201
|
McIntyre RS, Soczynska JK, Woldeyohannes HO, Lewis GF, Leiter LA, MacQueen GM, Miranda A, Fulgosi D, Konarski JZ, Kennedy SH. Thiazolidinediones: novel treatments for cognitive deficits in mood disorders? Expert Opin Pharmacother 2007; 8:1615-28. [PMID: 17685880 DOI: 10.1517/14656566.8.11.1615] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The aim of this review is to provide a rationale for evaluating thiazolidinediones (TZDs) as putative treatments for cognitive deficits in individuals with mood disorders. A MedLine search of all English-language articles published between January 1966 and August 2006 was conducted. The search terms were: the non-proprietary names of TZDs (e.g., rosiglitazone and pioglitazone), peroxisome proliferator-activated receptor, cognition, neuroprotection, inflammation, oxidative stress, cellular metabolism and excitotoxicity cross-referenced with the individual names of mood (e.g., major depressive disorder and bipolar disorder) and dementing disorders (e.g., Alzheimer's disease) as defined in the Diagnostic and Statistical Manual of Mental Disorders third edition, revised/fourth edition, text revision (DSM-III-R/IV-TR). The search was augmented with a manual review of article reference lists. Articles selected for review were based on adequacy of sample size, the use of standardized experimental procedures, validated assessment measures and overall manuscript quality. Contemporary pathophysiologic models of mood disorders emphasize alterations in neuronal plasticity, metabolism and cytoarchitecture with associated regional abnormalities in neuronal (and glial) density and morphology. These abnormalities are hypothesized to subserve cognitive deficits and other clinical features of mood disorders. TZDs may attenuate, abrogate and/or reverse the neurotoxic effects of depressive illness by means of disparate mechanisms, notably insulin signaling, anti-inflammation, glucocorticoid activity and cellular metabolism. Extant data provide the basis for formulating a hypothesis that TZDs may be salutary for cognitive deficits and several aspects of somatic health (e.g., cardiovascular disease) associated with mood disorders.
Collapse
Affiliation(s)
- Roger S McIntyre
- University of Toronto, Department of Psychiatry, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 2007; 8:413-26. [PMID: 17514195 DOI: 10.1038/nrn2153] [Citation(s) in RCA: 872] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number and subunit composition of synaptic N-methyl-D-aspartate receptors (NMDARs) are not static, but change in a cell- and synapse-specific manner during development and in response to neuronal activity and sensory experience. Neuronal activity drives not only NMDAR synaptic targeting and incorporation, but also receptor retrieval, differential sorting into the endosomal-lysosomal pathway and lateral diffusion between synaptic and extrasynaptic sites. An emerging concept is that activity-dependent, bidirectional regulation of NMDAR trafficking provides a dynamic and potentially powerful mechanism for the regulation of synaptic efficacy and remodelling, which, if dysregulated, can contribute to neuropsychiatric disorders such as cocaine addiction, Alzheimer's disease and schizophrenia.
Collapse
Affiliation(s)
- C Geoffrey Lau
- Rose F. Kennedy Center for Research in Mental Retardation and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
203
|
Tu Y, Kroener S, Abernathy K, Lapish C, Seamans J, Chandler LJ, Woodward JJ. Ethanol inhibits persistent activity in prefrontal cortical neurons. J Neurosci 2007; 27:4765-75. [PMID: 17460089 PMCID: PMC3625968 DOI: 10.1523/jneurosci.5378-06.2007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cognitive functions supported by neurons in the prefrontal cortex (PFC) are disrupted by acute and chronic exposure to alcohol, yet little is known about the mechanisms that underlie these effects. In the present study, in vivo and in vitro electrophysiology was used to determine the effects of ethanol on neuronal firing and network patterns of persistent activity in PFC neurons. In vivo, ethanol (0.375-3.5 g/kg) dose-dependently reduced spike activity in the PFC measured with multielectrode extracellular recording in the anesthetized rat. In an in vitro coculture system containing slices of PFC, hippocampus, and ventral tegmental area (VTA), ethanol (25-100 mM) decreased persistent activity of PFC neurons, but had little effect on firing evoked by direct current injection. Persistent activity was often enhanced after ethanol washout and this effect was maintained in cultures lacking the VTA. A low concentration of the NMDA antagonist APV (5 microM) mimicked the inhibition of ethanol of persistent activity with no change in activity after washout. Ethanol inhibition of spontaneous and VTA-evoked persistent activity was enhanced by the D1 dopamine receptor antagonist SCH23390 [R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride]. The results of this study show that ethanol inhibits persistent activity and spike firing of PFC neurons and that the degree of ethanol inhibition may be influenced by D1 receptor tone. Ethanol-induced alterations in the activity of deep-layer cortical neurons may underlie some of the behavioral effects associated with ethanol intake.
Collapse
Affiliation(s)
- Yali Tu
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sven Kroener
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenneth Abernathy
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Christopher Lapish
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy Seamans
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425
| | - L. Judson Chandler
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425
| | - John J. Woodward
- Department of Neurosciences and Center for Drug and Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
204
|
Moosavi M, Naghdi N, Choopani S. Intra CA1 insulin microinjection improves memory consolidation and retrieval. Peptides 2007; 28:1029-34. [PMID: 17360072 DOI: 10.1016/j.peptides.2007.02.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 02/07/2007] [Accepted: 02/07/2007] [Indexed: 11/29/2022]
Abstract
Although the brain was considered as an insulin-insensitive organ, recent studies have shown that insulin receptors exist in the brain and insulin modulates some of the brain tasks. Insulin and its receptor are found in specific areas of CNS with a variety of region-specific functions different from its direct glucose regulation in the periphery. The hippocampus and cerebral cortex distributed insulin/insulin receptor has been shown to be involved in brain cognitive functions. The improving effect of insulin on spatial memory acquisition has been shown. In the present study, the effect of insulin microinjection into the CA1 region of rat hippocampus on spatial memory consolidation and retrieval has been investigated. Insulin in 12 MU (but not in 0.5 and 6 MU) improved both memory retrieval and consolidation.
Collapse
Affiliation(s)
- M Moosavi
- Department of Physiology, Neuroscience Research Center, School of Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
205
|
Caraiscos VB, Bonin RP, Newell JG, Czerwinska E, Macdonald JF, Orser BA. Insulin increases the potency of glycine at ionotropic glycine receptors. Mol Pharmacol 2007; 71:1277-87. [PMID: 17308032 DOI: 10.1124/mol.106.033563] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms by which insulin modulates neuronal plasticity and pain processes remain poorly understood. Here we report that insulin rapidly increases the function of glycine receptors in murine spinal neurons and recombinant human glycine receptors expressed in human embryonic kidney cells. Whole-cell patch-clamp recordings showed that insulin reversibly enhanced current evoked by exogenous glycine and increased the amplitude of spontaneous glycinergic miniature inhibitory postsynaptic currents recorded in cultured spinal neurons. Insulin (1 microM) also shifted the glycine concentration-response plot to the left and reduced the glycine EC(50) value from 52 to 31 microM. Currents evoked by a submaximal concentration of glycine were increased to approximately 140% of control. The glycine receptor alpha subunit was sufficient for the enhancement by insulin because currents from recombinant homomeric alpha(1) receptors and heteromeric alpha(1)beta receptors were both increased. Insulin acted at the insulin receptor via pathways dependent on tyrosine kinase and phosphatidylinositol 3 kinase because the insulin effect was eliminated by the insulin receptor antagonist, hydroxy-2-naphthalenylmethylphosphonic acid trisacetoxymethyl ester, the tyrosine kinase inhibitor lavendustin A, and the phosphatidylinositol 3 kinase antagonist wortmannin. Together, these results show that insulin has a novel regulatory action on the potency of glycine for ionotropic glycine receptors.
