201
|
Duette G, Lee E, Martins Costa Gomes G, Tungatt K, Doyle C, Stylianou VV, Lee A, Maddocks S, Taylor J, Khanna R, Bull RA, Martinello M, Sandgren KJ, Cunningham AL, Palmer S. Highly Networked SARS-CoV-2 Peptides Elicit T Cell Responses with Enhanced Specificity. Immunohorizons 2023; 7:508-527. [PMID: 37358499 PMCID: PMC10580120 DOI: 10.4049/immunohorizons.2300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Identifying SARS-CoV-2-specific T cell epitope-derived peptides is critical for the development of effective vaccines and measuring the duration of specific SARS-CoV-2 cellular immunity. In this regard, we previously identified T cell epitope-derived peptides within topologically and structurally essential regions of SARS-CoV-2 spike and nucleocapsid proteins by applying an immunoinformatics pipeline. In this study, we selected 30 spike- and nucleocapsid-derived peptides and assessed whether these peptides induce T cell responses and avoid major mutations found in SARS-CoV-2 variants of concern. Our peptide pool was highly specific, with only a single peptide driving cross-reactivity in people unexposed to SARS-COV-2, and immunogenic, inducing a polyfunctional response in CD4+ and CD8+ T cells from COVID-19 recovered individuals. All peptides were immunogenic and individuals recognized broad and diverse peptide repertoires. Moreover, our peptides avoided most mutations/deletions associated with all four SARS-CoV-2 variants of concern while retaining their physicochemical properties even when genetic changes are introduced. This study contributes to an evolving definition of individual CD4+ and CD8+ T cell epitopes that can be used for specific diagnostic tools for SARS-CoV-2 T cell responses and is relevant to the development of variant-resistant and durable T cell-stimulating vaccines.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Katie Tungatt
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Chloe Doyle
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vicki V. Stylianou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ashley Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Susan Maddocks
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Janette Taylor
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Marianne Martinello
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Blacktown & Mount Druitt Hospital, Blacktown, New South Wales, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
202
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
203
|
Postovskaya A, Vujkovic A, de Block T, van Petersen L, van Frankenhuijsen M, Brosius I, Bottieau E, Van Dijck C, Theunissen C, van Ierssel SH, Vlieghe E, Bartholomeus E, Mullan K, Adriaensen W, Vanham G, Ogunjimi B, Laukens K, Vercauteren K, Meysman P. Leveraging T-cell receptor - epitope recognition models to disentangle unique and cross-reactive T-cell response to SARS-CoV-2 during COVID-19 progression/resolution. Front Immunol 2023; 14:1130876. [PMID: 37325653 PMCID: PMC10264683 DOI: 10.3389/fimmu.2023.1130876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Despite the general agreement on the significance of T cells during SARS-CoV-2 infection, the clinical impact of specific and cross-reactive T-cell responses remains uncertain. Understanding this aspect could provide insights for adjusting vaccines and maintaining robust long-term protection against continuously emerging variants. To characterize CD8+ T-cell response to SARS-CoV-2 epitopes unique to the virus (SC2-unique) or shared with other coronaviruses (CoV-common), we trained a large number of T-cell receptor (TCR) - epitope recognition models for MHC-I-presented SARS-CoV-2 epitopes from publicly available data. These models were then applied to longitudinal CD8+ TCR repertoires from critical and non-critical COVID-19 patients. In spite of comparable initial CoV-common TCR repertoire depth and CD8+ T-cell depletion, the temporal dynamics of SC2-unique TCRs differed depending on the disease severity. Specifically, while non-critical patients demonstrated a large and diverse SC2-unique TCR repertoire by the second week of the disease, critical patients did not. Furthermore, only non-critical patients exhibited redundancy in the CD8+ T-cell response to both groups of epitopes, SC2-unique and CoV-common. These findings indicate a valuable contribution of the SC2-unique CD8+ TCR repertoires. Therefore, a combination of specific and cross-reactive CD8+ T-cell responses may offer a stronger clinical advantage. Besides tracking the specific and cross-reactive SARS-CoV-2 CD8+ T cells in any TCR repertoire, our analytical framework can be expanded to more epitopes and assist in the assessment and monitoring of CD8+ T-cell response to other infections.
Collapse
Affiliation(s)
- Anna Postovskaya
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (BIOMINA), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Alexandra Vujkovic
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tessa de Block
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lida van Petersen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Caroline Theunissen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sabrina H. van Ierssel
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, Antwerp University Hospital, Edegem, Belgium
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Erika Vlieghe
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Esther Bartholomeus
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Kerry Mullan
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (BIOMINA), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Wim Adriaensen
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Vanham
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (BIOMINA), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| | - Koen Vercauteren
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Meysman
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Network Antwerp (BIOMINA), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
204
|
Yin Z, Chen JL, Lu Y, Wang B, Godfrey L, Mentzer AJ, Yao X, Liu G, Wellington D, Zhao Y, Wing PAC, Dejnirattisa W, Supasa P, Liu C, Hublitz P, Beveridge R, Waugh C, Clark SA, Clark K, Sopp P, Rostron T, Mongkolsapaya J, Screaton GR, Ogg G, Ewer K, Pollard AJ, Gilbert S, Knight JC, Lambe T, Smith GL, Dong T, Peng Y. Evaluation of T cell responses to naturally processed variant SARS-CoV-2 spike antigens in individuals following infection or vaccination. Cell Rep 2023; 42:112470. [PMID: 37141092 PMCID: PMC10121105 DOI: 10.1016/j.celrep.2023.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Most existing studies characterizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses are peptide based. This does not allow evaluation of whether tested peptides are processed and presented canonically. In this study, we use recombinant vaccinia virus (rVACV)-mediated expression of SARS-CoV-2 spike protein and SARS-CoV-2 infection of angiotensin-converting enzyme (ACE)-2-transduced B cell lines to evaluate overall T cell responses in a small cohort of recovered COVID-19 patients and uninfected donors vaccinated with ChAdOx1 nCoV-19. We show that rVACV expression of SARS-CoV-2 antigen can be used as an alternative to SARS-CoV-2 infection to evaluate T cell responses to naturally processed spike antigens. In addition, the rVACV system can be used to evaluate the cross-reactivity of memory T cells to variants of concern (VOCs) and to identify epitope escape mutants. Finally, our data show that both natural infection and vaccination could induce multi-functional T cell responses with overall T cell responses remaining despite the identification of escape mutations.
Collapse
Affiliation(s)
- Zixi Yin
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ji-Li Chen
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Beibei Wang
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Xuan Yao
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Guihai Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Dannielle Wellington
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Yiqi Zhao
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Peter A C Wing
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Wanwisa Dejnirattisa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ryan Beveridge
- Screening Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sally-Ann Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Timothy Rostron
- Sequencing Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Graham Ogg
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Katie Ewer
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK; National Institute for Health Research Oxford Biomedical Research Center, Oxford, UK
| | - Sarah Gilbert
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Lambe
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Tao Dong
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Yanchun Peng
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
205
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
206
|
Tai W, Feng S, Chai B, Lu S, Zhao G, Chen D, Yu W, Ren L, Shi H, Lu J, Cai Z, Pang M, Tan X, Wang P, Lin J, Sun Q, Peng X, Cheng G. An mRNA-based T-cell-inducing antigen strengthens COVID-19 vaccine against SARS-CoV-2 variants. Nat Commun 2023; 14:2962. [PMID: 37221158 PMCID: PMC10204679 DOI: 10.1038/s41467-023-38751-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
Herd immunity achieved through mass vaccination is an effective approach to prevent contagious diseases. Nonetheless, emerging SARS-CoV-2 variants with frequent mutations largely evaded humoral immunity induced by Spike-based COVID-19 vaccines. Herein, we develop a lipid nanoparticle (LNP)-formulated mRNA-based T-cell-inducing antigen, which targeted three SARS-CoV-2 proteome regions that enriched human HLA-I epitopes (HLA-EPs). Immunization of HLA-EPs induces potent cellular responses to prevent SARS-CoV-2 infection in humanized HLA-A*02:01/DR1 and HLA-A*11:01/DR1 transgenic mice. Of note, the sequences of HLA-EPs are highly conserved among SARS-CoV-2 variants of concern. In humanized HLA-transgenic mice and female rhesus macaques, dual immunization with the LNP-formulated mRNAs encoding HLA-EPs and the receptor-binding domain of the SARS-CoV-2 B.1.351 variant (RBDbeta) is more efficacious in preventing infection of SARS-CoV-2 Beta and Omicron BA.1 variants than single immunization of LNP-RBDbeta. This study demonstrates the necessity to strengthen the vaccine effectiveness by comprehensively stimulating both humoral and cellular responses, thereby offering insight for optimizing the design of COVID-19 vaccines.
Collapse
Affiliation(s)
- Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| | - Shengyong Feng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Benjie Chai
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Dong Chen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Central Hospital, Wenzhou, 325000, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Liting Ren
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Huicheng Shi
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200438, China
| | - Zhuming Cai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mujia Pang
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xu Tan
- Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200438, China.
| | - Qiangming Sun
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
207
|
Crum RJ, Huckestien BR, Dwyer G, Mathews L, Nascari DG, Hussey GS, Turnquist HR, Alcorn JF, Badylak SF. Mitigation of influenza-mediated inflammation by immunomodulatory matrix-bound nanovesicles. SCIENCE ADVANCES 2023; 9:eadf9016. [PMID: 37205761 PMCID: PMC10198633 DOI: 10.1126/sciadv.adf9016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Cytokine storm describes a life-threatening, systemic inflammatory syndrome characterized by elevated levels of proinflammatory cytokines and immune cell hyperactivation associated with multi-organ dysfunction. Matrix-bound nanovesicles (MBV) are a subclass of extracellular vesicle shown to down-regulate proinflammatory immune responses. The objective of this study was to assess the efficacy of MBV in mediating influenza-induced acute respiratory distress syndrome and cytokine storm in a murine model. Intravenous administration of MBV decreased influenza-mediated total lung inflammatory cell density, proinflammatory macrophage frequencies, and proinflammatory cytokines at 7 and 21 days following viral inoculation. MBV decreased long-lasting alveolitis and the proportion of lung undergoing inflammatory tissue repair at day 21. MBV increased the proportion of activated anti-viral CD4+ and CD8+ T cells at day 7 and memory-like CD62L+ CD44+, CD4+, and CD8+ T cells at day 21. These results show immunomodulatory properties of MBV that may benefit the treatment of viral-mediated pulmonary inflammation with applicability to other viral diseases such as SARS-CoV-2.
Collapse
Affiliation(s)
- Raphael J. Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brydie R. Huckestien
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gaelen Dwyer
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Mathews
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David G. Nascari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heth R. Turnquist
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F. Alcorn
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
208
|
Lie-Andersen O, Hübbe ML, Subramaniam K, Steen-Jensen D, Bergmann AC, Justesen D, Holmström MO, Turtle L, Justesen S, Lança T, Hansen M. Impact of peptide:HLA complex stability for the identification of SARS-CoV-2-specific CD8 +T cells. Front Immunol 2023; 14:1151659. [PMID: 37275886 PMCID: PMC10232890 DOI: 10.3389/fimmu.2023.1151659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Induction of a lasting protective immune response is dependent on presentation of epitopes to patrolling T cells through the HLA complex. While peptide:HLA (pHLA) complex affinity alone is widely exploited for epitope selection, we demonstrate that including the pHLA complex stability as a selection parameter can significantly reduce the high false discovery rate observed with predicted affinity. In this study, pHLA complex stability was measured on three common class I alleles and 1286 overlapping 9-mer peptides derived from the SARS-CoV-2 Spike protein. Peptides were pooled based on measured stability and predicted affinity. Strikingly, stability of the pHLA complex was shown to strongly select for immunogenic epitopes able to activate functional CD8+T cells. This result was observed across the three studied alleles and in both vaccinated and convalescent COVID-19 donors. Deconvolution of peptide pools showed that specific CD8+T cells recognized one or two dominant epitopes. Moreover, SARS-CoV-2 specific CD8+T cells were detected by tetramer-staining across multiple donors. In conclusion, we show that stability analysis of pHLA is a key factor for identifying immunogenic epitopes.
