory syncytial virus, were most notable at the onset of the COVID-19 pandemic and continued in varying degrees through subsequent waves of SARS-CoV-2 infections. The decreases in community infection burden have resulted in reduced hospitalizations and deaths associated with non-SARS-CoV-2 respiratory infections. Respiratory virus evolution relies on the maintaining of a diverse genetic pool, but evidence of genetic bottlenecking brought on by case reduction during the COVID-19 pandemic has resulted in reduced genetic diversity of some respiratory viruses, including influenza virus. By describing the differences in these changes between viral species across different geographies over the course of the COVID-19 pandemic, we may better understand the complex factors involved in community co-circulation of respiratory viruses.
Collapse
Affiliation(s)
- Eric J Chow
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Timothy M Uyeki
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
202
|
Amari S, Warda K, Bouraddane M, Katfy M, Elkamouni Y, Arsalane L, Zerouali K, Zouhair S, Bouskraoui M. Antibiotic Resistance of Streptococcus pneumoniae in the Nasopharynx of Healthy Children Less than Five Years Old after the Generalization of Pneumococcal Vaccination in Marrakesh, Morocco. Antibiotics (Basel) 2023; 12:antibiotics12030442. [PMID: 36978307 PMCID: PMC10044557 DOI: 10.3390/antibiotics12030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) remains one of the most important pathogens causing childhood infections. The spread of antibiotic-resistant bacteria is a leading cause of treatment failure in children. The purpose of this investigation is to report the antibiotic and multidrug resistance (MDR) of S. pneumoniae strains isolated from healthy children throughout the years 2020–2022. Antimicrobial susceptibility testing of S. pneumoniae strains in selected antimicrobials was performed using disk diffusion and E-test methods on bloodMueller–Hinton agar. The antimicrobials tested included oxacillin, amoxicillin, ceftriaxone, norfloxacin, gentamicin, vancomycin, erythromycin, clindamycin, pristinamycin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. A total of 201 S. pneumoniae strains were isolated from the nasopharynx of healthy children in Marrakesh, Morocco. The highest rate of resistance of S. pneumoniae was found in penicillin (57.2%), followed by tetracycline (20.9%), and erythromycin (17.9%). The rates of resistance to clindamycin, trimethoprim-sulfamethoxazole, and chloramphenicol were 14.9%, 4%, and 1.5%, respectively. All isolates were susceptible to norfloxacin, gentamicin, vancomycin, and pristinamycin. Approximately 17% of all S. pneumoniae strains were resistant to at least three different antibiotic families. This study showed a low rate of antibiotics resistance among nasopharyngeal S. pneumoniae strains, and it is thus essential to monitor S. pneumoniae susceptibility in healthy children.
Collapse
Affiliation(s)
- Sara Amari
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Karima Warda
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco
- Correspondence: ; Tel.:+212-670602083
| | - Majda Bouraddane
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Mostafa Katfy
- Service de Microbiologie, CHU Ibn Rochd, Casablanca 20000, Morocco
| | - Youssef Elkamouni
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco
- Laboratoire de Bactériologie, Virologie, et Biologie Moléculaire, Hôpital Militaire Avicenne, Marrakech 40000, Morocco
| | - Lamiae Arsalane
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco
- Laboratoire de Bactériologie, Virologie, et Biologie Moléculaire, Hôpital Militaire Avicenne, Marrakech 40000, Morocco
| | - Khalid Zerouali
- Service de Microbiologie, CHU Ibn Rochd, Casablanca 20000, Morocco
| | - Said Zouhair
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco
- Laboratoire de Bactériologie, Virologie, et Biologie Moléculaire, Hôpital Militaire Avicenne, Marrakech 40000, Morocco
| | - Mohamed Bouskraoui
- Laboratoire de Lutte Contre les Maladies Infectieuses, Faculté de Médecine et de Pharmacie, Université Cadi Ayyad, Marrakech 40000, Morocco
- Service de Pédiatrie, Hôpital Universitaire Mohammed VI, Marrakech 40000, Morocco
| |
Collapse
|
203
|
Zhu N, Zhang F, Zhou H, Ma W, Mao H, Wang M, Ke Z, Wang J, Qi L. Mechanisms of Immune-Related Long Non-Coding RNAs in Spleens of Mice Vaccinated with 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23). Vaccines (Basel) 2023; 11:vaccines11030529. [PMID: 36992112 DOI: 10.3390/vaccines11030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The 23-valent pneumococcal vaccine (PPV23) is a classical common vaccine used to prevent pneumococcal disease. In past decades, it was thought that vaccination with this vaccine induces humoral immunity, thereby reducing the disease associated with infection with 23 common serotypes of Streptococcus pneumoniae (Sp). However, for this polysaccharide vaccine, the mechanism of immune response at the transcriptional level has not been fully studied. To identify the lncRNAs (long noncoding RNAs) and mRNAs in spleens related to immunity after PPV23 vaccination in mice, high-throughput RNA sequencing of spleens between a PPV23 treatment group and a control group were performed and evaluated in this study. The RNA-seq results identified a total of 41,321 mRNAs and 34,375 lncRNAs, including 55 significantly differentially expressed (DE) mRNAs and 389 DE lncRNAs (p < 0.05) between the two groups. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to T-cell costimulation, positive regulation of alpha–beta T-cell differentiation, the CD86 biosynthetic process, and the PI3K-Akt signaling pathway, indicating that the polysaccharide component antigens of PPV23 might activate a cellular immune response during the PPV23 immunization process. Moreover, we found that Trim35 (tripartite motif containing 35), a target gene of lncRNA MSTRG.9127, was involved in regulating immunity. Our study provides a catalog of lncRNAs and mRNAs associated with immune cells’ proliferation and differentiation, and they deserve further study to deepen the understanding of the biological processes in the regulation of PPV23 during humoral immunity and cellular immunity.
Collapse
Affiliation(s)
- Nan Zhu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Fan Zhang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Huan Zhou
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Wei Ma
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| |
Collapse
|
204
|
da Silva AB, Cardoso-Marques NT, Dolores ÍDM, Teixeira LM, Neves FPG. Carriage prevalence, serotype distribution, antimicrobial resistance, pspA typing and pilus islets of Streptococcus pneumoniae isolated from adults living in a Brazilian urban slum. Vaccine 2023; 41:1431-1437. [PMID: 36690557 DOI: 10.1016/j.vaccine.2023.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
INTRODUCTION For Brazilian adults, pneumococcal vaccines have been usually taken only by those who are at higher risk for development of pneumococcal diseases. Since populations from lower socioeconomic status are at high risk of acquiring pneumococcal infections, we investigated the carriage prevalence, colonization risk factors, capsular and surface protein types, and antimicrobial resistance among pneumococcal isolates recovered from adults living in a Brazilian urban slum. METHODS Between September-December 2016, we conducted a cross-sectional study among individuals aged ≥ 18 years who attended a public primary clinic in Niterói/RJ, Brazil. Pneumococci were isolated by culture on sheep blood agar plates with and without gentamicin. Antimicrobial susceptibility was determined for all isolates. We used PCR to determine capsular types, PspA families (Fam) and pilus islets (PI). RESULTS Of 385 adults, 32 (8.3 %) were pneumococcal carriers. Three carriers had two different pneumococci, totaling 35 isolates. After multivariate analysis, smoking, previous hospitalization, alcohol consumption and co-habitation with children aged < 6 years increased the odds of pneumococcal carriage, but antibiotic use in the previous 2 weeks was found to be a protective factor. Fourteen different serogroups/serotypes were detected and the prevalent ones were 9 N/L, 10A, 15B/C and 35F/47F (n = 3; 8.6 % each). Non-typeable (NT) isolates made up 31.4 %. All isolates were susceptible to chloramphenicol, levofloxacin and vancomycin. We found eight (22.9 %) penicillin non-susceptible pneumococci (PNSP) with minimum inhibitory concentrations (MICs) of 0.38-1.5 μg/mL. The two (5.7 %) erythromycin-resistant isolates had MIC > 256 μg/mL, cMLSB phenotype and the erm(B) gene. Twelve (34.3 %) and 17 (48.6 %) isolates had PspA Fam1 and Fam2, respectively. Three (8.6 %) isolates had genes for pilitwo PI-1 and one PI-2. CONCLUSION We detected a low frequency of pneumococcal carriage among the adult population, but a high diversity of serotypes. Frequencies of PNSP and NT isolates resistant to antimicrobial agents are concerning.
Collapse
Affiliation(s)
- Amanda Beiral da Silva
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Nayara Torres Cardoso-Marques
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ítalo de Moraes Dolores
- Department of Microbiology and Parasitology, Instituto Biomédico, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Lúcia Martins Teixeira
- Department of Medical Microbiology, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
205
|
Nation ML, Manna S, Tran HP, Nguyen CD, Vy LTT, Uyen DY, Phuong TL, Dai VTT, Ortika BD, Wee-Hee AC, Beissbarth J, Hinds J, Bright K, Smith-Vaughan H, Nguyen TV, Mulholland K, Temple B, Satzke C. Impact of COVID-19 Nonpharmaceutical Interventions on Pneumococcal Carriage Prevalence and Density in Vietnam. Microbiol Spectr 2023; 11:e0361522. [PMID: 36645282 PMCID: PMC9927266 DOI: 10.1128/spectrum.03615-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 01/17/2023] Open
Abstract
Nonpharmaceutical interventions (NPIs) implemented to contain SARS-CoV-2 have decreased invasive pneumococcal disease. Previous studies have proposed the decline is due to reduced pneumococcal transmission or suppression of respiratory viruses, but the mechanism remains unclear. We undertook a secondary analysis of data collected from a clinical trial to evaluate the impact of NPIs on pneumococcal carriage and density, drivers of transmission and disease, during the COVID-19 pandemic in Ho Chi Minh City, Vietnam. Nasopharyngeal samples from children aged 24 months were assessed in three periods - one pre-COVID-19 period (n = 1,537) and two periods where NPIs were implemented with increasing stringency (NPI period 1 [NPI-1, n = 307], and NPI period 2 [NPI-2, n = 262]). Pneumococci were quantified using lytA quantitative PCR and serotyped by DNA microarray. Overall, capsular, and nonencapsulated pneumococcal carriage and density were assessed in each NPI period compared with the pre-COVID-19 period using unadjusted log-binomial and linear regression. Pneumococcal carriage was generally stable after the implementation of NPIs. In contrast, overall pneumococcal carriage density decreased by 0.44 log10 genome equivalents/mL (95% confidence interval [CI]: 0.19 to 0.69) in NPI-1 and by 0.84 log10 genome equivalents/mL (95% CI: 0.55 to 1.13) in NPI-2 compared with the pre-COVID-19 period. Reductions in overall pneumococcal density were driven by reductions in capsular pneumococci, with no corresponding reduction in nonencapsulated density. As higher pneumococcal density is a risk factor for disease, the decline in density provides a plausible explanation for the reductions in invasive pneumococcal disease that have been observed in many countries in the absence of a substantive reduction in pneumococcal carriage. IMPORTANCE The pneumococcus is a major cause of mortality globally. Implementation of NPIs during the COVID-19 pandemic led to reductions in invasive pneumococcal disease in many countries. However, no studies have conducted a fully quantitative assessment on the impact of NPIs on pneumococcal carriage density, which could explain this reduction. We evaluated the impact of COVID-19 NPIs on pneumococcal carriage prevalence and density in 2,106 children aged 24 months in Vietnam and found pneumococcal carriage density decreased up to 91.5% after NPI introduction compared with the pre-COVID-19 period, which was mainly attributed to capsular pneumococci. Only a minor effect on carriage prevalence was observed. As respiratory viruses are known to increase pneumococcal carriage density, transmission, and disease, this work suggests that interventions targeting respiratory viruses may have the added benefit of reducing invasive pneumococcal disease and explain the reductions observed following NPI implementation.