Collapse
Affiliation(s)
- Valerie B Caraiscos
- Institute of Medical Science, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
206
|
Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 2007; 35:208-19. [PMID: 17428676 DOI: 10.1016/j.mcn.2007.02.019] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 12/19/2022] Open
Abstract
The neurotrophin BDNF regulates the activity-dependent modifications of synaptic strength in the CNS. Physiological and biochemical evidences implicate the NMDA glutamate receptor as one of the targets for BDNF modulation. In the present study, we investigated the effect of BDNF on the expression and plasma membrane abundance of NMDA receptor subunits in cultured hippocampal neurons. Acute stimulation of hippocampal neurons with BDNF differentially upregulated the protein levels of the NR1, NR2A and NR2B NMDA receptor subunits, by a mechanism sensitive to transcription and translation inhibitors. Accordingly, BDNF also increased the mRNA levels for NR1, NR2A and NR2B subunits. The neurotrophin NT3 also upregulated the protein levels of NR2A and NR2B subunits, but was without effect on the NR1 subunit. The amount of NR1, NR2A and NR2B proteins associated with the plasma membrane of hippocampal neurons was differentially increased by BDNF stimulation for 30 min or 24 h. The rapid upregulation of plasma membrane-associated NMDA receptor subunits was correlated with an increase in NMDA receptor activity. The results indicate that BDNF increases the abundance of NMDA receptors and their delivery to the plasma membrane, thereby upregulating receptor activity in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Margarida V Caldeira
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
207
|
O'Malley D, Harvey J. MAPK-dependent actin cytoskeletal reorganization underlies BK channel activation by insulin. Eur J Neurosci 2007; 25:673-82. [PMID: 17298596 DOI: 10.1111/j.1460-9568.2007.05347.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous brain regions are enriched with insulin and insulin receptors, and several lines of evidence indicate that insulin is an important modulator of neuronal function. Indeed, recent studies have demonstrated that insulin inhibits hippocampal epileptiform-like activity, in part by activating large-conductance Ca2+-activated potassium (BK) channels. Moreover, the mitogen-activated protein kinase (MAPK) signalling cascade has been found to couple insulin to BK channel activation. However, the cellular events downstream of MAPK that underlie this action of insulin are unknown. Here we demonstrate that in hippocampal neurons, BK channel activation by insulin is blocked by actin filament stabilization, suggesting that this process is dependent on the actin cytoskeleton. Stabilizing actin filaments also markedly attenuated the ability of insulin to inhibit the aberrant hippocampal synaptic activity evoked following Mg2+ removal. Insulin also promoted rapid reorganization of fluorescently labelled polymerized actin filaments; an action that was prevented by inhibitors of MAPK activation. Moreover, in parallel studies, insulin increased the level of phospho-MAPK immunostaining in hippocampal neurons. These data are consistent with BK channel activation by insulin involving MAPK-dependent alterations in actin dynamics. This process may have important implications for the role of insulin in regulating hippocampal excitability.
Collapse
Affiliation(s)
- Dervla O'Malley
- Neurosciences Institute, Division of Pathology & Neuroscience, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | |
Collapse
|
208
|
Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL, Born J, Kern W. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 2007; 32:239-43. [PMID: 16936707 DOI: 10.1038/sj.npp.1301193] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is compelling evidence that intranasal administration of regular human insulin (RH-I) improves memory in humans. Owing to the reduced tendency of its molecules to form hexamers, the rapid-acting insulin analog insulin aspart (ASP-I) is more rapidly absorbed than RH-I after subcutaneous administration. Since after intranasal insulin administration, ASP-I may also be expected to access the brain, we examined whether intranasal ASP-I has stronger beneficial effects on declarative memory than RH-I in humans. Acute (40 IU) and long-term (4 x 40 IU/day over 8 weeks) effects of intranasally administered ASP-I, RH-I, and placebo on declarative memory (word lists) were assessed in 36 healthy men in a between-subject design. Plasma insulin and glucose levels were not affected. After 8 weeks of treatment, however, word list recall was improved compared to placebo in both the ASP-I (p<0.01) and the RH-I groups (p<0.05). ASP-I-treated subjects performed even better than those of the RH-I-treated group (p<0.05). Our results indicate that insulin-induced memory improvement can be enhanced by using ASP-I. This finding may be especially relevant for a potential clinical administration of intranasal insulin in the treatment of memory disorders like Alzheimer's disease.
Collapse
Affiliation(s)
- Christian Benedict
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Benedict C, Hallschmid M, Schultes B, Born J, Kern W. Intranasal insulin to improve memory function in humans. Neuroendocrinology 2007; 86:136-42. [PMID: 17643054 DOI: 10.1159/000106378] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 06/25/2007] [Indexed: 01/08/2023]
Abstract
BACKGROUND Compelling evidence indicates that central nervous insulin enhances learning and memory and in particular benefits hippocampus-dependent (i.e., declarative) memory. Intranasal administration of insulin provides an effective way of delivering the compound to the central nervous system, bypassing the blood-brain barrier and avoiding systemic side effects. METHODS Here we review a series of recent studies on the effects of intranasally administered insulin on memory functions in humans. In accordance with the beneficial effects of intravenously administered insulin on hippocampus-dependent declarative memory observed in hyperinsulinemic-euglycemic clamp studies, intranasal insulin administration similarly improves this type of memory, but in the absence of adverse peripheral side effects. RESULT AND CONCLUSION Considering that cerebrospinal fluid insulin levels are reduced in patients suffering from Alzheimer's disease, these results may be of considerable relevance for future clinical applications of insulin in the treatment of memory disorders.
Collapse
Affiliation(s)
- Christian Benedict
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
210
|
Moosavi M, Naghdi N, Maghsoudi N, Zahedi Asl S. The effect of intrahippocampal insulin microinjection on spatial learning and memory. Horm Behav 2006; 50:748-52. [PMID: 16890939 DOI: 10.1016/j.yhbeh.2006.06.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/19/2006] [Accepted: 06/25/2006] [Indexed: 11/27/2022]
Abstract
Insulin is best known for its action on peripheral target tissues such as the adipocyte, muscle and liver to regulate glucose homeostasis. Insulin and its receptor are found in specific area of CNS with a variety of region-specific functions different from its direct glucose regulation in the periphery. The hippocampus and cerebral cortex distributed insulin/insulin receptor has been shown to be involved in brain cognitive functions. Previous studies about the effect of insulin on memory are controversial. In the present study, the effect of insulin microinjection into CA1 region of rat hippocampus on water maze performance has been investigated. Insulin had a discrepant effect dose dependently. The spatial learning and memory were impaired with lower dose of insulin, had not changed with intermediate doses, while they improved with higher doses. These results suggest that insulin may have a dose-dependent effect on spatial learning and memory.
Collapse
Affiliation(s)
- M Moosavi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
211
|
Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y. The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 2006; 51:613-25. [PMID: 16950159 DOI: 10.1016/j.neuron.2006.07.024] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/23/2006] [Accepted: 07/24/2006] [Indexed: 11/25/2022]
Abstract
The insulin-like signaling pathway is known to regulate fat metabolism, dauer formation, and longevity in Caenorhabditis elegans. Here, we report that this pathway is also involved in salt chemotaxis learning, in which animals previously exposed to a chemoattractive salt under starvation conditions start to show salt avoidance behavior. Mutants of ins-1, daf-2, age-1, pdk-1, and akt-1, which encode the homologs of insulin, insulin/IGF-I receptor, PI 3-kinase, phosphoinositide-dependent kinase, and Akt/PKB, respectively, show severe defects in salt chemotaxis learning. daf-2 and age-1 act in the ASER salt-sensing neuron, and the activity level of the DAF-2/AGE-1 pathway in this neuron determines the extent and orientation of salt chemotaxis. On the other hand, ins-1 acts in AIA interneurons, which receive direct synaptic inputs from sensory neurons and also send synaptic outputs to ASER. These results suggest that INS-1 secreted from AIA interneurons provides feedback to ASER to generate plasticity of chemotaxis.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
212
|
Mielke JG, Taghibiglou C, Wang YT. Endogenous insulin signaling protects cultured neurons from oxygen-glucose deprivation-induced cell death. Neuroscience 2006; 143:165-73. [PMID: 16978790 DOI: 10.1016/j.neuroscience.2006.07.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 07/05/2006] [Accepted: 07/26/2006] [Indexed: 11/27/2022]
Abstract
Curiosity surrounding the physiological relevance of neural insulin signaling has gradually developed since the discovery that nervous tissue contains both the hormone and its receptor. Similar to other receptor tyrosine kinases, ligand interaction with the insulin receptor (IR) activates a variety of intracellular signaling pathways, particularly those relevant to cellular survival. Consequently, one explanation for the presence of the insulin pathway in the brain may involve participation in the response to neuronal injury. To investigate this possibility, the present study began by examining the effect of oxygen-glucose deprivation (OGD), a well-characterized in vitro model of ischemia, on ligand-binding, surface expression, and function of the IR in cultured rat neurons that were prepared under serum-free conditions. Reduced insulin-binding was observed following OGD, although surface expression of the receptor was not altered. However, OGD did significantly decrease the ability of insulin to stimulate phosphorylation of the transmembrane IR beta-subunit, without affecting protein expression of this subunit. Subsequent experiments focused on the manner in which pharmacologically manipulating IR function affected neuronal viability after OGD. Application of the IR sensitizer metformin moderately improved neuronal viability, while the specific IR tyrosine kinase inhibitor tyrphostin A47 was able to dramatically decrease viability; both compounds acted without affecting IR surface expression. Our study suggests that not only does the IR appear to play an important role in neuronal survival, but also that neurons may actively maintain IRs on the cell surface to compensate for the OGD-induced decrease in the ability of insulin to phosphorylate its receptor.
