201
|
Song M, Liu Y, Li X, Lu S. Advances on Atmospheric Oxidation Mechanism of Typical Aromatic Hydrocarbons. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
202
|
Vlachogiannis DM, Xu Y, Jin L, González MC. Correlation networks of air particulate matter ( PM 2.5 ): a comparative study. APPLIED NETWORK SCIENCE 2021; 6:32. [PMID: 33907706 PMCID: PMC8062950 DOI: 10.1007/s41109-021-00373-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 05/05/2023]
Abstract
Over the last decades, severe haze pollution constitutes a major source of far-reaching environmental and human health problems. The formation, accumulation and diffusion of pollution particles occurs under complex temporal scales and expands throughout a wide spatial coverage. Seeking to understand the transport patterns of haze pollutants in China, we review a proposed framework of time-evolving directed and weighted air quality correlation networks. In this work, we evaluate monitoring stations' time-series data from China and California, to test the sensitivity of the framework to region size, climate and pollution magnitude across multiple years (2014-2020). We learn that the use of hourly PM 2.5 concentration data is needed to detect periodicities in the positive and negative correlations of the concentrations. In addition, we show that the standardization of the correlation function method is required to obtain networks with more meaningful links when evaluating the dispersion of a severe haze event at the North China Plain or a wildfire event in California during December 2017. Post COVID-19 outbreak in China, we observe a significant drop in the magnitude of the assigned weights, indicating the improved air quality and the slowed transport of PM 2.5 due to the lockdown. To identify regions where pollution transport is persistent, we extend the framework, partitioning the dynamic networks and reducing the networks' complexity through node subsampling. The end result separates the temporal series of PM 2.5 in set of regions that are similarly affected through the year.
Collapse
Affiliation(s)
- Dimitrios M. Vlachogiannis
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Yanyan Xu
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Department of City and Regional Planning, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Ling Jin
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Marta C. González
- Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720 USA
- Department of City and Regional Planning, University of California at Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
203
|
Spatiotemporal Variations in Particulate Matter and Air Quality over China: National, Regional and Urban Scales. ATMOSPHERE 2020. [DOI: 10.3390/atmos12010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ambient exposure to particulate matter (PM) air pollution is known to have an adverse effect on public health worldwide. Rapid increase rates of economic and urbanization, industrial development, and environmental change in China have exacerbated the occurrence of air pollution. This study examines the temporal and spatial distribution of PM on national, regional and local scales in China during 2014–2016. The relationships between the PM2.5 concentration rising rate (PMRR) and meteorological parameters (wind speed and wind direction) are discussed. The dataset of Air Quality Index (AQI), PM10 (PM diameter < 10 μm ) and PM2.5 (PM diameter < 2.5 μm) were collected in 169, 369, and 367 cities in 2014, 2015, and 2016 over China, respectively. The results show that the air quality has been generally improved on the national scale, but deteriorated locally in areas such as the Feiwei Plain. The northwest China (NW) and Beijing-Tianjin-Hebei (BTH) regions are the worst areas of PM pollution, which are mainly manifested by the excessive PM10 caused by blowing dust in spring in NW and the intensive emissions of PM2.5 in winter in BTH. With the classified seven geographic regions, we demonstrate the significant spatial difference and seasonal variation of PM concentration and PM2.5/PM10 ratio, which indicate different emission sources. Furthermore, the dynamic analysis of the PM2.5 pollution process in 11 large urban cities shows dramatic effects of wind speed and wind direction on the PM2.5 loadings.
Collapse
|
204
|
Evolution of Urban Haze in Greater Bangkok and Association with Local Meteorological and Synoptic Characteristics during Two Recent Haze Episodes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249499. [PMID: 33352994 PMCID: PMC7766008 DOI: 10.3390/ijerph17249499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
This present work investigates several local and synoptic meteorological aspects associated with two wintertime haze episodes in Greater Bangkok using observational data, covering synoptic patterns evolution, day-to-day and diurnal variation, dynamic stability, temperature inversion, and back-trajectories. The episodes include an elevated haze event of 16 days (14–29 January 2015) for the first episode and 8 days (19–26 December 2017) for the second episode, together with some days before and after the haze event. Daily PM2.5 was found to be 50 µg m−3 or higher over most of the days during both haze events. These haze events commonly have cold surges as the background synoptic feature to initiate or trigger haze evolution. A cold surge reached the study area before the start of each haze event, causing temperature and relative humidity to drop abruptly initially but then gradually increased as the cold surge weakened or dissipated. Wind speed was relatively high when the cold surge was active. Global radiation was generally modulated by cloud cover, which turns relatively high during each haze event because cold surge induces less cloud. Daytime dynamic stability was generally unstable along the course of each haze event, except being stable at the ending of the second haze event due to a tropical depression. In each haze event, low-level temperature inversion existed, with multiple layers seen in the beginning, effectively suppressing atmospheric dilution. Large-scale subsidence inversion aloft was also persistently present. In both episodes, PM2.5 showed stronger diurnality during the time of elevated haze, as compared to the pre- and post-haze periods. During the first episode, an apparent contrast of PM2.5 diurnality was seen between the first and second parts of the haze event with relatively low afternoon PM2.5 over its first part, but relatively high afternoon PM2.5 over its second part, possibly due to the role of secondary aerosols. PM2.5/PM10 ratio was relatively lower in the first episode because of more impact of biomass burning, which was in general agreement with back-trajectories and active fire hotspots. The second haze event, with little biomass burning in the region, was likely to be caused mainly by local anthropogenic emissions. These findings suggest a need for haze-related policymaking with an integrated approach that accounts for all important emission sectors for both particulate and gaseous precursors of secondary aerosols. Given that cold surges induce an abrupt change in local meteorology, the time window to apply control measures for haze is limited, emphasizing the need for readiness in mitigation responses and early public warning.