Collapse
Affiliation(s)
- Olivia Lie-Andersen
- Immunitrack ApS, Copenhagen, Denmark
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Mie Linder Hübbe
- Immunitrack ApS, Copenhagen, Denmark
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Krishanthi Subramaniam
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | | | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lance Turtle
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
209
|
Vazquez-Alejo E, Tarancon-Diez L, Espinar-Buitrago MDLS, Genebat M, Calderón A, Pérez-Cabeza G, Magro-Lopez E, Leal M, Muñoz-Fernández MÁ. Persistent Exhausted T-Cell Immunity after Severe COVID-19: 6-Month Evaluation in a Prospective Observational Study. J Clin Med 2023; 12:jcm12103539. [PMID: 37240647 DOI: 10.3390/jcm12103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Severe COVID-19 can result in a significant and irreversible impact on long-term recovery and subsequent immune protection. Understanding the complex immune reactions may be useful for establishing clinically relevant monitoring. METHODS Hospitalized adults with SARS-CoV-2 between March/October 2020 (n = 64) were selected. Cryopreserved peripheral blood mononuclear cells (PBMCs) and plasma samples were obtained at hospitalization (baseline) and 6 months after recovery. Immunological components' phenotyping and SARS-CoV-2-specific T-cell response were studied in PBMCs by flow cytometry. Up to 25 plasma pro/anti-inflammatory cytokines/chemokines were assessed by LEGENDplex immunoassays. The SARS-CoV-2 group was compared to matched healthy donors. RESULTS Biochemical altered parameters during infection were normalized at a follow-up time point in the SARS-CoV-2 group. Most of the cytokine/chemokine levels were increased at baseline in the SARS-CoV-2 group. This group showed increased Natural Killer cells (NK) activation and decreased CD16high NK subset, which normalized six months later. They also presented a higher intermediate and patrolling monocyte proportion at baseline. T cells showed an increased terminally differentiated (TemRA) and effector memory (EM) subsets distribution in the SARS-CoV-2 group at baseline and continued to increase six months later. Interestingly, T-cell activation (CD38) in this group decreased at the follow-up time point, contrary to exhaustion markers (TIM3/PD1). In addition, we observed the highest SARS-CoV-2-specific T-cell magnitude response in TemRA CD4 T-cell and EM CD8 T-cell subsets at the six-months time point. CONCLUSIONS The immunological activation in the SARS-CoV-2 group during hospitalization is reversed at the follow-up time point. However, the marked exhaustion pattern remains over time. This dysregulation could constitute a risk factor for reinfection and the development of other pathologies. Additionally, high SARS-CoV-2-specific T-cells response levels appear to be associated with infection severity.
Collapse
Affiliation(s)
- Elena Vazquez-Alejo
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Tarancon-Diez
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria de la Sierra Espinar-Buitrago
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Genebat
- Internal Medicine Department, Hospital Fátima, 41012 Sevilla, Spain
| | - Alba Calderón
- Internal Medicine Department, Hospital Fátima, 41012 Sevilla, Spain
| | | | - Esmeralda Magro-Lopez
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Leal
- Internal Medicine Department, Hospital Viamed Santa Ángela de la Cruz, 41013 Sevilla, Spain
| | - Mª Ángeles Muñoz-Fernández
- Immunology Section, Molecular Immuno-Biology Laboratory, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
210
|
Lamara Mahammed L, Bensaid K, Ait-Seddik S, Larinouna A, Brahimi G, Belkaid R, Hamzaoui O, Rouaki SM, Idder C, Allam I, Djidjik R. Improved Performance of the QuantiFERON-SARS-CoV-2 Assay with the Extended Set. Viruses 2023; 15:v15051179. [PMID: 37243265 DOI: 10.3390/v15051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple assays have been developed for the characterization of the functional activation of SARS-CoV-2 specific T-cells. This study was conducted to assess the post-vaccination and post-infection T cell response, as detected by the QuantiFERON-SARS-CoV-2 assay using the combination of three SARS-CoV-2 specific antigens (Ag1, Ag2 and Ag3). An amount of 75 participants with different infection and vaccination backgrounds were recruited for the evaluation of humoral and cellular immune responses. An elevated IFN-γ response in at least one Ag tube was observed in 69.2% of convalescent subjects and 63.9% of vaccinated ones. Interestingly, in a healthy unvaccinated case and three convalescents with negative IgG-RBD, we detected a positive QuantiFERON test after stimulation with Ag3. The majority of the T cell responders reacted simultaneously to the three SARS-CoV-2 specific antigens, and Ag3 demonstrated the highest rate of reactivity. At univariable analysis, the only factor that was associated with an absence of a cellular response was time from blood collection, being less than 30 days (OR:3.5, CI95% [1.15-10.50], p = 0.028). Overall, the inclusion of Ag3 improved the performance of the QuantiFERON-SARS-CoV-2 and showed a particular interest among subjects who fail to achieve a measurable antibody response after infection or vaccination.
Collapse
Affiliation(s)
- Lydia Lamara Mahammed
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Kahina Bensaid
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Sarah Ait-Seddik
- Epidemiology Department, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Amel Larinouna
- Epidemiology Department, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Ghania Brahimi
- Epidemiology Department, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Rosa Belkaid
- Epidemiology Department, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | | | - Soumia Meriem Rouaki
- Occupational Medicine, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Cherifa Idder
- Occupational Medicine, Beni-Messous Teaching Hospital, Faculty of Medicine, University of Algiers, Algiers 16000, Algeria
| | - Ines Allam
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| | - Reda Djidjik
- Immunology Department, Beni-Messous Teaching Hospital, Faculty of Pharmacy, University of Algiers, Algiers 16000, Algeria
| |
Collapse
|
211
|
Solimando AG, Bittrich M, Shahini E, Albanese F, Fritz G, Krebs M. Determinants of COVID-19 Disease Severity-Lessons from Primary and Secondary Immune Disorders including Cancer. Int J Mol Sci 2023; 24:8746. [PMID: 37240091 PMCID: PMC10218128 DOI: 10.3390/ijms24108746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
At the beginning of the COVID-19 pandemic, patients with primary and secondary immune disorders-including patients suffering from cancer-were generally regarded as a high-risk population in terms of COVID-19 disease severity and mortality. By now, scientific evidence indicates that there is substantial heterogeneity regarding the vulnerability towards COVID-19 in patients with immune disorders. In this review, we aimed to summarize the current knowledge about the effect of coexistent immune disorders on COVID-19 disease severity and vaccination response. In this context, we also regarded cancer as a secondary immune disorder. While patients with hematological malignancies displayed lower seroconversion rates after vaccination in some studies, a majority of cancer patients' risk factors for severe COVID-19 disease were either inherent (such as metastatic or progressive disease) or comparable to the general population (age, male gender and comorbidities such as kidney or liver disease). A deeper understanding is needed to better define patient subgroups at a higher risk for severe COVID-19 disease courses. At the same time, immune disorders as functional disease models offer further insights into the role of specific immune cells and cytokines when orchestrating the immune response towards SARS-CoV-2 infection. Longitudinal serological studies are urgently needed to determine the extent and the duration of SARS-CoV-2 immunity in the general population, as well as immune-compromised and oncological patients.
Collapse
Affiliation(s)
- Antonio G. Solimando
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area—(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Max Bittrich
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Endrit Shahini
- Gastroenterology Unit, National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, Italy
| | - Federica Albanese
- Guido Baccelli Unit of Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area—(DiMePRe-J), Aldo Moro Bari University, 70100 Bari, Italy
| | - Georg Fritz
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy at the Immanuel Klinikum Bernau, Heart Center Brandenburg, 16321 Bernau, Germany
| | - Markus Krebs
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Urology and Paediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
212
|
Ng HM, Lei CL, Fu S, Li E, Leong SI, Nip CI, Choi NM, Lai KS, Tang XJ, Lei CL, Xu RH. Heterologous vaccination with inactivated vaccine and mRNA vaccine augments antibodies against both spike and nucleocapsid proteins of SARS-CoV-2: a local study in Macao. Front Immunol 2023; 14:1131985. [PMID: 37251391 PMCID: PMC10213252 DOI: 10.3389/fimmu.2023.1131985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The mRNA vaccines (RVs) can reduce the severity and mortality of severe acute respiratory syndrome coronavirus (SARS-CoV-2). However, almost only the inactivated vaccines (IVs) but no RVs had been used in mainland China until most recently, and the relaxing of its anti-pandemic strategies in December 2022 increased concerns about new outbreaks. In comparison, many of the citizens in Macao Special Administrative Region of China received three doses of IV (3IV) or RV (3RV), or 2 doses of IV plus one booster of RV (2IV+1RV). By the end of 2022, we recruited 147 participants with various vaccinations in Macao and detected antibodies (Abs) against the spike (S) protein and nucleocapsid (N) protein of the virus as well as neutralizing antibodies (NAb) in their serum. We observed that the level of anti-S Ab or NAb was similarly high with both 3RV and 2IV+1RV but lower with 3IV. In contrast, the level of anti-N Ab was the highest with 3IV like that in convalescents, intermediate with 2IV+1RV, and the lowest with 3RV. Whereas no significant differences in the basal levels of cytokines related to T-cell activation were observed among the various vaccination groups before and after the boosters. No vaccinees reported severe adverse events. Since Macao took one of the most stringent non-pharmaceutical interventions in the world, this study possesses much higher confidence in the vaccination results than many other studies from highly infected regions. Our findings suggest that the heterologous vaccination 2IV+1RV outperforms the homologous vaccinations 3IV and 3RV as it induces not only anti-S Ab (to the level as with 3RV) but also anti-N antibodies (via the IV). It combines the advantages of both RV (to block the viral entry) and IV (to also intervene the subsequent pathological processes such as intracellular viral replication and interference with the signal transduction and hence the biological functions of host cells).
Collapse
Affiliation(s)
- Hoi Man Ng
- Laboratory Department, Kiang Wu Hospital, Macao, Macao SAR, China
| | - Chon Lok Lei
- Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Siyi Fu
- Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Sek In Leong
- Laboratory Department, Kiang Wu Hospital, Macao, Macao SAR, China
| | - Chu Iong Nip
- Laboratory Department, Kiang Wu Hospital, Macao, Macao SAR, China
| | - Nga Man Choi
- Laboratory Department, Kiang Wu Hospital, Macao, Macao SAR, China
| | - Kai Seng Lai
- Laboratory Department, Kiang Wu Hospital, Macao, Macao SAR, China
| | - Xi Jun Tang
- Laboratory Department, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Chon Leng Lei
- Laboratory Department, Kiang Wu Hospital, Macao, Macao SAR, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| |
Collapse
|
213
|
Guo L, Lin S, Chen Z, Cao Y, He B, Lu G. Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduct Target Ther 2023; 8:197. [PMID: 37164987 PMCID: PMC10170451 DOI: 10.1038/s41392-023-01472-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused devastating impacts on the public health and the global economy. Rapid viral antigenic evolution has led to the continual generation of new variants. Of special note is the recently expanding Omicron subvariants that are capable of immune evasion from most of the existing neutralizing antibodies (nAbs). This has posed new challenges for the prevention and treatment of COVID-19. Therefore, exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In sharp contrast to the massive accumulation of mutations within the SARS-CoV-2 receptor-binding domain (RBD), the S2 fusion subunit has remained highly conserved among variants. Hence, S2-based therapeutics may provide effective cross-protection against new SARS-CoV-2 variants. Here, we summarize the most recently developed broad-spectrum fusion inhibitors (e.g., nAbs, peptides, proteins, and small-molecule compounds) and candidate vaccines targeting the conserved elements in SARS-CoV-2 S2 subunit. The main focus includes all the targetable S2 elements, namely, the fusion peptide, stem helix, and heptad repeats 1 and 2 (HR1-HR2) bundle. Moreover, we provide a detailed summary of the characteristics and action-mechanisms for each class of cross-reactive fusion inhibitors, which should guide and promote future design of S2-based inhibitors and vaccines against new coronaviruses.
