201
|
Ni L, Klein M, Svec KV, Budelli G, Chang EC, Ferrer AJ, Benton R, Samuel AD, Garrity PA. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila. eLife 2016; 5. [PMID: 27126188 PMCID: PMC4851551 DOI: 10.7554/elife.13254] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/18/2016] [Indexed: 01/25/2023] Open
Abstract
Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity. DOI:http://dx.doi.org/10.7554/eLife.13254.001 Animals need to be able to sense temperatures for a number of reasons. For example, this ability allows animals to avoid conditions that are either too hot or too cold, and to maintain an optimal body temperature. Most animals detect temperature via nerve cells called thermoreceptors. These sensors are often extremely sensitive and some can even detect changes in temperature of just a few thousandths of a degree per second. However, it is not clear how thermoreceptors detect temperature with such sensitivity, and many of the key molecules involved in this ability are unknown. In 2015, researchers discovered a class of highly sensitive nerve cells that allow fruit fly larvae to navigate away from unfavorably cool temperatures. Now, Ni, Klein et al. – who include some of the researchers involved in the 2015 work – have determined that these nerves use a combination of two receptors to detect cooling. Unexpectedly, these two receptors – Ionotropic Receptors called IR21a and IR25a – had previously been implicated in the detection of chemicals rather than temperature. IR25a was well-known to combine with other related receptors to detect an array of tastes and smells, while IR21a was thought to act in a similar way but had not been associated with detecting any specific chemicals. These findings demonstrate that the combination of IR21a and IR25a detects temperature instead. Together, these findings reveal a new molecular mechanism that underlies an animal’s ability to sense temperature. These findings also raise the possibility that other “orphan” Ionotropic Receptors, which have not been shown to detect any specific chemicals, might actually contribute to sensing temperature instead. Further work will explore this possibility and attempt to uncover precisely how IR21a and IR25a work to detect cool temperatures. DOI:http://dx.doi.org/10.7554/eLife.13254.002
Collapse
Affiliation(s)
- Lina Ni
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| | - Mason Klein
- Department of Physics, Harvard University, Cambridge, United States.,Department of Physics, University of Miami, Coral Gables, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Kathryn V Svec
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| | - Gonzalo Budelli
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| | - Elaine C Chang
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| | - Anggie J Ferrer
- Department of Physics, University of Miami, Coral Gables, United States
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Paul A Garrity
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
202
|
Vogt K, Aso Y, Hige T, Knapek S, Ichinose T, Friedrich AB, Turner GC, Rubin GM, Tanimoto H. Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. eLife 2016; 5. [PMID: 27083044 PMCID: PMC4884080 DOI: 10.7554/elife.14009] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/14/2016] [Indexed: 01/02/2023] Open
Abstract
Previously, we demonstrated that visual and olfactory associative memories of Drosophila share mushroom body (MB) circuits (Vogt et al., 2014). Unlike for odor representation, the MB circuit for visual information has not been characterized. Here, we show that a small subset of MB Kenyon cells (KCs) selectively responds to visual but not olfactory stimulation. The dendrites of these atypical KCs form a ventral accessory calyx (vAC), distinct from the main calyx that receives olfactory input. We identified two types of visual projection neurons (VPNs) directly connecting the optic lobes and the vAC. Strikingly, these VPNs are differentially required for visual memories of color and brightness. The segregation of visual and olfactory domains in the MB allows independent processing of distinct sensory memories and may be a conserved form of sensory representations among insects. DOI:http://dx.doi.org/10.7554/eLife.14009.001
Collapse
Affiliation(s)
- Katrin Vogt
- Max-Planck Institut für Neurobiologie, Martinsried, Germany.,Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Toshihide Hige
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Stephan Knapek
- Max-Planck Institut für Neurobiologie, Martinsried, Germany
| | - Toshiharu Ichinose
- Max-Planck Institut für Neurobiologie, Martinsried, Germany.,Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | | | - Glenn C Turner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Max-Planck Institut für Neurobiologie, Martinsried, Germany.,Tohoku University Graduate School of Life Sciences, Sendai, Japan
| |
Collapse
|
203
|
Serbe E, Meier M, Leonhardt A, Borst A. Comprehensive Characterization of the Major Presynaptic Elements to the Drosophila OFF Motion Detector. Neuron 2016; 89:829-41. [PMID: 26853306 DOI: 10.1016/j.neuron.2016.01.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/18/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022]
Abstract
Estimating motion is a fundamental task for the visual system of sighted animals. In Drosophila, direction-selective T4 and T5 cells respond to moving brightness increments (ON) and decrements (OFF), respectively. Current algorithmic models of the circuit are based on the interaction of two differentially filtered signals. However, electron microscopy studies have shown that T5 cells receive their major input from four classes of neurons: Tm1, Tm2, Tm4, and Tm9. Using two-photon calcium imaging, we demonstrate that T5 is the first direction-selective stage within the OFF pathway. The four cells provide an array of spatiotemporal filters to T5. Silencing their synaptic output in various combinations, we find that all input elements are involved in OFF motion detection to varying degrees. Our comprehensive survey challenges the simplified view of how neural systems compute the direction of motion and suggests that an intricate interplay of many signals results in direction selectivity.
Collapse
Affiliation(s)
- Etienne Serbe
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Matthias Meier
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Aljoscha Leonhardt
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alexander Borst
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
204
|
Cavanaugh DJ, Vigderman AS, Dean T, Garbe DS, Sehgal A. The Drosophila Circadian Clock Gates Sleep through Time-of-Day Dependent Modulation of Sleep-Promoting Neurons. Sleep 2016; 39:345-56. [PMID: 26350473 DOI: 10.5665/sleep.5442] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/12/2015] [Indexed: 01/20/2023] Open
Abstract
STUDY OBJECTIVES Sleep is under the control of homeostatic and circadian processes, which interact to determine sleep timing and duration, but the mechanisms through which the circadian system modulates sleep are largely unknown. We therefore used adult-specific, temporally controlled neuronal activation and inhibition to identify an interaction between the circadian clock and a novel population of sleep-promoting neurons in Drosophila. METHODS Transgenic flies expressed either dTRPA1, a neuronal activator, or Shibire(ts1), an inhibitor of synaptic release, in small subsets of neurons. Sleep, as determined by activity monitoring and video tracking, was assessed before and after temperature-induced activation or inhibition using these effector molecules. We compared the effect of these manipulations in control flies and in mutant flies that lacked components of the molecular circadian clock. RESULTS Adult-specific activation or inhibition of a population of neurons that projects to the sleep-promoting dorsal Fan-Shaped Body resulted in bidirectional control over sleep. Interestingly, the magnitude of the sleep changes were time-of-day dependent. Activation of sleep-promoting neurons was maximally effective during the middle of the day and night, and was relatively ineffective during the day-to-night and night-to-day transitions. These time-ofday specific effects were absent in flies that lacked functional circadian clocks. CONCLUSIONS We conclude that the circadian system functions to gate sleep through active inhibition at specific times of day. These data identify a mechanism through which the circadian system prevents premature sleep onset in the late evening, when homeostatic sleep drive is high.