Collapse
Affiliation(s)
- Monica Larissa Nation
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sam Manna
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Hau Phuc Tran
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Cattram Duong Nguyen
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Le Thi Tuong Vy
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Doan Y. Uyen
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tran Linh Phuong
- Clinical Research Center, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Vo Thi Trang Dai
- Department of Microbiology and Immunology, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Belinda Daniela Ortika
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's University of London, London, England, United Kingdom
- BUGS Bioscience, London Bioscience Innovation Centre, London, England, United Kingdom
| | - Kathryn Bright
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Heidi Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Thuong Vu Nguyen
- Department of Disease Control and Prevention, Pasteur Institute of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kim Mulholland
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, England, United Kingdom
| | - Beth Temple
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
206
|
Genomic Epidemiology of Streptococcus pneumoniae Isolated in a Tertiary Hospital in Beijing, China, from 2018 to 2022. Pathogens 2023; 12:pathogens12020284. [PMID: 36839557 PMCID: PMC9965199 DOI: 10.3390/pathogens12020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Streptococcus pneumoniae is one of the most common bacterial pathogens of a wide range of community-acquired infections. It has been more and more recognized that this bacterium could also play a role as a cause of nosocomial infections. In this study, by retrospective analysis of the phenotypic resistance characteristics and genomic characteristics of 52 S. pneumoniae isolates in a hospital in Beijing, China, from 2018 to 2022, we explored the carriage of resistance genes and mutations in penicillin-binding proteins corresponding to the resistances, and identified the population diversity based on the prediction of serotypes and identification of sequence types (STs). The isolates displayed resistances to erythromycin (98%), tetracycline (96%), sulfonamide (72%) and penicillin G (42%). Among the 52 isolates, 41 displayed multiple-drug resistance. In total, 37 STs and 21 serotypes were identified, and the clonal complex 271 serogroup 19 was the most prevalent subtype. Only 24 isolates (46.2%) of 7 serotypes were covered by the 13-valent pneumococcal conjugate vaccination. The isolates showed high carriages of resistance genes, including tet(M) (100%) and erm(B) (98.1%); additionally, 32 isolates (61.5%) had mutations in penicillin-binding proteins. We also observed 11 healthcare-associated infections and 3 cases infected by different subtypes of isolates. We did not find nosocomial transmissions between the patients, and these cases might be associated with the asymptomatic colonization of S. pneumoniae in the human population. Our results called for further active surveillance of these subtypes, as well as the continuous optimization of the treatment protocols.
Collapse
|
207
|
Nielsen FD, Møller-Jensen J, Jørgensen MG. Adding context to the pneumococcal core genes using bioinformatic analysis of the intergenic pangenome of Streptococcus pneumoniae. FRONTIERS IN BIOINFORMATICS 2023; 3:1074212. [PMID: 36844929 PMCID: PMC9944727 DOI: 10.3389/fbinf.2023.1074212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: Whole genome sequencing offers great opportunities for linking genotypes to phenotypes aiding in our understanding of human disease and bacterial pathogenicity. However, these analyses often overlook non-coding intergenic regions (IGRs). By disregarding the IGRs, crucial information is lost, as genes have little biological function without expression. Methods/Results: In this study, we present the first complete pangenome of the important human pathogen Streptococcus pneumoniae (pneumococcus), spanning both the genes and IGRs. We show that the pneumococcus species retains a small core genome of IGRs that are present across all isolates. Gene expression is highly dependent on these core IGRs, and often several copies of these core IGRs are found across each genome. Core genes and core IGRs show a clear linkage as 81% of core genes are associated with core IGRs. Additionally, we identify a single IGR within the core genome that is always occupied by one of two highly distinct sequences, scattered across the phylogenetic tree. Discussion: Their distribution indicates that this IGR is transferred between isolates through horizontal regulatory transfer independent of the flanking genes and that each type likely serves different regulatory roles depending on their genetic context.
Collapse
Affiliation(s)
- Flemming Damgaard Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark,Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark,*Correspondence: Mikkel Girke Jørgensen,
| |
Collapse
|
208
|
Gazioglu O, Habtom M, Andrew PW, Yesilkaya H. The involvement of CiaR and the CiaR-regulated serine protease HtrA in thermal adaptation of Streptococcus pneumoniae. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36811449 DOI: 10.1099/mic.0.001304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The in vivo temperature can vary according to the host tissue and the response to infection. Streptococcus pneumoniae has evolved mechanisms to survive these temperature differences, but neither the consequences of different temperatures for pneumococcal phenotype nor the genetic basis of thermal adaptation are known in detail. In our previous study [16], we found that CiaR, which is a part of two-component regulatory system CiaRH, as well as 17 genes known to be controlled by CiaRH, were identified to be differentially expressed with temperature. One of the CiaRH-regulated genes shown to be differentially regulated by temperature is for the high-temperature requirement protein (HtrA), coded by SPD_2068 (htrA). In this study, we hypothesized that the CiaRH system plays an important role in pneumococcal thermal adaptation through its control over htrA. This hypothesis was evaluated by testing strains mutated or overexpressing ciaR and/or htrA, in in vitro and in vivo assays. The results showed that in the absence of ciaR, the growth, haemolytic activity, amount of capsule and biofilm formation were considerably diminished at 40 °C only, while the cell size and virulence were affected at both 34 and 40 °C. The overexpression of htrA in the ∆ciaR background reconstituted the growth at all temperatures, and the haemolytic activity, biofilm formation and virulence of ∆ciaR partially at 40 °C. We also showed that overexpression of htrA in the wild-type promoted pneumococcal virulence at 40 °C, while the increase of capsule was observed at 34 °C, suggesting that the role of htrA changes at different temperatures. Our data suggest that CiaR and HtrA play an important role in pneumococcal thermal adaptation.
Collapse
Affiliation(s)
- Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
209
|
SeyedAlinaghi S, Afzalian A, Pashaei Z, Varshochi S, Karimi A, Mojdeganlou H, Mojdeganlou P, Razi A, Ghanadinezhad F, Shojaei A, Amiri A, Dashti M, Ghasemzadeh A, Dadras O, Mehraeen E, Afsahi AM. Gut microbiota and COVID-19: A systematic review. Health Sci Rep 2023; 6:e1080. [PMID: 36721396 PMCID: PMC9881458 DOI: 10.1002/hsr2.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Background and Aims Alteration in humans' gut microbiota was reported in patients infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The gut and upper respiratory tract (URT) microbiota harbor a dynamic and complex population of microorganisms and have strong interaction with host immune system homeostasis. However, our knowledge about microbiota and its association with SARS-CoV-2 is still limited. We aimed to systematically review the effects of gut microbiota on the SARS-CoV-2 infection and its severity and the impact that SARS-CoV-2 could have on the gut microbiota. Methods We searched the keywords in the online databases of Web of Science, Scopus, PubMed, and Cochrane on December 31, 2021. After duplicate removal, we performed the screening process in two stages; title/abstract and then full-text screening. The data of the eligible studies were extracted into a pre-designed word table. This study adhered to the PRISMA checklist and Newcastle-Ottawa Scale Bias Assessment tool. Results Sixty-three publications were included in this review. Our study shows that among COVID-19 patients, particularly moderate to severe cases, the gut and lung microbiota was different compared to healthy individuals. In addition, the severity, and viral load of COVID-19 disease would probably also be influenced by the gut, and lung microbiota's composition. Conclusion Our study concludes that there was a significant difference in the composition of the URT, and gut microbiota in COVID-19 patients compared to the general healthy individuals, with an increase in opportunistic pathogens. Further, research is needed to investigate the probable bidirectional association of COVID-19 and human microbiome.
Collapse
Affiliation(s)
- SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Arian Afzalian
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Zahra Pashaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Sanaz Varshochi
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Amirali Karimi
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | | | - Armin Razi
- School of MedicineTehran University of Medical SciencesTehranIran
| | | | - Alireza Shojaei
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Ava Amiri
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
| | - Mohsen Dashti
- Department of RadiologyTabriz University of Medical SciencesTabrizIran
| | | | - Omid Dadras
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk BehaviorsTehran University of Medical SciencesTehranIran
- Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
| | - Esmaeil Mehraeen
- Department of Health Information TechnologyKhalkhal University of Medical SciencesKhalkhalIran
| | - Amir Masoud Afsahi
- Department of RadiologyUniversity of California, San Diego (UCSD)CaliforniaUSA
| |
Collapse
|
210
|
Minhas V, Domenech A, Synefiaridou D, Straume D, Brendel M, Cebrero G, Liu X, Costa C, Baldry M, Sirard JC, Perez C, Gisch N, Hammerschmidt S, Håvarstein LS, Veening JW. Competence remodels the pneumococcal cell wall exposing key surface virulence factors that mediate increased host adherence. PLoS Biol 2023; 21:e3001990. [PMID: 36716340 PMCID: PMC9910801 DOI: 10.1371/journal.pbio.3001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/09/2023] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Competence development in the human pathogen Streptococcus pneumoniae controls several features such as genetic transformation, biofilm formation, and virulence. Competent bacteria produce so-called "fratricins" such as CbpD that kill noncompetent siblings by cleaving peptidoglycan (PGN). CbpD is a choline-binding protein (CBP) that binds to phosphorylcholine residues found on wall and lipoteichoic acids (WTA and LTA) that together with PGN are major constituents of the pneumococcal cell wall. Competent pneumococci are protected against fratricide by producing the immunity protein ComM. How competence and fratricide contribute to virulence is unknown. Here, using a genome-wide CRISPRi-seq screen, we show that genes involved in teichoic acid (TA) biosynthesis are essential during competence. We demonstrate that LytR is the major enzyme mediating the final step in WTA formation, and that, together with ComM, is essential for immunity against CbpD. Importantly, we show that key virulence factors PspA and PspC become more surface-exposed at midcell during competence, in a CbpD-dependent manner. Together, our work supports a model in which activation of competence is crucial for host adherence by increased surface exposure of its various CBPs.
Collapse
Affiliation(s)
- Vikrant Minhas
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Arnau Domenech
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Dimitra Synefiaridou
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Daniel Straume
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Max Brendel
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Universität Greifswald, Greifswald, Germany
| | | | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland,Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Universität Greifswald, Greifswald, Germany
| | - Leiv Sigve Håvarstein
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway,* E-mail: (LSH); (J-WV)
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, Lausanne, Switzerland,* E-mail: (LSH); (J-WV)
| |
Collapse
|
211
|
Zafar MA, Costa-Terryl A, Young TM. The Two-Component System YesMN Promotes Pneumococcal Host-to-Host Transmission and Regulates Genes Involved in Zinc Homeostasis. Infect Immun 2023; 91:e0037522. [PMID: 36537790 PMCID: PMC9872629 DOI: 10.1128/iai.00375-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/27/2022] [Indexed: 01/25/2023] Open
Abstract
The ability to sense and respond rapidly to the dynamic environment of the upper respiratory tract (URT) makes Streptococcus pneumoniae (Spn) a highly successful human pathogen. Two-component systems (TCSs) of Spn sense and respond to multiple signals it encounters allowing Spn to adapt and thrive in various host sites. Spn TCS have been implicated in their ability to promote pneumococcal colonization of the URT and virulence. As the disease state can be a dead-end for a pathogen, we considered whether TCS would contribute to pneumococcal transmission. Herein, we determined the role of YesMN, an understudied TCS of Spn, and observe that YesMN contributes toward pneumococcal shedding and transmission but is not essential for colonization. The YesMN regulon includes genes involved in zinc homeostasis and glycan metabolism, which are upregulated during reduced zinc availability in a YesMN-dependent fashion. Thus, we identified the YesMN regulon and a potential molecular signal it senses that lead to the activation of genes involved in zinc homeostasis and glycan metabolism. Furthermore, in contrast to Spn monoinfection, we demonstrate that YesMN is critical for high pneumococcal density in the URT during influenza A virus (IAV) coinfection. We attribute reduced colonization of the yesMN mutant possibly due to increased association with and clearance by the mucus covering the URT epithelial surface. Thus, our results highlight the dynamic interactions that occur between Spn and IAV in the URT, and the role that TCSs play in modulation of these interactions.