Collapse
Affiliation(s)
- Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
214
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
215
|
Bukreieva T, Kyryk V, Nikulina V, Svitina H, Vega A, Chybisov O, Shablii I, Mankovska O, Lobyntseva G, Nemtinov P, Skrypkina I, Shablii V. Dynamic changes in radiological parameters, immune cells, selected miRNAs, and cytokine levels in peripheral blood of patients with severe COVID‑19. Biomed Rep 2023; 18:33. [PMID: 37034572 PMCID: PMC10074022 DOI: 10.3892/br.2023.1615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
The present study aimed to investigate the dynamic changes in peripheral blood leucocyte subpopulations, cytokine and miRNA levels, and changes in computed tomography (CT) scores in patients with severe coronavirus disease 2019 (COVID-19) (n=14) and age-matched non-COVID-19 volunteers (n=17), which were included as a reference control group. All data were collected on the day of patient admission (day 0) and on the 7th, 14th and 28th days of follow-up while CT of the lungs was performed on weeks 2, 8, 24 and 48. On day 0, lymphopenia and leucopenia were detected in most patients with COVID-19, as well as an increase in the percentage of banded neutrophils, B cells, and CD4+ Treg cells, and a decrease in the content of PD-1low T cells, classical, plasmacytoid, and regulatory dendritic cells. On day 7, the percentage of T and natural killer cells decreased with a concurrent increase in B cells, but returned to the initial level after treatment discharge. The content of different T and dendritic cell subsets among CD45+ cells increased during two weeks and remained elevated, suggesting the activation of an adaptive immune response. The increase of PD-1-positive subpopulations of T and non-T cells and regulatory CD4 T cells in patients with COVID-19 during the observation period suggests the development of an inflammation control mechanism. The levels of interferon γ-induced protein 10 (IP-10), tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 decreased on day 7, but increased again on days 14 and 28. C-reactive protein and granulocyte colony-stimulating factor (G-CSF) levels decreased gradually throughout the observation period. The relative expression levels of microRNA (miR)-21-5p, miR-221-3p, miR-27a-3p, miR-146a-5p, miR-133a-3p, and miR-126-3p were significantly higher at the beginning of hospitalization compared to non-COVID-19 volunteers. The plasma levels of all miRs, except for miR-126-3p, normalized within one week of treatment. At week 48, CT scores were most prominently correlated with the content of lymphocytes, senescent memory T cells, CD127+ T cells and CD57+ T cells, and increased concentrations of G-CSF, IP-10, and macrophage inflammatory protein-1α.
Collapse
Affiliation(s)
- Tetiana Bukreieva
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Vitalii Kyryk
- Laboratory of Cell and Tissue Cultures, Department of Cell and Tissue Technologies, State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
- Laboratory of Pathophysiology and Immunology, D.F. Chebotarev State Institute of Gerontology of The National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Viktoriia Nikulina
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Hanna Svitina
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Alyona Vega
- Department of Infectious Diseases, Shupyk National Healthcare University of Ukraine, Kyiv 04112, Ukraine
| | - Oleksii Chybisov
- Endoscopic Unit, CNE Kyiv City Clinical Hospital No. 4, Kyiv 03110, Ukraine
| | - Iuliia Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Oksana Mankovska
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Galyna Lobyntseva
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Petro Nemtinov
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| | - Inessa Skrypkina
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Volodymyr Shablii
- Laboratory of Biosynthesis of Nucleic Acids, Department of Functional Genomics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
- Placenta Stem Cell Laboratory, Cryobank, Institute of Cell Therapy, Kyiv 03126, Ukraine
| |
Collapse
|
216
|
Wing PAC, Schmidt NM, Peters R, Erdmann M, Brown R, Wang H, Swadling L, COVIDsortium Investigators, Newman J, Thakur N, Shionoya K, Morgan SB, Hinks TSC, Watashi K, Bailey D, Hansen SB, Davidson AD, Maini MK, McKeating JA. An ACAT inhibitor suppresses SARS-CoV-2 replication and boosts antiviral T cell activity. PLoS Pathog 2023; 19:e1011323. [PMID: 37134108 PMCID: PMC10202285 DOI: 10.1371/journal.ppat.1011323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/22/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nathalie M. Schmidt
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Rory Peters
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maximilian Erdmann
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Hao Wang
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, San Diego, California, United States of America
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, California, United States of America
| | - Leo Swadling
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | | | | | | | - Kaho Shionoya
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sophie B. Morgan
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Timothy SC Hinks
- Respiratory Medicine Unit and National Institute for Health Research Oxford Biomedical Research Centre, Nuffield Department of Medicine, Experimental Medicine, University of Oxford, Oxford, United Kingdom
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Centre for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Scott B. Hansen
- UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Mala K. Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
217
|
Shamseldin MM, Kenney A, Zani A, Evans JP, Zeng C, Read KA, Hall JM, Chaiwatpongsakorn S, Mahesh KC, Lu M, Eltobgy M, Denz P, Deora R, Li J, Peeples ME, Oestreich KJ, Liu SL, Corps KN, Yount JS, Dubey P. Prime-Pull Immunization of Mice with a BcfA-Adjuvanted Vaccine Elicits Sustained Mucosal Immunity That Prevents SARS-CoV-2 Infection and Pathology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1257-1271. [PMID: 36881867 PMCID: PMC10121870 DOI: 10.4049/jimmunol.2200297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
Vaccines against SARS-CoV-2 that induce mucosal immunity capable of preventing infection and disease remain urgently needed. In this study, we demonstrate the efficacy of Bordetella colonization factor A (BcfA), a novel bacteria-derived protein adjuvant, in SARS-CoV-2 spike-based prime-pull immunizations. We show that i.m. priming of mice with an aluminum hydroxide- and BcfA-adjuvanted spike subunit vaccine, followed by a BcfA-adjuvanted mucosal booster, generated Th17-polarized CD4+ tissue-resident memory T cells and neutralizing Abs. Immunization with this heterologous vaccine prevented weight loss following challenge with mouse-adapted SARS-CoV-2 (MA10) and reduced viral replication in the respiratory tract. Histopathology showed a strong leukocyte and polymorphonuclear cell infiltrate without epithelial damage in mice immunized with BcfA-containing vaccines. Importantly, neutralizing Abs and tissue-resident memory T cells were maintained until 3 mo postbooster. Viral load in the nose of mice challenged with the MA10 virus at this time point was significantly reduced compared with naive challenged mice and mice immunized with an aluminum hydroxide-adjuvanted vaccine. We show that vaccines adjuvanted with alum and BcfA, delivered through a heterologous prime-pull regimen, provide sustained protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University-Ain Helwan, Helwan, Egypt
| | - Adam Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - John P Evans
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
| | - Cong Zeng
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Jesse M Hall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Supranee Chaiwatpongsakorn
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - K C Mahesh
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Parker Denz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Rajendar Deora
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Shan-Lu Liu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
- Department of Microbiology, The Ohio State University, Columbus, OH
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
- Center for Retrovirus Research, The Ohio State University, Columbus, OH
| | - Kara N Corps
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH
| |
Collapse
|
218
|
Kavazović I, Dimitropoulos C, Gašparini D, Rončević Filipović M, Barković I, Koster J, Lemmermann NA, Babić M, Cekinović Grbeša Đ, Wensveen FM. Vaccination provides superior in vivo recall capacity of SARS-CoV-2-specific memory CD8 T cells. Cell Rep 2023; 42:112395. [PMID: 37099427 PMCID: PMC10070771 DOI: 10.1016/j.celrep.2023.112395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/07/2022] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Memory CD8 T cells play an important role in the protection against breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Whether the route of antigen exposure impacts these cells at a functional level is incompletely characterized. Here, we compare the memory CD8 T cell response against a common SARS-CoV-2 epitope after vaccination, infection, or both. CD8 T cells demonstrate comparable functional capacity when restimulated directly ex vivo, independent of the antigenic history. However, analysis of T cell receptor usage shows that vaccination results in a narrower scope than infection alone or in combination with vaccination. Importantly, in an in vivo recall model, memory CD8 T cells from infected individuals show equal proliferation but secrete less tumor necrosis factor (TNF) compared with those from vaccinated people. This difference is negated when infected individuals have also been vaccinated. Our findings shed more light on the differences in susceptibility to re-infection after different routes of SARS-CoV-2 antigen exposure.
Collapse
Affiliation(s)
- Inga Kavazović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Dora Gašparini
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Igor Barković
- Department of Internal Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, 1105AZ Amsterdam, the Netherlands
| | - Niels A Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Marina Babić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, 10117 Berlin, Germany
| | | | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
219
|
Qin T, Shen B, Li E, Jin S, Luo R, Zhang Y, Qi J, Deng X, Shi Z, Wang T, Zhou Y, Gao Y. MHC class I links with severe pathogenicity in C57BL/6N mice infected with SARS-CoV-2/BMA8. Virol J 2023; 20:75. [PMID: 37081549 PMCID: PMC10116088 DOI: 10.1186/s12985-023-02031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes non-symptomatic infection, mild influenza-like symptoms to pneumonia, severe acute respiratory distress syndrome, and even death, reflecting different clinical symptoms of viral infection. However, the mechanism of its pathogenicity remains unclear. Host-specific traits have a breakthrough significance for studying the pathogenicity of SARS-CoV-2. We previously reported SARS-CoV-2/BMA8, a mouse-adapted strain, was lethal to aged BALB/c mice but not to aged C57BL/6N mice. Here, we further investigate the differences in pathogenicity of BMA8 strain against wild-type aged C57BL/6N and BALB/c mice. METHODS Whole blood and tissues were collected from mice before and after BMA8 strain infection. Viral replication and infectivity were assessed by detection of viral RNA copies and viral titers; the degree of inflammation in mice was tested by whole blood cell count, ELISA and RT-qPCR assays; the pathogenicity of SARS-CoV-2/BMA8 in mice was measured by Histopathology and Immunohistochemistry; and the immune level of mice was evaluated by flow cytometry to detect the number of CD8+ T cells. RESULTS Our results suggest that SARS-CoV-2/BMA8 strain caused lower pathogenicity and inflammation level in C57BL/6N mice than in BALB/c mice. Interestingly, BALB/c mice whose MHC class I haplotype is H-2Kd showed more severe pathogenicity after infection with BMA8 strain, while blockade of H-2Kb in C57BL/6N mice was also able to cause this phenomenon. Furthermore, H-2Kb inhibition increased the expression of cytokines/chemokines and accelerated the decrease of CD8+ T cells caused by SARS-CoV-2/BMA8 infection. CONCLUSIONS Taken together, our work shows that host MHC molecules play a crucial role in the pathogenicity differences of SARS-CoV-2/BMA8 infection. This provides a more profound insight into the pathogenesis of SARS-CoV-2, and contributes enlightenment and guidance for controlling the virus spread.