Collapse
Affiliation(s)
- Daniel J Cavanaugh
- Penn Chronobiology Program, Philadelphia PA.,Current Address: Department of Biology, Loyola University Chicago, Chicago IL
| | | | - Terry Dean
- Penn Chronobiology Program, Philadelphia PA
| | | | - Amita Sehgal
- Penn Chronobiology Program, Philadelphia PA.,Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia PA
| |
Collapse
|
205
|
Zhang KX, Tan L, Pellegrini M, Zipursky SL, McEwen JM. Rapid Changes in the Translatome during the Conversion of Growth Cones to Synaptic Terminals. Cell Rep 2016; 14:1258-1271. [PMID: 26832407 DOI: 10.1016/j.celrep.2015.12.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 12/04/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
A common step in the formation of neural circuits is the conversion of growth cones to presynaptic terminals. Characterizing patterns of global gene expression during this process is problematic due to the cellular diversity of the brain and the complex temporal dynamics of development. Here, we take advantage of the synchronous conversion of Drosophila photoreceptor growth cones into presynaptic terminals to explore global changes in gene expression during presynaptic differentiation. Using a tandemly tagged ribosome trap (T-TRAP) and RNA sequencing (RNA-seq) at multiple developmental times, we observed dramatic changes in coding and non-coding RNAs with presynaptic differentiation. Marked changes in the mRNA encoding transmembrane and secreted proteins occurred preferentially. The 3' UTRs of transcripts encoding synaptic proteins were preferentially lengthened, and these extended UTRs were preferentially enriched for sites recognized by RNA binding proteins. These data provide a rich resource for uncovering the regulatory logic underlying presynaptic differentiation.
Collapse
Affiliation(s)
- Kelvin Xi Zhang
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Liming Tan
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, P.O. Box 951606, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA.
| | - Jason M McEwen
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles CA 90095, USA
| |
Collapse
|
206
|
Identified Serotonin-Releasing Neurons Induce Behavioral Quiescence and Suppress Mating in Drosophila. J Neurosci 2016; 35:12792-812. [PMID: 26377467 DOI: 10.1523/jneurosci.1638-15.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. SIGNIFICANCE STATEMENT An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect aspects of mating behavior, but not food uptake. This demonstrates that individual serotoninergic neurons can modulate distinct types of behavior selectively.
Collapse
|
207
|
Abstract
Binary expression systems are flexible and versatile genetic tools in Drosophila. The Q-system is a recently developed repressible binary expression system that offers new possibilities for transgene expression and genetic manipulations. In this review chapter, we focus on current state-of-the-art Q-system tools and reagents. We also discuss in vivo applications of the Q-system, together with GAL4/UAS and LexA/LexAop systems, for simultaneous expression of multiple effectors, intersectional labeling, and clonal analysis.
Collapse
|
208
|
ICHINOSE T, TANIMOTO H. Dynamics of memory-guided choice behavior in Drosophila. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:346-357. [PMID: 27725473 PMCID: PMC5243950 DOI: 10.2183/pjab.92.346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Memory retrieval requires both accuracy and speed. Olfactory learning of the fruit fly Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result, but not the speed, of odor choice. Here, we developed multiplexed T-mazes that allow video recording of the choice behavior. Automatic fly counting in each arm of the maze visualizes choice dynamics. Using this setup, we show that the transient blockade of serotonergic neurons slows down the choice, while leaving the eventual choice intact. In contrast, activation of the same neurons impairs the eventual performance leaving the choice speed unchanged. Our new apparatus contributes to elucidating how the speed and the accuracy of memory retrieval are implemented in the fly brain.
Collapse
Affiliation(s)
- Toshiharu ICHINOSE
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Max-Planck Institut für Neurobiologie, Martinsried, Germany
| | - Hiromu TANIMOTO
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
- Max-Planck Institut für Neurobiologie, Martinsried, Germany
| |
Collapse
|
209
|
Hoopfer ED, Jung Y, Inagaki HK, Rubin GM, Anderson DJ. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. eLife 2015; 4. [PMID: 26714106 PMCID: PMC4749567 DOI: 10.7554/elife.11346] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022] Open
Abstract
How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner.
Collapse
Affiliation(s)
- Eric D Hoopfer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Yonil Jung
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Hidehiko K Inagaki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
210
|
Abstract
Fluorescent protein tags have revolutionized cell and developmental biology, and in combination with binary expression systems they enable diverse tissue-specific studies of protein function. However these binary expression systems often do not recapitulate endogenous protein expression levels, localization, binding partners and/or developmental windows of gene expression. To address these limitations, we have developed a method called T-STEP (tissue-specific tagging of endogenous proteins) that allows endogenous loci to be tagged in a tissue specific manner. T-STEP uses a combination of efficient CRISPR/Cas9-enhanced gene targeting and tissue-specific recombinase-mediated tag swapping to temporally and spatially label endogenous proteins. We have employed this method to GFP tag OCRL (a phosphoinositide-5-phosphatase in the endocytic pathway) and Vps35 (a Parkinson's disease-implicated component of the endosomal retromer complex) in diverse Drosophila tissues including neurons, glia, muscles and hemocytes. Selective tagging of endogenous proteins allows, for the first time, cell type-specific live imaging and proteomics in complex tissues.
Collapse
Affiliation(s)
- Kate Koles
- Department of Biology, Brandeis University, 415 South St, Waltham, MA 02454, USA
| | - Anna R Yeh
- Department of Biology, Brandeis University, 415 South St, Waltham, MA 02454, USA
| | - Avital A Rodal
- Department of Biology, Brandeis University, 415 South St, Waltham, MA 02454, USA
| |
Collapse
|
211
|
Qi W, Yang Z, Lin Z, Park JY, Suh GSB, Wang L. A quantitative feeding assay in adult Drosophila reveals rapid modulation of food ingestion by its nutritional value. Mol Brain 2015; 8:87. [PMID: 26692189 PMCID: PMC4687088 DOI: 10.1186/s13041-015-0179-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/14/2015] [Indexed: 11/28/2022] Open
Abstract
Background Food intake of the adult fruit fly Drosophila melanogaster, an intermittent feeder, is attributed to several behavioral elements including foraging, feeding initiation and termination, and food ingestion. Despite the development of various feeding assays in fruit flies, how each of these behavioral elements, particularly food ingestion, is regulated remains largely uncharacterized. Results To this end, we have developed a manual feeding (MAFE) assay that specifically measures food ingestion of an individual fly completely independent of the other behavioral elements. This assay reliably recapitulates the effects of known feeding modulators, and offers temporal resolution in the scale of seconds. Using this assay, we find that fruit flies can rapidly assess the nutritional value of sugars within 20–30 s, and increase the ingestion of nutritive sugars after prolonged periods of starvation. Two candidate nutrient sensors, SLC5A11 and Gr43a, are required for discriminating the nutritive sugars, D-glucose and D-fructose, from their non-nutritive enantiomers, respectively. This suggests that differential sensing mechanisms play a key role in determining food nutritional value. Conclusions Taken together, our MAFE assay offers a platform to specifically examine the regulation of food ingestion with excellent temporal resolution, and identifies a fast-acting neural mechanism that assesses food nutritional value and modulates food intake. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0179-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Qi
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Zhe Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ziao Lin
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Jin-Yong Park
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Greg S B Suh
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Liming Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
212
|
Ebrahim SAM, Dweck HKM, Stökl J, Hofferberth JE, Trona F, Weniger K, Rybak J, Seki Y, Stensmyr MC, Sachse S, Hansson BS, Knaden M. Drosophila Avoids Parasitoids by Sensing Their Semiochemicals via a Dedicated Olfactory Circuit. PLoS Biol 2015; 13:e1002318. [PMID: 26674493 PMCID: PMC4687525 DOI: 10.1371/journal.pbio.1002318] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/05/2015] [Indexed: 11/19/2022] Open
Abstract
Detecting danger is one of the foremost tasks for a neural system. Larval parasitoids constitute clear danger to Drosophila, as up to 80% of fly larvae become parasitized in nature. We show that Drosophila melanogaster larvae and adults avoid sites smelling of the main parasitoid enemies, Leptopilina wasps. This avoidance is mediated via a highly specific olfactory sensory neuron (OSN) type. While the larval OSN expresses the olfactory receptor Or49a and is tuned to the Leptopilina odor iridomyrmecin, the adult expresses both Or49a and Or85f and in addition detects the wasp odors actinidine and nepetalactol. The information is transferred via projection neurons to a specific part of the lateral horn known to be involved in mediating avoidance. Drosophila has thus developed a dedicated circuit to detect a life-threatening enemy based on the smell of its semiochemicals. Such an enemy-detecting olfactory circuit has earlier only been characterized in mice and nematodes.