Collapse
Affiliation(s)
- M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Alicia Costa-Terryl
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Taylor M. Young
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
212
|
Aggarwal SD, Lees JA, Jacobs NT, Bee GCW, Abruzzo AR, Weiser JN. BlpC-mediated selfish program leads to rapid loss of Streptococcus pneumoniae clonal diversity during infection. Cell Host Microbe 2023; 31:124-134.e5. [PMID: 36395758 PMCID: PMC9839470 DOI: 10.1016/j.chom.2022.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
Successful colonization of a host requires bacterial adaptation through genetic and population changes that are incompletely defined. Using chromosomal barcoding and high-throughput sequencing, we investigate the population dynamics of Streptococcus pneumoniae during infant mouse colonization. Within 1 day post inoculation, diversity was reduced >35-fold with expansion of a single clonal lineage. This loss of diversity was not due to immune factors, microbiota, or exclusive genetic drift. Rather, bacteriocins induced by the BlpC-quorum sensing pheromone resulted in predation of kin cells. In this intra-strain competition, the subpopulation reaching a quorum likely eliminates others that have yet to activate the blp locus. Additionally, this reduced diversity restricts the number of unique clones that establish colonization during transmission between hosts. Genetic variation in the blp locus was also associated with altered transmissibility in a human population, further underscoring the importance of BlpC in clonal selection and its role as a selfish element.
Collapse
Affiliation(s)
- Surya D Aggarwal
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - John A Lees
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA; European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton CB10 1SD, UK; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W12 7TA, UK
| | - Nathan T Jacobs
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gavyn Chern Wei Bee
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Annie R Abruzzo
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jeffrey N Weiser
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
213
|
A selfish bacteriocin dictates pneumococcal domination. Cell Host Microbe 2023; 31:7-8. [PMID: 36634623 DOI: 10.1016/j.chom.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Efficient colonization of new hosts is critical for survival of Streptococcus pneumoniae. In this issue of Cell Host & Microbe, Aggarwal et al. investigate the population dynamics of this process, demonstrating how a quorum-sensing bacteriocin locus promotes survival of individual clonal lineages, providing a population bottleneck and restricting genetic diversity.
Collapse
|
214
|
Klenow L, Elfageih R, Gao J, Wan H, Withers SG, de Gier JW, Daniels R. Influenza virus and pneumococcal neuraminidases enhance catalysis by similar yet distinct sialic acid-binding strategies. J Biol Chem 2023; 299:102891. [PMID: 36634846 PMCID: PMC9929470 DOI: 10.1016/j.jbc.2023.102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Influenza A viruses and the bacterium Streptococcus pneumoniae (pneumococci) both express neuraminidases that catalyze release of sialic acid residues from oligosaccharides and glycoproteins. Although these respiratory pathogen neuraminidases function in a similar environment, it remains unclear if these enzymes use similar mechanisms for sialic acid cleavage. Here, we compared the enzymatic properties of neuraminidases from two influenza A subtypes (N1 and N2) and the pneumococcal strain TIGR4 (NanA, NanB, and NanC). Insect cell-produced N1 and N2 tetramers exhibited calcium-dependent activities and stabilities that varied with pH. In contrast, E. coli-produced NanA, NanB, and NanC were isolated as calcium insensitive monomers with stabilities that were more resistant to pH changes. Using a synthetic substrate (MUNANA), all neuraminidases showed similar pH optimums (pH 6-7) that were primarily defined by changes in catalytic rate rather than substrate binding affinity. Upon using a multivalent substrate (fetuin sialoglycans), much higher specific activities were observed for pneumococcal neuraminidases that contain an additional lectin domain. In virions, N1 and especially N2 also showed enhanced specific activity toward fetuin that was lost upon the addition of detergent, indicating the sialic acid-binding capacity of neighboring hemagglutinin molecules likely contributes to catalysis of natural multivalent substrates. These results demonstrate that influenza and pneumococcal neuraminidases have evolved similar yet distinct strategies to optimize their catalytic activity.
Collapse
Affiliation(s)
- Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rageia Elfageih
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Jin Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hongquan Wan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
215
|
Afshari E, Cohan RA, Sotoodehnejadnematalahi F, Mousavi SF. In-silico design and evaluation of an epitope-based serotype-independent promising vaccine candidate for highly cross-reactive regions of pneumococcal surface protein A. J Transl Med 2023; 21:13. [PMID: 36627666 PMCID: PMC9830136 DOI: 10.1186/s12967-022-03864-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The pathogenicity of pneumococcus with high morbidity, mortality, and multi-drug resistance patterns has been increasing. The limited coverage of the licensed polysaccharide-based vaccines and the replacement of the non-vaccine serotypes are the main reasons for producing a successful serotype-independent vaccine. Pneumococcal surface protein A (PspA) is an extremely important virulence factor and an interesting candidate for conserved protein-based pneumococcal vaccine classified into two prominent families containing five clades. PspA family-elicited immunity is clade-dependent, and the level of the PspA cross-reactivity is restricted to the same family. METHODS To cover and overcome the clade-dependent immunity of the PspAs in this study, we designed and tested a PspA1-5c+p vaccine candidate composed of the highest immunodominant coverage of B- and T-cell epitope truncated domain of each clade focusing on two cross-reactive B and C regions of the PspAs. The antigenicity, toxicity, physicochemical properties, 3D structure prediction, stability and flexibility of the designed protein using molecular dynamic (MD) simulation, molecular docking of the construct withHLADRB1*(01:01) and human lactoferrin N-lop, and immune simulation were assessed using immunoinformatics tools. In the experimental section, after intraperitoneal immunization of the mice with Alum adjuvanted recombinant PspA1-5c+p, we evaluated the immune response, cross-reactivity, and functionality of the Anti-PspA1-5c+p antibody using ELISA, Opsonophagocytic killing activity, and serum bactericidal assay. RESULTS For the first time, this work suggested a novel PspA-based vaccine candidate using immunoinformatics tools. The designed PspA1-5c+p protein is predicted to be highly antigenic, non-toxic, soluble, stable with low flexibility in MD simulation, and able to stimulate both humoral and cellular immune responses. The designed protein also could interact strongly with HLADRB1*(01:01) and human lactoferrin N-lop in the docking study. Our immunoinformatics predictions were validated using experimental data. Results showed that the anti-PspA1-5c+p IgG not only had a high titer with strong and same cross-reactivity coverage against all pneumococcal serotypes used but also had high and effective bioactivity for pneumococcal clearance using complement system and phagocytic cells. CONCLUSION Our findings elucidated the potential application of the PspA1-5c+p vaccine candidate as a serotype-independent pneumococcal vaccine with a strong cross-reactivity feature. Further in-vitro and in-vivo investigations against other PspA clades should be performed to confirm the full protection of the PspA1-5c+p vaccine candidate.
Collapse
Affiliation(s)
- Elnaz Afshari
- grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Reza Ahangari Cohan
- grid.420169.80000 0000 9562 2611Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Fattah Sotoodehnejadnematalahi
- grid.411463.50000 0001 0706 2472Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Fazlollah Mousavi
- grid.420169.80000 0000 9562 2611Department of Microbiology, Pasteur Institute of Iran, 69 Pasteur Ave., Tehran, 13164 Iran
| |
Collapse
|
216
|
Kono M, Iyo T, Murakami D, Sakatani H, Nanushaj D, Hotomi M. Maternal immunization with pneumococcal surface protein A provides the immune memories of offspring against pneumococcal infection. Front Cell Infect Microbiol 2023; 13:1059603. [PMID: 37033488 PMCID: PMC10076723 DOI: 10.3389/fcimb.2023.1059603] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Streptococcus pneumoniae (S. pneumoniae) is one of the most widespread pathogens in the world and one of the largest infectious causes of infant mortality. Although current vaccines have various benefits, antibiotic resistance and the inability to vaccinate infants less than one year old demands the development of new protective strategies. One strategy, 'maternal immunization', is to protect infants by passive immunity from an immunized mother, although its mechanism is still not fully understood. Materials and methods The current study aimed to acquire immunity against S. pneumoniae in infants by maternal immunization with pneumococcal common antigen, pneumococcal surface protein A (PspA). Four-week-old female mice were immunized with recombinant PspA intranasally twice a week for three weeks. Females were mated with age-matched males after immunization, and delivered offspring. Results The week-old offspring derived from and fostered by immunized mothers had more anti-PspA-specific antibody producing cells in the spleen than those derived from sham-immunized mothers. The offspring were raised up to four weeks old and were subcutaneously stimulated with recombinant PspA. The levels of anti-PspA IgG in sera after stimulation were significantly higher in the offspring derived from the immunized mothers and the induced specific antibody to PspA showed protective efficacy against systemic pneumococcal infection. Discussion Maternal immunization is suggested to be able to provide a sustained immune memory to offspring. The current study would be a milestone in the field of maternal immunization toward a universal pneumococcal vaccine.
Collapse
Affiliation(s)
- Masamitsu Kono
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Takuro Iyo
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kinan Hospital, Tanabe, Japan
| | - Daichi Murakami
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kinan Hospital, Tanabe, Japan
| | - Hideki Sakatani
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Denisa Nanushaj
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Japan
- *Correspondence: Muneki Hotomi,
| |
Collapse
|
217
|
De S, Hakansson AP. Measuring Niche-Associated Metabolic Activity in Planktonic and Biofilm Bacteria. Methods Mol Biol 2023; 2674:3-32. [PMID: 37258957 DOI: 10.1007/978-1-0716-3243-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Most pathobionts of the respiratory tract form biofilms during asymptomatic colonization to survive and persist in this niche. Environmental changes of the host niche, often resulting from infection with respiratory viruses, changes of the microbiota composition, or other host assaults, can result in biofilm dispersion and spread of bacteria to other host niches, resulting in infections, such as otitis media, pneumonia, sepsis, and meningitis. The niches that these bacteria encounter during colonization and infection vary markedly in nutritional availability and contain different carbon sources and levels of other essential nutrients needed for bacterial growth and survival. As these niche-related nutritional variations regulate bacterial behavior and phenotype, a better understanding of bacterial niche-associated metabolic activity is likely to provide a broader understanding of bacterial pathogenesis. In this chapter, we use Streptococcus pneumoniae as a model respiratory pathobiont. We describe methods and models used to grow bacteria planktonically or to form biofilms in vitro by incorporating crucial host environmental factors, including the various carbon sources associated with specific niches, such as the nasopharynx or bloodstream. We then present methods describing how these models can be used to study bacterial phenotypes and their association with metabolic energy production and the generation of fermentation products.
Collapse
Affiliation(s)
- Supradipta De
- Department of Translational Medicine, Division of Experimental Infection Medicine, Wallenberg Laboratory, Lund University, Malmö, Sweden
| | - Anders P Hakansson
- Department of Translational Medicine, Division of Experimental Infection Medicine, Wallenberg Laboratory, Lund University, Malmö, Sweden.
| |
Collapse
|
218
|
Cima Cabal MD, Molina F, López-Sánchez JI, Pérez-Santín E, Del Mar García-Suárez M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS One 2023; 18:e0282970. [PMID: 36947540 PMCID: PMC10032530 DOI: 10.1371/journal.pone.0282970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin (53 kDa) is a highly conserved protein that binds to cholesterol in eukaryotic cells, forming pores that lead to cell destruction. METHODS The databases consulted were MEDLINE, Web of Science, and Scopus. Articles were independently screened by title, abstract, and full text by two researchers, and using consensus to resolve any disagreements that occurred. Articles in other languages different from English, patents, cases report, notes, chapter books and reviews were excluded. Searches were restricted to the years 2000 to 2021. Methodological quality was evaluated using OHAT framework. RESULTS Forty-one articles describing the effects of different molecules that inhibit PLY were reviewed. Briefly, the inhibitory molecules found were classified into three main groups: those exerting a direct effect by binding and/or blocking PLY, those acting indirectly by preventing its effects on host cells, and those whose mechanisms are unknown. Although many molecules are proposed as toxin blockers, only some of them, such as antibiotics, peptides, sterols, and statins, have the probability of being implemented as clinical treatment. In contrast, for other molecules, there are limited studies that demonstrate efficacy in animal models with sufficient reliability. DISCUSSION Most of the studies reviewed has a good level of confidence. However, one of the limitations of this systematic review is the lack of homogeneity of the studies, what prevented to carry out a statistical comparison of the results or meta-analysis. CONCLUSION A panel of molecules blocking PLY activity are associated with the improvement of the inflammatory process triggered by the pneumococcal infection. Some molecules have already been used in humans for other purposes, so they could be safe for use in patients with pneumococcal infections. These patients might benefit from a second line treatment during the initial stages of the infection preventing acute respiratory distress syndrome and invasive pneumococcal diseases. Additional research using the presented set of compounds might further improve the clinical management of these patients.