Collapse
Affiliation(s)
- J G Mielke
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Building M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | |
Collapse
|
213
|
Harvey J, Solovyova N, Irving A. Leptin and its role in hippocampal synaptic plasticity. Prog Lipid Res 2006; 45:369-78. [PMID: 16678906 PMCID: PMC1762032 DOI: 10.1016/j.plipres.2006.03.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/21/2006] [Accepted: 03/21/2006] [Indexed: 12/24/2022]
Abstract
It is well documented that the hormone leptin plays a pivotal role in regulating food intake and body weight via its hypothalamic actions. However, leptin receptors are expressed throughout the brain with high levels found in the hippocampus. Evidence is accumulating that leptin has widespread actions on CNS function and in particular learning and memory. Recent studies have demonstrated that leptin-deficient or-insensitive rodents have impairments in hippocampal synaptic plasticity and in spatial memory tasks performed in the Morris water maze. Moreover, direct administration of leptin into the brain facilitates hippocampal long-term potentiation (LTP), and improves memory performance in mice. There is also evidence that, at the cellular level, leptin has the capacity to convert hippocampal short-term potentiation (STP) into LTP, via enhancing NMDA receptor function. Recent data indicates that leptin can also induce a novel form of NMDA receptor-dependent hippocampal long-term depression. Here, we review the evidence implicating a key role for the hormone leptin in modulating hippocampal synaptic plasticity and discuss the role of lipid signaling cascades in this process.
Collapse
Affiliation(s)
- Jenni Harvey
- Neurosciences Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | |
Collapse
|
214
|
Bloomgarden ZT. Third Annual World Congress on the Insulin Resistance Syndrome: associated conditions. Diabetes Care 2006; 29:2165-74. [PMID: 16936171 DOI: 10.2337/dc06-zb09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
215
|
Bean L, Zheng H, Patel KP, Monaghan DT. Regional variations in NMDA receptor downregulation in streptozotocin-diabetic rat brain. Brain Res 2006; 1115:217-22. [PMID: 16938282 DOI: 10.1016/j.brainres.2006.07.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/16/2006] [Accepted: 07/20/2006] [Indexed: 12/31/2022]
Abstract
Insulin insufficiency has multiple actions on the CNS. Three weeks after streptozotocin-induced diabetes in rats, we found a preferential downregulation of l-[(3)H]glutamate-labeled NMDA receptors in primary sensory cortical regions. Layers I-III of the parietal cortex and superficial piriform cortex were the most sensitive followed by other cortical regions and, in turn, deeper brain structures. These effects on NMDA receptors can potentially explain some of the known CNS effects of diabetes.
Collapse
Affiliation(s)
- LeDon Bean
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | | | | | | |
Collapse
|
216
|
Vetiska SM, Ahmadian G, Ju W, Liu L, Wymann MP, Wang YT. GABAA receptor-associated phosphoinositide 3-kinase is required for insulin-induced recruitment of postsynaptic GABAA receptors. Neuropharmacology 2006; 52:146-55. [PMID: 16890252 DOI: 10.1016/j.neuropharm.2006.06.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 06/25/2006] [Accepted: 06/26/2006] [Indexed: 11/16/2022]
Abstract
Type A gamma-aminobutyric acid (GABAA) receptors mediate most of the fast inhibitory synaptic transmission within the vertebrate brain. The regulation of this inhibition is vital in modulating neural activity. One regulator of GABAA receptor function is insulin, which can serve to enhance GABAA receptor-mediated miniature inhibitory postsynaptic currents, via an increase in the number of receptors at the plasma membrane. We set out to investigate the molecular mechanisms involved in the insulin-induced potentiation of GABAA receptor-mediated responses, by examining the role of phosphoinositide 3-kinase (PI3-K), a key mediator of the insulin response within the brain. We found that PI3-K associates with the GABAA receptor, and this interaction is increased following insulin treatment. Additionally, the beta2 subunit of the GABAA receptor appears to mediate the insulin-stimulated association with the N-terminal SH2 domain of the p85 subunit of PI3-K. Our results imply a mechanism whereby insulin can regulate changes in synaptic transmission through its downstream actions on the GABAA receptor.
Collapse
Affiliation(s)
- S M Vetiska
- Programme in Brain and Behavior Research, Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
217
|
McIntyre RS, Soczynska JK, Lewis GF, MacQueen GM, Konarski JZ, Kennedy SH. Managing psychiatric disorders with antidiabetic agents: translational research and treatment opportunities. Expert Opin Pharmacother 2006; 7:1305-21. [PMID: 16805717 DOI: 10.1517/14656566.7.10.1305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this paper is to synthesise extant studies describing the neurotherapeutic effects of antidiabetic agents in neuropsychiatric disorders. The authors conducted a MedLine search of all English-language articles published between 1966 and March 2006. The search terms were the nonproprietary names of established and putative antidiabetic agents (e.g., insulin, insulin secretagogues and sensitisers) cross-referenced with the individual names of Diagnostic and Statistical Manual of Mental Disorders (DSM)-III-R/IV/-TR-defined mood, psychotic, anxiety and dementing disorders. The search was augmented with a manual review of article reference lists. Contemporary models of disease pathophysiology in major depressive disorder, bipolar disorder and several dementing disorders (e.g., Alzheimer's disease) emphasise alterations in cellular plasticity and cytoarchitecture, with associated regional abnormalities in neuronal and glial density and morphology. Antidiabetic treatments (e.g., thiazolidinediones) may be capable of attenuating this pathological process via disparate mechanisms (e.g., neuroprotective, neurotrophic, anti-inflammatory). Enhanced insulin signalling with antidiabetic treatments may preserve and/or augment cognitive function in several neuropsychiatric disorders. Antidiabetic treatments, which maintain euglycaemia, hold promise as potent and clinically significant therapeutic interventions for several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street-Toronto, ON, M5T 2S8, Canada.
| | | | | | | | | | | |
Collapse
|
218
|
Liu B, Liao M, Mielke JG, Ning K, Chen Y, Li L, El-Hayek YH, Gomez E, Zukin RS, Fehlings MG, Wan Q. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. J Neurosci 2006; 26:5309-19. [PMID: 16707783 PMCID: PMC6675311 DOI: 10.1523/jneurosci.0567-06.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Regulated AMPA receptor (AMPAR) trafficking at excitatory synapses is a mechanism critical to activity-dependent alterations in synaptic efficacy. The role of regulated AMPAR trafficking in insult-induced synaptic remodeling and/or cell death is, however, as yet unclear. Here we show that brief oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, promotes redistribution of AMPARs at synapses of hippocampal neurons, leading to a switch in AMPAR subunit composition. Ischemic insults promote internalization of glutamate receptor subunit 2 (GluR2)-containing AMPARs from synaptic sites via clathrin-dependent endocytosis and facilitate delivery of GluR2-lacking AMPARs to synaptic sites via soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent exocytosis, evident at early times after insult. The OGD-induced switch in receptor subunit composition requires PKC activation, dissociation of GluR2 from AMPA receptor-binding protein, and association with protein interacting with C kinase-1. We further show that AMPARs at synapses of insulted neurons exhibit functional properties of GluR2-lacking AMPARs. AMPAR-mediated miniature EPSCs exhibit increased amplitudes and enhanced sensitivity to subunit-specific blockers of GluR2-lacking AMPARs, evident at 24 h after ischemia. The OGD-induced alterations in synaptic AMPA currents require clathrin-mediated receptor endocytosis and PKC activation. Thus, ischemic insults promote targeting of GluR2-lacking AMPARs to synapses of hippocampal neurons, mechanisms that may be relevant to ischemia-induced synaptic remodeling and/or neuronal death.
Collapse
|
219
|
Abstract
Apoptosis in cortical neurons requires efflux of cytoplasmic potassium mediated by a surge in Kv2.1 channel activity. Pharmacological blockade or molecular disruption of these channels in neurons prevents apoptotic cell death, while ectopic expression of Kv2.1 channels promotes apoptosis in non-neuronal cells. Here, we use a cysteine-containing mutant of Kv2.1 and a thiol-reactive covalent inhibitor to demonstrate that the increase in K+ current during apoptosis is due to de novo insertion of functional channels into the plasma membrane. Biotinylation experiments confirmed the delivery of additional Kv2.1 protein to the cell surface following an apoptotic stimulus. Finally, expression of botulinum neurotoxins that cleave syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) blocked upregulation of surface Kv2.1 channels in cortical neurons, suggesting that target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins support proapoptotic delivery of K+ channels. These data indicate that trafficking of Kv2.1 channels to the plasma membrane causes the apoptotic surge in K+ current.