Collapse
Affiliation(s)
| | | | - Johannes Stökl
- Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - John E. Hofferberth
- Department of Chemistry, Kenyon College, Gambier, Ohio, United States of America
| | - Federica Trona
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Jürgen Rybak
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yoichi Seki
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
213
|
Neural Mechanisms for Drosophila Contrast Vision. Neuron 2015; 88:1240-1252. [DOI: 10.1016/j.neuron.2015.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/24/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023]
|
214
|
Yoshikawa S, Long H, Thomas JB. A subset of interneurons required for Drosophila larval locomotion. Mol Cell Neurosci 2015; 70:22-9. [PMID: 26621406 DOI: 10.1016/j.mcn.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022] Open
Abstract
Efforts to define the neural circuits generating locomotor behavior have produced an initial understanding of some of the components within the spinal cord, as well as a basic understanding of several invertebrate motor pattern generators. However, how these circuits are assembled during development is poorly understood. We are defining the neural circuit that generates larval locomotion in the genetically tractable fruit fly Drosophila melanogaster to study locomotor circuit development. Forward larval locomotion involves a stereotyped posterior-to-anterior segmental translocation of body wall muscle contraction and is generated by a relatively small number of identified muscles, motor and sensory neurons, plus an unknown number of the ~270 bilaterally-paired interneurons per segment of the 1st instar larva. To begin identifying the relevant interneurons, we have conditionally inactivated synaptic transmission of interneuron subsets and assayed for the effects on locomotion. From this screen we have identified a subset of 25 interneurons per hemisegment, called the lateral locomotor neurons (LLNs), that are required for locomotion. Both inactivation and constitutive activation of the LLNs disrupt locomotion, indicating that patterned output of the LLNs is required. By expressing a calcium indicator in the LLNs, we found that they display a posterior-to-anterior wave of activity within the CNS corresponding to the segmental translocation of the muscle contraction wave. Identification of the LLNs represents the first step toward elucidating the circuit generating larval locomotion.
Collapse
Affiliation(s)
- Shingo Yoshikawa
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - Hong Long
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States
| | - John B Thomas
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| |
Collapse
|
215
|
Kallman BR, Kim H, Scott K. Excitation and inhibition onto central courtship neurons biases Drosophila mate choice. eLife 2015; 4:e11188. [PMID: 26568316 PMCID: PMC4695383 DOI: 10.7554/elife.11188] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/12/2015] [Indexed: 01/05/2023] Open
Abstract
The ability to distinguish males from females is essential for productive mate selection and species propagation. Recent studies in Drosophila have identified different classes of contact chemosensory neurons that detect female or male pheromones and influence courtship decisions. Here, we examine central neural pathways in the male brain that process female and male pheromones using anatomical, calcium imaging, optogenetic, and behavioral studies. We find that sensory neurons that detect female pheromones, but not male pheromones, activate a novel class of neurons in the ventral nerve cord to cause activation of P1 neurons, male-specific command neurons that trigger courtship. In addition, sensory neurons that detect male pheromones, as well as those that detect female pheromones, activate central mAL neurons to inhibit P1. These studies demonstrate that the balance of excitatory and inhibitory drives onto central courtship-promoting neurons controls mating decisions.
Collapse
Affiliation(s)
- Benjamin R Kallman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Heesoo Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
216
|
Peters NC, Berg CA. Dynamin-mediated endocytosis is required for tube closure, cell intercalation, and biased apical expansion during epithelial tubulogenesis in the Drosophila ovary. Dev Biol 2015; 409:39-54. [PMID: 26542010 DOI: 10.1016/j.ydbio.2015.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/09/2015] [Accepted: 10/31/2015] [Indexed: 11/28/2022]
Abstract
Most metazoans are able to grow beyond a few hundred cells and to support differentiated tissues because they elaborate multicellular, epithelial tubes that are indispensable for nutrient and gas exchange. To identify and characterize the cellular behaviors and molecular mechanisms required for the morphogenesis of epithelial tubes (i.e., tubulogenesis), we have turned to the D. melanogaster ovary. Here, epithelia surrounding the developing egg chambers first pattern, then form and extend a set of simple, paired, epithelial tubes, the dorsal appendage (DA) tubes, and they create these structures in the absence of cell division or cell death. This genetically tractable system lets us assess the relative contributions that coordinated changes in cell shape, adhesion, orientation, and migration make to basic epithelial tubulogenesis. We find that Dynamin, a conserved regulator of endocytosis and the cytoskeleton, serves a key role in DA tubulogenesis. We demonstrate that Dynamin is required for distinct aspects of DA tubulogenesis: DA-tube closure, DA-tube-cell intercalation, and biased apical-luminal cell expansion. We provide evidence that Dynamin promotes these processes by facilitating endocytosis of cell-cell and cell-matrix adhesion complexes, and we find that precise levels and sub-cellular distribution of E-Cadherin and specific Integrin subunits impact DA tubulogenesis. Thus, our studies identify novel morphogenetic roles (i.e., tube closure and biased apical expansion), and expand upon established roles (i.e., cell intercalation and adhesion remodeling), for Dynamin in tubulogenesis.
Collapse
Affiliation(s)
- Nathaniel C Peters
- University of Washington, Molecular and Cellular Biology Program and Department of Genome Sciences, Box 355065, Seattle, WA 98195-5065, United States
| | - Celeste A Berg
- University of Washington, Molecular and Cellular Biology Program and Department of Genome Sciences, Box 355065, Seattle, WA 98195-5065, United States.
| |
Collapse
|
217
|
Transcellular spreading of huntingtin aggregates in the Drosophila brain. Proc Natl Acad Sci U S A 2015; 112:E5427-33. [PMID: 26351672 DOI: 10.1073/pnas.1516217112] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A key feature of many neurodegenerative diseases is the accumulation and subsequent aggregation of misfolded proteins. Recent studies have highlighted the transcellular propagation of protein aggregates in several major neurodegenerative diseases, although the precise mechanisms underlying this spreading and how it relates to disease pathology remain unclear. Here we use a polyglutamine-expanded form of human huntingtin (Htt) with a fluorescent tag to monitor the spreading of aggregates in the Drosophila brain in a model of Huntington's disease. Upon expression of this construct in a defined subset of neurons, we demonstrate that protein aggregates accumulate at synaptic terminals and progressively spread throughout the brain. These aggregates are internalized and accumulate within other neurons. We show that Htt aggregates cause non-cell-autonomous pathology, including loss of vulnerable neurons that can be prevented by inhibiting endocytosis in these neurons. Finally we show that the release of aggregates requires N-ethylmalemide-sensitive fusion protein 1, demonstrating that active release and uptake of Htt aggregates are important elements of spreading and disease progression.
Collapse
|
218
|
Disruption of Endocytosis with the Dynamin Mutant shibirets1 Suppresses Seizures in Drosophila. Genetics 2015; 201:1087-102. [PMID: 26341658 DOI: 10.1534/genetics.115.177600] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
One challenge in modern medicine is to control epilepsies that do not respond to currently available medications. Since seizures consist of coordinated and high-frequency neural activity, our goal was to disrupt neurotransmission with a synaptic transmission mutant and evaluate its ability to suppress seizures. We found that the mutant shibire, encoding dynamin, suppresses seizure-like activity in multiple seizure-sensitive Drosophila genotypes, one of which resembles human intractable epilepsy in several aspects. Because of the requirement of dynamin in endocytosis, increased temperature in the shi(ts1) mutant causes impairment of synaptic vesicle recycling and is associated with suppression of the seizure-like activity. Additionally, we identified the giant fiber neuron as critical in the seizure circuit and sufficient to suppress seizures. Overall, our results implicate mutant dynamin as an effective seizure suppressor, suggesting that targeting or limiting the availability of synaptic vesicles could be an effective and general method of controlling epilepsy disorders.