Collapse
|
205
|
Keshavarz F, Kurtén T, Vehkamäki H, Kangasluoma J. Seed-Adsorbate Interactions as the Key of Heterogeneous Butanol and Diethylene Glycol Nucleation on Ammonium Bisulfate and Tetramethylammonium Bromide. J Phys Chem A 2020; 124:10527-10539. [PMID: 33267578 DOI: 10.1021/acs.jpca.0c08373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Condensation particle counter (CPC) instruments are commonly used to detect atmospheric nanoparticles. They operate on the basis of condensing an organic working fluid on the nanoparticle seeds to grow the particles to a detectable size, and at the size of few nanometers, their efficiency depends on how well the working fluid interacts with the seeds under the measurement conditions. This study models the first steps of heterogeneous nucleation of two working fluids commonly used in CPCs (diethylene glycol (DEG) and n-butanol) onto two positively charged seeds, ammonium bisulfate and tetramethylammonium bromide. The nucleation process is modeled on a molecular level using a combination of systematic configurational sampling and density functional theory (DFT). We take into account the conformational flexibility of DEG and n-butanol and determine the key factors that can improve the efficiency of nanoparticle measurements by CPCs. The results show that hydrogen bonding between the seed and the working fluid molecules is central to the adsorption of the first DEG/n-butanol molecules onto the seeds. However, intermolecular hydrogen bonding between the adsorbed molecules can also enhance the nucleation process for the weakly adsorbing vapor molecules. Accordingly, the heterogeneous nucleation probability is higher for working fluid-nanoparticle combinations with a higher potential for hydrogen bonding; in this case, DEG and ammonium bisulfate. Moreover, conformational analysis and methodology evaluations indicate that the consideration of adsorbate conformers and step-wise addition of the vapor molecules to the seeds is not essential for qualitative modeling of heterogeneous nucleation systems, at least for systems where the adsorbate and seed chemical properties are clearly different. This is the first molecular-level modeling study reporting detailed chemical reasons for experimentally observed seed and working fluid preferences in CPCs and reproducing the experimental observations. Our presented approach can be likely used for predicting preferences in similar nucleating systems.
Collapse
Affiliation(s)
- Fatemeh Keshavarz
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Theo Kurtén
- Department of Chemistry, Faculty of Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Juha Kangasluoma
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland.,Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
206
|
Martin BL, Thompson LC, Kim YH, King C, Snow S, Schladweiler M, Haykal-Coates N, George I, Gilmour MI, Kodavanti UP, Hazari MS, Farraj AK. Peat smoke inhalation alters blood pressure, baroreflex sensitivity, and cardiac arrhythmia risk in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:748-763. [PMID: 33016233 PMCID: PMC7682804 DOI: 10.1080/15287394.2020.1826375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Wildland fires (WF) are linked to adverse health impacts related to poor air quality. The cardiovascular impacts of emissions from specific biomass sources are however unknown. The purpose of this study was to assess the cardiovascular impacts of a single exposure to peat smoke, a key regional WF air pollution source, and relate these to baroreceptor sensitivity and inflammation. Three-month-old male Wistar-Kyoto rats, implanted with radiotelemeters for continuous monitoring of heart rate (HR), blood pressure (BP), and spontaneous baroreflex sensitivity (BRS), were exposed once, for 1-hr, to filtered air or low (0.38 mg/m3 PM) or high (4.04 mg/m3) concentrations of peat smoke. Systemic markers of inflammation and sensitivity to aconitine-induced cardiac arrhythmias, a measure of latent myocardial vulnerability, were assessed in separate cohorts of rats 24 hr after exposure. PM size (low peat = 0.4-0.5 microns vs. high peat = 0.8-1.2 microns) and proportion of organic carbon (low peat = 77% vs. high peat = 65%) varied with exposure level. Exposure to high peat and to a lesser extent low peat increased systolic and diastolic BP relative to filtered air. In contrast, only exposure to low peat elevated BRS and aconitine-induced arrhythmogenesis relative to filtered air and increased circulating levels of low-density lipoprotein cholesterol, complement components C3 and C4, angiotensin-converting enzyme (ACE), and white blood cells. Taken together, exposure to peat smoke produced overt and latent cardiovascular consequences that were likely influenced by physicochemical characteristics of the smoke and associated adaptive homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | - Yong Ho Kim