Collapse
Affiliation(s)
- María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Felipe Molina
- Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José Ignacio López-Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Efrén Pérez-Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - María Del Mar García-Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| |
Collapse
|
219
|
Li L, Ma J, Yu Z, Li M, Zhang W, Sun H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol Res 2023; 266:127221. [DOI: 10.1016/j.micres.2022.127221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022]
|
220
|
Suo W, Guo X, Zhang X, Xiao S, Wang S, Yin Y, Zheng Y. Glucose levels affect MgaSpn regulation on the virulence and adaptability of Streptococcus pneumoniae. Microb Pathog 2023; 174:105896. [PMID: 36460142 DOI: 10.1016/j.micpath.2022.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Streptococcus pneumoniae can regulate virulence gene expression by sensing environmental changes, which is key to its pathogenicity. The global transcription regulator MgaSpn of Streptococcus pneumoniae regulates virulence genes expression by directly binding to the promoter regions, but its role in response to different environments remains unclear. In this study, we found that glucose levels could affect phosphocholine content, which was mediated by MgaSpn. MgaSpn can also alter its anti-phagocytosis ability, depending on the availability of glucose. In addition, transcriptome analysis of wild-type D39s in low and high glucose concentrations revealed that MgaSpn was also involved in the regulation of carbon metabolism inhibition (carbon catabolite repression; CCR) and translation processes, which made S. pneumoniae highly competitive in fluctuating environments. In conclusion, MgaSpn is closely related to the virulence and environmental adaptability of Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Weicai Suo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Xinlin Guo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Shengnan Xiao
- Precision Medicine Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Shuhui Wang
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Pediatrics, Chongqing, PR China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, PR China
| | - Yuqiang Zheng
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, and Chongqing Key Laboratory of Pediatrics, Chongqing, PR China.
| |
Collapse
|
221
|
Magiorkinis G. On the evolution of SARS-CoV-2 and the emergence of variants of concern. Trends Microbiol 2023; 31:5-8. [PMID: 36344310 PMCID: PMC9595369 DOI: 10.1016/j.tim.2022.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The epidemiology of COVID-19 has dramatically changed since the beginning of the pandemic as we witnessed significant changes in transmissibility and pathogenicity with the emergence of SARS-CoV-2 variants of concern (VoCs). Here I present and comment on working hypotheses about the evolutionary dynamics of the emergence of VoCs.
Collapse
Affiliation(s)
- Gkikas Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
222
|
Naturally-occurring serotype 3 Streptococcus pneumoniae strains that lack functional pneumolysin and autolysin have attenuated virulence but induce localized protective immune responses. PLoS One 2023; 18:e0282843. [PMID: 36897919 PMCID: PMC10004606 DOI: 10.1371/journal.pone.0282843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Streptococcus pneumoniae is an important cause of fatal pneumonia in humans. These bacteria express virulence factors, such as the toxins pneumolysin and autolysin, that drive host inflammatory responses. In this study we confirm loss of pneumolysin and autolysin function in a group of clonal pneumococci that have a chromosomal deletion resulting in a pneumolysin-autolysin fusion gene Δ(lytA'-ply')593. The Δ(lytA'-ply')593 pneumococci strains naturally occur in horses and infection is associated with mild clinical signs. Here we use immortalized and primary macrophage in vitro models, which include pattern recognition receptor knock-out cells, and a murine acute pneumonia model to show that a Δ(lytA'-ply')593 strain induces cytokine production by cultured macrophages, however, unlike the serotype-matched ply+lytA+ strain, it induces less tumour necrosis factor α (TNFα) and no interleukin-1β production. The TNFα induced by the Δ(lytA'-ply')593 strain requires MyD88 but, in contrast to the ply+lytA+ strain, is not reduced in cells lacking TLR2, 4 or 9. In comparison to the ply+lytA+ strain in a mouse model of acute pneumonia, infection with the Δ(lytA'-ply')593 strain resulted in less severe lung pathology, comparable levels of interleukin-1α, but minimal release of other pro-inflammatory cytokines, including interferon-γ, interleukin-6 and TNFα. These results suggest a mechanism by which a naturally occurring Δ(lytA'-ply')593 mutant strain of S. pneumoniae that resides in a non-human host has reduced inflammatory and invasive capacity compared to a human S. pneumoniae strain. These data probably explain the relatively mild clinical disease in response to S. pneumoniae infection seen in horses in comparison to humans.
Collapse
|
223
|
Torén K, Albin M, Alderling M, Schiöler L, Åberg M. Transmission factors and exposure to infections at work and invasive pneumococcal disease. Am J Ind Med 2023; 66:65-74. [PMID: 36385261 PMCID: PMC10100104 DOI: 10.1002/ajim.23439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Working in close contacts with coworkers or the general public may be associated with transmission of invasive pneumococcal disease (IPD). We investigated whether crowded workplaces, sharing surfaces, and exposure to infections were factors associated with IPD. METHODS We studied 3,968 cases of IPD, and selected six controls for each case from the Swedish population registry with each control being assigned the index date of their corresponding case. We linked job histories to job-exposure matrices to assess different transmission dimensions of pneumococci, as well as occupational exposure to fumes. We used adjusted conditional logistic analyses to estimate the odds ratios (ORs) for IPD with 95% confidence intervals (95% CI). RESULTS ORs for IPD for the different transmission dimensions were increased moderately but were statistically significant. Compared to home-working or working alone, the highest odds was for Working mostly outside, or partly inside (OR 1.19, 95% CI 1.04-1.38). Estimates were higher in men for all dimensions, compared to women. The odds for IPD for Working mostly outside, or partly inside were 1.33 (95% CI 1.13-1.56) and 0.79 (95% CI 0.55-1.14) for men and women, respectively. Higher odds were seen for all transmission dimensions among those exposed to fumes, although CIs included unity. Contact with ill or infected patients did not increase the odds for IPD. CONCLUSION IPD was associated with working in close contact with coworkers or the general public, and with outside work, especially for men. Contact with infected patients or persons was not associated with IPD.
Collapse
Affiliation(s)
- Kjell Torén
- School of Public Health and Community Medicine, Institute of Medicine, The Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medicine, Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.,Discipline of Occupational and Environmental Health, University of KwaZulu-Natal, Durban, South Africa
| | - Maria Albin
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden.,Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Alderling
- Unit of Occupational Medicine, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Linus Schiöler
- School of Public Health and Community Medicine, Institute of Medicine, The Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- School of Public Health and Community Medicine, Institute of Medicine, The Sahgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Region Västra Götaland, Regionhälsan, Gothenburg, Sweden
| |
Collapse
|
224
|
Potential Biomarkers for Alleviation of Streptococcus pneumoniae Pneumonia by QingFei Yin. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2023. [DOI: 10.1016/j.cjac.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
225
|
Völk S, Ködel U, Pfister HW, Klein M. [Influence of the COVID-19 pandemic on the occurrence of neurological infectious diseases]. DER NERVENARZT 2022; 94:278-286. [PMID: 36576523 PMCID: PMC9795461 DOI: 10.1007/s00115-022-01420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/18/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND During the coronavirus disease 2019 (COVID-19) pandemic a wide range of hygiene measures were implemented to contain the spread of infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Besides a mitigation of SARS-CoV‑2, a decline in the number of other respiratory tract infections could be observed. Interestingly, the numbers for some infections of the central nervous system (CNS) decreased as well. OBJECTIVE This review article shows the development of important CNS infections in Germany during the COVID-19 pandemic. MATERIAL AND METHOD This article is based on relevant literature on the epidemiology of CNS infections during the COVID-19 pandemic up to autumn 2022. RESULTS During the COVID-19 pandemic the frequency of bacterial meningitis caused by Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae significantly declined. The frequency of viral meningitis, particularly those caused by Enterovirus, decreased as well. In contrast, the number of patients suffering from tick-borne encephalitis significantly increased within the first year of the pandemic. DISCUSSION During the pandemic there was a decrease in cases of bacterial and viral meningitis, most likely due to the general containment strategies and social contact restrictions. The increase of infections transmitted by ticks could be a consequence of changed leisure activities during the pandemic.
Collapse
Affiliation(s)
- Stefanie Völk
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, LMU München, Marchioninistraße 15, 81377, München, Deutschland
| | - Uwe Ködel
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, LMU München, Marchioninistraße 15, 81377, München, Deutschland
| | - Hans-Walter Pfister
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, LMU München, Marchioninistraße 15, 81377, München, Deutschland
| | - Matthias Klein
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, LMU München, Marchioninistraße 15, 81377, München, Deutschland.
- Zentrale Notaufnahme, Klinikum der Universität München, LMU München, München, Deutschland.
| |
Collapse
|
226
|
Barkowsky G, Abt C, Pöhner I, Bieda A, Hammerschmidt S, Jacob A, Kreikemeyer B, Patenge N. Antimicrobial Activity of Peptide-Coupled Antisense Peptide Nucleic Acids in Streptococcus pneumoniae. Microbiol Spectr 2022; 10:e0049722. [PMID: 36321914 PMCID: PMC9784828 DOI: 10.1128/spectrum.00497-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia and is responsible for multiple other infectious diseases, such as meningitis and otitis media, in children. Resistance to penicillins, macrolides, and fluoroquinolones is increasing and, since the introduction of pneumococcal conjugate vaccines (PCVs), vaccine serotypes have been replaced by non-vaccine serotypes. Antisense peptide nucleic acids (PNAs) have been shown to reduce the growth of several pathogenic bacteria in various infection models. PNAs are frequently coupled to cell-penetrating peptides (CPPs) to improve spontaneous cellular PNA uptake. In this study, different CPPs were investigated for their capability to support translocation of antisense PNAs into S. pneumoniae. HIV-1 TAT- and (RXR)4XB-coupled antisense PNAs efficiently reduced the viability of S. pneumoniae strains TIGR4 and D39 in vitro. Two essential genes, gyrA and rpoB, were used as targets for antisense PNAs. Overall, the antimicrobial activity of anti-gyrA PNAs was higher than that of anti-rpoB PNAs. Target gene transcription levels in S. pneumoniae were reduced following antisense PNA treatment. The effect of HIV-1 TAT- and (RXR)4XB-anti-gyrA PNAs on pneumococcal survival was also studied in vivo using an insect infection model. Treatment increased the survival of infected Galleria mellonella larvae. Our results represent a proof of principle and may provide a basis for the development of efficient antisense molecules for treatment of S. pneumoniae infections. IMPORTANCE Streptococcus pneumoniae is the most common cause of community-acquired pneumonia and is responsible for the deaths of up to 2 million children each year. Antibiotic resistance and strain replacement by non-vaccine serotypes are growing problems. For this reason, S. pneumoniae has been added to the WHO "global priority list" of antibiotic-resistant bacteria for which novel antimicrobials are most urgently needed. In this study, we investigated whether CPP-coupled antisense PNAs show antibacterial activity in S. pneumoniae. We demonstrated that HIV-1 TAT- and (RXR)4XB-coupled antisense PNAs were able to kill S. pneumoniae in vitro. The specificity of the antimicrobial effect was verified by reduced target gene transcription levels in S. pneumoniae. Moreover, CPP-antisense PNA treatment increased the survival rate of infected Galleria mellonella larvae in vivo. Based on these results, we believe that efficient antisense PNAs can be developed for the treatment of S. pneumoniae infections.