Collapse
Affiliation(s)
- SK Pal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA
| | - K Takimoto
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - E Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA
- *Corresponding author: E Aizenman, Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA., Tel: +412-648-9434; Fax: +412-648-1441; E-mail:
| | - ES Levitan
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA
| |
Collapse
|
220
|
Watson GS, Craft S. Insulin resistance, inflammation, and cognition in Alzheimer's Disease: Lessons for multiple sclerosis. J Neurol Sci 2006; 245:21-33. [PMID: 16631207 DOI: 10.1016/j.jns.2005.08.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/13/2005] [Accepted: 08/10/2005] [Indexed: 11/29/2022]
Abstract
Insulin resistance (reduced ability of insulin to stimulate glucose utilization) is common in North American and Europe, where as many as one third of all older adults suffer from prodromal or clinical type 2 diabetes mellitus. It has long been known that insulin-resistant conditions adversely affect general health status. A growing body of findings suggests that insulin contributes to normal brain functioning and that peripheral insulin abnormalities increase the risk for memory loss and neurodegenerative disorders such as Alzheimer's disease. Potential mechanisms for these effects include insulin's role in cerebral glucose metabolism, peptide regulation, modulation of neurotransmitter levels, and modulation of many aspects of the inflammatory network. An intriguing question is whether insulin abnormalities also influence the pathophysiology of multiple sclerosis (MS), an autoimmune disorder characterized by elevated inflammatory biomarkers, central nervous system white matter lesions, axonal degeneration, and cognitive impairment. MS increases the risk for type 1 diabetes mellitus. Furthermore, the lack of association between MS and type 2 diabetes may suggest that insulin resistance affects patients with MS and the general population at the same alarming rate. Therefore, insulin resistance may exacerbate phenomena that are common to MS and insulin-resistant conditions, such as cognitive impairments and elevated inflammatory responses. Interestingly, the thiazolidinediones, which are used to treat patients with type 2 diabetes, have been proposed as potential therapeutic agents for both Alzheimer's disease and MS. The agents improve insulin sensitivity, reduce hyperinsulinemia, and exert anti-inflammatory actions. Ongoing studies will determine whether thiazolidinediones improve cognitive functioning for patients with type 2 diabetes or Alzheimer's disease. Future studies are needed to examine the effects of thiazolidinediones on patients with MS.
Collapse
Affiliation(s)
- G Stennis Watson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98108, USA.
| | | |
Collapse
|
221
|
Reger MA, Watson GS, Frey WH, Baker LD, Cholerton B, Keeling ML, Belongia DA, Fishel MA, Plymate SR, Schellenberg GD, Cherrier MM, Craft S. Effects of intranasal insulin on cognition in memory-impaired older adults: Modulation by APOE genotype. Neurobiol Aging 2006; 27:451-8. [PMID: 15964100 DOI: 10.1016/j.neurobiolaging.2005.03.016] [Citation(s) in RCA: 481] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/22/2005] [Accepted: 03/03/2005] [Indexed: 12/11/2022]
Abstract
Raising insulin acutely in the periphery and in brain improves verbal memory. Intranasal insulin administration, which raises insulin acutely in the CNS without raising plasma insulin levels, provides an opportunity to determine whether these effects are mediated by central insulin or peripheral processes. Based on prior research with intravenous insulin, we predicted that the treatment response would differ between subjects with (epsilon4+) and without (epsilon4-) the APOE-epsilon4 allele. On separate mornings, 26 memory-impaired subjects (13 with early Alzheimer's disease and 13 with amnestic mild cognitive impairment) and 35 normal controls each underwent three intranasal treatment conditions consisting of saline (placebo) or insulin (20 or 40 IU). Cognition was tested 15 min post-treatment, and blood was acquired at baseline and 45 min after treatment. Intranasal insulin treatment did not change plasma insulin or glucose levels. Insulin treatment facilitated recall on two measures of verbal memory in memory-impaired epsilon4- adults. These effects were stronger for memory-impaired epsilon4- subjects than for memory-impaired epsilon4+ subjects and normal adults. Unexpectedly, memory-impaired epsilon4+ subjects showed poorer recall following insulin administration on one test of memory. These findings suggest that intranasal insulin administration may have therapeutic benefit without the risk of peripheral hypoglycemia and provide further evidence for apolipoprotein E (APOE) related differences in insulin metabolism.
Collapse
Affiliation(s)
- M A Reger
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, 1660 S, Columbian Way, S182-GRECC, Seattle, WA 98108, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Salkovic-Petrisic M, Tribl F, Schmidt M, Hoyer S, Riederer P. Alzheimer-like changes in protein kinase B and glycogen synthase kinase-3 in rat frontal cortex and hippocampus after damage to the insulin signalling pathway. J Neurochem 2006; 96:1005-15. [PMID: 16412093 DOI: 10.1111/j.1471-4159.2005.03637.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The insulin-resistant brain state is related to late-onset sporadic Alzheimer's disease, and alterations in the insulin receptor (IR) and its downstream phosphatidylinositol-3 kinase signalling pathway have been found in human brain. These findings have not been confirmed in an experimental model related to sporadic Alzheimer's disease, for example rats showing a neuronal IR deficit subsequent to intracerebroventricular (i.c.v.) treatment with streptozotocin (STZ). In this study, western blot analysis performed 1 month after i.c.v. injection of STZ showed an increase of 63% in the level of phosphorylated glycogen synthase kinase-3alpha/beta (pGSK-3alpha/beta) protein in the rat hippocampus, whereas the levels of the unphosphorylated form (GSK-3alpha/beta) and protein kinase B (Akt/PKB) remained unchanged. Three months after STZ treatment, pGSK-3alpha/beta and Akt/PKB levels tended to decrease (by 8 and 9% respectively). The changes were region specific, as a different pattern was found in frontal cortex. Structural alterations were also found, characterized by beta-amyloid peptide-like aggregates in brain capillaries of rats treated with STZ. Similar neurochemical changes and cognitive deficits were recorded in rats treated with i.c.v. 5-thio-d-glucose, a blocker of glucose transporter (GLUT)2, a transporter that is probably involved in brain glucose sensing. The IR signalling cascade alteration and its consequences in rats treated with STZ are similar to those found in humans with sporadic Alzheimer's disease, and our results suggest a role for GLUT2 in Alzheimer's pathophysiology.
Collapse
Affiliation(s)
- Melita Salkovic-Petrisic
- Department of Pharmacology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
223
|
Dou JT, Chen M, Dufour F, Alkon DL, Zhao WQ. Insulin receptor signaling in long-term memory consolidation following spatial learning. Learn Mem 2005; 12:646-55. [PMID: 16287721 PMCID: PMC1356184 DOI: 10.1101/lm.88005] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence has shown that the insulin and insulin receptor (IR) play a role in cognitive function. However, the detailed mechanisms underlying insulin's action on learning and memory are not yet understood. Here we investigated changes in long-term memory-associated expression of the IR and downstream molecules in the rat hippocampus. After long-term memory consolidation following a water maze learning experience, gene expression of IR showed an up-regulation in the CA1, but a down-regulation in the CA3 region. These were correlated with a significant reduction in hippocampal IR protein levels. Learning-specific increases in levels of downstream molecules such as IRS-1 and Akt were detected in the synaptic membrane accompanied by decreases in Akt phosphorylation. Translocation of Shc protein to the synaptic membrane and activation of Erk1/2 were also observed after long-term memory formation. Despite the clear memory-correlated alterations in IR signaling pathways, insulin deficits in experimental diabetes mellitus (DM) rats induced by intraperitoneal injections of streptozotocin resulted in only minor memory impairments. This may be due to higher glucose levels in the DM brain, and to compensatory mechanisms from other signaling pathways such as the insulin-like growth factor-1 receptor (IGF-1R) system. Our results suggest that insulin/IR signaling plays a modulatory role in learning and memory processing, which may be compensated for by alternative pathways in the brain when an insulin deficit occurs.
Collapse
Affiliation(s)
- Jing-Tao Dou
- Blanchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850, USA
| | | | | | | | | |
Collapse
|
224
|
Abstract
It is well documented that the hormone leptin signals information regarding the status of fat stores to hypothalamic nuclei, which in turn control feeding behaviour and body weight. However, leptin and its receptor are widely expressed in many extra-hypothalamic brain regions, including hippocampus, brain stem and cerebellum. Moreover, evidence is accumulating that leptin has other neuronal functions that are unrelated to its effects on energy homeostasis. Indeed a role for leptin in neuronal development has been suggested as leptin-deficient rodents display abnormal brain development and leptin actively participates in the development of the hypothalamus. In the hippocampus, leptin is a potential cognitive enhancer as genetically obese rodents with dysfunctional leptin receptors display impairments in hippocampal synaptic plasticity. Moreover, direct administration of leptin into the hippocampus can facilitate hippocampal LTP (long-term potentiation) in vivo and improve memory processing in mice. At the cellular level, we have also shown that leptin has the capacity to convert short-term potentiation into LTP. Here, we review the data that leptin influences hippocampal synaptic plasticity via enhancing NMDA (N-methyl-D-aspartate) receptor function. We also provide evidence that rapid trafficking of NMDA receptors to the plasma membrane may underlie the effects of leptin on excitatory synaptic strength.