Collapse
|
219
|
Hunter MV, Lee DM, Harris TJC, Fernandez-Gonzalez R. Polarized E-cadherin endocytosis directs actomyosin remodeling during embryonic wound repair. J Cell Biol 2015; 210:801-16. [PMID: 26304727 PMCID: PMC4555830 DOI: 10.1083/jcb.201501076] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022] Open
Abstract
Clathrin, dynamin, and ARF6 accumulate around wounds in Drosophila embryos in a calcium- and actomyosin-dependent manner and drive polarized E-cadherin endocytosis, which is necessary for actomyosin remodeling during wound repair. Embryonic epithelia have a remarkable ability to rapidly repair wounds. A supracellular actomyosin cable around the wound coordinates cellular movements and promotes wound closure. Actomyosin cable formation is accompanied by junctional rearrangements at the wound margin. We used in vivo time-lapse quantitative microscopy to show that clathrin, dynamin, and the ADP-ribosylation factor 6, three components of the endocytic machinery, accumulate around wounds in Drosophila melanogaster embryos in a process that requires calcium signaling and actomyosin contractility. Blocking endocytosis with pharmacological or genetic approaches disrupted wound repair. The defect in wound closure was accompanied by impaired removal of E-cadherin from the wound edge and defective actomyosin cable assembly. E-cadherin overexpression also resulted in reduced actin accumulation around wounds and slower wound closure. Reducing E-cadherin levels in embryos in which endocytosis was blocked rescued actin localization to the wound margin. Our results demonstrate a central role for endocytosis in wound healing and indicate that polarized E-cadherin endocytosis is necessary for actomyosin remodeling during embryonic wound repair.
Collapse
Affiliation(s)
- Miranda V Hunter
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Donghoon M Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
220
|
Spronken MI, Short KR, Herfst S, Bestebroer TM, Vaes VP, van der Hoeven B, Koster AJ, Kremers GJ, Scott DP, Gultyaev AP, Sorell EM, de Graaf M, Bárcena M, Rimmelzwaan GF, Fouchier RA. Optimisations and Challenges Involved in the Creation of Various Bioluminescent and Fluorescent Influenza A Virus Strains for In Vitro and In Vivo Applications. PLoS One 2015; 10:e0133888. [PMID: 26241861 PMCID: PMC4524686 DOI: 10.1371/journal.pone.0133888] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/03/2015] [Indexed: 01/15/2023] Open
Abstract
Bioluminescent and fluorescent influenza A viruses offer new opportunities to study influenza virus replication, tropism and pathogenesis. To date, several influenza A reporter viruses have been described. These strategies typically focused on a single reporter gene (either bioluminescent or fluorescent) in a single virus backbone. However, whilst bioluminescence is suited to in vivo imaging, fluorescent viruses are more appropriate for microscopy. Therefore, the idea l reporter virus varies depending on the experiment in question, and it is important that any reporter virus strategy can be adapted accordingly. Herein, a strategy was developed to create five different reporter viruses in a single virus backbone. Specifically, enhanced green fluorescent protein (eGFP), far-red fluorescent protein (fRFP), near-infrared fluorescent protein (iRFP), Gaussia luciferase (gLUC) and firefly luciferase (fLUC) were inserted into the PA gene segment of A/PR/8/34 (H1N1). This study provides a comprehensive characterisation of the effects of different reporter genes on influenza virus replication and reporter activity. In vivo reporter gene expression, in lung tissues, was only detected for eGFP, fRFP and gLUC expressing viruses. In vitro, the eGFP-expressing virus displayed the best reporter stability and could be used for correlative light electron microscopy (CLEM). This strategy was then used to create eGFP-expressing viruses consisting entirely of pandemic H1N1, highly pathogenic avian influenza (HPAI) H5N1 and H7N9. The HPAI H5N1 eGFP-expressing virus infected mice and reporter gene expression was detected, in lung tissues, in vivo. Thus, this study provides new tools and insights for the creation of bioluminescent and fluorescent influenza A reporter viruses.
Collapse
Affiliation(s)
- Monique I. Spronken
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Kirsty R. Short
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Vincent P. Vaes
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Barbara van der Hoeven
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Abraham J. Koster
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Alexander P. Gultyaev
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, the Netherlands
| | - Erin M. Sorell
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- Milken Institute School of Public Health, Department of Health Policy and Management, George Washington University, Washington, DC, United States of America
| | - Miranda de Graaf
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Montserrat Bárcena
- Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Centre, Leiden, the Netherlands
| | - Guus F. Rimmelzwaan
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Ron A. Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, the Netherlands
- * E-mail:
| |
Collapse
|
221
|
Harris RM, Pfeiffer BD, Rubin GM, Truman JW. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife 2015; 4. [PMID: 26193122 PMCID: PMC4525104 DOI: 10.7554/elife.04493] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 07/15/2015] [Indexed: 01/03/2023] Open
Abstract
Drosophila central neurons arise from neuroblasts that generate neurons in a pair-wise fashion, with the two daughters providing the basis for distinct A and B hemilineage groups. 33 postembryonically-born hemilineages contribute over 90% of the neurons in each thoracic hemisegment. We devised genetic approaches to define the anatomy of most of these hemilineages and to assessed their functional roles using the heat-sensitive channel dTRPA1. The simplest hemilineages contained local interneurons and their activation caused tonic or phasic leg movements lacking interlimb coordination. The next level was hemilineages of similar projection cells that drove intersegmentally coordinated behaviors such as walking. The highest level involved hemilineages whose activation elicited complex behaviors such as takeoff. These activation phenotypes indicate that the hemilineages vary in their behavioral roles with some contributing to local networks for sensorimotor processing and others having higher order functions of coordinating these local networks into complex behavior.
Collapse
Affiliation(s)
- Robin M Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Barret D Pfeiffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
222
|
Shih HW, Wu CL, Chang SW, Liu TH, Lai JSY, Fu TF, Fu CC, Chiang AS. Parallel circuits control temperature preference in Drosophila during ageing. Nat Commun 2015; 6:7775. [PMID: 26178754 PMCID: PMC4518306 DOI: 10.1038/ncomms8775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 06/10/2015] [Indexed: 12/15/2022] Open
Abstract
The detection of environmental temperature and regulation of body temperature are integral determinants of behaviour for all animals. These functions become less efficient in aged animals, particularly during exposure to cold environments, yet the cellular and molecular mechanisms are not well understood. Here, we identify an age-related change in the temperature preference of adult fruit flies that results from a shift in the relative contributions of two parallel mushroom body (MB) circuits—the β′- and β-systems. The β′-circuit primarily controls cold avoidance through dopamine signalling in young flies, whereas the β-circuit increasingly contributes to cold avoidance as adult flies age. Elevating dopamine levels in β′-afferent neurons of aged flies restores cold sensitivity, suggesting that the alteration of cold avoidance behaviour with ageing is functionally reversible. These results provide a framework for investigating how molecules and individual neural circuits modulate homeostatic alterations during the course of senescence. The capacity for thermoregulation deteriorates with age, particularly in cold environments. Here the authors demonstrate in Drosophila that age-related changes in cold avoidance result from a shift in the relative contribution of two parallel mushroom body circuits that are modulated by dopamine.