Collapse
Affiliation(s)
- Gina Barkowsky
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Corina Abt
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Irina Pöhner
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Adam Bieda
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Anette Jacob
- Peps4LS GmbH, Heidelberg, Germany
- Functional Genome Analysis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
227
|
Host-Mediated Copper Stress Is Not Protective against Streptococcus pneumoniae D39 Infection. Microbiol Spectr 2022; 10:e0249522. [PMID: 36413018 PMCID: PMC9769658 DOI: 10.1128/spectrum.02495-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metal ions are required by all organisms for the chemical processes that support life. However, in excess they can also exert toxicity within biological systems. During infection, bacterial pathogens such as Streptococcus pneumoniae are exposed to host-imposed metal intoxication, where the toxic properties of metals, such as copper, are exploited to aid in microbial clearance. However, previous studies investigating the antimicrobial efficacy of copper in vivo have reported variable findings. Here, we use a highly copper-sensitive strain of S. pneumoniae, lacking both copper efflux and intracellular copper buffering by glutathione, to investigate how copper stress is managed and where it is encountered during infection. We show that this strain exhibits highly dysregulated copper homeostasis, leading to the attenuation of growth and hyperaccumulation of copper in vitro. In a murine infection model, whole-tissue copper quantitation and elemental bioimaging of the murine lung revealed that infection with S. pneumoniae resulted in increased copper abundance in specific tissues, with the formation of spatially discrete copper hot spots throughout the lung. While the increased copper was able to reduce the viability of the highly copper-sensitive strain in a pneumonia model, copper levels in professional phagocytes and in a bacteremic model were insufficient to prosecute bacterial clearance. Collectively, this study reveals that host copper is redistributed to sites of infection and can impact bacterial viability in a hypersusceptible strain. However, in wild-type S. pneumoniae, the concerted actions of the copper homeostatic mechanisms are sufficient to facilitate continued viability and virulence of the pathogen. IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is one of the world's foremost bacterial pathogens. Treatment of both localized and systemic pneumococcal infection is becoming complicated by increasing rates of multidrug resistance globally. Copper is a potent antimicrobial agent used by the mammalian immune system in the defense against bacterial pathogens. However, unlike other bacterial species, this copper stress is unable to prosecute pneumococcal clearance. This study determines how the mammalian host inflicts copper stress on S. pneumoniae and the bacterial copper tolerance mechanisms that contribute to maintenance of viability and virulence in vitro and in vivo. This work has provided insight into the chemical biology of the host-pneumococcal interaction and identified a potential avenue for novel antimicrobial development.
Collapse
|
228
|
Combination of Cefditoren and N-acetyl-l-Cysteine Shows a Synergistic Effect against Multidrug-Resistant Streptococcus pneumoniae Biofilms. Microbiol Spectr 2022; 10:e0341522. [PMID: 36445126 PMCID: PMC9769599 DOI: 10.1128/spectrum.03415-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biofilm formation by Streptococcus pneumoniae is associated with colonization of the upper respiratory tract, including the carrier state, and with chronic respiratory infections in patients suffering from chronic obstructive pulmonary disease (COPD). The use of antibiotics alone to treat recalcitrant infections caused by biofilms is insufficient in many cases, requiring novel strategies based on a combination of antibiotics with other agents, including antibodies, enzybiotics, and antioxidants. In this work, we demonstrate that the third-generation oral cephalosporin cefditoren (CDN) and the antioxidant N-acetyl-l-cysteine (NAC) are synergistic against pneumococcal biofilms. Additionally, the combination of CDN and NAC resulted in the inhibition of bacterial growth (planktonic and biofilm cells) and destruction of the biofilm biomass. This marked antimicrobial effect was also observed in terms of viability in both inhibition (prevention) and disaggregation (treatment) assays. Moreover, the use of CDN and NAC reduced bacterial adhesion to human lung epithelial cells, confirming that this strategy of combining these two compounds is effective against resistant pneumococcal strains colonizing the lung epithelium. Finally, administration of CDN and NAC in mice suffering acute pneumococcal pneumonia caused by a multidrug-resistant strain was effective in clearing the bacteria from the respiratory tract in comparison to treatment with either compound alone. Overall, these results demonstrate that the combination of oral cephalosporins and antioxidants, such as CDN and NAC, respectively, is a promising strategy against respiratory biofilms caused by S. pneumoniae. IMPORTANCE Streptococcus pneumoniae is one of the deadliest bacterial pathogens, accounting for up to 2 million deaths annually prior to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Vaccines have decreased the burden of diseases produced by S. pneumoniae, but the rise of antibiotic-resistant strains and nonvaccine serotypes is worrisome. Pneumococcal biofilms are associated with chronic respiratory infections, and treatment is challenging, making the search for new antibiofilm therapies a priority as biofilms become resistant to traditional antibiotics. In this work, we used the combination of an antibiotic (CDN) and an antioxidant (NAC) to treat the pneumococcal biofilms of relevant clinical isolates. We demonstrated a synergy between CDN and NAC that inhibited and treated pneumococcal biofilms, impaired pneumococcal adherence to the lung epithelium, and treated pneumonia in a mouse pneumonia model. We propose the widely used cephalosporin CDN and the repurposed drug NAC as a new antibiofilm therapy against S. pneumoniae biofilms, including those formed by antibiotic-resistant clinical isolates.
Collapse
|
229
|
Pettersen JS, Høg FF, Nielsen FD, Møller-Jensen J, Jørgensen MG. Global transcriptional responses of pneumococcus to human blood components and cerebrospinal fluid. Front Microbiol 2022; 13:1060583. [PMID: 36620004 PMCID: PMC9812572 DOI: 10.3389/fmicb.2022.1060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a leading cause of severe invasive infectious diseases such as sepsis and meningitis. Understanding how pneumococcus adapts and survive in the human bloodstream environment and cerebrospinal fluid (CSF) is important for development of future treatment strategies. This study investigates the global transcriptional response of pneumococcus to human blood components and CSF acquired from discarded and anonymized patient samples. Extensive transcriptional changes to human blood components were observed during early stages of interaction. Plasma-specific responses were primarily related to metabolic components and include strong downregulation of fatty acid biosynthesis genes, and upregulation of nucleotide biosynthesis genes. No transcriptional responses specific to the active plasma proteins (e.g., complement proteins) were observed during early stages of interaction as demonstrated by a differential expression analysis between plasma and heat-inactivated plasma. The red blood cell (RBC)-specific response was far more complex, and included activation of the competence system, differential expression of several two-component systems, phosphotransferase systems and transition metal transporter genes. Interestingly, most of the changes observed for CSF were also observed for plasma. One of the few CSF-specific responses, not observed for plasma, was a strong downregulation of the iron acquisition system piuBCDA. Intriguingly, this transcriptomic analysis also uncovers significant differential expression of more than 20 small non-coding RNAs, most of them in response to RBCs, including small RNAs from uncharacterized type I toxin-antitoxin systems. In summary, this transcriptomic study identifies key pneumococcal metabolic pathways and regulatory genes involved with adaptation to human blood and CSF. Future studies should uncover the potential involvement of these factors with virulence in-vivo.
Collapse
|
230
|
Xiang H, Liu QP. Alterations of the gut microbiota in coronavirus disease 2019 and its therapeutic potential. World J Gastroenterol 2022; 28:6689-6701. [PMID: 36620345 PMCID: PMC9813939 DOI: 10.3748/wjg.v28.i47.6689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/19/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global health. SARS-CoV-2 infects host cells primarily by binding to angiotensin-converting enzyme 2, which is coexpressed in alveolar type 2 cells and gut epithelial cells. It is known that COVID-19 often presents with gastrointestinal symptoms and gut dysbiosis, mainly characterized by an increase in opportunistic pathogens and a decrease in beneficial commensal bacteria. In recent years, multiple studies have comprehensively explored gut microbiota alterations in COVID-19 and highlighted the clinical correlation between dysbiosis and COVID-19. SARS-CoV-2 causes gastrointestinal infections and dysbiosis mainly through fecal-oral transmission and the circulatory and immune pathways. Studies have shown that the gut microbiota and its metabolites can regulate the immune response and modulate antiviral effects. In addition, the gut microbiota is closely related to gastrointestinal symptoms, such as diarrhea, a common gastrointestinal symptom among COVID-19. Therefore, the contribution of the gut microbiota in COVID-19 should not be overlooked. Strategies targeting the gut microbiota via probiotics, prebiotics and fecal microbiota transplantation should be considered to treat this patient population in the future. However, the specific alterations and mechanisms as well as the contributions of gut microbiota in COVID-19 should be urgently further explored.
Collapse
Affiliation(s)
- Hui Xiang
- Department of Infectious Disease, Chongqing University Three Gorges Hospital, Chongqing 404100, China
| | - Qi-Ping Liu
- Department of Pulmonary and Critical Care Medicine, Chongqing University Three Gorges Hospital, Chongqing 404100, China
| |
Collapse
|
231
|
Jim KK, Aprianto R, Koning R, Domenech A, Kurushima J, van de Beek D, Vandenbroucke-Grauls CMJE, Bitter W, Veening JW. Pneumolysin promotes host cell necroptosis and bacterial competence during pneumococcal meningitis as shown by whole-animal dual RNA-seq. Cell Rep 2022; 41:111851. [PMID: 36543127 PMCID: PMC9794515 DOI: 10.1016/j.celrep.2022.111851] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/16/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pneumolysin is a major virulence factor of Streptococcus pneumoniae that plays a key role in interaction with the host during invasive disease. How pneumolysin influences these dynamics between host and pathogen interaction during early phase of central nervous system infection in pneumococcal meningitis remains unclear. Using a whole-animal in vivo dual RNA sequencing (RNA-seq) approach, we identify pneumolysin-specific transcriptional responses in both S. pneumoniae and zebrafish (Danio rerio) during early pneumococcal meningitis. By functional enrichment analysis, we identify host pathways known to be activated by pneumolysin and discover the importance of necroptosis for host survival. Inhibition of this pathway using the drug GSK'872 increases host mortality during pneumococcal meningitis. On the pathogen's side, we show that pneumolysin-dependent competence activation is crucial for intra-host replication and virulence. Altogether, this study provides new insights into pneumolysin-specific transcriptional responses and identifies key pathways involved in pneumococcal meningitis.
Collapse
Affiliation(s)
- Kin Ki Jim
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Rieza Aprianto
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Rutger Koning
- Amsterdam UMC Location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Arnau Domenech
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Jun Kurushima
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Diederik van de Beek
- Amsterdam UMC Location University of Amsterdam, Department of Neurology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Christina M J E Vandenbroucke-Grauls
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Microbiology and Infection Prevention, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
232
|
Alibayov B, Scasny A, Khan F, Creel A, Smith P, Vidal AGJ, Fitisemanu FM, Padilla-Benavides T, Weiser JN, Vidal JE. Oxidative Reactions Catalyzed by Hydrogen Peroxide Produced by Streptococcus pneumoniae and Other Streptococci Cause the Release and Degradation of Heme from Hemoglobin. Infect Immun 2022; 90:e0047122. [PMID: 36409115 PMCID: PMC9753736 DOI: 10.1128/iai.00471-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) strains cause pneumonia that kills millions every year worldwide. Spn produces Ply, a hemolysin that lyses erythrocytes releasing hemoglobin, and also produces the pro-oxidant hydrogen peroxide (Spn-H2O2) during growth. The hallmark of the pathophysiology of hemolytic diseases is the oxidation of hemoglobin, but oxidative reactions catalyzed by Spn-H2O2 have been poorly studied. We characterized the oxidation of hemoglobin by Spn-H2O2. We prepared a series of single-mutant (ΔspxB or ΔlctO), double-mutant (ΔspxB ΔlctO), and complemented strains in TIGR4, D39, and EF3030. We then utilized an in vitro model with oxyhemoglobin to demonstrate that oxyhemoglobin was oxidized rapidly, within 30 min of incubation, by Spn-H2O2 to methemoglobin and that the main source of Spn-H2O2 was pyruvate oxidase (SpxB). Moreover, extended incubation caused the release and the degradation of heme. We then assessed oxidation of hemoglobin and heme degradation by other bacterial inhabitants of the respiratory tract. All hydrogen peroxide-producing streptococci tested caused the oxidation of hemoglobin and heme degradation, whereas bacterial species that produce <1 μM H2O2 neither oxidized hemoglobin nor degraded heme. An ex vivo bacteremia model confirmed that oxidation of hemoglobin and heme degradation occurred concurrently with hemoglobin that was released from erythrocytes by Ply. Finally, gene expression studies demonstrated that heme, but not red blood cells or hemoglobin, induced upregulated transcription of the spxB gene. Oxidation of hemoglobin may be important for pathogenesis and for the symbiosis of hydrogen peroxide-producing bacteria with other species by providing nutrients such as iron.