Collapse
|
225
|
Mielke JG, Taghibiglou C, Liu L, Zhang Y, Jia Z, Adeli K, Wang YT. A biochemical and functional characterization of diet-induced brain insulin resistance. J Neurochem 2005; 93:1568-78. [PMID: 15935073 DOI: 10.1111/j.1471-4159.2005.03155.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While considerable research has examined diminished insulin responses within peripheral tissues, comparatively little has been done to examine the effects of this metabolic disruption upon the CNS. The present study employed biochemical and electrophysiological assays of acutely prepared brain slices to determine whether neural insulin resistance is a component of the metabolic syndrome observed within the fructose-fed (FF) hamster. The tyrosine phosphorylation levels of the insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) in response to insulin were significantly reduced within FF hamsters. Also, insulin-mediated phosphorylation of both residues necessary for activation of the serine-threonine kinase Akt/PKB, a key effector of insulin signaling, was markedly decreased. Elevated levels of the protein tyrosine phosphatase 1B, which dephosphorylates the IR and IRS-1, were also observed within the cerebral cortex and hippocampus of FF hamsters. Examination of whether a nutritionally induced compromise of neural insulin signaling altered synaptic function revealed a significant attenuation of insulin-induced long-term depression, but no effect upon either paired-pulse facilitation or electrically induced long-term potentiation. Collectively, our results demonstrate, for the first time, that nutritionally induced insulin resistance significantly affects the neural insulin signaling pathway, and suggest that brain insulin resistance may contribute to cognitive impairment.
Collapse
Affiliation(s)
- John G Mielke
- Brain and Behaviour Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
226
|
Van Buren JJ, Bhat S, Rotello R, Pauza ME, Premkumar LS. Sensitization and translocation of TRPV1 by insulin and IGF-I. Mol Pain 2005; 1:17. [PMID: 15857517 PMCID: PMC1142339 DOI: 10.1186/1744-8069-1-17] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 04/27/2005] [Indexed: 12/27/2022] Open
Abstract
Insulin and insulin-like growth factors (IGFs) maintain vital neuronal functions. Absolute or functional deficiencies of insulin or IGF-I may contribute to neuronal and vascular complications associated with diabetes. Vanilloid receptor 1 (also called TRPV1) is an ion channel that mediates inflammatory thermal nociception and is present on sensory neurons. Here we demonstrate that both insulin and IGF-I enhance TRPV1-mediated membrane currents in heterologous expression systems and cultured dorsal root ganglion neurons. Enhancement of membrane current results from both increased sensitivity of the receptor and translocation of TRPV1 from cytosol to plasma membrane. Receptor tyrosine kinases trigger a signaling cascade leading to activation of phosphatidylinositol 3-kinase (PI(3)K) and protein kinase C (PKC)-mediated phosphorylation of TRPV1, which is found to be essential for the potentiation. These findings establish a link between the insulin family of trophic factors and vanilloid receptors.
Collapse
Affiliation(s)
- Jeremy J Van Buren
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| | - Satyanarayan Bhat
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| | - Rebecca Rotello
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| | - Mary E Pauza
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
- Department of Internal Medicine, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| | - Louis S Premkumar
- Department of Pharmacology, Southern Illinois University School of Medicine Springfield, IL 62702, USA
| |
Collapse
|
227
|
Cho CH, Song W, Leitzell K, Teo E, Meleth AD, Quick MW, Lester RAJ. Rapid upregulation of alpha7 nicotinic acetylcholine receptors by tyrosine dephosphorylation. J Neurosci 2005; 25:3712-23. [PMID: 15814802 PMCID: PMC6725387 DOI: 10.1523/jneurosci.5389-03.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/02/2005] [Accepted: 03/02/2005] [Indexed: 11/21/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) modulate network activity in the CNS. Thus, functional regulation of alpha7 nAChRs could influence the flow of information through various brain nuclei. It is hypothesized here that these receptors are amenable to modulation by tyrosine phosphorylation. In both Xenopus oocytes and rat hippocampal interneurons, brief exposure to a broad-spectrum protein tyrosine kinase inhibitor, genistein, specifically and reversibly potentiated alpha7 nAChR-mediated responses, whereas a protein tyrosine phosphatase inhibitor, pervanadate, caused depression. Potentiation was associated with an increased expression of surface alpha7 subunits and was not accompanied by detectable changes in receptor open probability, implying that the increased function results from an increased number of alpha7 nAChRs. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated exocytosis was shown to be a plausible mechanism for the rapid delivery of additional alpha7 nAChRs to the plasma membrane. Direct phosphorylation/dephosphorylation of alpha7 subunits was unlikely because mutation of all three cytoplasmic tyrosine residues did not prevent the genistein-mediated facilitation. Overall, these data are consistent with the hypothesis that the number of functional cell surface alpha7 nAChRs is controlled indirectly via processes involving tyrosine phosphorylation.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0021, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Vial C, Tobin A, Evans R. G-protein-coupled receptor regulation of P2X1 receptors does not involve direct channel phosphorylation. Biochem J 2005; 382:101-10. [PMID: 15144237 PMCID: PMC1133920 DOI: 10.1042/bj20031910] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/21/2004] [Accepted: 05/14/2004] [Indexed: 01/26/2023]
Abstract
P2X1 receptors for ATP are ligand-gated cation channels, which mediate smooth muscle contraction, contribute to blood clotting and are co-expressed with a range of GPCRs (G-protein-coupled receptors). Stimulation of Galpha(q)-coupled mGluR1alpha (metabotropic glutamate receptor 1alpha), P2Y1 or P2Y2 receptors co-expressed with P2X(1) receptors in Xenopus oocytes evoked calcium-activated chloride currents (I(ClCa)) and potentiated subsequent P2X1-receptor-mediated currents by up to 250%. The mGluR1alpha-receptor-mediated effects were blocked by the phospholipase C inhibitor U-73122. Potentiation was mimicked by treatment with the phor-bol ester PMA. P2X receptors have a conserved intracellular PKC (protein kinase C) site; however, GPCR- and PMA-mediated potentiation was still observed with point mutants in which this site was disrupted. Similarly, the potentiation by GPCRs or PMA was unaffected by chelating the intracellular calcium rise with BAPTA/AM [bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis-(acetoxymethyl ester)] or the PKC inhibitors Ro-32-0432 and bisindolylmaleimide I, suggesting that the regulation does not involve a calcium-sensitive form of PKC. However, both GPCR and PMA potentiation were blocked by the kinase inhibitor staurosporine. Potentiation by phorbol esters was recorded in HEK-293 cells expressing P2X1 receptors, and radiolabelling of phosphorylated proteins in these cells demonstrated that P2X1 receptors are basally phosphorylated and that this level of phosphorylation is unaffected by phorbol ester treatment. This demonstrates that P2X1 regulation does not result directly from phosphorylation of the channel, but more likely by a staurosporine-sensitive phosphorylation of an accessory protein in the P2X1 receptor complex and suggests that in vivo fine-tuning of P2X1 receptors by GPCRs may contribute to cardiovascular control and haemostasis.
Collapse
Affiliation(s)
- Catherine Vial
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
| | - Andrew B. Tobin
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
| | - Richard J. Evans
- Department of Cell Physiology and Pharmacology, University of Leicester, University Road, Leicester, LE1 9HN U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
229
|
Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75:161-205. [PMID: 15882774 DOI: 10.1016/j.pneurobio.2005.02.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 02/22/2005] [Indexed: 12/19/2022]
Abstract
Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses. Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate cascades of signals flowing from the spine surface to the actin cytoskeleton.
Collapse
Affiliation(s)
- Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
230
|
Abstract
Long-term potentiation and long-term depression are processes that have been widely studied to understand the molecular basis of information storage in the brain. Glutamate receptors are required for the induction and expression of these forms of plasticity, and GABA (gamma-aminobutyric acid) receptors are involved in their modulation. Recent insights into how these receptors are rapidly moved into and out of synaptic membranes has profound implications for our understanding of the mechanisms of long-term potentiation and long-term depression.