Collapse
Affiliation(s)
- Tian Qin
- School of life sciences, Northeast Normal University, Changchun, 130024, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Beilei Shen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Song Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of life sciences, Shandong Normal University, Jinan, 250014, China
| | - Rongbo Luo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yiming Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Jing Qi
- School of life sciences, Northeast Normal University, Changchun, 130024, China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Xiuwen Deng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Integrated Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhuangzhuang Shi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130033, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yifa Zhou
- School of life sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
220
|
Bonam SR, Hu H. Next-Generation Vaccines Against COVID-19 Variants: Beyond the Spike Protein. ZOONOSES (BURLINGTON, MASS.) 2023; 3:10.15212/zoonoses-2023-0003. [PMID: 38031548 PMCID: PMC10686570 DOI: 10.15212/zoonoses-2023-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Vaccines are among the most effective medical countermeasures against infectious diseases. The current Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred the scientific strategies to fight against the disease. Since 2020, a great number of vaccines based on different platforms have been in development in response to the pandemic, among which mRNA, adenoviral vector, and subunit vaccines have been clinically approved for use in humans. These first-generation COVID-19 vaccines largely target the viral spike (S) protein and aim for eliciting potent neutralizing antibodies. With the emergence of SARS-CoV-2 variants, especially the highly transmissible Omicron strains, the S-based vaccine strategies have been faced constant challenges due to strong immune escape by the variants. The coronavirus nucleocapsid (N) is one of the viral proteins that induces strong T-cell immunity and is more conserved across different SARS-CoV-2 variants. Inclusion of N in the development of COVID-19 vaccines has been reported. Here, we briefly reviewed and discussed COVID-19 disease, current S-based vaccine strategies, and focused on the immunobiology of N protein in SARS-CoV-2 host immunity, as well as the next-generation vaccine strategies involving N protein, to combat current and emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA 77555
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA 77555
| |
Collapse
|
221
|
Mok CKP, Chen C, Zhao S, Sun Y, Yiu K, Chan TO, Lai HL, Lai KC, Lau KM, Ling KC, Chan KKP, Ng SS, Ko FW, Peiris M, Hui DS. Omicron BA.1-specific T-cell responses in adults vaccinated with CoronaVac or BNT162b2 in Hong Kong: an observational cohort study. THE LANCET. MICROBE 2023:S2666-5247(23)00006-X. [PMID: 37086735 PMCID: PMC10115591 DOI: 10.1016/s2666-5247(23)00006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 04/24/2023]
Abstract
BACKGROUND The primary aim of using vaccines in public health responses to SARS-CoV-2 variants of concern is to reduce incidence of severe disease, for which T-cell responses are essential. There is a paucity of data on vaccine-induced T-cell immunity to omicron (B.1.1.529). We aimed to compare SARS-CoV-2 omicron BA.1-specific T-cell responses in adults vaccinated with CoronaVac or BNT162b2. METHODS For this observational cohort, we recruited adults (aged ≥18 years) from three vaccination centres in Hong Kong. We included participants from four cohorts (cohort 1: participants who received two doses of either BNT162b2 or CoronaVac, cohort 2: participants who received two doses and a booster, cohort 3: participants who received two doses and a booster and had a breakthrough omicron infection, and cohort 4: participants who had a previous non-omicron infection and subsequently received one dose of vaccine). People with confirmed history of COVID-19 at recruitment were excluded from cohort 1 and cohort 2. We collected blood samples before vaccination (for cohort 1 and 2), 1-month following vaccination (for all cohorts), and during convalescence for cohort 3 and 4) and determined the proportion of IFNγ+CD4+ and IFNγ+CD8+ T cells in peripheral blood against SARS-CoV-2 using flow cytometry with peptide pools of SARS-CoV-2 wild type or omicron BA.1. The primary outcome was proportion of CD4+ and CD8+ T cells against SARS-CoV-2 1 month after exposure (ie, vaccination or breakthrough infection). FINDINGS Overall, between May 21, 2020, and Aug 31, 2021, we recruited 659 participants (231 [35%] men and 428 [65%] women). Of these participants, 428 were included in cohort 1 (214 [50%] received BNT162b2 and 214 [50%] received CoronaVac); 127 in cohort 2 (48 [38%] received all BNT162b2, 40 [31%] received all CoronaVac, and 39 [31%] received two CoronaVac and a booster with BNT162b2); 58 in cohort 3, and 46 in cohort 4 (16 [35%] received CoronaVac and 30 [65%] received BNT162b2). Vaccine-induced T-cell responses to the wild-type and omicron BA.1 variants were generally similar in adults receiving two doses of either CoronaVac (CD4+ cells p=0·33; CD8+ cells p=0·70) or BNT162b2 (CD4+ cells p=0·28; CD8+ cells p=1·0). Using a peptide pool of all structural proteins for stimulation, BNT162b2 induced a higher median frequency of omicron-specific CD4+ T cells in adults younger than 60 years (CD4+ cells 0·012% vs 0·010%, p=0·031; CD8+ cells 0·003% vs 0·000%, p=0·055) and omicron-specific CD8+ T cells in people aged 60 years or older (CD4+ cells 0·015% vs 0·006%, p=0·0070; CD8+ cells 0·007% vs 0·000%, p=0·035). A booster dose of either BNT162b2 or CoronaVac after two doses of CoronaVac boosted waning T-cell responses, but T-cell responses did not exceed those at 1 month after the second dose (CoronaVac CD4+ p=0·41, CD8+ p=0·79; BNT162b2 CD4+ p=0·70 CD8+ p=0·80). INTERPRETATION The evidence that mRNA and inactivated vaccines based on the ancestral SARS-CoV-2 virus elicited T-cell responses to SARS-CoV-2 omicron variants might explain the high observed vaccine effectiveness against severe COVID-19 shown by both types of vaccine, despite great differences in neutralising antibody responses. The use of either vaccine can be considered if the primary aim is to reduce severity and death caused by the new omicron subvariants; however, BNT162b2 is preferable for adults older than 60 years. FUNDING The Health and Medical Research Fund Commissioned Research on the Novel Coronavirus Disease and S H Ho Foundation.
Collapse
Affiliation(s)
- Chris Ka Pun Mok
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chunke Chen
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shilin Zhao
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yuanxin Sun
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Karen Yiu
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Tat-On Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ho-Lun Lai
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kiu Cheung Lai
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ka Man Lau
- Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwun Cheung Ling
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ken K P Chan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Susanna S Ng
- Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fanny W Ko
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China; School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - David S Hui
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Stanley Ho Centre for Emerging Infectious Diseases, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
222
|
Nguyen THO, Rowntree LC, Allen LF, Chua BY, Kedzierski L, Lim C, Lasica M, Tennakoon GS, Saunders NR, Crane M, Chee L, Seymour JF, Anderson MA, Whitechurch A, Clemens EB, Zhang W, Chang SY, Habel JR, Jia X, McQuilten HA, Minervina AA, Pogorelyy MV, Chaurasia P, Petersen J, Menon T, Hensen L, Neil JA, Mordant FL, Tan HX, Cabug AF, Wheatley AK, Kent SJ, Subbarao K, Karapanagiotidis T, Huang H, Vo LK, Cain NL, Nicholson S, Krammer F, Gibney G, James F, Trevillyan JM, Trubiano JA, Mitchell J, Christensen B, Bond KA, Williamson DA, Rossjohn J, Crawford JC, Thomas PG, Thursky KA, Slavin MA, Tam CS, Teh BW, Kedzierska K. Robust SARS-CoV-2 T cell responses with common TCRαβ motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells. Cell Rep Med 2023; 4:101017. [PMID: 37030296 PMCID: PMC10040362 DOI: 10.1016/j.xcrm.2023.101017] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lilith F Allen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0808, Japan
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Chhay Lim
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Masa Lasica
- Department of Haematology, St Vincent's Hospital, Fitzroy, VIC 3065, Australia; Department of Haematology, Eastern Health, Box Hill, VIC 3128, Australia
| | - G Surekha Tennakoon
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Natalie R Saunders
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Megan Crane
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lynette Chee
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - John F Seymour
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mary Ann Anderson
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ashley Whitechurch
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Wuji Zhang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer R Habel
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Anastasia A Minervina
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mikhail V Pogorelyy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Priyanka Chaurasia
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jan Petersen
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tejas Menon
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jessica A Neil
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Francesca L Mordant
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, VIC 3010, Australia; Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; World Health Organisation (WHO) Collaborating Centre for Reference and Research on Influenza, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Theo Karapanagiotidis
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Han Huang
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lynn K Vo
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Natalie L Cain
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace Gibney
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Fiona James
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Janine M Trevillyan
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jeni Mitchell
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Britt Christensen
- Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Katherine A Bond
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Deborah A Williamson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Victorian Infectious Diseases Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, UK
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karin A Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Constantine S Tam
- Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia
| | - Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido 060-0808, Japan.
| |
Collapse
|
223
|
Sunagar R, Singh A, Kumar S. SARS-CoV-2: Immunity, Challenges with Current Vaccines, and a Novel Perspective on Mucosal Vaccines. Vaccines (Basel) 2023; 11:vaccines11040849. [PMID: 37112761 PMCID: PMC10143972 DOI: 10.3390/vaccines11040849] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The global rollout of COVID-19 vaccines has played a critical role in reducing pandemic spread, disease severity, hospitalizations, and deaths. However, the first-generation vaccines failed to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission, partially due to the limited induction of mucosal immunity, leading to the continuous emergence of variants of concern (VOC) and breakthrough infections. To meet the challenges from VOC, limited durability, and lack of mucosal immune response of first-generation vaccines, novel approaches are being investigated. Herein, we have discussed the current knowledge pertaining to natural and vaccine-induced immunity, and the role of the mucosal immune response in controlling SARS-CoV2 infection. We have also presented the current status of the novel approaches aimed at eliciting both mucosal and systemic immunity. Finally, we have presented a novel adjuvant-free approach to elicit effective mucosal immunity against SARS-CoV-2, which lacks the safety concerns associated with live-attenuated vaccine platforms.
Collapse
Affiliation(s)
| | - Amit Singh
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
224
|
Yu M, Charles A, Cagigi A, Christ W, Österberg B, Falck-Jones S, Azizmohammadi L, Åhlberg E, Falck-Jones R, Svensson J, Nie M, Warnqvist A, Hellgren F, Lenart K, Arcoverde Cerveira R, Ols S, Lindgren G, Lin A, Maecker H, Bell M, Johansson N, Albert J, Sundling C, Czarnewski P, Klingström J, Färnert A, Loré K, Smed-Sörensen A. Delayed generation of functional virus-specific circulating T follicular helper cells correlates with severe COVID-19. Nat Commun 2023; 14:2164. [PMID: 37061513 PMCID: PMC10105364 DOI: 10.1038/s41467-023-37835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/03/2023] [Indexed: 04/17/2023] Open
Abstract
Effective humoral immune responses require well-orchestrated B and T follicular helper (Tfh) cell interactions. Whether these interactions are impaired and associated with COVID-19 disease severity is unclear. Here, longitudinal blood samples across COVID-19 disease severity are analysed. We find that during acute infection SARS-CoV-2-specific circulating Tfh (cTfh) cells expand with disease severity. SARS-CoV-2-specific cTfh cell frequencies correlate with plasmablast frequencies and SARS-CoV-2 antibody titers, avidity and neutralization. Furthermore, cTfh cells but not other memory CD4 T cells, from severe patients better induce plasmablast differentiation and antibody production compared to cTfh cells from mild patients. However, virus-specific cTfh cell development is delayed in patients that display or later develop severe disease compared to those with mild disease, which correlates with delayed induction of high-avidity neutralizing antibodies. Our study suggests that impaired generation of functional virus-specific cTfh cells delays high-quality antibody production at an early stage, potentially enabling progression to severe disease.
Collapse
Affiliation(s)
- Meng Yu
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Afandi Charles
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Alberto Cagigi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Wanda Christ
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Björn Österberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Falck-Jones
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lida Azizmohammadi
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Åhlberg
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ryan Falck-Jones
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Julia Svensson
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mu Nie
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Warnqvist
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Klara Lenart
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Ols
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Lindgren
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Holden Maecker
- The Human Immune Monitoring Center, Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Bell
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Niclas Johansson
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Clinical Microbiology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
225
|
Huang R, Ying L, Wang J, Xia J, Zhang Y, Mao H, Zhang R, Zang R, Le Z, Shu Q, Xu J. Non-spike and spike-specific memory T cell responses after the third dose of inactivated COVID-19 vaccine. Front Immunol 2023; 14:1139620. [PMID: 37114058 PMCID: PMC10126277 DOI: 10.3389/fimmu.2023.1139620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Background During the COVID-19 epidemic, vaccination has become the most safe and effective way to prevent severe illness and death. Inactivated vaccines are the most widely used type of COVID-19 vaccines in the world. In contrast to spike-based mRNA/protein COVID-19 vaccines, inactivated vaccines generate antibodies and T cell responses against both spike and non-spike antigens. However, the knowledge of inactivated vaccines in inducing non-spike-specific T cell response is very limited. Methods In this study, eighteen healthcare volunteers received a homogenous booster (third) dose of the CoronaVac vaccine at least 6 months after the second dose. CD4+ and CD8+ T cell responses against a peptide pool from wild-type (WT) non-spike proteins and spike peptide pools from WT, Delta, and Omicron SARS-CoV-2 were examined before and 1-2 weeks after the booster dose. Results The booster dose elevated cytokine response in CD4+ and CD8+ T cells as well as expression of cytotoxic marker CD107a in CD8+ T cells in response to non-spike and spike antigens. The frequencies of cytokine-secreting non-spike-specific CD4+ and CD8+ T cells correlated well with those of spike-specific from WT, Delta, and Omicron. Activation-induced markers (AIM) assay also revealed that booster vaccination elicited non-spike-specific CD4+ and CD8+ T cell responses. In addition, booster vaccination produced similar spike-specific AIM+CD4+ and AIM+CD8+ T cell responses to WT, Delta, and Omicron, indicting strong cross-reactivity of functional cellular response between WT and variants. Furthermore, booster vaccination induced effector memory phenotypes of spike-specific and non-spike-specific CD4+ and CD8+ T cells. Conclusions These data suggest that the booster dose of inactive vaccines broadens both non-spike-specific and spike-specific T cell responses against SARS-CoV-2.