Collapse
Affiliation(s)
- Babek Alibayov
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Faidad Khan
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Aidan Creel
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Summer Undergraduate Research Experience Program, School of Graduate Studies in the Health Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Perriann Smith
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Mississippi INBRE program, University of Southern Mississippi, Hattiesburg, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | - Jeffrey N. Weiser
- Department of Microbiology, NYU Langone Health, New York, New York, USA
| | - Jorge E. Vidal
- Department of Cell and Molecular Biology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
233
|
Wiscovitch-Russo R, Taal AM, Kuelbs C, Oldfield LM, Ramar M, Singh H, Fedulov AV, Gonzalez-Juarbe N. Gut and lung microbiome profiles in pregnant mice. Front Microbiol 2022; 13:946779. [PMID: 36578567 PMCID: PMC9791091 DOI: 10.3389/fmicb.2022.946779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, microbiome research has expanded from the gastrointestinal tract to other host sites previously thought to be abacterial such as the lungs. Yet, the effects of pregnancy in the lung and gut microbiome remains unclear. Here we examined the changes in the gut and lung microbiome in mice at 14 days of gestation. Lung tissue and stool samples were collected from pregnant and non-pregnant female BALB/c mice, DNA was isolated, amplified, and bacterial specific V4 16S rRNA gene was sequenced. Using an in-house bioinformatic pipeline we assessed the microbial composition of each organ using stool and lung tissue samples. The stool data showed that Lachnospiraceae and Lactobacillaceae were more abundant in the pregnant mice. Likewise, Lactobacillaceae were dominant in the lungs of pregnant mice. However, Streptococcaceae were dominant in the lungs of non-pregnant mice with a low microbial abundance in the pregnant mice. A permutation test showed that pregnancy significantly contributes to the variance in both the lung and stool microbiome. At the same time, we estimate that 49% of the total detected operational taxonomic units were shared between the stool and lung data. After removing common stool-associated bacteria from the lung dataset, no microbial differential abundance was detected between the pregnant and non-pregnant lung microbial community. Thus, pregnancy contributes to variance to the lung and stool microbiome but not in the unique lung microbiota.
Collapse
Affiliation(s)
| | - Aji Mary Taal
- J. Craig Venter Institute, Rockville, MD, United States
| | - Claire Kuelbs
- J. Craig Venter Institute, Rockville, MD, United States
| | | | - MohanKumar Ramar
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | | - Alexey V. Fedulov
- Department of Surgery, Division of Surgical Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | |
Collapse
|
234
|
Clinical Characteristics, Antimicrobial Resistance, and Outcomes of Patients with Invasive Pneumococcal Disease in Ningxia Hui Autonomous Region, China, 2013-2021. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:1262884. [PMID: 36545503 PMCID: PMC9763006 DOI: 10.1155/2022/1262884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Objectives This study aimed to analyze the clinical features, antibiotic susceptibility profiles, and outcomes of patients with invasive pneumococcal disease (IPD) at a hospital in Ningxia Hui Autonomous Region, to provide the basis for improving the clinical treatment effect. Methods Patients with IPD were retrospectively collected from 2013 to 2021. Clinical manifestations, laboratory tests, antimicrobial susceptibility, antibiotic treatment, and outcomes of the disease were analyzed. Results In this study, we identified 127 IPD cases, of whom 49 (38.6%) had meningitis and 78 (61.4%) had bacteremia. The median ages of pediatric cases and adult cases were 2 years (IQR: 0-5) and 52.5 years (IQR: 35-62), respectively. There were 27 and 45 males in the pediatric and adult groups, and no significant gender difference in the different age groups (p = 0.584) was found. Of 75 cases with underlying diseases, pneumonia (11%), malignancy (11%), hypertension (9.4%), and hepatic cirrhosis (7.9%) were the most common. The incidence of underlying diseases was even higher in the adult group (67.1%) than in the pediatric group (47.1%) (p = 0.028). The frequency of fever, cough, and seizures was significantly higher in the pediatric group than in the adult group, with p-values of 0.004, 0.004, and 0.001, respectively. The percentage of neutrophils in the blood was significantly higher in the adult cases than in the pediatric cases (p < 0.001). Furthermore, there was a significantly higher WBC count (p < 0.001), percentage of neutrophils (p = 0.012), and protein level (p = 0.019) in the CSF samples in the adult patients compared to pediatric patients. The susceptibility rates of S. pneumoniae isolates to vancomycin, linezolid, and levofloxacin were 100%. The susceptibility rates of penicillin were 98.7% and 34.1% in bacteremia and meningitis patients, respectively. Most isolates were resistant to erythromycin, clindamycin, tetracycline, and azithromycin. The most common antibiotic treatment was β-lactams. Seven (5.5%) patients died during hospitalization, and 38 (29.9%) patients' health deteriorated. Conclusion These results may provide a reference basis for the diagnosis and empiric treatment of IPD in the region.
Collapse
|
235
|
Swarthout TD, Henrion MYR, Thindwa D, Meiring JE, Mbewe M, Kalizang'Oma A, Brown C, Msefula J, Moyo B, Mataya AA, Barnaba S, Pearce E, Gordon M, Goldblatt D, French N, Heyderman RS. Waning of antibody levels induced by a 13-valent pneumococcal conjugate vaccine, using a 3 + 0 schedule, within the first year of life among children younger than 5 years in Blantyre, Malawi: an observational, population-level, serosurveillance study. THE LANCET. INFECTIOUS DISEASES 2022; 22:1737-1747. [PMID: 36029796 PMCID: PMC10555849 DOI: 10.1016/s1473-3099(22)00438-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pneumococcal conjugate vaccines (PCVs) induce serotype-specific IgG antibodies, effectively reducing vaccine-serotype carriage and invasive pneumococcal disease (IPD). IgG production wanes approximately 1 month after vaccination in absence of serotype-specific exposure. With uncertainty surrrounding correlate of protection (CoP) estimates and with persistent vaccine-serotype carriage and vaccine-serotype IPD after PCV13 introduction, we aimed to profile population-level immunogenicity among children younger than 5 years in Blantyre, Malawi. METHODS For this serosurveillance study, we used a random subset of samples from a prospective population-based serosurvey in Blantyre, Malawi, done between Dec 16, 2016, and June 27, 2018. Sample selection was based on age category optimisation among children younger than 5 years, adequate sample volume, and available budget. We measured serotype-specific IgGs against the 13 vaccine serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F) and two non-vaccine serotypes (12F and 33F), as well as IgGs against three pneumococcal proteins (PsaA, NanA, and Ply), using ELISA and a direct-binding electrochemiluminescence-based multiplex assay. We estimated population-level, serotype-specific immunogenicity profiles using a linear spline regression model. Analyses included samples stratified to 20 3-month age strata (eg, age <3 months to 57-59 months). FINDINGS We evaluated 638 plasma samples: 556 primary samples and 82 unique secondary samples (each linked to one primary sample). Immunogenicity profiles revealed a consistent pattern among vaccine serotypes except serotype 3: a vaccine-induced IgG peak followed by waning to a nadir and subsequent increase in titre. For serotype 3, we observed no apparent vaccine-induced increase. Heterogeneity in parameters included age range at post-vaccination nadir (from 11·2 months [19A] to 27·3 months [7F]). The age at peak IgG titre ranged from 2·69 months (5) to 6·64 months (14). Titres dropped below CoPs against IPD among nine vaccine serotypes (1, 3, 4, 5, 6B, 7F, 9V, 18C, and 23F) and below CoPs against carriage for ten vaccine serotypes (1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F). Increasing antibody concentrations among older children and seroincident events were consistent with ongoing vaccine-serotype exposure. INTERPRETATION A 3 + 0 PCV13 schedule with high uptake has not led to sustained population-level antibody immunity beyond the first year of life. Indeed, post-vaccine antibody concentrations dropped below putative CoPs for several vaccine serotypes, potentially contributing to persistent vaccine-serotype carriage and residual vaccine-serotype IPD in Malawi and other similar settings. Policy decisions should consider alternative vaccine strategies, including a booster dose, to achieve sustained vaccine-induced antibody titres, and thus control. FUNDING Bill & Melinda Gates Foundation, Wellcome UK, and National Institute for Health and Care Research.
Collapse
Affiliation(s)
- Todd D Swarthout
- National Institute for Health and Care Research Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK; Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi.
| | - Marc Y R Henrion
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Deus Thindwa
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi; Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - James E Meiring
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maurice Mbewe
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Akuzike Kalizang'Oma
- National Institute for Health and Care Research Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK; Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Comfort Brown
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Jacquline Msefula
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi; Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands
| | - Brewster Moyo
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Andrew A Mataya
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi
| | - Susanne Barnaba
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi; Chancellor College, University of Malawi, Blantyre, Malawi
| | - Emma Pearce
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Melita Gordon
- Malawi-Liverpool-Wellcome Research Programme, Blantyre, Malawi; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Robert S Heyderman
- National Institute for Health and Care Research Mucosal Pathogens Research Unit, Research Department of Infection, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
236
|
Yesilkaya H, Oggioni MR, Andrew PW. Streptococcus pneumoniae: 'captain of the men of death' and financial burden. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748691 DOI: 10.1099/mic.0.001275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Streptococcus pneumoniae may inhabit the upper respiratory tract of humans without causing harm but it also causes diseases with high morbidity and mortality. It has excellent adaptive capabilities thanks to its ability to shuffle its genetic content by acquiring and incorporating DNA from other bacteria and is highly competent for genetic transformation. Sugar sensing, cleavage and transport ensure its fitness and survival in the host, and intracellular survival in macrophages has been linked to virulence. The polysaccharide capsule and toxin pneumolysin are the most important virulence determinants. Polysaccharide-based vaccines provide protection against the serotypes represented in vaccine formulations.
Collapse
Affiliation(s)
- Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Marco R Oggioni
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.,Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
237
|
Gao N, Rezaee F. Airway Epithelial Cell Junctions as Targets for Pathogens and Antimicrobial Therapy. Pharmaceutics 2022; 14:2619. [PMID: 36559113 PMCID: PMC9786141 DOI: 10.3390/pharmaceutics14122619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Intercellular contacts between epithelial cells are established and maintained by the apical junctional complexes (AJCs). AJCs conserve cell polarity and build epithelial barriers to pathogens, inhaled allergens, and environmental particles in the respiratory tract. AJCs consist of tight junctions (TJs) and adherens junctions (AJs), which play a key role in maintaining the integrity of the airway barrier. Emerging evidence has shown that different microorganisms cause airway barrier dysfunction by targeting TJ and AJ proteins. This review discusses the pathophysiologic mechanisms by which several microorganisms (bacteria and viruses) lead to the disruption of AJCs in airway epithelial cells. We present recent progress in understanding signaling pathways involved in the formation and regulation of cell junctions. We also summarize the potential chemical inhibitors and pharmacological approaches to restore the integrity of the airway epithelial barrier. Understanding the AJCs-pathogen interactions and mechanisms by which microorganisms target the AJC and impair barrier function may further help design therapeutic innovations to treat these infections.
Collapse
Affiliation(s)
- Nannan Gao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
238
|
Ciptaningtyas VR, Hapsari R, Lestari ES, Farida H, de Mast Q, de Jonge MI. Bacterial colonization of the upper airways of children positive and negative for SARS-CoV-2 during the COVID-19 pandemic. BMC Infect Dis 2022; 22:860. [PMID: 36396997 PMCID: PMC9670079 DOI: 10.1186/s12879-022-07851-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Our understanding of the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bacterial colonization in the children’s upper nasopharyngeal tract during the coronavirus infectious disease (COVID-19) pandemic is limited. This study aimed to determine whether there were any differences in bacterial colonization between asymptomatic children with or without a positive SARS-CoV-2 quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results in the community setting. Methods A cross-sectional community-based exploratory study was conducted from March to May 2021 in Semarang, Central Java Province, Indonesia. Using stored nasopharyngeal swabs collected from children under 18 years as a contact tracing program, we performed a real-time quantitative (qPCR) for the most important bacterial colonizing pathogens: Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus, and Klebsiella pneumoniae. Results Swabs from a total of 440 children were included in this study, of which 228 (51.8%) were RT-qPCR-confirmed SARS-CoV-2 positive. In the 440 children, colonization rates were highest for H. influenzae (61.4%), followed by S. pneumoniae (17.5%), S. aureus (12.0%), and K. pneumoniae (1.8%). The co-occurrence of both S. pneumoniae and H. influenzae in the upper respiratory tract was significantly associated with a SARS-CoV-2 negative RT-qPCR. In contrast, colonization with only S. aureus was more common in SARS-CoV-2-positive children. Conclusion Overall, this exploratory study concludes that there is a significant difference in the bacterial nasopharyngeal colonization pattern between SARS-CoV-2 positive and negative in asymptomatic children in the community in Indonesia. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07851-z.