Collapse
Affiliation(s)
- Hsiang-Wen Shih
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Lin Wu
- 1] Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan. [2] Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Sue-Wei Chang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Ho Liu
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jason Sih-Yu Lai
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou 54561, Taiwan
| | - Chien-Chung Fu
- 1] Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan. [2] Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ann-Shyn Chiang
- 1] Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan. [2] Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan. [3] Genomics Research Center, Academia Sinica, Nankang, Taipei 11529, Taiwan. [4] Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan. [5] Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, California 92093-0526, USA
| |
Collapse
|
223
|
Berry JA, Cervantes-Sandoval I, Chakraborty M, Davis RL. Sleep Facilitates Memory by Blocking Dopamine Neuron-Mediated Forgetting. Cell 2015; 161:1656-67. [PMID: 26073942 DOI: 10.1016/j.cell.2015.05.027] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/27/2015] [Accepted: 04/20/2015] [Indexed: 01/10/2023]
Abstract
Early studies from psychology suggest that sleep facilitates memory retention by stopping ongoing retroactive interference caused by mental activity or external sensory stimuli. Neuroscience research with animal models, on the other hand, suggests that sleep facilitates retention by enhancing memory consolidation. Recently, in Drosophila, the ongoing activity of specific dopamine neurons was shown to regulate the forgetting of olfactory memories. Here, we show this ongoing dopaminergic activity is modulated with behavioral state, increasing robustly with locomotor activity and decreasing with rest. Increasing sleep-drive, with either the sleep-promoting agent Gaboxadol or by genetic stimulation of the neural circuit for sleep, decreases ongoing dopaminergic activity, while enhancing memory retention. Conversely, increasing arousal stimulates ongoing dopaminergic activity and accelerates dopaminergic-based forgetting. Therefore, forgetting is regulated by the behavioral state modulation of dopaminergic-based plasticity. Our findings integrate psychological and neuroscience research on sleep and forgetting.
Collapse
Affiliation(s)
- Jacob A Berry
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | | | - Molee Chakraborty
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
224
|
Harris DT, Kallman BR, Mullaney BC, Scott K. Representations of Taste Modality in the Drosophila Brain. Neuron 2015; 86:1449-60. [PMID: 26051423 DOI: 10.1016/j.neuron.2015.05.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/04/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022]
Abstract
Gustatory receptors and peripheral taste cells have been identified in flies and mammals, revealing that sensory cells are tuned to taste modality across species. How taste modalities are processed in higher brain centers to guide feeding decisions is unresolved. Here, we developed a large-scale calcium-imaging approach coupled with cell labeling to examine how different taste modalities are processed in the fly brain. These studies reveal that sweet, bitter, and water sensory cells activate different cell populations throughout the subesophageal zone, with most cells responding to a single taste modality. Pathways for sweet and bitter tastes are segregated from sensory input to motor output, and this segregation is maintained in higher brain areas, including regions implicated in learning and neuromodulation. Our work reveals independent processing of appetitive and aversive tastes, suggesting that flies and mammals use a similar coding strategy to ensure innate responses to salient compounds.
Collapse
Affiliation(s)
- David T Harris
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Benjamin R Kallman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brendan C Mullaney
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
225
|
Tastekin I, Riedl J, Schilling-Kurz V, Gomez-Marin A, Truman J, Louis M. Role of the Subesophageal Zone in Sensorimotor Control of Orientation in Drosophila Larva. Curr Biol 2015; 25:1448-60. [DOI: 10.1016/j.cub.2015.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 01/14/2023]
|
226
|
Kidd S, Struhl G, Lieber T. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit. PLoS Genet 2015; 11:e1005244. [PMID: 26011623 PMCID: PMC4444342 DOI: 10.1371/journal.pgen.1005244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/26/2015] [Indexed: 12/20/2022] Open
Abstract
Olfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs). We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl) in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse. Appropriate behavioral responses to changing environmental signals, such as odors, are essential for an organism’s survival. In Drosophila odors are detected by olfactory receptor neurons (ORNs) that synapse with second order projection neurons (PNs) and local interneurons in morphologically identifiable neuropils in the antennal lobe called glomeruli. Chronic odor exposure leads to changes in animal behavior as well as to changes in the activity of neurons in the olfactory circuit and increases in the volume of glomeruli. Here, we establish that Notch, an evolutionarily conserved transmembrane receptor that plays profound and pervasive roles in animal development, is required in adult Drosophila ORNs for functional and morphological plasticity in response to chronic odor exposure. These findings are significant because they point to a role for Notch in regulating activity dependent plasticity. Furthermore, we show that in regulating the odor dependent change in glomerular volume, Notch acts by both non-canonical, cleavage-independent and canonical, cleavage-dependent mechanisms, with the Notch ligand Delta in PNs switching the balance between the pathways. Because both the Notch pathway and the processing of olfactory information are highly conserved between flies and vertebrates these findings are likely to be of general relevance.
Collapse
Affiliation(s)
- Simon Kidd
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Gary Struhl
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Toby Lieber
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
227
|
Liu Y, Zhang Y, Yao L, Hao H, Fu X, Yang Z, Du E. Enhanced production of porcine circovirus type 2 (PCV2) virus-like particles in Sf9 cells by translational enhancers. Biotechnol Lett 2015; 37:1765-71. [PMID: 25994579 DOI: 10.1007/s10529-015-1856-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To investigate the effect of three translational enhancers for enhancing transgene expression in baculovirus expression vector system using GFP as a reporter gene and selected translational enhancers to increase porcine circovirus type 2 (PCV2) VLPs production. RESULTS P10UTR (the 3'-untranslated region from the baculovirus p10 gene), Syn21 (a synthetic AT-rich 21-bp sequence) and P10UTR/Syn21 increased the GFP yield by 1.4-, 4- and 4.8-fold, respectively. While IVS (intron from Drosophila myosin heavy chain gene) decreased the GFP yield by 65%. Moreover, the synergy of P10UTR/Syn21 increased the yield of PCV2 VLPs by 4.1 fold (45 μg/10(6) cells) compared with standard baculovirus vector. CONCLUSION The synergy of P10UTR/Syn21 is a potential strategy to improve the recombinant vaccine production besides PCV2 VLPs in BEVS.
Collapse
Affiliation(s)
- Yangkun Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
228
|
Legaz S, Exposito JY, Borel A, Candusso MP, Megy S, Montserret R, Lahaye V, Terzian C, Verrier B. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo. Protein Expr Purif 2015; 113:94-101. [PMID: 26002116 DOI: 10.1016/j.pep.2015.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 11/24/2022]
Abstract
Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models.
Collapse
Affiliation(s)
- Sophie Legaz
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, CNRS UMR 5305, 7 passage du Vercors, 69367 Lyon, France
| | - Jean-Yves Exposito
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, CNRS UMR 5305, 7 passage du Vercors, 69367 Lyon, France
| | - Agnès Borel
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, CNRS UMR 5305, 7 passage du Vercors, 69367 Lyon, France
| | - Marie-Pierre Candusso
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Bases Moléculaires et Structurales des Systèmes Infectieux, CNRS UMR 5086, 7 passage du Vercors, 69367 Lyon, France
| | - Simon Megy
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, CNRS UMR 5305, 7 passage du Vercors, 69367 Lyon, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Bases Moléculaires et Structurales des Systèmes Infectieux, CNRS UMR 5086, 7 passage du Vercors, 69367 Lyon, France
| | - Vincent Lahaye
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, CNRS UMR 5305, 7 passage du Vercors, 69367 Lyon, France
| | - Christophe Terzian
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Infection et Evolution des Génomes Viraux, INRA-UCBL UMR754, 69367 Lyon, France
| | - Bernard Verrier
- Institut de Biologie et Chimie des Protéines, FR3302, SFR BioSciences (UMS3444/US8) Gerland-Lyon Sud, Université de Lyon 1, Lyon, France; Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, CNRS UMR 5305, 7 passage du Vercors, 69367 Lyon, France.
| |
Collapse
|
229
|
Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci U S A 2015; 112:E2967-76. [PMID: 25964354 DOI: 10.1073/pnas.1506763112] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe the development and application of methods for high-throughput neuroanatomy in Drosophila using light microscopy. These tools enable efficient multicolor stochastic labeling of neurons at both low and high densities. Expression of multiple membrane-targeted and distinct epitope-tagged proteins is controlled both by a transcriptional driver and by stochastic, recombinase-mediated excision of transcription-terminating cassettes. This MultiColor FlpOut (MCFO) approach can be used to reveal cell shapes and relative cell positions and to track the progeny of precursor cells through development. Using two different recombinases, the number of cells labeled and the number of color combinations observed in those cells can be controlled separately. We demonstrate the utility of MCFO in a detailed study of diversity and variability of Distal medulla (Dm) neurons, multicolumnar local interneurons in the adult visual system. Similar to many brain regions, the medulla has a repetitive columnar structure that supports parallel information processing together with orthogonal layers of cell processes that enable communication between columns. We find that, within a medulla layer, processes of the cells of a given Dm neuron type form distinct patterns that reflect both the morphology of individual cells and the relative positions of their arbors. These stereotyped cell arrangements differ between cell types and can even differ for the processes of the same cell type in different medulla layers. This unexpected diversity of coverage patterns provides multiple independent ways of integrating visual information across the retinotopic columns and implies the existence of multiple developmental mechanisms that generate these distinct patterns.