Collapse
Affiliation(s)
- Ruoqiong Huang
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Liyang Ying
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jiangmei Wang
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Xia
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanjun Zhang
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Haiyan Mao
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ruoyang Zhang
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Ruoxi Zang
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Zhenkai Le
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Qiang Shu
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jianguo Xu
- Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
226
|
Singh A, Adam A, Rodriguez L, Peng BH, Wang B, Xie X, Shi PY, Homma K, Wang T. Oral Supplementation with AHCC ®, a Standardized Extract of Cultured Lentinula edodes Mycelia, Enhances Host Resistance against SARS-CoV-2 Infection. Pathogens 2023; 12:554. [PMID: 37111440 PMCID: PMC10144296 DOI: 10.3390/pathogens12040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted global public health safety and the economy. Multiple antiviral drugs have been developed, and some have received regulatory approval and/or authorization. The use of nutraceuticals can be beneficial for preventing and treating COVID-19 complications. AHCC is a standardized, cultured extract of an edible mushroom Lentinula edodes of the Basidiomycete family of fungi that is enriched in acylated α-1,4-glucans. Here, we evaluated the effects of the oral administration of AHCC on the host response to SARS-CoV-2 infection in two murine models, K18-hACE2 transgenic mice and immunocompetent BALB/c mice. Oral administration of AHCC every other day for one week before and one day post SARS-CoV-2 infection in both strains of mice decreased the viral load and attenuated inflammation in the lungs. AHCC treatment also significantly reduced SARS-CoV-2-induced lethality in the K18-hACE2 mice. AHCC administration enhanced the expansion of γδ T cells in the spleen and lungs before and after viral infection and promoted T helper 1-prone mucosal and systemic T cell responses in both models. In AHCC-fed BALB/c mice, SARS-CoV-2 specific IgG responses were also enhanced. In summary, AHCC supplementation enhances host resistance against mild and severe COVID-19 infection primarily via the promotion of innate and adaptive T cell immune responses in mice.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leslie Rodriguez
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kohei Homma
- Research and Development Division, Amino Up Co., Ltd., Sapporo 004-0839, Hokkaido, Japan
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
227
|
Hansen L, Brokstad KA, Bansal A, Zhou F, Bredholt G, Onyango TB, Sandnes HH, Elyanow R, Madsen A, Trieu MC, Sævik M, Søyland H, Olofsson JS, Vahokoski J, Ertesvåg NU, Fjelltveit EB, Shafiani S, Tøndel C, Chapman H, Kaplan I, Mohn KG, Langeland N, Cox RJ. Durable immune responses after BNT162b2 vaccination in home-dwelling old adults. Vaccine X 2023; 13:100262. [PMID: 36643855 PMCID: PMC9830931 DOI: 10.1016/j.jvacx.2023.100262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Objectives Elderly are an understudied, high-risk group vulnerable to severe COVID-19. We comprehensively analyzed the durability of humoral and cellular immune responses after BNT162b2 vaccination and SARS-CoV-2 infection in elderly and younger adults. Methods Home-dwelling old (n = 100, median 86 years) and younger adults (n = 449, median 38 years) were vaccinated with two doses of BNT162b2 vaccine at 3-week intervals and followed for 9-months. Vaccine-induced responses were compared to home-isolated COVID-19 patients (n = 183, median 47 years). Our analysis included neutralizing antibodies, spike-specific IgG, memory B-cells, IFN-γ and IL-2 secreting T-cells and sequencing of the T-cell receptor (TCR) repertoire. Results Spike-specific breadth and depth of the CD4+ and CD8+ TCR repertoires were significantly lower in the elderly after one and two vaccinations. Both vaccinations boosted IFN-γ and IL-2 secreting spike-specific T-cells responses, with 96 % of the elderly and 100 % of the younger adults responding after the second dose, although responses were not maintained at 9-months. In contrast, T-cell responses persisted up to 12-months in infected patients. Spike-specific memory B-cells were induced after the first dose in 87 % of the younger adults compared to 38 % of the elderly, which increased to 83 % after the second dose. Memory B-cells were maintained at 9-months post-vaccination in both vaccination groups. Neutralizing antibody titers were estimated to last for 1-year in younger adults but only 6-months in the older vaccinees. Interestingly, infected older patients (n = 15, median 75 years) had more durable neutralizing titers estimated to last 14-months, 8-months longer than the older vaccinees. Conclusions Vaccine-induced spike-specific IgG and neutralizing antibodies were consistently lower in the older than younger vaccinees. Overall, our data provide valuable insights into the kinetics of the humoral and cellular immune response in the elderly after SARS-CoV-2 vaccination or infection, highlighting the need for two doses, which can guide future vaccine design.Clinical trials.gov; NCT04706390.
Collapse
Affiliation(s)
- Lena Hansen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Karl Albert Brokstad
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Amit Bansal
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fan Zhou
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Bredholt
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | | | - Anders Madsen
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Mai-Chi Trieu
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Marianne Sævik
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Hanne Søyland
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jan Stefan Olofsson
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Juha Vahokoski
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Urke Ertesvåg
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Camilla Tøndel
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
- Department of Research and Innovation, Haukeland University Hospital, Bergen, Norway
| | | | - Ian Kaplan
- Adaptive Biotechnologies, Seattle, WA, USA
| | - Kristin G.I. Mohn
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Rebecca Jane Cox
- Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
228
|
Wu D, Efimov GA, Bogolyubova AV, Pierce BG, Mariuzza RA. Structural insights into protection against a SARS-CoV-2 spike variant by T cell receptor diversity. J Biol Chem 2023; 299:103035. [PMID: 36806685 PMCID: PMC9934920 DOI: 10.1016/j.jbc.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
T cells play a crucial role in combatting SARS-CoV-2 and forming long-term memory responses to this coronavirus. The emergence of SARS-CoV-2 variants that can evade T cell immunity has raised concerns about vaccine efficacy and the risk of reinfection. Some SARS-CoV-2 T cell epitopes elicit clonally restricted CD8+ T cell responses characterized by T cell receptors (TCRs) that lack structural diversity. Mutations in such epitopes can lead to loss of recognition by most T cells specific for that epitope, facilitating viral escape. Here, we studied an HLA-A2-restricted spike protein epitope (RLQ) that elicits CD8+ T cell responses in COVID-19 convalescent patients characterized by highly diverse TCRs. We previously reported the structure of an RLQ-specific TCR (RLQ3) with greatly reduced recognition of the most common natural variant of the RLQ epitope (T1006I). Opposite to RLQ3, TCR RLQ7 recognizes T1006I with even higher functional avidity than the WT epitope. To explain the ability of RLQ7, but not RLQ3, to tolerate the T1006I mutation, we determined structures of RLQ7 bound to RLQ-HLA-A2 and T1006I-HLA-A2. These complexes show that there are multiple structural solutions to recognizing RLQ and thereby generating a clonally diverse T cell response to this epitope that assures protection against viral escape and T cell clonal loss.
Collapse
Affiliation(s)
- Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | | | | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
229
|
Purbey PK, Roy K, Gupta S, Paul MK. Mechanistic insight into the protective and pathogenic immune-responses against SARS-CoV-2. Mol Immunol 2023; 156:111-126. [PMID: 36921486 PMCID: PMC10009586 DOI: 10.1016/j.molimm.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
COVID-19 is a severe respiratory illness that has emerged as a devasting health problem worldwide. The disease outcome is heterogeneous, which is most likely dependent on the immunity of an individual. Asymptomatic and mildly/moderate symptomatic (non-severe) patients likely develop an effective early immune response and clear the virus. However, severe symptoms dominate due to a failure in the generation of an effective and specific early immune response against SARS-CoV-2. Moreover, a late surge in pathogenic inflammation involves dysregulated innate and adaptive immune responses leading to local and systemic tissue damage and the emergence of severe disease symptoms. In this review, we describe the potential mechanisms of protective and pathogenic immune responses in "mild/moderate" and "severe" symptomatic SARS-CoV-2 infected people, respectively, and discuss the immune components that are currently targeted for therapeutic intervention.
Collapse
Affiliation(s)
- Prabhat K Purbey
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Koushik Roy
- Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandeep Gupta
- Department of Neurobiology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
230
|
Xiao C, Ren Z, Zhang B, Mao L, Zhu G, Gao L, Su J, Ye J, Long Z, Zhu Y, Chen P, Su X, Zhou T, Huang Y, Chen X, Xie C, Yuan J, Hu Y, Zheng J, Wang Z, Lou J, Yang X, Kuang Z, Zhang H, Wang P, Liang X, Luo OJ, Chen G. Insufficient epitope-specific T cell clones are responsible for impaired cellular immunity to inactivated SARS-CoV-2 vaccine in older adults. NATURE AGING 2023; 3:418-435. [PMID: 37117789 PMCID: PMC10154213 DOI: 10.1038/s43587-023-00379-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/03/2023] [Indexed: 04/30/2023]
Abstract
Aging is a critical risk factor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efficacy. The immune responses to inactivated vaccine for older adults, and the underlying mechanisms of potential differences to young adults, are still unclear. Here we show that neutralizing antibody production by older adults took a longer time to reach similar levels in young adults after inactivated SARS-CoV-2 vaccination. We screened SARS-CoV-2 variant strains for epitopes that stimulate specific CD8 T cell response, and older adults exhibited weaker CD8 T-cell-mediated responses to these epitopes. Comparison of lymphocyte transcriptomes from pre-vaccinated and post-vaccinated donors suggested that the older adults had impaired antigen processing and presentation capability. Single-cell sequencing revealed that older adults had less T cell clone expansion specific to SARS-CoV-2, likely due to inadequate immune receptor repertoire size and diversity. Our study provides mechanistic insights for weaker response to inactivated vaccine by older adults and suggests the need for further vaccination optimization for the old population.
Collapse
Affiliation(s)
- Chanchan Xiao
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Zhiyao Ren
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Geriatric Hospital, Guangzhou, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, China
- Department of Central Laboratory, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Bei Zhang
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Mao
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Guodong Zhu
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Guangzhou Geriatric Hospital, Guangzhou, China
| | - Lijuan Gao
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Jun Su
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Jiezhou Ye
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Ze Long
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Yue Zhu
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China
| | - Pengfei Chen
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangmeng Su
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Tong Zhou
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Yanhao Huang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Xiongfei Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Chaojun Xie
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yutian Hu
- Meng Yi Center Limited, Macau, China
| | - Jingshan Zheng
- Shenzhen Kangtai Biological Products Co. Ltd, Shenzhen, China
| | - Zhigang Wang
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | | | - Xiang Yang
- Leidebio Bioscience Co., Ltd., Guangzhou, China
| | - Zhiqiang Kuang
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China
| | - Pengcheng Wang
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| | - Xiaofeng Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China.
| | - Oscar Junhong Luo
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, China.
| | - Guobing Chen
- Department of Microbiology and Immunology; Institute of Geriatric Immunology; School of Medicine, Jinan University, Guangzhou, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
- Guangzhou Laboratory, Guangzhou, China.