Collapse
|
239
|
Jiang Y, Ding Y, Wei Y, Jian C, Liu J, Zeng Z. Carbapenem-resistant Acinetobacter baumannii: A challenge in the intensive care unit. Front Microbiol 2022; 13:1045206. [PMID: 36439795 PMCID: PMC9684325 DOI: 10.3389/fmicb.2022.1045206] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) has become one of the leading causes of healthcare-associated infections globally, particularly in intensive care units (ICUs). Cross-transmission of microorganisms between patients and the hospital environment may play a crucial role in ICU-acquired CRAB colonization and infection. The control and treatment of CRAB infection in ICUs have been recognized as a global challenge because of its multiple-drug resistance. The main concern is that CRAB infections can be disastrous for ICU patients if currently existing limited therapeutic alternatives fail in the future. Therefore, the colonization, infection, transmission, and resistance mechanisms of CRAB in ICUs need to be systematically studied. To provide a basis for prevention and control countermeasures for CRAB infection in ICUs, we present an overview of research on CRAB in ICUs, summarize clinical infections and environmental reservoirs, discuss the drug resistance mechanism and homology of CRAB in ICUs, and evaluate contemporary treatment and control strategies.
Collapse
|
240
|
Beentjes D, Shears RK, French N, Neill DR, Kadioglu A. Mechanistic Insights into the Impact of Air Pollution on Pneumococcal Pathogenesis and Transmission. Am J Respir Crit Care Med 2022; 206:1070-1080. [PMID: 35649181 PMCID: PMC9704843 DOI: 10.1164/rccm.202112-2668tr] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is the leading cause of pneumonia and bacterial meningitis. A number of recent studies indicate an association between the incidence of pneumococcal disease and exposure to air pollution. Although the epidemiological evidence is substantial, the underlying mechanisms by which the various components of air pollution (particulate matter and gases such as NO2 and SO2) can increase susceptibility to pneumococcal infection are less well understood. In this review, we summarize the various effects air pollution components have on pneumococcal pathogenesis and transmission; exposure to air pollution can enhance host susceptibility to pneumococcal colonization by impairing the mucociliary activity of the airway mucosa, reducing the function and production of key antimicrobial peptides, and upregulating an important pneumococcal adherence factor on respiratory epithelial cells. Air pollutant exposure can also impair the phagocytic killing ability of macrophages, permitting increased replication of S. pneumoniae. In addition, particulate matter has been shown to activate various extra- and intracellular receptors of airway epithelial cells, which may lead to increased proinflammatory cytokine production. This increases recruitment of innate immune cells, including macrophages and neutrophils. The inflammatory response that ensues may result in significant tissue damage, thereby increasing susceptibility to invasive disease, because it allows S. pneumoniae access to the underlying tissues and blood. This review provides an in-depth understanding of the interaction between air pollution and the pneumococcus, which has the potential to aid the development of novel treatments or alternative strategies to prevent disease, especially in areas with high concentrations of air pollution.
Collapse
Affiliation(s)
- Daan Beentjes
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Rebecca K Shears
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel R Neill
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Aras Kadioglu
- Department of Clinical Immunology, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
241
|
Cui Y, Miao C, Chen W, Shang W, Qi Q, Zhou W, Wang X, Li Y, Yan Z, Jiang Y. Construction and protective efficacy of a novel Streptococcus pneumoniae fusion protein vaccine NanAT1-TufT1-PlyD4. Front Immunol 2022; 13:1043293. [PMID: 36389808 PMCID: PMC9659761 DOI: 10.3389/fimmu.2022.1043293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 01/19/2024] Open
Abstract
During the past decades, with the implementation of pneumococcal polysaccharide vaccine (PPV) and pneumococcal conjugate vaccines (PCVs), a dramatic reduction in vaccine type diseases and transmissions has occurred. However, it is necessary to develop a less expensive, serotype-independent pneumococcal vaccine due to the emergence of nonvaccine-type pneumococcal diseases and the limited effect of vaccines on colonization. As next-generation vaccines, conserved proteins, such as neuraminidase A (NanA), elongation factor Tu (Tuf), and pneumolysin (Ply), are promising targets against pneumococcal infections. Here, we designed and constructed a novel fusion protein, NanAT1-TufT1-PlyD4, using the structural and functional domains of full-length NanA, Tuf and Ply proteins with suitable linkers based on bioinformatics analysis and molecular cloning technology. Then, we tested whether the protein protected against focal and lethal pneumococcal infections and examined its potential protective mechanisms. The fusion protein NanAT1-TufT1-PlyD4 consists of 627 amino acids, which exhibits a relatively high level of thermostability, high stability, solubility and a high antigenic index without allergenicity. The purified fusion protein was used to subcutaneously immunize C57BL/6 mice, and NanAT1-TufT1-PlyD4 induced a strong and significant humoral immune response. The anti-NanAT1-TufT1-PlyD4 specific IgG antibody assays increased after the first immunization and reached the highest value at the 35th day. The results from in vitro experiments showed that anti-NanAT1-TufT1-PlyD4 antisera could inhibit the adhesion of Streptococcus pneumoniae (S. pneumoniae) to A549 cells. In addition, immunization with NanAT1-TufT1-PlyD4 significantly reduced S. pneumoniae colonization in the lung and decreased the damage to the lung tissues induced by S. pneumoniae infection. After challenge with a lethal dose of serotype 3 (NC_WCSUH32403), a better protection effect was observed with NanAT1-TufT1-PlyD4-immunized mice than with the separate full-length proteins and the adjuvant control; the survival rate was 50%, which met the standard of the marketed vaccine. Moreover, we showed that the humoral immune response and the Th1, Th2 and Th17-cellular immune pathways are involved in the immune protection of NanAT1-TufT1-PlyD4 to the host. Collectively, our results support that the novel fusion protein NanAT1-TufT1-PlyD4 exhibits extensive immune stimulation and is effective against pneumococcal challenges, and these properties are partially attributed to humoral and cellular-mediated immune responses.
Collapse
Affiliation(s)
- Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, China
| | - Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen Chen
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wenling Shang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qianqian Qi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Zhou
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
242
|
Pn-AqpC-Mediated Fermentation Pattern Coordination with the Two-Component System 07 Regulates Host N-Glycan Degradation of Streptococcus pneumoniae. Microbiol Spectr 2022; 10:e0249622. [PMID: 36106896 PMCID: PMC9603416 DOI: 10.1128/spectrum.02496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) is a human nasopharyngeal commensal, and host N-glycan metabolism promotes its colonization and invasion. It has been reported that glucose represses, while fetuin, a glycoconjugated model protein, induces, the genes involved in N-glycan degradation through the two-component system TCS07. However, the mechanisms of glucose repression and TCS07 induction remain unknown. Previously, we found that the pneumococcal aquaglyceroporin Pn-AqpC facilitates oxygen uptake, thereby contributing to the antioxidant potential and virulence. In this study, through Tandem Mass Tag (TMT) quantitative proteomics, we found that the deletion of Pn-aqpC caused a marked upregulation of 11 proteins involved in N-glycan degradation in glucose-grown pneumococcus R6. Both quantitative RT-PCR and GFP fluorescence reporters revealed that the upregulation of N-glycan genes was completely dependent on response regulator (RR) 07, but not on the histidine kinase HK07 of TCS07 or the phosphoryl-receiving aspartate residue of RR07 in ΔPn-aqpC, indicating that RR07 was activated in an HK07-independent manner when Pn-AqpC was absent. The deletion of Pn-aqpC also enhanced the expression of pyruvate formate lyase and increased formate production, probably due to reduced cellular oxygen content, indicating that a shunt of glucose catabolism to mixed acid fermentation occurs. Notably, formate induced the N-glycan degradation genes in glucose-grown R6, but the deletion of rr07 abolished this induction, indicating that formate activates RR07. However, the induction of N-glycan degradation proteins reduced the intraspecies competition of R6 in glucose. Therefore, although N-glycan degradation promotes pneumococcal pathogenesis, the glucose metabolites-based RR07 regulation reported here is of importance for balancing growth fitness and the pathogenicity of pneumococcus. IMPORTANCE Pneumococcus, a human opportunistic pathogen, is capable of metabolizing host complex N-glycans. N-glycan degradation promotes pneumococcus colonization in the nasopharynx as well as invasion into deeper tissues, thus significantly contributing to pathogenesis. It is known that the two-component system 07 induces the N-glycan metabolizing genes; however, how TCS07 is activated remains unknown. This study reveals that formate, the anaerobic fermentation metabolite of pneumococcus, is a novel activator of the response regulator (RR) 07. Although the high expression of N-glycan degradation genes promotes pneumococcal colonization in the nasopharynx and pathogenesis, this reduces pneumococcal growth fitness in glucose as indicated in this work. Notably, the presence of Pn-AqpC, an oxygen-transporting aquaglyceroporin, enables pneumococcus to maintain glucose homolactic acid fermentation, thus reducing formate production, maintaining RR07 inactivation, and controlling N-glycan degrading genes at a non-induced status. Thus, this study highlights a novel fermentation metabolism pattern linking TCS-regulated carbohydrate utilization strategies as a trade-off between the fitness and the pathogenicity of pneumococcus.
Collapse
|
243
|
Characterization of Streptococcus pneumoniae Macrolide Resistance and Its Mechanism in Northeast China over a 20-Year Period. Microbiol Spectr 2022; 10:e0054622. [PMID: 35938873 PMCID: PMC9602527 DOI: 10.1128/spectrum.00546-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Due to the resistance of Streptococcus pneumoniae to β-lactams, macrolides, and tetracyclines, treatment alternatives have become increasingly limited worldwide. We aim to describe the characterization of erythromycin-resistant S. pneumoniae (ERSP) strains in northeastern China over a period of 20 years. A total of 1,240 ERSP strains were collected and classified into five groups based on the ages of the patients. Etest strips and Kirby-Bauer disk diffusion were performed for drug susceptibility testing. The capsule swelling test was used for capsule typing. The phenotype of drug resistance was detected by the erythromycin and clindamycin double-disk method. The ermB, ermTR, mefA, and tetM genes were detected by PCR. Among the 1,240 ERSP strains, 510 were invasive isolates, and 730 were noninvasive isolates. The results of drug susceptibility testing showed that the rates of resistance to penicillin, amoxicillin, cefotaxime, ceftriaxone, meropenem, tetracycline, trimethoprim-sulfamethoxazole, and chloramphenicol varied among the different age groups. 19F, 19A, 23F, 14, and 6B were the serotypes that were commonly found among ERSP strains. Among all strains, 99.03% (1,228/1,240) exhibited an MLSB (macrolide-lincosamide-streptogramin B) resistance phenotype, of which 1,221 strains displayed a constitutive MLSB (cMLSB) phenotype and 7 strains showed an inducible MLSB (iMLSB) phenotype. All of these strains carried the ermB gene. In contrast, only 0.97% of strains of M phenotypes were found to carry the mefA gene. Both the ermB and mefA genes were detected in 704 strains that exhibited multidrug resistance, whereas the ermTR gene was not detected. Furthermore, 1,185 tetracycline-resistant strains were found to carry the tetM gene. Macrolide antimicrobial drugs should be used cautiously for the empirical treatment of S. pneumoniae infections. IMPORTANCE This study presents a retrospective analysis using 1,240 clinical erythromycin-resistant Streptococcus pneumoniae (ERSP) isolates collected in northeastern China between January 2000 and December 2019. The serotype distribution, corresponding vaccine coverage, as well as resistance phenotypes, genes, and mechanisms to macrolide and tetracycline of these isolates were systematically described, analyzed, and discussed. We hope that this study will inform clinicians in their respective regions when selecting antimicrobial agents. We also hope that this study is useful for researchers in related fields. Finally, we emphasize in this study that vaccination is the best preventive measure for S. pneumoniae infection considering its resistance to commonly used antibiotics. The determination of the S. pneumoniae serotype distribution also provides valuable empirical evidence for local health authorities when introducing appropriate vaccines in a specific area.