Collapse
Affiliation(s)
- Graham L Collingridge
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
231
|
Zhao WQ, Chen H, Quon MJ, Alkon DL. Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol 2004; 490:71-81. [PMID: 15094074 DOI: 10.1016/j.ejphar.2004.02.045] [Citation(s) in RCA: 349] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 01/25/2023]
Abstract
Insulin is best known for its action on peripheral insulin target tissues such as the adipocyte, muscle and liver to regulate glucose homeostasis. In the central nervous system (CNS), insulin and the insulin receptor are found in specific brain regions where they show evidence of participation in a variety of region-specific functions through mechanisms that are different from its direct glucose regulation in the periphery. While the insulin/insulin receptor associated with the hypothalamus plays important roles in regulation of the body energy homeostasis, the hippocampus- and cerebral cortex-distributed insulin/insulin receptor has been shown to be involved in brain cognitive functions. Emerging evidence has suggested that insulin signaling plays a role in synaptic plasticity by modulating activities of excitatory and inhibitory receptors such as glutamate and GABA receptors, and by triggering signal transduction cascades leading to alteration of gene expression that is required for long-term memory consolidation. Furthermore, deterioration of insulin receptor signaling appears to be associated with aging-related brain degeneration such as the Alzheimer's dementia and cognitive impairment in aged subjects suffering type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Wei-Qin Zhao
- Blanchette Rockefeller Neurosciences Institute, 3rd floor, Academic and Research Building, 9601 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
232
|
Watson GS, Craft S. Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur J Pharmacol 2004; 490:97-113. [PMID: 15094077 DOI: 10.1016/j.ejphar.2004.02.048] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 12/20/2022]
Abstract
Converging evidence has identified a potential association among Alzheimer's disease, glucose metabolism, insulin activity, and memory. Notably, type 2 diabetes, which is characterized by insulin resistance, may modulate the risk of Alzheimer's disease, and patients with Alzheimer's disease may have a greater risk for glucoregulatory impairments than do healthy older adults. In animal studies, it has been shown that raising blood glucose levels acutely can facilitate memory, in part, by increasing cholinergic activity, which is greatly diminished in patients with Alzheimer's disease. Other studies have confirmed that glucose administration can facilitate memory in healthy humans and in patients with Alzheimer's disease. Interestingly, glucose effects on memory appear to be modulated by insulin sensitivity (efficiency of insulin-mediated glucose disposal). Of course, the acute effects of glucose administration should be distinguished from the effects of chronic hyperglycemia (diabetes), which has been associated with cognitive impairments, at least in older adults. The relationship of insulin and memory has been more difficult to characterize. In animals, systemic insulin administration has been associated with memory deficits, likely due, in part, to hypoglycemia that occurs when exogenous insulin is not supplemented with glucose to maintain euglycemia. In healthy adults and patients with Alzheimer's disease, raising plasma insulin levels while maintaining euglycemia can improve memory; however, raising plasma glucose while suppressing endogenous insulin secretion may not improve memory, suggesting that adequate levels of insulin and glucose are necessary for memory facilitation. Clinical studies have corroborated findings that patients with Alzheimer's disease are more likely than healthy older adults to have reduced insulin sensitivity, and further suggest that apolipoprotein E genotype may modulate the effects of insulin on glucose disposal, memory facilitation, and amyloid precursor protein processing. Collectively, these findings support an association among Alzheimer's disease, impaired glucose metabolism, and reduced insulin sensitivity.
Collapse
Affiliation(s)
- G Stennis Watson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Medical Center, 1660 South Columbian Way, Seattle, WA 98108, USA
| | | |
Collapse
|
233
|
Woodward JJ. Fyn kinase does not reduce ethanol inhibition of zinc-insensitive NR2A-containing N-methyl-D-aspartate receptors. Alcohol 2004; 34:101-5. [PMID: 15902902 DOI: 10.1016/j.alcohol.2004.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors are ion channels activated by the neurotransmitter glutamate and are important mediators of neuronal signal transduction. Ethanol inhibits ion flux through NMDA receptors at concentrations that are associated with behavioral signs of intoxication. The overall sensitivity of NMDA receptors to ethanol is influenced by factors, including subunit composition and interactions with cytoskeletal elements. Results of studies also support the suggestion that the ethanol inhibition on NR1/2A receptors is reduced by Fyn kinase-mediated tyrosine phosphorylation. However, tyrosine kinases also reduce the high-affinity zinc sensitivity of NR1/2A receptors, supporting the suggestion that kinase-dependent effects on ethanol inhibition may be secondary to relief of zinc inhibition. In the current study, the effect of Fyn kinase on the ethanol inhibition of NR1/2A receptors was determined under conditions in which zinc sensitivity is eliminated. Human embryonic kidney 293 (HEK 293) cells were transiently transfected with wild-type or mutant NMDA subunits, and glutamate-activated currents were measured by using patch-clamp electrophysiology. Inclusion of the tyrosine phosphatase inhibitor potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) [bpV(phen)] in the recording pipette eliminated the potentiation of NR1/2A currents by heavy metal chelators. Under these conditions, Fyn kinase did not reduce ethanol inhibition of wild-type receptors. Fyn kinase also had no effect on the magnitude of ethanol inhibition of zinc-insensitive NR1/2A(H128S) receptors. Together, results of the current study indicate that Fyn kinase does not directly affect the ethanol sensitivity of NR1/2A receptors.
Collapse
Affiliation(s)
- John J Woodward
- Department of Physiology and Neuroscience and Center for Drug and Alcohol Programs, 173 Ashley Avenue, Suite 403, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
234
|
Abstract
Dynamic modulation of the number of postsynaptic glutamate receptors is considered one of the main mechanisms for altering the strength of excitatory synapses in the central nervous system (CNS). However, until recently N-methyl-d-aspartate (NMDA) receptors were considered relatively stable once in the plasma membrane, especially in comparison with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors that are internalized at a high rate. A series of recent studies has changed this viewpoint by revealing that NMDA receptors are subject to constitutive as well as agonist-induced internalization through clathrin-mediated endocytosis. Surprisingly, agonist-induced internalization is not dependent on current flow through the NMDA channel, and the receptors are primed for this type of internalization by selective stimulation of the glycine site but not of the glutamate site. Endocytosis of NMDA receptors provides a fundamental mechanism for dynamic regulation of the number of NMDA receptors at synapses, which might be important for physiological and pathological functioning of the CNS.
Collapse
Affiliation(s)
- Yi Nong
- Programme in Brain and Behavior & Cell Biology, Hospital for Sick Children, Department of Physiology, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | | | | |
Collapse
|
235
|
Xing Y, Sonner J, Laster MJ, Abaigar W, Caraiscos VB, Orser B, Eger EI. Insulin decreases isoflurane minimum alveolar anesthetic concentration in rats independently of an effect on the spinal cord. Anesth Analg 2004; 98:1712-1717. [PMID: 15155333 DOI: 10.1213/01.ane.0000113550.47942.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED The observation that insulin supplies an element of analgesia suggests that insulin administration might decrease the concentration of inhaled anesthetic required to produce MAC (the minimum alveolar anesthetic concentration required to eliminate movement in response to noxious stimulation in 50% of subjects). We hypothesized that insulin decreases MAC by directly affecting the nervous system, by decreasing blood glucose, or both. To test these hypotheses, we infused increasing doses of insulin either intrathecally or IV in rats anesthetized with isoflurane and determined the resulting MAC change (assessing forelimb and hindlimb movement separately). Infusion of insulin produced a dose-related decrease in MAC that did not differ among groups. That is, the IV and intrathecal infusions caused similar decreases in MAC at a given infusion rate. Blood glucose concentrations were larger in the rats given insulin with 5% dextrose. However, the percentage change in MAC determined from forelimb versus hindlimb movement did not differ. For a given insulin infusion rate, MAC changes and glucose levels did not correlate with each other, except, possibly, for the most rapid infusion rate, for which smaller glucose concentrations were associated with a marginally larger decrease in MAC. Intrathecal infusions of insulin did not produce spinal cord injury. In summary, we found that insulin decreases isoflurane MAC in a dose-related manner independently of its effects on the blood concentration of glucose. The sites at which insulin acts to decrease MAC appear to be supraspinal rather than spinal. The effect may be due to a capacity of insulin to produce analgesia through an action on one or more neurotransmitter receptors. IMPLICATIONS Intrathecal and IV insulin administration equally decrease isoflurane MAC in rats, regardless of the concentration of blood sugar. These findings indicate that although insulin decreases MAC, the decrease is not mediated by actions on the spinal cord.
Collapse
Affiliation(s)
- Yilei Xing
- *Department of Anesthesia and Perioperative Care, University of California, San Francisco, California; and †Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
236
|
O'Malley D, Harvey J. Insulin activates native and recombinant large conductance Ca(2+)-activated potassium channels via a mitogen-activated protein kinase-dependent process. Mol Pharmacol 2004; 65:1352-63. [PMID: 15155829 DOI: 10.1124/mol.65.6.1352] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence is accumulating that, in addition to regulating peripheral energy metabolism, insulin is an important modulator of neuronal function. Indeed, high levels of insulin and insulin receptors are expressed in several brain regions including the hippocampus. We have shown previously that insulin inhibits aberrant synaptic activity in hippocampal neurons via activation of large conductance Ca(2+)-activated K+ (BK) channels. In this study, we have examined further the effects of insulin on native hippocampal and recombinant (hSlo) BK channels expressed in human embryonic kidney (HEK) 293 cells. Pipette or bath application of insulin evoked a rapid increase in hippocampal BK channel activity, an action caused by activation of insulin receptors because insulin-like growth factor 1 (IGF-1) failed to mimic insulin action. In parallel studies, insulin, applied via the pipette or bath, also activated hSlo channels expressed in HEK293 cells. Although phosphoinositide 3-kinase is a key component of insulin and IGF-1 receptor signaling pathways, activation of this lipid kinase does not underlie the effects of insulin because neither 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) nor wortmannin inhibited or reversed insulin action. However, specific inhibitors of mitogen-activated protein kinase (MAPK) activation, 2'-amino-3'-methoxyflavone (PD98059) or 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)-butadiene (U0126), attenuated insulin action, indicating that a MAPK-dependent mechanism underlies this process. Furthermore, insulin activation of this pathway enhances BK channel activity by shifting the Ca(2+)-sensitivity such that BK channels are active at more hyperpolarized membrane potentials. Because postsynaptic BK channels are important regulators of neuronal hyperexcitability, insulin-induced activation of BK channels, via stimulation of a MAPK-dependent pathway, may be an important process for regulating hippocampal function under normal and pathological conditions.