- Affiliated Huaqiao Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
231
|
Ning J, Wang Q, Chen Y, He T, Zhang F, Chen X, Shi L, Zhai A, Li B, Wu C. Immunodominant SARS-CoV-2-specific CD4 + and CD8 + T-cell responses elicited by inactivated vaccines in healthy adults. J Med Virol 2023; 95:e28743. [PMID: 37185843 DOI: 10.1002/jmv.28743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
Safety profiles and humoral responses to inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been previously assessed, but cellular immune responses to inactivated SARS-CoV-2 vaccines remain understudied. Here, we report the comprehensive characteristics of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses elicited by the BBIBP-CorV vaccine. A total of 295 healthy adults were recruited, and SARS-CoV-2-specific T-cell responses were detected after stimulation with overlapping peptide pools spanning the entire length of the envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins. Robust and durable CD4+ (p < 0.0001) and CD8+ (p < 0.0001) T-cell responses specific to SARS-CoV-2 were detected following the third vaccination, with an increase in specific CD8+ T-cells, compared to CD4+ T-cells. Cytokine profiles showed that interferon gamma and tumor necrosis factor-α were predominantly expressed with the negligible expression of interleukin (IL)-4 and IL-10, indicating a Th1- or Tc1-biased response. Compared to E and M proteins, N and S activated a higher proportion of specific T-cells with broader functions. The predominant frequency of the N antigen (49/89) was highest for CD4+ T-cell immunity. Furthermore, N19-36 and N391-408 were identified to contain dominant CD8+ and CD4+ T-cell epitopes, respectively. In addition, N19-36 -specific CD8+ T-cells were mainly effector memory CD45RA cells, whereas N391-408 -specific CD4+ T-cells were mainly effector memory cells. Therefore, this study reports comprehensive features of T-cell immunity induced by the inactivated SARS-CoV-2 vaccine BBIBP-CorV and proposes highly conserved candidate peptides which may be beneficial in vaccine optimization.
Collapse
Affiliation(s)
- Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qinjin Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fang Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xingchi Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Shi
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
232
|
Nguyen NX, Richens AW, Sircy LM, Allard DE, Kolawole EM, Evavold BD, Bettini M, Hale JS. Immunogen-Specific Strengths and Limitations of the Activation-Induced Marker Assay for Assessing Murine Antigen-Specific CD4+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:916-925. [PMID: 36883856 PMCID: PMC10038905 DOI: 10.4049/jimmunol.2200638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
The activation-induced marker (AIM) assay is a cytokine-independent technique to identify Ag-specific T cells based on the upregulated expression of activation markers after Ag restimulation. The method offers an alternative to intracellular cytokine staining in immunological studies, in which limited cytokine production makes the cell subsets of interest difficult to detect. Studies of lymphocytes in human and nonhuman primates have used the AIM assay to detect Ag-specific CD4+ and CD8+ T cells. However, there is a lack of validation of the strengths and limitations of the assay in murine (Mus musculus) models of infection and vaccination. In this study, we analyzed immune responses of TCR-transgenic CD4+ T cells, including lymphocytic choriomeningitis virus-specific SMARTA, OVA-specific OT-II, and diabetogenic BDC2.5-transgenic T cells, and measured the ability of the AIM assay to effectively identify these cells to upregulate AIM markers OX40 and CD25 following culture with cognate Ag. Our findings indicate that the AIM assay is effective for identifying the relative frequency of protein immunization-induced effector and memory CD4+ T cells, whereas the AIM assay had reduced ability to identify specific cells induced by viral infection, particularly during chronic lymphocytic choriomeningitis virus infection. Evaluation of polyclonal CD4+ T cell responses to acute viral infection demonstrated that the AIM assay can detect a proportion of both high- and low-affinity cells. Together, our findings indicate that the AIM assay can be an effective tool for relative quantification of murine Ag-specific CD4+ T cells to protein vaccination, while demonstrating its limitations during conditions of acute and chronic infection.
Collapse
Affiliation(s)
- Nguyen X Nguyen
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrew W Richens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Linda M Sircy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Denise E Allard
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Elizabeth M Kolawole
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Maria Bettini
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - J Scott Hale
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
233
|
Wolday D, Fung CYJ, Morgan G, Casalino S, Frangione E, Taher J, Lerner-Ellis JP. HLA Variation and SARS-CoV-2 Specific Antibody Response. Viruses 2023; 15:906. [PMID: 37112884 PMCID: PMC10143129 DOI: 10.3390/v15040906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Differences in SARS-CoV-2-specific immune responses have been observed between individuals following natural infection or vaccination. In addition to already known factors, such as age, sex, COVID-19 severity, comorbidity, vaccination status, hybrid immunity, and duration of infection, inter-individual variations in SARS-CoV-2 immune responses may, in part, be explained by structural differences brought about by genetic variation in the human leukocyte antigen (HLA) molecules responsible for the presentation of SARS-CoV-2 antigens to T effector cells. While dendritic cells present peptides with HLA class I molecules to CD8+ T cells to induce cytotoxic T lymphocyte responses (CTLs), they present peptides with HLA class II molecules to T follicular helper cells to induce B cell differentiation followed by memory B cell and plasma cell maturation. Plasma cells then produce SARS-CoV-2-specific antibodies. Here, we review published data linking HLA genetic variation or polymorphisms with differences in SARS-CoV-2-specific antibody responses. While there is evidence that heterogeneity in antibody response might be related to HLA variation, there are conflicting findings due in part to differences in study designs. We provide insight into why more research is needed in this area. Elucidating the genetic basis of variability in the SARS-CoV-2 immune response will help to optimize diagnostic tools and lead to the development of new vaccines and therapeutics against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Dawit Wolday
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Chun Yiu Jordan Fung
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Gregory Morgan
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Selina Casalino
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Erika Frangione
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
| | - Jennifer Taher
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Jordan P. Lerner-Ellis
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON M5G 1Z5, Canada; (C.Y.J.F.); (G.M.); (S.C.); (E.F.); (J.T.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON M5G 1Z5, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1Z5, Canada
| |
Collapse
|
234
|
Bean J, Kuri-Cervantes L, Pennella M, Betts MR, Meyer NJ, Hassan WM. Multivariate indicators of disease severity in COVID-19. Sci Rep 2023; 13:5145. [PMID: 36991002 PMCID: PMC10054197 DOI: 10.1038/s41598-023-31683-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
The novel coronavirus pandemic continues to cause significant morbidity and mortality around the world. Diverse clinical presentations prompted numerous attempts to predict disease severity to improve care and patient outcomes. Equally important is understanding the mechanisms underlying such divergent disease outcomes. Multivariate modeling was used here to define the most distinctive features that separate COVID-19 from healthy controls and severe from moderate disease. Using discriminant analysis and binary logistic regression models we could distinguish between severe disease, moderate disease, and control with rates of correct classifications ranging from 71 to 100%. The distinction of severe and moderate disease was most reliant on the depletion of natural killer cells and activated class-switched memory B cells, increased frequency of neutrophils, and decreased expression of the activation marker HLA-DR on monocytes in patients with severe disease. An increased frequency of activated class-switched memory B cells and activated neutrophils was seen in moderate compared to severe disease and control. Our results suggest that natural killer cells, activated class-switched memory B cells, and activated neutrophils are important for protection against severe disease. We show that binary logistic regression was superior to discriminant analysis by attaining higher rates of correct classification based on immune profiles. We discuss the utility of these multivariate techniques in biomedical sciences, contrast their mathematical basis and limitations, and propose strategies to overcome such limitations.
Collapse
Affiliation(s)
- Joe Bean
- Department of Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Pennella
- Department of Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nuala J Meyer
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Center for Translational Lung Biology, Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wail M Hassan
- Department of Biomedical Sciences, School of Medicine, University of Missouri - Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
235
|
Aleksova M, Todorova Y, Emilova R, Baymakova M, Yancheva N, Andonova R, Zasheva A, Grifoni A, Weiskopf D, Sette A, Nikolova M. Virus-Specific Stem Cell Memory CD8+ T Cells May Indicate a Long-Term Protection against Evolving SARS-CoV-2. Diagnostics (Basel) 2023; 13:diagnostics13071280. [PMID: 37046496 PMCID: PMC10093371 DOI: 10.3390/diagnostics13071280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Immune memory to SARS-CoV-2 is key for establishing herd immunity and limiting the spread of the virus. The duration and qualities of T-cell-mediated protection in the settings of constantly evolving pathogens remain an open question. We conducted a cross-sectional study of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at several time points over 18 months (30–750 days) post mild/moderate infection with the aim to identify suitable methods and biomarkers for evaluation of long-term T-cell memory in peripheral blood. Included were 107 samples from 95 donors infected during the periods 03/2020–07/2021 and 09/2021–03/2022, coinciding with the prevalence of B.1.1.7 (alpha) and B.1.617.2 (delta) variants in Bulgaria. SARS-CoV-2-specific IFNγ+ T cells were measured in ELISpot in parallel with flow cytometry detection of AIM+ total and stem cell-like memory (TSCM) CD4+ and CD8+ T cells after in vitro stimulation with peptide pools corresponding to the original and delta variants. We show that, unlike IFNγ+ T cells, AIM+ virus-specific CD4+ and CD8+ TSCM are more adequate markers of T cell memory, even beyond 18 months post-infection. In the settings of circulating and evolving viruses, CD8+ TSCM is remarkably stable, back-differentiated into effectors, and delivers immediate protection, regardless of the initial priming strain.
Collapse
|
236
|
Humbert M, Olofsson A, Wullimann D, Niessl J, Hodcroft EB, Cai C, Gao Y, Sohlberg E, Dyrdak R, Mikaeloff F, Neogi U, Albert J, Malmberg KJ, Lund-Johansen F, Aleman S, Björkhem-Bergman L, Jenmalm MC, Ljunggren HG, Buggert M, Karlsson AC. Functional SARS-CoV-2 cross-reactive CD4 + T cells established in early childhood decline with age. Proc Natl Acad Sci U S A 2023; 120:e2220320120. [PMID: 36917669 PMCID: PMC10041119 DOI: 10.1073/pnas.2220320120] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/16/2023] Open
Abstract
Pre-existing SARS-CoV-2-reactive T cells have been identified in SARS-CoV-2-unexposed individuals, potentially modulating COVID-19 and vaccination outcomes. Here, we provide evidence that functional cross-reactive memory CD4+ T cell immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is established in early childhood, mirroring early seroconversion with seasonal human coronavirus OC43. Humoral and cellular immune responses against OC43 and SARS-CoV-2 were assessed in SARS-CoV-2-unexposed children (paired samples at age two and six) and adults (age 26 to 83). Pre-existing SARS-CoV-2-reactive CD4+ T cell responses targeting spike, nucleocapsid, and membrane were closely linked to the frequency of OC43-specific memory CD4+ T cells in childhood. The functional quality of the cross-reactive memory CD4+ T cell responses targeting SARS-CoV-2 spike, but not nucleocapsid, paralleled OC43-specific T cell responses. OC43-specific antibodies were prevalent already at age two. However, they did not increase further with age, contrasting with the antibody magnitudes against HKU1 (β-coronavirus), 229E and NL63 (α-coronaviruses), rhinovirus, Epstein-Barr virus (EBV), and influenza virus, which increased after age two. The quality of the memory CD4+ T cell responses peaked at age six and subsequently declined with age, with diminished expression of interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor (TNF), and CD38 in late adulthood. Age-dependent qualitative differences in the pre-existing SARS-CoV-2-reactive T cell responses may reflect the ability of the host to control coronavirus infections and respond to vaccination.