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, NC
| | - Charly King
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | - Samantha Snow
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
- ICF International, Durham, NC
| | | | | | - Ingrid George
- Air Methods & Characterization Division, US EPA, RTP, NC
| | - M. Ian Gilmour
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | | | - Mehdi S. Hazari
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, US EPA, RTP, NC
| |
Collapse
|
207
|
Hou GL, Wang XB. Molecular Specificity and Proton Transfer Mechanisms in Aerosol Prenucleation Clusters Relevant to New Particle Formation. Acc Chem Res 2020; 53:2816-2827. [PMID: 33108162 DOI: 10.1021/acs.accounts.0c00444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atmospheric aerosol particles influence the Earth's radiative energy balance and cloud properties, thus impacting the air quality, human health, and Earth's climate change. Because of the important scientific and overarching practical implications of aerosols, the past two decades have seen extensive research efforts, with emphasis on the chemical compositions and underlying mechanisms of aerosol formation. It has been recognized that new particle formation (NPF) contributes up to 50% of atmospheric aerosols. Nowadays, the general consensus is that NPF proceeds via two distinct stages: the nucleation from gaseous precursors to form critical nuclei of sub-1-2 nm size, and the subsequent growth into large particles. However, a fundamental understanding of both the NPF process and molecular-level characterization of the critical size aerosol clusters is still largely missing, hampering the efforts in developing reliable and predictive aerosol nucleation and climate models.Both field measurements and laboratory experiments have gathered convincing evidence about the importance of volatile organic compounds (VOCs) in enhancing the nucleation and growth of aerosol particles. Numerous and abundant small clusters composed of sulfuric acid or bisulfate ion and organic molecules have been shown to exist in ∼2 nm sized aerosol particles. In particular, kinetic studies indicated the formation of clusters with one H2SO4 and one or two organics being the rate-limiting step.This Account discusses our effort in developing an integrated approach, which involves the laboratory cluster synthesis via electrospray ionization, size and composition analysis via mass spectrometry, photoelectron spectroscopic characterization, and quantum mechanics based theoretical modeling, to investigate the structures, energetics, and thermodynamics of the aerosol prenucleation clusters relevant to NPF. We have been focusing on the clusters formed between H2SO4 or HSO4- and the organics from oxidation of both biogenic and anthropogenic emissions. We illustrated the significant thermodynamic advantage by involving organic acids in the formation and growth of aerosol clusters. We revealed that the functional groups in the organics play critical roles in promoting NPF process. The enhanced roles were quantified explicitly for specific functional groups, establishing a Molecular Scale that ranks highly hierarchic intermolecular interactions critical to aerosol formation. The different cluster formation pathways, probably mimicking the various polluted industrial environments, that involve cis-pinonic and cis-pinic acids were unveiled as well. Furthermore, one intriguing fundamental phenomenon on the unusual protonation pattern, which violates the gas-phase acidity (proton affinity) prediction, was discovered to be common in sulfuric acid-organic clusters. The mechanism underlying the phenomenon has been rationalized by employing the temperature-dependent experiments of sulfuric acid-formate/halide model clusters, which could explain the high stability of the sulfuric acid containing aerosol clusters. Our work provides critical molecular-level information to shed light on the initial steps of nucleation of common atmospheric precursors and benchmarks critical data for large-scale theoretical modeling to further address problems of environmental interest.