Collapse
Affiliation(s)
- Dervla O'Malley
- Department of Pharmacology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | |
Collapse
|
237
|
Lüscher B, Keller CA. Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 2004; 102:195-221. [PMID: 15246246 DOI: 10.1016/j.pharmthera.2004.04.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural inhibition in the brain is mainly mediated by ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors. Different subtypes of these receptors, distinguished by their subunit composition, are either concentrated at postsynaptic sites where they mediate phasic inhibition or found at perisynaptic and extrasynaptic locations where they prolong phasic inhibition and mediate tonic inhibition, respectively. Of special interest are mechanisms that modulate the stability and function of postsynaptic GABA(A) receptor subtypes and that are implicated in functional plasticity of inhibitory transmission in the brain. We will summarize recent progress on the classification of synaptic versus extrasynaptic receptors, the molecular composition of the postsynaptic cytoskeleton, the function of receptor-associated proteins in trafficking of GABA(A) receptors to and from synapses, and their role in post-translational signaling mechanisms that modulate the stability, density, and function of GABA(A) receptors in the postsynaptic membrane.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
238
|
Losi G, Puia G, Braghiroli D, Baraldi M. IDRA-21, a positive AMPA receptor modulator, inhibits synaptic and extrasynaptic NMDA receptor mediated events in cultured cerebellar granule cells. Neuropharmacology 2004; 46:1105-1113. [PMID: 15111017 DOI: 10.1016/j.neuropharm.2004.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 02/03/2004] [Indexed: 11/20/2022]
Abstract
IDRA-21 (7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide) reduces alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptors desensitisation in vitro and restores learning and cognitive impairment in vivo. In this study, we show that in cerebellar granule cells (CGCs) in culture IDRA-21 reduces N-methyl-d-aspartate receptor (NMDAR) whole-cell currents. The effect is neither competitive nor voltage-dependent. The reduction of NMDA currents is stronger at low glycine concentrations suggesting an interaction with this site. IDRA-21 shortens miniature excitatory postsynaptic currents mediated by NMDARs (NMDA-mEPSCs) in CGCs grown in low potassium with no effect on peak amplitudes. By using fast glutamate application onto CGCs nucleated patches, we found that IDRA-21 decreases both decay time constant and amplitude of the current. Experiments performed on recombinant NMDAR expressed in HEK 293 cells showed that IDRA-21 was more effective on NR1a-NR2B than NR1a-NR2A receptors highlighting a subunit selectivity of the drug. Our findings make light on a novel target for IDRA-21: NMDA receptors function is negatively modulated and the different action at the level of extrasynaptic and synaptic receptors could be ascribed to a partial selectivity for NR2B subunits.
Collapse
Affiliation(s)
- Gabriele Losi
- Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Via Campi, 183, 41100 Modena, Italy
| | | | | | | |
Collapse
|
239
|
Abstract
Insulin has functions in the brain and dysregulation of these functions may contribute to the expression of late-life neurodegenerative disease. We provide a brief summary of research on the influence of insulin on normal brain function. We then review evidence that perturbation of this role may contribute to the symptoms and pathogenesis of various neurodegenerative disorders, such as Alzheimer's disease, vascular dementia, Parkinson's disease, and Huntington's disease. We conclude by considering whether insulin dysregulation contributes to neurodegenerative disorders through disease-specific or general mechanisms.
Collapse
Affiliation(s)
- Suzanne Craft
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Medical Center, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, 98108, USA.
| | | |
Collapse
|
240
|
Trudeau F, Gagnon S, Massicotte G. Hippocampal synaptic plasticity and glutamate receptor regulation: influences of diabetes mellitus. Eur J Pharmacol 2004; 490:177-86. [PMID: 15094084 DOI: 10.1016/j.ejphar.2004.02.055] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 10/26/2022]
Abstract
Diabetes mellitus is an endocrine disorder of carbohydrate metabolism resulting primarily from inadequate insulin release (Type 1 insulin-dependent diabetes mellitus) or insulin insensitivity coupled with inadequate compensatory insulin release (Type 2 non-insulin-dependent diabetes mellitus). Previous studies involving behavioural and electrophysiological analysis indicate that diabetes mellitus induces cognitive impairment and defects of long-term potentiation in the hippocampus. Considered to be an important mechanism of learning and memory in mammals, long-term potentiation is known to require regulation of the glutamate receptor properties. According to many studies, defects of long-term potentiation in the hippocampus of diabetic animals are due to abnormal glutamate receptors. We review here the changes in glutamate receptors that may account for modifications of long-term potentiation in various models of diabetes mellitus. As glutamate receptors are also involved in the appearance of neurodegenerative states, we discuss the possibility that deficits in long-term potentiation during chronic diabetes might arise from dysfunction of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors in early stages of the disease. This review addresses the possible role of hyperglycaemia and insulin in regulating these receptors.
Collapse
Affiliation(s)
- Francois Trudeau
- Département des Sciences de l'activité physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | |
Collapse
|
241
|
Prybylowski K, Wenthold RJ. N-Methyl-D-aspartate receptors: subunit assembly and trafficking to the synapse. J Biol Chem 2004; 279:9673-6. [PMID: 14742424 DOI: 10.1074/jbc.r300029200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kate Prybylowski
- Laboratory of Neurochemistry, NIDCD, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
242
|
Lavezzari G, McCallum J, Lee R, Roche KW. Differential binding of the AP-2 adaptor complex and PSD-95 to the C-terminus of the NMDA receptor subunit NR2B regulates surface expression. Neuropharmacology 2003; 45:729-37. [PMID: 14529712 DOI: 10.1016/s0028-3908(03)00308-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NMDA receptor expression on the plasma membrane and at synaptic sites is tightly regulated. We have recently shown that the NMDA receptor subunit NR2B has an endocytic motif contained within its C-terminus. We now identify this motif as a consensus tyrosine-based motif (YEKL) and demonstrate that this sequence binds directly to the medium chain of the AP-2 adaptor, a protein complex that links internalized proteins to clathrin. Although the AP-2 binding site on NR2B is adjacent to the PSD-95 binding site, it is distinct, as mutation of tyrosine 1472 of the endocytic motif disrupts AP-2 binding but not binding to PSD-95. Internalization assays reveal that like PSD-95, both SAP97 and PSD-93 inhibit NR2B-mediated endocytosis. Furthermore, we find that co-expression of a PSD-95 mutant that is unable to cluster NMDA receptors also inhibits NR2B-mediated endocytosis. Together, these data demonstrate that AP-2 and PSD-95 bind to unique sites on the C-terminus of NR2B and have antagonistic functional consequences that are independent of the ability of the PSD-95 to cluster receptors on the plasma membrane.
Collapse
Affiliation(s)
- Gabriela Lavezzari
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 36, Room 5B20, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
243
|
Huang CC, You JL, Lee CC, Hsu KS. Insulin induces a novel form of postsynaptic mossy fiber long-term depression in the hippocampus. Mol Cell Neurosci 2003; 24:831-41. [PMID: 14664829 DOI: 10.1016/s1044-7431(03)00238-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanisms of induction and the site of expression of long-term depression (LTD) at the hippocampal mossy fiber-CA3 synapses are not clear. Here, we show that a brief bath application of insulin induces a novel form of mossy fiber LTD. This insulin-LTD is (1) induced and expressed postsynaptically, (2) entirely independent of synaptic stimulation during insulin application, (3) involving a rise in postsynaptic [Ca(2+)](i) and L-type voltage-activated Ca(2+) channel activation, (4) mechanistically distinct from low-frequency stimulation-induced LTD, (5) dependent on phosphatidylinositol 3-kinase signaling, and (6) associated with a clathrin-mediated endocytotic removal of surface 3-hydroxy-5-methylisoxazole-4-propionic acid receptors from the postsynaptic neurons. Moreover, insulin-LTD is specific to mossy fibers to CA3 pyramidal cell synapses, and is not present at associational commissural synapses. These findings not only support a postsynaptic locus of mossy fiber LTD, but also provide a further link between the AMPA receptor trafficking and the bidirectional expression of long-term synaptic plasticity.