Collapse
Affiliation(s)
- Marion Humbert
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Anna Olofsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - David Wullimann
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Julia Niessl
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Emma B. Hodcroft
- Institute of Social and Preventive Medicine, University of Bern, Bern3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne1015, Switzerland
| | - Curtis Cai
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77Stockholm, Sweden
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
- Department of Cancer Immunology, Institute for Cancer Research, University of Oslo, 0379Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0379Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Institute of Clinical Medicine, Oslo University Hospital, 0372Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, 0372Oslo, Norway
| | - Soo Aleman
- Unit for Infectious Diseases and Dermatology, I73, Karolinska University Hospital, Huddinge, 141 86Stockholm, Sweden
- Infectious Diseases and Dermatology Unit, Department of Medicine, Huddinge, Karolinska Institutet, 141 86Huddinge, Sweden
| | - Linda Björkhem-Bergman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83Huddinge, Sweden
- Palliative Medicine, Stockholms Sjukhem, 112 19Stockholm, Sweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83Linköping, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52Huddinge, Sweden
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 141 52Huddinge, Sweden
| |
Collapse
|
237
|
Zornikova KV, Sheetikov SA, Rusinov AY, Iskhakov RN, Bogolyubova AV. Architecture of the SARS-CoV-2-specific T cell repertoire. Front Immunol 2023; 14:1070077. [PMID: 37020560 PMCID: PMC10067759 DOI: 10.3389/fimmu.2023.1070077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
The T cell response plays an indispensable role in the early control and successful clearance of SARS-CoV-2 infection. However, several important questions remain about the role of cellular immunity in COVID-19, including the shape and composition of disease-specific T cell repertoires across convalescent patients and vaccinated individuals, and how pre-existing T cell responses to other pathogens—in particular, common cold coronaviruses—impact susceptibility to SARS-CoV-2 infection and the subsequent course of disease. This review focuses on how the repertoire of T cell receptors (TCR) is shaped by natural infection and vaccination over time. We also summarize current knowledge regarding cross-reactive T cell responses and their protective role, and examine the implications of TCR repertoire diversity and cross-reactivity with regard to the design of vaccines that confer broader protection against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Yu Rusinov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Rustam N. Iskhakov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Apollinariya V. Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- *Correspondence: Apollinariya V. Bogolyubova,
| |
Collapse
|
238
|
Wussow F, Kha M, Kim T, Ly M, Yll-Pico M, Kar S, Lewis MG, Chiuppesi F, Diamond DJ. Synthetic multiantigen MVA vaccine COH04S1 and variant-specific derivatives protect Syrian hamsters from SARS-CoV-2 Omicron subvariants. NPJ Vaccines 2023; 8:41. [PMID: 36928589 PMCID: PMC10018591 DOI: 10.1038/s41541-023-00640-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Emerging SARS-CoV-2 Omicron subvariants continue to disrupt COVID-19 vaccine efficacy through multiple immune mechanisms including neutralizing antibody evasion. We developed COH04S1, a synthetic modified vaccinia Ankara vector that co-expresses Wuhan-Hu-1-based spike and nucleocapsid antigens. COH04S1 demonstrated efficacy against ancestral virus and Beta and Delta variants in animal models and was safe and immunogenic in a Phase 1 clinical trial. Here, we report efficacy of COH04S1 and analogous Omicron BA.1- and Beta-specific vaccines to protect Syrian hamsters from Omicron subvariants. Despite eliciting strain-specific antibody responses, all three vaccines protect hamsters from weight loss, lower respiratory tract infection, and lung pathology following challenge with Omicron BA.1 or BA.2.12.1. While the BA.1-specifc vaccine affords consistently improved efficacy compared to COH04S1 to protect against homologous challenge with BA.1, all three vaccines confer similar protection against heterologous challenge with BA.2.12.1. These results demonstrate efficacy of COH04S1 and variant-specific derivatives to confer cross-protective immunity against SARS-CoV-2 Omicron subvariants.
Collapse
Affiliation(s)
- Felix Wussow
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Mindy Kha
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Taehyun Kim
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Minh Ly
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Marcal Yll-Pico
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | | | | | - Flavia Chiuppesi
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Don J Diamond
- Department of Hematology and Transplant Center, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
239
|
Lewnard JA, Hong V, Kim JS, Shaw SF, Lewin B, Takhar H, Tartof SY. Association of SARS-CoV-2 BA.4/BA.5 Omicron lineages with immune escape and clinical outcome. Nat Commun 2023; 14:1407. [PMID: 36918548 PMCID: PMC10012300 DOI: 10.1038/s41467-023-37051-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Expansion of the SARS-CoV-2 BA.4 and BA.5 Omicron subvariants in populations with prevalent immunity from prior infection and vaccination, and associated burden of severe COVID-19, has raised concerns about epidemiologic characteristics of these lineages including their association with immune escape or severe clinical outcomes. Here we show that BA.4/BA.5 cases in a large US healthcare system had at least 55% (95% confidence interval: 43-69%) higher adjusted odds of prior documented infection than time-matched BA.2 cases, as well as 15% (9-21%) and 38% (27-49%) higher adjusted odds of having received 3 and ≥4 COVID-19 vaccine doses, respectively. However, after adjusting for differences in epidemiologic characteristics among cases with each lineage, BA.4/BA.5 infection was not associated with differential risk of emergency department presentation, hospital admission, or intensive care unit admission following an initial outpatient diagnosis. This finding held in sensitivity analyses correcting for potential exposure misclassification resulting from unascertained prior infections. Our results demonstrate that the reduced severity associated with prior (BA.1 and BA.2) Omicron lineages, relative to the Delta variant, has persisted with BA.4/BA.5, despite the association of BA.4/BA.5 with increased risk of breakthrough infection among previously vaccinated or infected individuals.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Division of Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Division of Infectious Diseases & Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Center for Computational Biology, College of Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | - Vennis Hong
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Jeniffer S Kim
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Sally F Shaw
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Bruno Lewin
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Harpreet Takhar
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA
| | - Sara Y Tartof
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA.
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, 91101, USA.
| |
Collapse
|
240
|
Yang G, Wang J, Sun P, Qin J, Yang X, Chen D, Zhang Y, Zhong N, Wang Z. SARS-CoV-2 epitope-specific T cells: Immunity response feature, TCR repertoire characteristics and cross-reactivity. Front Immunol 2023; 14:1146196. [PMID: 36969254 PMCID: PMC10036809 DOI: 10.3389/fimmu.2023.1146196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The devastating COVID-19 pandemic caused by SARS-CoV-2 and multiple variants or subvariants remains an ongoing global challenge. SARS-CoV-2-specific T cell responses play a critical role in early virus clearance, disease severity control, limiting the viral transmission and underpinning COVID-19 vaccine efficacy. Studies estimated broad and robust T cell responses in each individual recognized at least 30 to 40 SARS-CoV-2 antigen epitopes and associated with COVID-19 clinical outcome. Several key immunodominant viral proteome epitopes, including S protein- and non-S protein-derived epitopes, may primarily induce potent and long-lasting antiviral protective effects. In this review, we summarized the immune response features of immunodominant epitope-specific T cells targeting different SRAS-CoV-2 proteome structures after infection and vaccination, including abundance, magnitude, frequency, phenotypic features and response kinetics. Further, we analyzed the epitopes immunodominance hierarchy in combination with multiple epitope-specific T cell attributes and TCR repertoires characteristics, and discussed the significant implications of cross-reactive T cells toward HCoVs, SRAS-CoV-2 and variants of concern, especially Omicron. This review may be essential for mapping the landscape of T cell responses toward SARS-CoV-2 and optimizing the current vaccine strategy.
Collapse
Affiliation(s)
- Gang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ping Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jian Qin
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiaoyun Yang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Daxiang Chen
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Nanshan Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
241
|
Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21:162-177. [PMID: 36653446 PMCID: PMC9847462 DOI: 10.1038/s41579-022-00841-7] [Citation(s) in RCA: 411] [Impact Index Per Article: 205.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed 'variants of concern' (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Wendy S Barclay
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| |
Collapse
|
242
|
Al-Akioui-Sanz K, Pascual-Miguel B, Díaz-Almirón M, Mestre-Durán C, Navarro-Zapata A, Clares-Villa L, Martín-Cortázar C, Vicario JL, Moreno MÁ, Balas A, De Paz R, Minguillón J, Pérez-Martínez A, Ferreras C. Donor selection for adoptive cell therapy with CD45RA - memory T cells for patients with coronavirus disease 2019, and dexamethasone and interleukin-15 effects on the phenotype, proliferation and interferon gamma release. Cytotherapy 2023; 25:330-340. [PMID: 36585293 PMCID: PMC9742221 DOI: 10.1016/j.jcyt.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AIMS We have previously demonstrated the safety and feasibility of adoptive cell therapy with CD45RA- memory T cells containing severe acute respiratory syndrome coronavirus 2-specific T cells for patients with coronavirus disease 2019 from an unvaccinated donor who was chosen based on human leukocyte antigen compatibility and cellular response. In this study, we examined the durability of cellular and humoral immunity within CD45RA- memory T cells and the effect of dexamethasone, the current standard of care treatment, and interleukin-15, a cytokine critically involved in T-cell maintenance and survival. METHODS We performed a longitudinal analysis from previously severe acute respiratory syndrome coronavirus 2-infected and infection-naïve individuals covering 21 months from infection and 10 months after full vaccination with the BNT162b2 Pfizer/BioNTech vaccine. RESULTS We observed that cellular responses are maintained over time. Humoral responses increased after vaccination but were gradually lost. In addition, dexamethasone did not alter cell functionality or proliferation of CD45RA- T cells, and interleukin-15 increased the memory T-cell activation state, regulatory T cell expression, and interferon gamma release. CONCLUSIONS Our results suggest that the best donors for adoptive cell therapy would be recovered individuals and 2 months after vaccination, although further studies with larger cohorts would be needed to confirm this finding. Dexamethasone did not affect the characteristics of the memory T cells at a concentration used in the clinical practice and IL-15 showed a positive effect on SARS-CoV-2-specific CD45RA- T cells.
Collapse
Affiliation(s)
- Karima Al-Akioui-Sanz
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Bárbara Pascual-Miguel
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | | | - Carmen Mestre-Durán
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Alfonso Navarro-Zapata
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Laura Clares-Villa
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Carla Martín-Cortázar
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - José Luis Vicario
- Histocompatibility Unit, Transfusion Center of Madrid, Madrid, Spain
| | | | - Antonio Balas
- Histocompatibility Unit, Transfusion Center of Madrid, Madrid, Spain
| | - Raquel De Paz
- Cell Therapy Unit, Hematology Department, La Paz University Hospital, Madrid, Spain
| | - Jordi Minguillón
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - Antonio Pérez-Martínez
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain; Pediatric Hemato-oncology Department, La Paz University Hospital, Madrid, Spain; Faculty of Medicine Autonomous, University of Madrid, Madrid, Spain
| | - Cristina Ferreras
- IdiPAZ, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain.
| |
Collapse
|
243
|
Kapten K, Orczyk K, Smolewska E. Immunity in SARS-CoV-2 Infection: Clarity or Mystery? A Broader Perspective in the Third Year of a Worldwide Pandemic. Arch Immunol Ther Exp (Warsz) 2023; 71:7. [PMID: 36810662 PMCID: PMC9943048 DOI: 10.1007/s00005-023-00673-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 02/23/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its mechanisms have been thoroughly studied by researchers all over the world with the hope of finding answers that may aid the discovery of new treatment options or effective means of prevention. Still, over 2 years into the pandemic that is an immense burden on health care and economic systems, there seem to be more questions than answers. The character and multitude of immune responses elicited in coronavirus disease 2019 (COVID-19) vary from uncontrollable activation of the inflammatory system, causing extensive tissue damage and consequently leading to severe or even fatal disease, to mild or asymptomatic infections in the majority of patients, resulting in the unpredictability of the current pandemic. The aim of the study was to systematize the available data regarding the immune response to SARS-CoV-2, to provide some clarification among the abundance of the knowledge available. The review contains concise and current information on the most significant immune reactions to COVID-19, including components of both innate and adaptive immunity, with an additional focus on utilizing humoral and cellular responses as effective diagnostic tools. Moreover, the authors discussed the present state of knowledge on SARS-CoV-2 vaccines and their efficacy in cases of immunodeficiency.
Collapse
Affiliation(s)
- Katarzyna Kapten
- Department of Pediatric Cardiology and Rheumatology, Central Teaching Hospital of Medical University of Lodz, Lodz, Poland
| | - Krzysztof Orczyk
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland
| | - Elzbieta Smolewska
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50, 91-738, Lodz, Poland.
| |
Collapse
|
244
|
Shakiba MH, Gemünd I, Beyer M, Bonaguro L. Lung T cell response in COVID-19. Front Immunol 2023; 14:1108716. [PMID: 36875071 PMCID: PMC9977798 DOI: 10.3389/fimmu.2023.1108716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
The COVID-19 pandemic has shown the potentially devastating impact of novel respiratory infections worldwide. Insightful data obtained in the last years have shed light on the pathophysiology of SARS-CoV-2 infection and the role of the inflammatory response in driving both the resolution of the disease and uncontrolled deleterious inflammatory status in severe cases. In this mini-review, we cover some important aspects of the role of T cells in COVID-19 with a special focus on the local response in the lung. We focus on the reported T cell phenotypes in mild, moderate, and severe COVID-19, focusing on lung inflammation and on both the protective and damaging roles of the T cell response, also highlighting the open questions in the field.