Collapse
Affiliation(s)
- Gao-Lei Hou
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| | - Xue-Bin Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K8-88, Richland, Washington 99352, United States
| |
Collapse
|
208
|
Li G, Fang C, He S. The influence of environmental efficiency on PM 2.5 pollution: Evidence from 283 Chinese prefecture-level cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141549. [PMID: 32814301 DOI: 10.1016/j.scitotenv.2020.141549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Environmental inefficiency caused by the extensive economic growth pattern is considered a critical driver of the unprecedented PM2.5 (fine particulate matter) pollution in China. However, the nexus between environmental efficiency and PM2.5 concentrations has rarely been examined. We used a recently developed data envelopment analysis method to measure environmental efficiency, environmental total factor productivity, and their compositions in China at the prefecture level from 2003 to 2013 and examined the effects of environmental efficiency on PM2.5 pollution. The results indicated that improvements in environmental efficiency significantly ameliorated PM2.5 pollution. The effect of technological progress on PM2.5 reduction is limited, but the pure efficiency and scale efficiency promoted by enhanced management level and optimized production scale strongly contribute to PM2.5 mitigation. The significant spatial spillover of environmental efficiency and PM2.5 pollution introduces challenges and opportunities for lowering PM2.5 emissions. The impact of environmental efficiency on PM2.5 pollution exhibits significant spatiotemporal heterogeneity, and the strength of influence tends to increase with PM2.5 concentration and become more pronounced over time. Furthermore, several socioeconomic factors are related to PM2.5 pollution, which implies that PM2.5 control is a complex system and requires a comprehensive policy mix.
Collapse
Affiliation(s)
- Guangdong Li
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), 11A Datun Road, Chaoyang District, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanglin Fang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), 11A Datun Road, Chaoyang District, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Sanwei He
- School of Public Administration, Zhongnan University of Economics and Law, Wuhan 430073, China.
| |
Collapse
|
209
|
Zhang W, Wang P, Zhu Y, Wang D, Yang R, Li Y, Matsiko J, Zuo P, Qin L, Yang X, Zhang Q, Jiang G. Occurrence and human exposure assessment of organophosphate esters in atmospheric PM 2.5 in the Beijing-Tianjin-Hebei region, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111399. [PMID: 33022444 DOI: 10.1016/j.ecoenv.2020.111399] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate esters (OPEs) in atmospheric fine particles (PM2.5) were comprehensively investigated in the Beijing-Tianjin-Hebei (BTH) region from April 2016 to March 2017. The concentrations of Σ8OPEs in all the five sampling sites ranged from 90 to 8291 pg/m3 (mean 1148 ± 1239 pg/m3; median 756 pg/m3). The highest level (median 1067 pg/m3) was found at one of the urban sites in Beijing, followed by Tianjin (746 pg/m3) and Shijiazhuang (724 pg/m3). Tris(2-chloroethyl) phosphate (TCEP) and tri[(2R)-1-chloro-2-propyl] phosphate (TCPP) were the dominant compounds across the five sampling locations. Generally, the concentrations of chlorinated OPEs were relatively higher in summer than in winter (p < 0.05), but no significant seasonal difference was discovered for non-chlorinated individual OPEs. The concentrations of tri-n-butyl phosphate (TBP), TCEP, TCPP and triphenyl phosphate (TPP) were positively correlated with the meteorological parameters (i.e. temperature and relative humidity) (p < 0.05), indicating an evident influence of meteorological condition on OPE distribution. We observed a negative correlation (p < 0.05) between octanol-air partition coefficients (logKoa) and the ratio of PM2.5-bound OPE concentrations to total suspended particulates-bound OPE concentrations, suggesting that physicochemical properties affect the particle-size distribution of OPEs. Furthermore, the median value of cancer hazard quotients (HQs) of TCEP was higher than TBP and tris(2-ethylhexyl) phosphate (TEHP). The health risk assessment showed that HQ values for children were ~1.6 times higher than those for adults. Relatively higher health risk induced by PM2.5-bound OPEs via inhalation was found during severe hazy days than in clear days.
Collapse
Affiliation(s)
- Weiwei Zhang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition and Health and Food Safety, Beijing 102209, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ying Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dou Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Julius Matsiko
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Directorate of Research, Innovations, Consultancy and Extension, Kampala International University, P. O. Box 20000, Kampala, Uganda
| | - Peijie Zuo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Qin
- Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Xing Yang
- Hebei Province Environmental Emergency and Heavy Pollution Weather Forewarning Centre, Shijiazhuang 050000, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
210
|
Abstract
Urbanization is an ongoing global phenomenon as more and more people are moving from rural to urban areas for better employment opportunities and a higher standard of living, leading to the growth of megacities, broadly defined as urban agglomeration with more than 10 million inhabitants. Intense activities in megacities induce high levels of air pollutants in the atmosphere that harm human health, cause regional haze and acid deposition, damage crops, influence air quality in regions far from the megacity sources, and contribute to climate change. Since the Great London Smog and the first recognized episode of Los Angeles photochemical smog seventy years ago, substantial progress has been made in improving the scientific understanding of air pollution and in developing emissions reduction technologies. However, much remains to be understood about the complex processes of atmospheric oxidation mechanisms; the formation and evolution of secondary particles, especially those containing organic species; and the influence of emerging emissions sources and changing climate on air quality and health. While air quality has substantially improved in megacities in developed regions and some in the developing regions, many still suffer from severe air pollution. Strong regional and international collaboration in data collection and assessment will be beneficial in strengthening the capacity. This article provides an overview of the sources of emissions in megacities, atmospheric physicochemical processes, air quality trends and management in a few megacities, and the impacts on health and climate. The challenges and opportunities facing megacities due to lockdown during the COVID-19 pandemic is also discussed.