Collapse
Affiliation(s)
- Chiung-Chun Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City 701, Taiwan
| | | | | | | |
Collapse
|
244
|
Affiliation(s)
- Alexander Dityatev
- Zentrum für Molekulare Neurobiologie, University of Hamburg, Martinistr. 52, 20246 Hamburg, Germany.
| | | |
Collapse
|
245
|
O'Malley D, Shanley LJ, Harvey J. Insulin inhibits rat hippocampal neurones via activation of ATP-sensitive K+ and large conductance Ca2+-activated K+ channels. Neuropharmacology 2003; 44:855-63. [PMID: 12726817 DOI: 10.1016/s0028-3908(03)00081-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we have used a combination of immunocytochemical and Ca(2+) imaging techniques to determine the functional localisation of insulin receptors as well as the potential role for insulin in modulating hippocampal synaptic activity. Comparison of insulin receptor and MAP2 labelling demonstrated extensive insulin receptor immunoreactivity on the soma and dendrites of cultured hippocampal neurones. Dual labelling with synapsin 1 also showed punctate insulin receptor labelling associated with synapses. In functional studies, insulin inhibited spontaneous Ca(2+) oscillations evoked in cultured hippocampal neurones following Mg(2+) removal. This action of insulin was mimicked by the ATP-sensitive K(+) (K(ATP)) channel opener diazoxide or the large conductance Ca(2+)-activated K(+) (BK) channel activator NS-1619. Furthermore, application of the K(ATP) channel blocker glybenclamide or the BK channel inhibitors iberiotoxin or charybdotoxin attenuated the actions of insulin, whereas prior incubation with a combination of glybenclamide and iberiotoxin completely blocked insulin action. The ability of insulin to modulate the Ca(2+) oscillations was reduced by the inhibitors of MAPK activation PD 98059 and U0126, but not by the PI 3-kinase inhibitors LY 294002 or wortmannin, indicating that a MAPK-driven process underlies insulin action. In conclusion, insulin inhibits spontaneous Ca(2+) oscillations via a process involving MAPK-driven activation of BK and K(ATP) channels. This process may be a useful therapeutic target for the treatment of epilepsy and certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Dervla O'Malley
- Department of Pharmacology and Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | | |
Collapse
|
246
|
Dunah AW, Standaert DG. Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum. J Neurochem 2003; 85:935-43. [PMID: 12716425 DOI: 10.1046/j.1471-4159.2003.01744.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional N-methyl-d-aspartate (NMDA) glutamate receptors are composed of heteromeric complexes of NR1, the obligatory subunit for channel activity, and NR2 or NR3 family members, which confer variability in the properties of the receptors. Recent studies have provided evidence for the existence of both binary (containing NR1 and either NR2A or NR2B) and ternary (containing NR1, NR2A, and NR2B) receptor complexes in the adult mammalian brain. However, the mechanisms regulating subunit assembly and receptor localization are not well understood. In the CNS, NMDA subunits are present both at intracellular sites and the post-synaptic membrane of neurons. Using biochemical protein fractionation and co-immunoprecipitation approaches we have found that in rat striatum binary NMDA receptors are widely distributed, and can be identified in the light membrane, synaptosomal membrane, and synaptic vesicle-enriched subcellular compartments. In contrast, ternary receptors are found exclusively in the synaptosomal membranes. When striatal proteins are chemically cross-linked prior to subcellular fractionation, ternary NMDA receptors can be precipitated from the light membrane and synaptic vesicle-enriched fractions where this type of receptor complex is not detectable under normal conditions. These findings suggest differential targeting of distinct types of NMDA receptor assemblies between intracellular and post-synaptic sites based on subunit composition. This targeting may underlie important differences in the regulation of the transport pathways involved in both normal as well as pathological receptor functions.
Collapse
Affiliation(s)
- Anthone W Dunah
- Department of Neurology, Center for Aging, Genetics and Neurodegeneration, Massachusetts General Hospital B114-2004, 114 16th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
247
|
Abstract
An emerging body of evidence suggests that an increased prevalence of insulin abnormalities and insulin resistance in Alzheimer's disease may contribute to the disease pathophysiology and clinical symptoms. It has long been known that insulin is essential for energy metabolism in the periphery. In the past 2 decades, convergent findings have begun to demonstrate that insulin also plays a role in energy metabolism and other aspects of CNS function. Investigators reported 20 years ago that insulin and insulin receptors were densely but selectively expressed in the brain, including the medial temporal regions that support the formation of memory. It has recently been demonstrated that insulin-sensitive glucose transporters are localised to the same regions supporting memory and that insulin plays a role in memory functions. Collectively, these findings suggest that insulin may contribute to normal cognitive functioning and that insulin abnormalities may exacerbate cognitive impairments, such as those associated with Alzheimer's disease. Insulin may also play a role in regulating the amyloid precursor protein and its derivative beta-amyloid (Abeta), which is associated with senile plaques, a neuropathological hallmark of Alzheimer's disease. It has been proposed that insulin can accelerate the intracellular trafficking of Abeta and interfere with its degradation. These findings are consistent with the notion that insulin abnormalities may potentially influence levels of Abeta in the brains of patients with Alzheimer's disease. The increased occurrence of insulin resistance in Alzheimer's disease and the numerous mechanisms through which insulin may affect clinical and pathological aspects of the disease suggest that improving insulin effectiveness may have therapeutic benefit for patients with Alzheimer's disease. The thiazolidinedione rosiglitazone has been shown to have a potent insulin-sensitising action that appears to be mediated through the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). PPAR-gamma agonists, such as rosiglitazone, also have anti-inflammatory effects that may be of therapeutic benefit in patients with Alzheimer's disease. This review presents evidence suggesting that insulin resistance plays a role in the pathophysiology and clinical symptoms of Alzheimer's disease. Based on this evidence, we propose that treatment of insulin resistance may reduce the risk or retard the development of Alzheimer's disease.
Collapse
Affiliation(s)
- G Stennis Watson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | | |
Collapse
|
248
|
Bockmann J, Kreutz MR, Gundelfinger ED, Böckers TM. ProSAP/Shank postsynaptic density proteins interact with insulin receptor tyrosine kinase substrate IRSp53. J Neurochem 2002; 83:1013-7. [PMID: 12421375 DOI: 10.1046/j.1471-4159.2002.01204.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ProSAP/Shank family of multidomain proteins of the postsynaptic density (PSD) can either directly or indirectly interact with NMDA-type and metabotropic glutamate receptors and the actin-based cytoskeleton. In a yeast two hybrid screen utilizing a proline-rich domain that is highly conserved among the ProSAP/Shank family members, we isolated several cDNA clones coding for the insulin receptor substrate IRSp53. The specificity of this interaction was confirmed in transfected COS cells. Co-immunoprecipitation of IRSp53 and ProSAP2 solubilized from rat brain membranes indicates that the interaction occurs in vivo. The C-terminal SH3 domain of IRSp53 is responsible for the interaction with a novel proline-rich consensus sequence of ProSAP/Shank that was characterized by mutational analysis. IRSp53 is a substrate for the insulin receptor in the brain and acts downstream of small GTPases of the Rho family. Binding of Cdc42Hs to IRSp53 induces actin filament assembly, reorganization and filopodia outgrowth in neuronal cell lines. Our data suggest that IRSp53 can be recruited to the PSD via its ProSAP/Shank interaction and may contribute to the morphological reorganization of spines and synapses after insulin receptor and/or Cdc42Hs activation.
Collapse
Affiliation(s)
- J Bockmann
- AG Molecular Neurobiology, Institute of Anatomy, UKM, Westfaelische Wilhelms-University, Münster, Germany
| | | | | | | |
Collapse
|
249
|
Nedergaard M, Takano T, Hansen AJ. Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 2002; 3:748-55. [PMID: 12209123 DOI: 10.1038/nrn916] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glutamate is the principal excitatory neurotransmitter of the central nervous system, but many studies have expanded its functional repertoire by showing that glutamate receptors are present in a variety of non-excitable cells. How does glutamate receptor activation modulate their activity? Do non-excitable cells release glutamate, and, if so, how? These questions remain enigmatic. Here, we review the current knowledge on glutamatergic signalling in non-neuronal cells, with a special emphasis on astrocytes.
Collapse
Affiliation(s)
- Maiken Nedergaard
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA.
| | | | | |
Collapse
|
250
|
Balduzzi R, Cupello A, Robello M. Modulation of the expression of GABA(A) receptors in rat cerebellar granule cells by protein tyrosine kinases and protein kinase C. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1564:263-70. [PMID: 12101021 DOI: 10.1016/s0005-2736(02)00460-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The expression of GABA(A) receptors in rat cerebellar granules in culture has been studied by beta(2/3) subunit immunocytochemistry and fluorescence confocal microscopy. These cells show labeling all over the cell bodies' plasma membrane and dendrites. Treatment with the protein tyrosine kinase (PTK) inhibitor genistein results in a decrease of the labeling associated with the beta(2/3) subunit in both cell bodies and dendrites. No effect was found with an inactive genistein analogue, daidzein. A similar effect was found with a protein kinase C (PKC) activator, phorbol myristate acetate (PMA). The effects of genistein and PMA are additive.The interpretation of the results is that PTK inhibition blocks exocytotic deposit of newly synthesized GABA(A) receptors onto the neuronal plasma membrane. On the other hand, PKC activation speeds up endocytotic removal of GABA(A) receptors.
Collapse
Affiliation(s)
- Raffaella Balduzzi
- Unità INFM, Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genoa, Italy
| | | | | |
Collapse
|