Collapse
Affiliation(s)
- Mehrnoush Hadaddzadeh Shakiba
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ioanna Gemünd
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and University of Bonn, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
245
|
Lin F, Lin X, Fu B, Xiong Y, Zaky MY, Wu H. Functional studies of HLA and its role in SARS-CoV-2: Stimulating T cell response and vaccine development. Life Sci 2023; 315:121374. [PMID: 36621539 PMCID: PMC9815883 DOI: 10.1016/j.lfs.2023.121374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
In the biological immune process, the major histocompatibility complex (MHC) plays an indispensable role in the expression of HLA molecules in the human body when viral infection activates the T-cell response to remove the virus. Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2019, how to address and prevent SARS-CoV-2 has become a common problem facing all mankind. The T-cell immune response activated by MHC peptides is a way to construct a defense line and reduce the transmission and harm of the virus. Presentation of SARS-CoV-2 antigen is associated with different types of HLA phenotypes, and different HLA phenotypes induce different immune responses. The prediction of SARS-CoV-2 mutation information and the design of vaccines based on HLAs can effectively activate autoimmunity and cope with virus mutations, which can provide some references for the prevention and treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Feng Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt; Department of Oncology and Department of Biomedical and Clinical Science, Faculty of Medicine, Linköping University, Sweden
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Shapingba, Chongqing, China.
| |
Collapse
|
246
|
Employing T-Cell Memory to Effectively Target SARS-CoV-2. Pathogens 2023; 12:pathogens12020301. [PMID: 36839573 PMCID: PMC9967959 DOI: 10.3390/pathogens12020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Well-trained T-cell immunity is needed for early viral containment, especially with the help of an ideal vaccine. Although most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected convalescent cases have recovered with the generation of virus-specific memory T cells, some cases have encountered T-cell abnormalities. The emergence of several mutant strains has even threatened the effectiveness of the T-cell immunity that was established with the first-generation vaccines. Currently, the development of next-generation vaccines involves trying several approaches to educate T-cell memory to trigger a broad and fast response that targets several viral proteins. As the shaping of T-cell immunity in its fast and efficient form becomes important, this review discusses several interesting vaccine approaches to effectively employ T-cell memory for efficient viral containment. In addition, some essential facts and future possible consequences of using current vaccines are also highlighted.
Collapse
|
247
|
Garofalo E, Biamonte F, Palmieri C, Battaglia AM, Sacco A, Biamonte E, Neri G, Antico GC, Mancuso S, Foti G, Torti C, Costanzo FS, Longhini F, Bruni A. Severe and mild-moderate SARS-CoV-2 vaccinated patients show different frequencies of IFNγ-releasing cells: An exploratory study. PLoS One 2023; 18:e0281444. [PMID: 36757971 PMCID: PMC9910754 DOI: 10.1371/journal.pone.0281444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Despite an apparent effective vaccination, some patients are admitted to the hospital after SARS-CoV-2 infection. The role of adaptive immunity in COVID-19 is growing; nonetheless, differences in the spike-specific immune responses between patients requiring or not hospitalization for SARS-CoV-2 infection remains to be evaluated. In this study, we aim to evaluate the spike-specific immune response in patients with mild-moderate or severeSARS-CoV-2 infection, after breakthrough infection following two doses of BNT162b2 mRNA vaccine. METHODS We included three cohorts of 15 cases which received the two BNT162b2 vaccine doses in previous 4 to 7 months: 1) patients with severe COVID-19; 2) patients with mild-moderate COVID-19 and 3) vaccinated individuals with a negative SARS-CoV-2 molecular pharyngeal swab (healthy subjects). Anti-S1 and anti-S2 specific SARS-CoV-2 IgM and IgG titers were measured through a chemiluminescence immunoassay technology. In addition, the frequencies of IFNγ-releasing cells were measured by ELISpot. RESULTS The spike-specific IFNγ-releasing cells were significantly lower in severe patients (8 [0; 26] s.f.c.×106), as compared to mild-moderate patients (135 [64; 159] s.f.c.×106; p<0.001) and healthy subjects (103 [50; 188] s.f.c.×106; p<0.001). The anti-Spike protein IgG levels were similar among the three cohorts of cases (p = 0.098). All cases had an IgM titer below the analytic sensitivity of the test. The Receiver Operating Curve analysis indicated the rate of spike-specific IFNγ-releasing cells can discriminate correctly severe COVID-19 and mild-moderate patients (AUC: 0.9289; 95%CI: 0.8376-1.000; p< 0.0001), with a diagnostic specificity of 100% for s.f.c. > 81.2 x 106. CONCLUSIONS 2-doses vaccinated patients requiring hospitalization for severe COVID-19 show a cellular-mediated immune response lower than mild-moderate or healthy subjects, despite similar antibody titers.
Collapse
Affiliation(s)
- Eugenio Garofalo
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Anna Martina Battaglia
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Alessandro Sacco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Eugenio Biamonte
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Giuseppe Neri
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | | | - Serafina Mancuso
- Unit of Biochimica Clinica, University Hospital Mater Domini, Catanzaro, Italy
| | - Giuseppe Foti
- Unit of Infectious Disease, Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Unit of Infectious and Tropical Diseases, "Magna Graecia" University, Catanzaro, Italy
| | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
248
|
Hermens JM, Kesmir C. Role of T cells in severe COVID-19 disease, protection, and long term immunity. Immunogenetics 2023; 75:295-307. [PMID: 36752852 PMCID: PMC9905767 DOI: 10.1007/s00251-023-01294-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/09/2023]
Abstract
Infection with SARS-CoV-2 causes wide range of disease severities from asymptomatic to life-threatening disease. Understanding the contribution of immunological traits in immunity against SARS-CoV-2 and in protection against severe COVID-19 could result in effective measures to prevent development of severe disease. While the role of cytokines and antibodies has been thoroughly studied, this is not the case for T cells. In this review, the association between T cells and COVID-19 disease severity and protection upon reexposure is discussed. While infiltration of overactivated cytotoxic T cells might be harmful in the infected tissue, fast responding T cells are important in the protection against severe COVID-19. This protection could even be viable in the long term as long-living memory T cells seem to be stabilized and mutations do not appear to have a large impact on T cell responses. Thus, after vaccination and infections, memory T cells should be able to help prevent onset of severe disease for most cases. Considering this, it would be useful to add N or M proteins in vaccinations, alongside the S protein which is currently used, as this results in a broader T cell response.
Collapse
Affiliation(s)
- Julia Maret Hermens
- Theoretical Biology and Bioinformatics, Biology Department, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Can Kesmir
- Theoretical Biology and Bioinformatics, Biology Department, Science Faculty, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
249
|
Blyakher MS, Fedorova IM, Tulskaya E, Kapustin IV, Koteleva SI, Ramazanova ZK, Odintsov EE, Sandalova SV, Novikova LI. [Assesment of specific T-cell immunity to SARS-CoV-2 virus antigens in COVID-19 reconvalescents]. Vopr Virusol 2023; 67:527-537. [PMID: 37264842 DOI: 10.36233/0507-4088-151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Indexed: 06/03/2023]
Abstract
INTRODUCTION The development of the COVID-19 pandemic has stimulated the scientific research aimed at studying of the mechanisms of formation the immunity against SARS-CoV-2. Currently, there is a need to develop a domestic simple and cost-effective specific method suitable for monitoring of T-cell response against SARS-CoV-2 in reconvalescents and vaccinated individuals. AIM Development of a screening method for evaluation specific T-cell immunity against SARS-CoV-2. MATERIALS AND METHODS Total 40 individuals who had mild to moderate COVID-19 and 20 healthy volunteers who did not have a history of this disease were examined. The presence and levels of IgG and IgM antibodies to SARS-CoV-2 were identified in participants sera by ELISA using the diagnostic kits from JSC Vector-Best (Novosibirsk, Russian Federation). Antigenic stimulation of mononuclear cells was carried out on commercial plates with adsorbed whole-virion inactivated SARS-CoV-2 antigen (State Research Center of Virology and Biotechnology VECTOR Novosibirsk, Russian Federation). The concentration of IFN- was measured in ELISA using the test systems from JSC Vector-Best (Novosibirsk, Russian Federation). The immunophenotyping of lymphocytes was performed on a flow cytometer Cytomics FC500 (Beckman Coulter, USA). Statistical data processing was carried out using the Microsoft Excel and STATISTICA 10 software package. RESULTS Stimulation of mononuclear cells isolated from the peripheral blood with whole-virion inactivated SARS-CoV-2 antigen fixed at the bottom of the wells of a polystyrene plate showed a significantly higher median response in terms of IFN- production in 40 people who had history of COVID-19 compared to 20 healthy blood donors (172.1 [34.3575.1] pg/ml versus 15.4 [6.925.8] pg/ml, p 0.0001). There was no difference in median IFN- levels in supernatants collected from unstimulated mononuclear cells from COVID-19 reconvalescents and healthy donors (2.7 [0.411.4] pg/ml versus 0.8 [0.023.3] pg/ml, p 0.05). The overall sensitivity and specificity of this method were 73% (95% CI 5888%) and 100% (95% CI 100100%), respectively, at a cut-off of 50 pg/ml. CONCLUSION The developed method for assessment of the cellular immune response to SARS-CoV-2 can be used as a screening method for monitoring the T-cell response in a population against a new coronavirus infection in recovered people.
Collapse
Affiliation(s)
- M S Blyakher
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - I M Fedorova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - E Tulskaya
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - I V Kapustin
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S I Koteleva
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - Z K Ramazanova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - E E Odintsov
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - S V Sandalova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| | - L I Novikova
- G.N. Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology
| |
Collapse
|
250
|
Zhou SH, Zhang RY, You ZW, Zou YK, Wen Y, Wang J, Ding D, Bian MM, Zhang ZM, Yuan H, Yang GF, Guo J. pH-Sensitive and Biodegradable Mn 3(PO 4) 2·3H 2O Nanoparticles as an Adjuvant of Protein-Based Bivalent COVID-19 Vaccine to Induce Potent and Broad-Spectrum Immunity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:acsami.2c19736. [PMID: 36748861 PMCID: PMC9924082 DOI: 10.1021/acsami.2c19736] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Developing a novel and potent adjuvant with great biocompatibility for immune response augmentation is of great significance to enhance vaccine efficacy. In this work, we prepared a long-term stable, pH-sensitive, and biodegradable Mn3(PO4)2·3H2O nanoparticle (nano-MnP) by simply mixing MnCl2/NaH2PO4/Na2HPO4 solution for the first time and employed it as an immune stimulant in the bivalent COVID-19 protein vaccine comprised of wild-type S1 (S1-WT) and Omicron S1 (S1-Omicron) proteins as antigens to elicit a broad-spectrum immunity. The biological experiments indicated that the nano-MnP could effectively activate antigen-presenting cells through the cGAS-STING pathway. Compared with the conventional Alum-adjuvanted group, the nano-MnP-adjuvanted bivalent vaccine elicited approximately 7- and 8-fold increases in IgG antibody titers and antigen-specific IFN-γ secreting T cells, respectively. Importantly, antisera of the nano-MnP-adjuvanted group could effectively cross-neutralize the SARS-CoV-2 and its five variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron, demonstrating that this bivalent vaccine based on S1-WT and S1-Omicron proteins is an effective vaccine design strategy to induce broad-spectrum immune responses. Collectively, this nano-MnP material may provide a novel and efficient adjuvant platform for various prophylactic and therapeutic vaccines and provide insights for the development of the next-generation manganese adjuvant.
Collapse
Affiliation(s)
| | | | - Zi-Wei You
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Yu Wen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jian Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Dong Ding
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Miao-Miao Bian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Hong Yuan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| | - Jun Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education,
International Joint Research Center for Intelligent Biosensing Technology and Health,
Hubei International Scientific and Technological Cooperation Base of Pesticide and Green
Synthesis, College of Chemistry, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|