Collapse
Affiliation(s)
- Luisa T Molina
- Molina Center for Energy and the Environment, La Jolla, California 92037, USA.
| |
Collapse
|
211
|
Liu X, Wang Z, Sun X, Zhang L, Zhang M. Clarifying the relationship among clean energy consumption, haze pollution and economic growth–based on the empirical analysis of China's Yangtze River Delta Region. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
212
|
Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci Rep 2020. [DOI: 10.1038/s41598-020-71338-7 10.1038/s41598-020-71338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AbstractExtensive studies have been carried out on the impact of human activities on air pollution, but systematic investigation on the relationship between air pollutant and meteorological conditions is still insufficient, especially in the context of China’s site scale and recent comprehensive environmental pollution control. Here, we used a spatial interpolation technology to establish a set of data sets of pollutants and meteorological elements that are spatially matched at 896 stations in China to reveal the air pollutant-meteorological interactions between 2014 and 2019. We found that air pollution and meteorological elements have obvious seasonal and regional characteristics. Over the last few years, the concentration of most air pollutants in China has dropped significantly except for O3. The increase in O3 concentration was closely related to the decrease of particulate matter and NO2 concentration. The concentration of most air pollutants was affected by meteorological conditions, but the level of impact depended on the type of pollutants and varied across regions. The concentration of air pollutants at most stations was significantly negatively correlated with wind speed, precipitation and relative humidity, but positively correlated with atmospheric pressure. As the latitude increases, the impact of temperature on the concentration of air pollutants becomes more obvious. To effectively control air pollution, it is further urgent to reveal the relationship between air pollution and meteorological conditions based on long-term daily or real-time data.
Collapse
|
213
|
Mehmood T, Ahmad I, Bibi S, Mustafa B, Ali I. Insight into monsoon for shaping the air quality of Islamabad, Pakistan: Comparing the magnitude of health risk associated with PM 10 and PM 2.5 exposure. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2020; 70:1340-1355. [PMID: 32841106 DOI: 10.1080/10962247.2020.1813838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Monsoon plays a determinant role in defining the air quality of many Asian countries. Filter-based 24 h ambient PM10 and PM2.5 sampling was performed by using two paralleled medium volume air samplers during pre-and post-monsoon periods. A negligible change in PM2.5 mass concentration from 45.77 to 44.46 µg/m3 compared to PM10 from 74.34 to 142.49 µg/m3 was observed after the monsoon season. The air quality index (AQI) results showed that the air quality of the city retained from good to slightly polluted in both periods, where PM2.5 remained as the main detrimental to air quality in 95% of the total days. The NOAA HYSPLIT model analysis and wind rose patterns showed air trajectories, especially in post-monsoon originated from relatively polluted areas transported higher PM10. Meteorological attributes indicated a more conducive atmospheric condition for secondary pollution in the pre-monsoon. Evidence showed post-monsoon as a more polluted period, compared to the pre-monsoon and would pose an extra 1.07 × 10-3 lifetime risk to the local population. Similarly, a higher level of PM10 in the post-monsoon caused 43% more premature mortality and 41% more deaths from all-cause mortality compare to the pre-monsoon period, respectively. Implications: Pakistan is an under-developing country where pollution monitoring studies are decidedly limited. Notably, studies, concise PM2.5 and health assessment are deficient. The present study may contribute to evaluating the air quality in special events such as monsoon and can also provide scientific and technical support for subsequent air pollution research. Moreover, the results help to develop adequate prevention and pollution control strategies and offer policy suggestions for monsoon observing countries in general and in particular, in Islamabad, Pakistan. These findings provide essential arguments in favor of educating people and raising awareness about the detrimental health effects of air pollution. Improving the quality of life of people with cardiovascular and respiratory disorders requires an immediate and substantial reduction of air pollution.