Collapse
|
230
|
Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, Mensh BD, Branson KM, Simpson JH, Truman JW, Cardona A, Zlatic M. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 2015; 520:633-9. [PMID: 25896325 DOI: 10.1038/nature14297] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
Abstract
Natural events present multiple types of sensory cues, each detected by a specialized sensory modality. Combining information from several modalities is essential for the selection of appropriate actions. Key to understanding multimodal computations is determining the structural patterns of multimodal convergence and how these patterns contribute to behaviour. Modalities could converge early, late or at multiple levels in the sensory processing hierarchy. Here we show that combining mechanosensory and nociceptive cues synergistically enhances the selection of the fastest mode of escape locomotion in Drosophila larvae. In an electron microscopy volume that spans the entire insect nervous system, we reconstructed the multisensory circuit supporting the synergy, spanning multiple levels of the sensory processing hierarchy. The wiring diagram revealed a complex multilevel multimodal convergence architecture. Using behavioural and physiological studies, we identified functionally connected circuit nodes that trigger the fastest locomotor mode, and others that facilitate it, and we provide evidence that multiple levels of multimodal integration contribute to escape mode selection. We propose that the multilevel multimodal convergence architecture may be a general feature of multisensory circuits enabling complex input-output functions and selective tuning to ecologically relevant combinations of cues.
Collapse
Affiliation(s)
- Tomoko Ohyama
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Casey M Schneider-Mizell
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Richard D Fetter
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Javier Valdes Aleman
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Romain Franconville
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Marta Rivera-Alba
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Brett D Mensh
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Kristin M Branson
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Julie H Simpson
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - James W Truman
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Albert Cardona
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Marta Zlatic
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| |
Collapse
|
231
|
Gnerer JP, Venken KJT, Dierick HA. Gene-specific cell labeling using MiMIC transposons. Nucleic Acids Res 2015; 43:e56. [PMID: 25712101 PMCID: PMC4417149 DOI: 10.1093/nar/gkv113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/03/2015] [Indexed: 12/30/2022] Open
Abstract
Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family.
Collapse
Affiliation(s)
- Joshua P Gnerer
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA Dan L. Ducan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Herman A Dierick
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
232
|
Horstick EJ, Jordan DC, Bergeron SA, Tabor KM, Serpe M, Feldman B, Burgess HA. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish. Nucleic Acids Res 2015; 43:e48. [PMID: 25628360 PMCID: PMC4402511 DOI: 10.1093/nar/gkv035] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/12/2015] [Indexed: 12/18/2022] Open
Abstract
Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3′ untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.
Collapse
Affiliation(s)
- Eric J Horstick
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Diana C Jordan
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Sadie A Bergeron
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kathryn M Tabor
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Mihaela Serpe
- Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Benjamin Feldman
- Zebrafish Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Harold A Burgess
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
233
|
Haynes PR, Christmann BL, Griffith LC. A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. eLife 2015; 4:e03868. [PMID: 25564731 PMCID: PMC4305081 DOI: 10.7554/elife.03868] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 01/07/2015] [Indexed: 12/17/2022] Open
Abstract
Sleep promotes memory consolidation in humans and many other species, but the physiological and anatomical relationships between sleep and memory remain unclear. Here, we show the dorsal paired medial (DPM) neurons, which are required for memory consolidation in Drosophila, are sleep-promoting inhibitory neurons. DPMs increase sleep via release of GABA onto wake-promoting mushroom body (MB) α'/β' neurons. Functional imaging demonstrates that DPM activation evokes robust increases in chloride in MB neurons, but is unable to cause detectable increases in calcium or cAMP. Downregulation of α'/β' GABAA and GABABR3 receptors results in sleep loss, suggesting these receptors are the sleep-relevant targets of DPM-mediated inhibition. Regulation of sleep by neurons necessary for consolidation suggests that these brain processes may be functionally interrelated via their shared anatomy. These findings have important implications for the mechanistic relationship between sleep and memory consolidation, arguing for a significant role of inhibitory neurotransmission in regulating these processes.
Collapse
Affiliation(s)
- Paula R Haynes
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Bethany L Christmann
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| | - Leslie C Griffith
- Department of Biology, Volen Center for Complex Systems, National Center for Behavioral Genomics, Brandeis University, Waltham, United States
| |
Collapse
|
234
|
Abstract
Ends-out gene targeting allows seamless replacement of endogenous genes with engineered DNA fragments by homologous recombination, thus creating designer "genes" in the endogenous locus. Conventional gene targeting in Drosophila involves targeting with the preintegrated donor DNA in the larval primordial germ cells. Here we report G: ene targeting during O: ogenesis with L: ethality I: nhibitor and C: RISPR/Cas (Golic+), which improves on all major steps in such transgene-based gene targeting systems. First, donor DNA is integrated into precharacterized attP sites for efficient flip-out. Second, FLP, I-SceI, and Cas9 are specifically expressed in cystoblasts, which arise continuously from female germline stem cells, thereby providing a continual source of independent targeting events in each offspring. Third, a repressor-based lethality selection is implemented to facilitate screening for correct targeting events. Altogether, Golic+ realizes high-efficiency ends-out gene targeting in ovarian cystoblasts, which can be readily scaled up to achieve high-throughput genome editing.
Collapse
|
235
|
Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guérin G, Plaçais PY, Robie AA, Yamagata N, Schnaitmann C, Rowell WJ, Johnston RM, Ngo TTB, Chen N, Korff W, Nitabach MN, Heberlein U, Preat T, Branson KM, Tanimoto H, Rubin GM. Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 2014; 3:e04580. [PMID: 25535794 PMCID: PMC4273436 DOI: 10.7554/elife.04580] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022] Open
Abstract
Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Divya Sitaraman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, United States
| | - Toshiharu Ichinose
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Karla R Kaun
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Katrin Vogt
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ghislain Belliart-Guérin
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Pierre-Yves Plaçais
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Alice A Robie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nobuhiro Yamagata
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | - William J Rowell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Teri-T B Ngo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Nan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michael N Nitabach
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
- Department of Genetics, Yale School of Medicine, New Haven, United States
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, United States
| | - Ulrike Heberlein
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Thomas Preat
- Genes and Dynamics of Memory Systems, Brain Plasticity Unit, Centre National de la Recherche Scientifique, ESPCI, Paris, France
| | - Kristin M Branson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Hiromu Tanimoto
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| |
Collapse
|
236
|
Issman-Zecharya N, Schuldiner O. The PI3K Class III Complex Promotes Axon Pruning by Downregulating a Ptc-Derived Signal via Endosome-Lysosomal Degradation. Dev Cell 2014; 31:461-73. [DOI: 10.1016/j.devcel.2014.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 09/08/2014] [Accepted: 10/22/2014] [Indexed: 01/20/2023]
|
237
|
Lin S, Owald D, Chandra V, Talbot C, Huetteroth W, Waddell S. Neural correlates of water reward in thirsty Drosophila. Nat Neurosci 2014; 17:1536-42. [PMID: 25262493 PMCID: PMC4213141 DOI: 10.1038/nn.3827] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/01/2014] [Indexed: 11/09/2022]
Abstract
Drinking water is innately rewarding to thirsty animals. In addition, the consumed value can be assigned to behavioral actions and predictive sensory cues by associative learning. Here we show that thirst converts water avoidance into water-seeking in naive Drosophila melanogaster. Thirst also permitted flies to learn olfactory cues paired with water reward. Water learning required water taste and <40 water-responsive dopaminergic neurons that innervate a restricted zone of the mushroom body γ lobe. These water learning neurons are different from those that are critical for conveying the reinforcing effects of sugar. Naive water-seeking behavior in thirsty flies did not require water taste but relied on another subset of water-responsive dopaminergic neurons that target the mushroom body β' lobe. Furthermore, these naive water-approach neurons were not required for learned water-seeking. Our results therefore demonstrate that naive water-seeking, learned water-seeking and water learning use separable neural circuitry in the brain of thirsty flies.