Collapse
|
244
|
Lamanna MM, Manzoor I, Joseph M, Ye ZA, Benedet M, Zanardi A, Ren Z, Wang X, Massidda O, Tsui HT, Winkler ME. Roles of RodZ and class A PBP1b in the assembly and regulation of the peripheral peptidoglycan elongasome in ovoid-shaped cells of Streptococcus pneumoniae D39. Mol Microbiol 2022; 118:336-368. [PMID: 36001060 PMCID: PMC9804626 DOI: 10.1111/mmi.14969] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/17/2023]
Abstract
RodZ of rod-shaped bacteria functions to link MreB filaments to the Rod peptidoglycan (PG) synthase complex that moves circumferentially perpendicular to the long cell axis, creating hoop-like sidewall PG. Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus; Spn) that lack MreB, use a different modality for peripheral PG elongation that emanates from the midcell of dividing cells. Yet, S. pneumoniae encodes a RodZ homolog similar to RodZ in rod-shaped bacteria. We show here that the helix-turn-helix and transmembrane domains of RodZ(Spn) are essential for growth at 37°C. ΔrodZ mutations are suppressed by Δpbp1a, mpgA(Y488D), and ΔkhpA mutations that suppress ΔmreC, but not ΔcozE. Consistent with a role in PG elongation, RodZ(Spn) co-localizes with MreC and aPBP1a throughout the cell cycle and forms complexes and interacts with PG elongasome proteins and regulators. Depletion of RodZ(Spn) results in aberrantly shaped, non-growing cells and mislocalization of elongasome proteins MreC, PBP2b, and RodA. Moreover, Tn-seq reveals that RodZ(Spn), but not MreCD(Spn), displays a specific synthetic-viable genetic relationship with aPBP1b, whose function is unknown. We conclude that RodZ(Spn) acts as a scaffolding protein required for elongasome assembly and function and that aPBP1b, like aPBP1a, plays a role in elongasome regulation and possibly peripheral PG synthesis.
Collapse
Affiliation(s)
- Melissa M. Lamanna
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Irfan Manzoor
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Merrin Joseph
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Ziyun A. Ye
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Mattia Benedet
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Alessia Zanardi
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Zhongqing Ren
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Xindan Wang
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Orietta Massidda
- Department of Cellular, Computational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Ho‐Ching T. Tsui
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| | - Malcolm E. Winkler
- Department of BiologyIndiana University BloomingtonBloomingtonIndianaUSA
| |
Collapse
|
245
|
Versluys KA, Eurich DT, Marrie TJ, Forgie S, Tyrrell GJ. Invasive pneumococcal disease and long-term outcomes in children: A 20-year population cohort study. LANCET REGIONAL HEALTH. AMERICAS 2022; 14:100341. [PMID: 36777393 PMCID: PMC9903925 DOI: 10.1016/j.lana.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Background Although vaccination against Streptococcus pneumoniae infections (such as invasive pneumococcal disease (IPD)) are available, challenges remain in prevention efforts. Moreover, downstream sequelae in children is relatively unknown. Thus, we aimed to evaluate short and long-term health outcomes among children with IPD. Methods Analysis of Streptococcus pneumoniae positive isolates from sterile body sites in children (0-17 years) in Alberta (Canada) from 1999 to 2019 was performed retrospectively (n=888). Cases were age and sex-matched to hospitalized population controls. Linkage to administrative health datasets was done to determine comorbidities and healthcare related outcomes. Cox proportional hazards were used to assess differences in time to mortality and hospitalisation between cases and controls in short (<30-day), intermediate (30-90 day), long-term (>90-day) follow-up. Findings Proportionally more deaths occurred in cases (4.8 deaths/1000 person-years (PY)) than controls (2.7 deaths/1000 PY), leading to a significant adjusted hazard ratio (aHR) of 1.80 (95% CI 1.22-2.64). This increased risk of death was influenced primarily by short-term mortality (319 vs 36 deaths/1000 PY in cases vs controls respectively, aHR 8.78 [95% CI 3.33-23.18]), as no differences were seen in intermediate (14 vs 7 deaths/1000 PY; aHR 2.03, 95% CI 0.41-10.04) or long-term time intervals (2.4 vs 2.3 deaths/1000 PY, aHR 1.03, 95% CI 0.63-1.69). Interpretation IPD continues to negatively impact survival in children despite vaccination. Although long-term impact on mortality and hospitalisations may not be substantial, the immediate effects of IPD are significant. Funding This work was supported by grants-in-aid from Pfizer Canada and Wyeth Canada Inc all to GJT.
Collapse
Affiliation(s)
- Kristen A. Versluys
- School of Public Health, University of Alberta, Edmonton Clinic Health Academy, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
| | - Dean T. Eurich
- School of Public Health, University of Alberta, Edmonton Clinic Health Academy, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
| | - Thomas J. Marrie
- Faculty of Medicine, Dalhousie University, 1459 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Sarah Forgie
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Alberta, 3-509 Edmonton Clinic Health Academy, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
| | - Gregory J. Tyrrell
- The Department of Laboratory Medicine and Pathology, Division of Diagnostic and Applied Microbiology, University of Alberta, Walter C. Mackenzie Health Sciences Centre, Edmonton, AB T6G 2H2, Canada
- The Provincial Laboratory for Public Health, 8440 112 Street NW, Edmonton, AB T6G 2J2, Canada
| |
Collapse
|
246
|
Cueny RR, McMillan SD, Keck JL. G-quadruplexes in bacteria: insights into the regulatory roles and interacting proteins of non-canonical nucleic acid structures. Crit Rev Biochem Mol Biol 2022; 57:539-561. [PMID: 36999585 PMCID: PMC10336854 DOI: 10.1080/10409238.2023.2181310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.
Collapse
Affiliation(s)
- Rachel R. Cueny
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Sarah D. McMillan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
247
|
Marín-Portocarrero JG, Quispe-Sanchez A, Charca-Rodriguez FDM, Atamari-Anahui N. Invasive pneumococcal disease in patients from a pediatric hospital in Peru, 2017-2020. Rev Peru Med Exp Salud Publica 2022; 39:469-473. [PMID: 36888810 PMCID: PMC11397673 DOI: 10.17843/rpmesp.2022.394.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES. Motivation for the study: there are few reports describing cases of invasive pneumococcal disease after the introduction of the 13-valent conjugate vaccine in Peru. Main findings: cases of invasive pneumococcal disease are still reported in children, more frequently in children under five years of age. The most frequent clinical form was bacteremia and there was greater antibiotic resistance to erythromycin, trimethoprim-sulfamethoxazole, and penicillin. Implications: our findings suggest the need to maintain epidemiological surveillance of invasive pneumococcal disease and to measure the impact of vaccination against pneumococcus in children. This study aimed to describe the clinical characteristics, serotypes, and antibiotic susceptibility in patients with invasive pneumococcal disease (IPD). The medical records of patients with IPD who were hospitalized at the Instituto Nacional de Salud del Niño-Breña (Lima, Peru) were reviewed. We evaluated 29 patients. The median age was 1.9 years (interquartile range: 1 to 4 years). Of the sample, 51.7% were women and the most frequent clinical form of IPD was bacteremia in 18 (62.1%) patients; 65.5% had a complete vaccination schedule, according to the Peruvian Ministry of Health. Germ isolation was performed from blood samples in 82.8% of patients. Antibiotic resistance to erythromycin (55.2%) was the most frequent, followed by resistance to trimethoprim-sulfamethoxazole (48.3%) and penicillin (24.1%). The isolated serotypes were 6C, 19A, 23A and 24F. One patient died of meningitis. In conclusion, IPD was more frequent in children aged one to five years and the most frequent clinical form was bacteremia. Five serotypes reported in previous studies were found to be resistant to penicillin and erythromycin.
Collapse
Affiliation(s)
| | | | | | - Noé Atamari-Anahui
- Instituto Nacional de Salud del Niño-Breña, Lima, Perú
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Perú
| |
Collapse
|
248
|
Silva PH, Vázquez Y, Campusano C, Retamal-Díaz A, Lay MK, Muñoz CA, González PA, Kalergis AM, Bueno SM. Non-capsular based immunization approaches to prevent Streptococcus pneumoniae infection. Front Cell Infect Microbiol 2022; 12:949469. [PMID: 36225231 PMCID: PMC9548657 DOI: 10.3389/fcimb.2022.949469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium and the leading cause of bacterial pneumonia in children and the elderly worldwide. Currently, two types of licensed vaccines are available to prevent the disease caused by this pathogen: the 23-valent pneumococcal polysaccharide-based vaccine and the 7-, 10, 13, 15 and 20-valent pneumococcal conjugate vaccine. However, these vaccines, composed of the principal capsular polysaccharide of leading serotypes of this bacterium, have some problems, such as high production costs and serotype-dependent effectiveness. These drawbacks have stimulated research initiatives into non-capsular-based vaccines in search of a universal vaccine against S. pneumoniae. In the last decades, several research groups have been developing various new vaccines against this bacterium based on recombinant proteins, live attenuated bacterium, inactivated whole-cell vaccines, and other newer platforms. Here, we review and discuss the status of non-capsular vaccines against S. pneumoniae and the future of these alternatives in a post-pandemic scenario.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yaneisi Vázquez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Campusano
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angello Retamal-Díaz
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Christian A. Muñoz
- Unidad de Microbiología, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Susan M. Bueno,
| |
Collapse
|
249
|
Du R, Wang T, Lv H, Zou Y, Hou X, Hou N, Zhang P, Li H, Chi G. Shionone-Targeted Pneumolysin to Ameliorate Acute Lung Injury Induced by Streptococcus pneumoniae In Vivo and In Vitro. Molecules 2022; 27:molecules27196258. [PMID: 36234795 PMCID: PMC9573397 DOI: 10.3390/molecules27196258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae), as a Gram-positive bacterium, can cause severe bacterial pneumonia, and result in high morbidity and mortality in infected people. Meanwhile, isolated drug-resistant S. pneumoniae is growing, which raises concerns about strategies for combatting S. pneumoniae infection. To disturb S. pneumoniae pathogenicity and its drug-resistance, developing novel anti-infective strategies or compounds is urgent. In this study, the anti-infective effect of shionone was explored. A minimum inhibitory concentration (MIC) assay and growth curve determination were performed to evaluate the effect of the tetracyclic triterpenoid compound shionone against S. pneumoniae. Hemolysis tests, western blotting, oligomerization inhibition assays, and molecular docking were carried out to explore the anti-infective mechanism of shionone. Moreover, the protective effect of shionone was also confirmed in a mousepneumonia model. The results showed that the excellent hemolytic inhibitory activity of shionone was observed at less than 8 μg/mL. Meanwhile, shionone could disturb the oligomerization of pneumolysin (PLY) but did not interfere with PLY expression at less than 4 μg/mL. Molecular docking suggested that shionone targeted the ASP-59, ILE-60, THR-57, PHE-344, and ASN-346 amino acid sites to reduce S. pneumoniae pathogenicity. Furthermore, shionone alleviated lung histopathologic injury and decreased lung bacterial colonization in vivo. The above results showed that shionone could bind to the PLY active pocket under the concentrations of 8 μg/mL and neutralize PLY hemolysis activity to reduce S. pneumoniae pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Runbao Du
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010107, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongfa Lv
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yinuo Zou
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoning Hou
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Nana Hou
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010107, China
| | - Peng Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130062, China
| | - Hongen Li
- Department of Ophthalmology, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100039, China
- Correspondence: (H.L.); (G.C.)
| | - Gefu Chi
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010107, China
- Correspondence: (H.L.); (G.C.)
| |
Collapse
|
250
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|