Collapse
Affiliation(s)
- Tariq Mehmood
- School of Space and Environment, Beihang University , Beijing, People's Republic of China
- National Center for Physics, Quaid-i-Azam University , Islamabad, Pakistan
| | - Ishaq Ahmad
- National Center for Physics, Quaid-i-Azam University , Islamabad, Pakistan
| | - Saira Bibi
- Institute of Advance Materials, Bahauddin Zakariya University , Multan, Pakistan
| | - Beenish Mustafa
- Department of Physics Nanjing University, Nanjing, People's Republic China
| | - Ijaz Ali
- School of Environmental Science and Engineering, North China Electric Power University , Beijing, People's Republic of China
| |
Collapse
|
214
|
Liang X, Sun X, Xu J, Ye D. Improved emissions inventory and VOCs speciation for industrial OFP estimation in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140838. [PMID: 32721613 DOI: 10.1016/j.scitotenv.2020.140838] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Ozone (O3) pollution is becoming increasingly serious in China. Reactivity-based control of volatile organic compounds (VOCs) is an efficient method of alleviating O3 pollution. In this study, an improved industrial VOCs emissions inventory for China from 2011 to 2018 and local source profiles for six specific industries were developed to improve estimation of ozone formation potential (OFP). The results indicated that average annual growth rate for industrial VOCs emissions during 2015-2018 was lower than 2011-2014, which could be related to China's industrial structural upgrade and implementation of VOCs source control during the 13th Five-Year Plan period. The industrial coating, printing, basic organic chemical, gasoline storage and transport, and oil refinery industries were the key sources of VOCs emissions. M/p-xylene, toluene, ethyl benzene, propene, o-xylene, ethene, 1,2,4-trimethylbenzene, m-ethyl toluene, isopentane, and 1-butene were the top 10 species in terms of OFP. The top 20 species based on OFP accounted for an estimated 85% of total OFP and only 59% of emissions. The industrial coating, printing, basic organic chemical, oil refinery industries and other five sectors were the top 10 sources in terms of OFP, which together contributed 81% of total OFP. Priority should be given to the top 20 or more species with high reactivity and the top 10 sources based on OFP for future O3 reductions in China.
Collapse
Affiliation(s)
- Xiaoming Liang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Xibo Sun
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Jiantie Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
215
|
Calculation Methods of Emission Factors and Emissions of Fugitive Particulate Matter in South Korean Construction Sites. SUSTAINABILITY 2020. [DOI: 10.3390/su12239802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, efforts to effectively reduce particulate matter by identifying its sources and trends have become necessary due to the sustained damage it has caused in East Asia. In the case of South Korea, damage due to fugitive dust generated at construction sites in densely populated downtown areas is significant, and particulate matter in such fugitive dust directly influences the health of nearby residents and construction workers. Accordingly, the purpose of the present study was to develop a method for calculating emission factors for PM10 and PM2.5 emission amounts in the fugitive dust generated in construction sites and to derive emission amount trends for major variables to predict the amounts of generated particulate matter. To this end, South Korean emission factors for PM10 and PM2.5 for different construction equipment and activities that generate fugitive dust were derived and a method for calculating the amount of particulate matter using the derived emission factors was proposed. In addition, the calculated total emissions using these factors were compared to those calculated using construction site fugitive dust equations developed for the United States, Europe, and South Korea, and the trend analysis of total emissions according to the major emission factor variables was conducted.
Collapse
|
216
|
Assessing the Viability of Vacant Farmhouse Market in China: A Case Study in Sichuan. LAND 2020. [DOI: 10.3390/land9110467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Massive and rapid urbanization has led to population loss in rural areas, particularly in emerging and developing countries like China. As a result, houses in rural areas become vacant, and the house prices in cities, at the same time, skyrocket. While the research on the vacant farmhouses market (VFM) is a pressing issue for sustainable urbanization and has profound policy implications in China, few empirical studies have been conducted on analyzing the willingness of house owners and urban residents to participate in the VFM and any influencing factors—as there is no such operating market in China. To bridge the research gap, we first conducted a questionnaire-based survey on rural households and urban residents with a random sampling method in six cities in Sichuan Province, China. A total of 571 valid samples, including 284 rural households and 287 urban residents, were obtained. Based on these survey data, we then used logistic regression to estimate the influencing factors on the willingness of house owners and urban residents in renting in/out or selling/buying vacant farmhouses. The results showed that: (1) more than 60% of rural house owners and urban residents are willing to participate in a potential VFM; (2) the main influencing factors of house owners’ willingness to rent out or sell their houses include the sociodemographic characteristics of farmers (e.g., age, household income) and characteristics of the vacant houses (e.g., distance to the main roads, the status of vacant houses), while the major factors that affect the willingness of urban residents to rent in or purchase vacant rural houses are the sociodemographic characteristics of urban residents themselves (e.g., occupation), the status of the potential houses, and the perceived housing market; (3) most farmers want a regulated platform for the vacant farmhouses; urban residents pay more attention to the good natural environment in rural areas and the infrastructure and public service levels of vacant farmhouses in rural areas. This study thus showed the necessity, feasibility, and potential challenges and barriers involved in establishing a VFM in China.