Collapse
Affiliation(s)
- Suewei Lin
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - David Owald
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Vikram Chandra
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
- Balliol College, The University of Oxford, Broad Street, Oxford, OX1 3BJ, UK
| | - Clifford Talbot
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Wolf Huetteroth
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| |
Collapse
|
238
|
Engrailed alters the specificity of synaptic connections of Drosophila auditory neurons with the giant fiber. J Neurosci 2014; 34:11691-704. [PMID: 25164665 DOI: 10.1523/jneurosci.1939-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We show that a subset of sound-detecting Johnston's Organ neurons (JONs) in Drosophila melanogaster, which express the transcription factors Engrailed (En) and Invected (Inv), form mixed electrical and chemical synaptic inputs onto the giant fiber (GF) dendrite. These synaptic connections are detected by trans-synaptic Neurobiotin (NB) transfer and by colocalization of Bruchpilot-short puncta. We then show that misexpressing En postmitotically in a second subset of sound-responsive JONs causes them to form ectopic electrical and chemical synapses with the GF, in turn causing that postsynaptic neuron to redistribute its dendritic branches into the vicinity of these afferents. We also introduce a simple electrophysiological recording paradigm for quantifying the presynaptic and postsynaptic electrical activity at this synapse, by measuring the extracellular sound-evoked potentials (SEPs) from the antennal nerve while monitoring the likelihood of the GF firing an action potential in response to simultaneous subthreshold sound and voltage stimuli. Ectopic presynaptic expression of En strengthens the synaptic connection, consistent with there being more synaptic contacts formed. Finally, RNAi-mediated knockdown of En and Inv in postmitotic neurons reduces SEP amplitude but also reduces synaptic strength at the JON-GF synapse. Overall, these results suggest that En and Inv in JONs regulate both neuronal excitability and synaptic connectivity.
Collapse
|
239
|
Kohl J, Ng J, Cachero S, Ciabatti E, Dolan MJ, Sutcliffe B, Tozer A, Ruehle S, Krueger D, Frechter S, Branco T, Tripodi M, Jefferis GSXE. Ultrafast tissue staining with chemical tags. Proc Natl Acad Sci U S A 2014; 111:E3805-14. [PMID: 25157152 PMCID: PMC4246963 DOI: 10.1073/pnas.1411087111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded fluorescent proteins and immunostaining are widely used to detect cellular and subcellular structures in fixed biological samples. However, for thick or whole-mount tissue, each approach suffers from limitations, including limited spectral flexibility and lower signal or slow speed, poor penetration, and high background labeling, respectively. We have overcome these limitations by using transgenically expressed chemical tags for rapid, even, high-signal and low-background labeling of thick biological tissues. We first construct a platform of widely applicable transgenic Drosophila reporter lines, demonstrating that chemical labeling can accelerate staining of whole-mount fly brains by a factor of 100. Using viral vectors to deliver chemical tags into the mouse brain, we then demonstrate that this labeling strategy works well in mice. Thus this tag-based approach drastically improves the speed and specificity of labeling genetically marked cells in intact and/or thick biological samples.
Collapse
Affiliation(s)
- Johannes Kohl
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Julian Ng
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Sebastian Cachero
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ernesto Ciabatti
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Michael-John Dolan
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ben Sutcliffe
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Adam Tozer
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Sabine Ruehle
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Daniel Krueger
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Shahar Frechter
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Tiago Branco
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Marco Tripodi
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Gregory S X E Jefferis
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
240
|
Lim RS, Eyjólfsdóttir E, Shin E, Perona P, Anderson DJ. How food controls aggression in Drosophila. PLoS One 2014; 9:e105626. [PMID: 25162609 PMCID: PMC4146546 DOI: 10.1371/journal.pone.0105626] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022] Open
Abstract
How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. For instance, it is unclear whether food increases aggression directly, or as a secondary consequence of increased social interactions caused by attraction to food. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner by which food influences aggression. We show that food promotes aggression in flies, and that it does so independently of any effect on frequency of contact between males, increase in locomotor activity or general enhancement of social interactions. Importantly, the level of aggression depends on the absolute amount of food, rather than on its surface area or concentration. When food resources exceed a certain level, aggression is diminished, suggestive of reduced competition. Finally, we show that detection of sugar via Gr5a+ gustatory receptor neurons (GRNs) is necessary for food-promoted aggression. These data demonstrate that food exerts a specific effect to promote aggression in male flies, and that this effect is mediated, at least in part, by sweet-sensing GRNs.
Collapse
Affiliation(s)
- Rod S. Lim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
| | - Eyrún Eyjólfsdóttir
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Euncheol Shin
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Pietro Perona
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - David J. Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
241
|
Li F, Wantuch HA, Linger RJ, Belikoff EJ, Scott MJ. Transgenic sexing system for genetic control of the Australian sheep blow fly Lucilia cuprina. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 51:80-88. [PMID: 24928635 DOI: 10.1016/j.ibmb.2014.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 06/03/2023]
Abstract
The New World screwworm and the Australian sheep blowfly Lucilia cuprina are devastating pests of livestock. The larvae of these species feed on the tissue of the living animal and can cause death if untreated. The sterile insect technique or SIT was used to eradicate screwworm from North and Central America. This inspired efforts to develop strains containing complex chromosomal rearrangements for genetic control of L. cuprina in Australia. Although one field trial was promising, the approach was abandoned due to costs and difficulties in mass rearing the strain. As the efficiency of SIT can be significantly increased if only sterile males are released, we have developed transgenic strains of L. cuprina that carry a dominant tetracycline repressible female lethal genetic system. Lethality is due to overexpression of an auto-regulated tetracycline repressible transactivator (tTA) gene and occurs mostly at the pupal stage. Dominant female lethality was achieved by replacing the Drosophila hsp70 core promoter with a Lucilia hsp70 core promoter-5'UTR for tTA overexpression. The strains carry a dominant strongly expressed marker that will facilitate identification in the field. Interestingly, the sexes could be reliably sorted by fluorescence or color from the early first instar larval stage as females that overexpress tTA also overexpress the linked marker gene. Male-only strains of L. cuprina developed in this study could form the basis for a future genetic control program. Moreover, the system developed for L. cuprina should be readily transferrable to other major calliphorid livestock pests including the New and Old World screwworm.
Collapse
Affiliation(s)
- Fang Li
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | - Holly A Wantuch
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | - Rebecca J Linger
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | - Esther J Belikoff
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| | - Maxwell J Scott
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA.
| |
Collapse
|
242
|
Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E2967-76. [PMID: 25002478 DOI: 10.1073/pnas.1405500111] [Citation(s) in RCA: 708] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system has emerged recently as a powerful method to manipulate the genomes of various organisms. Here, we report a toolbox for high-efficiency genome engineering of Drosophila melanogaster consisting of transgenic Cas9 lines and versatile guide RNA (gRNA) expression plasmids. Systematic evaluation reveals Cas9 lines with ubiquitous or germ-line-restricted patterns of activity. We also demonstrate differential activity of the same gRNA expressed from different U6 snRNA promoters, with the previously untested U6:3 promoter giving the most potent effect. An appropriate combination of Cas9 and gRNA allows targeting of essential and nonessential genes with transmission rates ranging from 25-100%. We also demonstrate that our optimized CRISPR/Cas tools can be used for offset nicking-based mutagenesis. Furthermore, in combination with oligonucleotide or long double-stranded donor templates, our reagents allow precise genome editing by homology-directed repair with rates that make selection markers unnecessary. Last, we demonstrate a novel application of CRISPR/Cas-mediated technology in revealing loss-of-function phenotypes in somatic cells following efficient biallelic targeting by Cas9 expressed in a ubiquitous or tissue-restricted manner. Our CRISPR/Cas tools will facilitate the rapid evaluation of mutant phenotypes of specific genes and the precise modification of the genome with single-nucleotide precision. Our results also pave the way for high-throughput genetic screening with CRISPR/Cas.