Collapse
|
217
|
Lee ZR, Flores LA, Copeland WB, Murphy JG, Dixon DA. Reaction of NO 2 with Groups IV and VI Transition Metal Oxide Clusters. J Phys Chem A 2020; 124:9222-9236. [PMID: 33086016 DOI: 10.1021/acs.jpca.0c06760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The addition of NO2 to Group IV (MO2)n and Group VI (MO3)n (n = 1-3) nanoclusters was studied using both density functional theory (DFT) and coupled cluster theory (CCSD(T)). The structures and overall binding energetics were predicted for Lewis acid-base addition without transfer of spin (a physisorption-type process) and the formation of either cluster-ONO (HONO-like or bidentate bonding) or NO3- formation where for both the spin is transferred to the metal oxide clusters (a chemisorption-type process). Only chemisorption of NO2 is predicted to be thermodynamically allowed at temperatures ≥298 K for Group IV (MO2)n clusters with the formation of surface chemisorbed NO2 being by far the most energetically favorable. The ligand binding energies (LBEs) for physisorption and chemisorption on the TiO2 nanoclusters are consistent with computational studies of the bulk solids. Chemisorption is only predicted to occur for (CrO3)n clusters in the form of a terminal nitrate containing species whereas the larger chemisorbed nitrate structures for (MoO3)n and (WO3)n were found to be metastable and unlikely to form in any appreciable amount at temperatures of 298 K and higher. NO2 is predicted to only be capable of physisorbing to (MoO3)n and (WO3)n at lower temperatures and therefore unlikely to bind NO2 at temperatures ≥298 K. Correlations between the (MO3)nNO2 ligand bond energies and the chemical properties of the parent (MO3)n clusters (Lewis acidity, ionization potentials, excitation energies, and M = O/M-O bond strengths) are described.
Collapse
Affiliation(s)
- Zachary R Lee
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Luis A Flores
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - William B Copeland
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Julia G Murphy
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
218
|
Zhong B, Wang X, Ye L, Ma M, Jia S, Chen W, Yan F, Wen Z, Padmaja K. Meteorological variations impeded the benefits of recent NO x mitigation in reducing atmospheric nitrate deposition in the Pearl River Delta region, Southeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115076. [PMID: 32663726 DOI: 10.1016/j.envpol.2020.115076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The trends and variability of atmospheric nitrogen deposition in the Pearl River Delta (PRD) region for the period 2008-2017 were investigated by integrating ground- and satellite-based observations and a chemical transport model, in order to gauge the effects of emission reductions and meteorological variability. We show that dry deposition observation of oxidized nitrogen decreased at the rate of 2.4% yr-1 for a moderate reduction in NOx emissions by 27% in the past decade, while reduced nitrogen presented an increase at the rate of 2.3% yr-1 despite no regulated interventions for NH3 emissions, which is likely related to changes in atmospheric gas-particle partitioning of NH3 as reductions in SO2 and NOx emissions. These results coincide with the trends in ground-level concentrations of oxidized and reduced nitrogen compounds in the atmosphere during 2008-2017. The changes in annual deposition fluxes of total oxidized and reduced nitrogen are not statistically significant trends and largely related with the inter-annual variability in their corresponding wet depositions, which reflects combined effects of variability in precipitation amount, and changes in atmospheric nitrogen compounds which dominates wet deposition of the oxidized and reduced forms. The meteorological conditions can mask 34% and 25% decrease in total oxidized and reduced nitrogen deposition on the decadal timescale, respectively. We conclude that meteorology-driven variability probably have masked the full response of oxidized nitrogen deposition to NOx emissions reduction. Our results also imply that persistent and integrated emission control strategies on NOx and NH3 are needed to effectively reduce total nitrogen deposition fluxes towards the critical limit in the PRD region.
Collapse
Affiliation(s)
- Buqing Zhong
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| | - Xuemei Wang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China.