Collapse
|
243
|
A spike-timing mechanism for action selection. Nat Neurosci 2014; 17:962-70. [PMID: 24908103 DOI: 10.1038/nn.3741] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/14/2014] [Indexed: 12/13/2022]
Abstract
We discovered a bimodal behavior in the genetically tractable organism Drosophila melanogaster that allowed us to directly probe the neural mechanisms of an action selection process. When confronted by a predator-mimicking looming stimulus, a fly responds with either a long-duration escape behavior sequence that initiates stable flight or a distinct, short-duration sequence that sacrifices flight stability for speed. Intracellular recording of the descending giant fiber (GF) interneuron during head-fixed escape revealed that GF spike timing relative to parallel circuits for escape actions determined which of the two behavioral responses was elicited. The process was well described by a simple model in which the GF circuit has a higher activation threshold than the parallel circuits, but can override ongoing behavior to force a short takeoff. Our findings suggest a neural mechanism for action selection in which relative activation timing of parallel circuits creates the appropriate motor output.
Collapse
|
244
|
Kayser MS, Yue Z, Sehgal A. A critical period of sleep for development of courtship circuitry and behavior in Drosophila. Science 2014; 344:269-74. [PMID: 24744368 PMCID: PMC4479292 DOI: 10.1126/science.1250553] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Most animals sleep more early in life than in adulthood, but the function of early sleep is not known. Using Drosophila, we found that increased sleep in young flies was associated with an elevated arousal threshold and resistance to sleep deprivation. Excess sleep results from decreased inhibition of a sleep-promoting region by a specific dopaminergic circuit. Experimental hyperactivation of this circuit in young flies results in sleep loss and lasting deficits in adult courtship behaviors. These deficits are accompanied by impaired development of a single olfactory glomerulus, VA1v, which normally displays extensive sleep-dependent growth after eclosion. Our results demonstrate that sleep promotes normal brain development that gives rise to an adult behavior critical for species propagation and suggest that rapidly growing regions of the brain are most susceptible to sleep perturbations early in life.
Collapse
Affiliation(s)
- Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhifeng Yue
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
245
|
Masuda-Nakagawa LM, Ito K, Awasaki T, O'Kane CJ. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila. Front Neural Circuits 2014; 8:35. [PMID: 24782716 PMCID: PMC3988396 DOI: 10.3389/fncir.2014.00035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/23/2014] [Indexed: 11/13/2022] Open
Abstract
Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs) are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region) of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has pre-synaptic terminals in the calyx and post-synaptic branches in the MB lobes (output axonal area). We call this neuron the larval anterior paired lateral (APL) neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP) suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs), but few contacts with incoming projection neurons (PNs). Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a manner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.
Collapse
Affiliation(s)
| | - Kei Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo Tokyo, Japan
| | - Takeshi Awasaki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo Tokyo, Japan
| | - Cahir J O'Kane
- Department of Genetics, University of Cambridge Cambridge, UK
| |
Collapse
|
246
|
Genetic identification and separation of innate and experience-dependent courtship behaviors in Drosophila. Cell 2014; 156:236-48. [PMID: 24439379 PMCID: PMC4677784 DOI: 10.1016/j.cell.2013.11.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/26/2013] [Accepted: 11/13/2013] [Indexed: 12/23/2022]
Abstract
Wild-type D. melanogaster males innately possess the ability to perform a multistep courtship ritual to conspecific females. The potential for this behavior is specified by the male-specific products of the fruitless (fru(M)) gene; males without fru(M) do not court females when held in isolation. We show that such fru(M) null males acquire the potential for courtship when grouped with other flies; they apparently learn to court flies with which they were grouped, irrespective of sex or species and retain this behavior for at least a week. The male-specific product of the doublesex gene (dsx(M)) is necessary and sufficient for the acquisition of the potential for such experience-dependent courtship. These results reveal a process that builds, via dsx(M) and social experience, the potential for a more flexible sexual behavior, which could be evolutionarily conserved as dsx-related genes that function in sexual development are found throughout the animal kingdom.
Collapse
|
247
|
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat Neurosci 2014; 17:559-68. [PMID: 24561998 PMCID: PMC4000970 DOI: 10.1038/nn.3660] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 01/23/2014] [Indexed: 11/22/2022]
Abstract
Sparse coding may be a general strategy of neural systems to augment memory capacity. In Drosophila, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit show that Kenyon cells activate APL and APL inhibits Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreases the sparseness of Kenyon cell odor responses, increases inter-odor correlations, and prevents flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor-specificity of memories.
Collapse
|
248
|
Making Drosophila lineage–restricted drivers via patterned recombination in neuroblasts. Nat Neurosci 2014; 17:631-7. [DOI: 10.1038/nn.3654] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 11/08/2022]
|
249
|
Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 2014; 196:951-60. [PMID: 24451596 DOI: 10.1534/genetics.113.161141] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to distinguish cells and tissues of interest is critical for understanding their biological importance. In genetic model organisms, a prominent approach for discerning particular cells or tissues from others is the use of cell or tissue-specific enhancers to drive fluorescent reporters. This approach, however, is often limited by the brightness of the fluorescent reporter. To augment the ability to visualize cells or tissues of interest in Drosophila melanogaster, homo-hexameric GFP and mCherry reporters were developed for the GAL4, Q, and LexA transcription systems and functionally validated in vivo. The GFP and mCherry homo-hexameric fusion proteins exhibited significantly enhanced fluorescence as compared to monomeric fluorescent reporters and could be visualized by direct fluorescence throughout the cytoplasm of neurons, including the fine processes of axons and dendrites. These high-sensitivity fluorescent reporters of cell morphology can be utilized for a variety of purposes, especially facilitating fluorescence-based genetic screens for cell morphology phenotypes. These results suggest that the strategy of fusing monomeric fluorescent proteins in tandem to enhance brightness should be generalizable to other fluorescent proteins and other genetic model organisms.
Collapse
|
250
|
Hudson AM, Cooley L. Methods for studying oogenesis. Methods 2014; 68:207-17. [PMID: 24440745 DOI: 10.1016/j.ymeth.2014.01.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022] Open
Abstract
Drosophila oogenesis is an excellent system for the study of developmental cell biology. Active areas of research include stem cell maintenance, gamete development, pattern formation, cytoskeletal regulation, intercellular communication, intercellular transport, cell polarity, cell migration, cell death, morphogenesis, cell cycle control, and many more. The large size and relatively simple organization of egg chambers make them ideally suited for microscopy of both living and fixed whole mount tissue. A wide range of tools is available for oogenesis research. Newly available shRNA transgenic lines provide an alternative to classic loss-of-function F2 screens and clonal screens. Gene expression can be specifically controlled in either germline or somatic cells using the Gal4/UAS system. Protein trap lines provide fluorescent tags of proteins expressed at endogenous levels for live imaging and screening backgrounds. This review provides information on many available reagents and key methods for research in oogenesis.
Collapse
Affiliation(s)
- Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, United States
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, United States; Department of Cell Biology, Yale University School of Medicine, United States; Department of Molecular, Cellular & Developmental Biology, Yale University, United States.
| |
Collapse
|