| | - Lyumeng Ye
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingrui Ma
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| | - Shiguo Jia
- School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Weihua Chen
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| | - Fenghua Yan
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Institute for Environmental and Climate Research, Jinan University, Guangzhou, 510632, China
| | - Zhang Wen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Krishnan Padmaja
- Department of Civil and Environmental Engineering, National University of Singapore, Blk E1A, #07-03, 1 Engineering Drive 2, 117576, Singapore
| |
Collapse
|
219
|
Mo Z, Huang S, Yuan B, Pei C, Song Q, Qi J, Wang M, Wang B, Wang C, Li M, Zhang Q, Shao M. Deriving emission fluxes of volatile organic compounds from tower observation in the Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:139763. [PMID: 32886964 DOI: 10.1016/j.scitotenv.2020.139763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Accurate estimation of speciated emissions of volatile organic compounds (VOCs) is challenging due to the complexity of both species and sources. Evaluation of the bottom-up emission inventory (EI) by atmospheric observation is needed to better understand the VOC emissions and then to control air pollutions caused by VOCs. This study conducts vertical measurements of VOCs between November 3 and 11, 2018 at the Canton Tower in the urban core of Pearl River Delta (PRD), China. A mixed layer gradient (MLG) technique is applied to the tower observation data to derive emission fluxes for individual VOC. The results show that the measured VOCs concentrations at ground level were always higher than those at the heights of 118 m and 488 m. Obvious vertical gradients of concentrations were found for VOC species, such as benzene, toluene and isoprene. The emission flux was estimated to be largest for propane (3.29 mg m-2 h-1), followed by toluene (2.55 mg m-2 h-1), isoprene (2.24 mg m-2 h-1), n-butane (2.10 mg m-2 h-1) and iso-pentane (1.73 mg m-2 h-1). The total VOC emission fluxes were around 3 times larger than those in the EI, suggesting 1.5-2 times underestimations of ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) by current EI. Substantial underestimations (3-20 times) were found for C2-C5 alkanes by current EI. Due to unmeasured input parameters, limited sample size and short sampling period, there are still large uncertainties (40%-117%) in the estimated emission fluxes for individual species. Whereas, this study shows that the tower observation and emission estimation using MLG method could provide useful information for better understanding vertical distributions and emission fluxes of VOCs, and pioneer in assessing the existing emission inventories at species-level and hour-level.
Collapse
Affiliation(s)
- Ziwei Mo
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Shan Huang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.
| | - Chenglei Pei
- Guangzhou Environmental Monitoring Center, Guangzhou 510030, China
| | - Qicong Song
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Jipeng Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| | - Ming Wang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Baolin Wang
- College of Environmental Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Chen Wang
- College of Environmental Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Meng Li
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
| |
Collapse
|
220
|
Zheng M, Yan C, Zhu T. Understanding sources of fine particulate matter in China. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190325. [PMID: 32981431 PMCID: PMC7536033 DOI: 10.1098/rsta.2019.0325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 05/09/2023]
Abstract
Fine particulate matter has been a major concern in China as it is closely linked to issues such as haze, health and climate impacts. Since China released its new national air quality standard for fine particulate matter (PM2.5) in 2012, great efforts have been put into reducing its concentration and meeting the standard. Significant improvement has been seen in recent years, especially in Beijing, the capital city of China. This paper reviews how China understands its sources of fine particulate matter, the major contributor to haze, and the most recent findings by researchers. It covers the characteristics of PM2.5 in China, the major methods to understand its sources such as emission inventory and measurement networks, the major research programmes in air quality research, and the major measures that lead to successful control of fine particulate matter pollution. A great example of linking scientific findings to policy is the control of coal combustion from the residential sector in northern China. This review not only provides an overview of the fine particulate matter pollution problem in China, but also its experience of air quality management, which may benefit other countries facing similar issues. This article is part of a discussion meeting issue 'Air quality, past present and future'.
Collapse
Affiliation(s)
- Mei Zheng
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, People's Republic of China
| | - Tong Zhu
- SKL-ESPC and BIC-ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
221
|
Aik J, Chua R, Jamali N, Chee E. The burden of acute conjunctivitis attributable to ambient particulate matter pollution in Singapore and its exacerbation during South-East Asian haze episodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140129. [PMID: 32562998 DOI: 10.1016/j.scitotenv.2020.140129] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Urban air quality in South-East Asia is influenced by local and transboundary sources of air pollutants. Research studies have well characterized the short-term effects of air pollution on cardiovascular and respiratory health but less so on ocular health. We investigated the relationship between air pollution and acute conjunctivitis in Singapore, a tropical city-state located in South-East Asia. METHODS Assuming a negative-binomial distribution, we examined the short-term associations between all-cause acute conjunctivitis reports from 2009 to 2018 and contemporaneous ambient air pollutant concentrations using a time-series analysis. In separate pollutant models for PM2.5 and PM10, we fitted fractional polynomials to investigate the linearity between air pollutant exposures and conjunctivitis, adjusting for long-term trend, seasonality, climate variability, public holidays, immediate and lagged exposure effects, and autocorrelation. RESULTS There were 261,959 acute conjunctivitis reports over the study period. Every 10 μg/m3 increase in PM2.5 was associated with a 3.8% (Incidence Rate Ratio (IRR): 1.038, 95% Confidence Interval (CI): 1.029-1.046, p < 0.001) cumulative increase in risk of conjunctivitis over the present and subsequent week. Every 10 μg/m3 increase in PM10 was associated with a 2.9% (Incidence Rate Ratio (IRR): 1.029, 95% Confidence Interval (CI): 1.022-1.036, p < 0.001) cumulative increase in risk of conjunctivitis over the present and subsequent week. Acute conjunctivitis reports exhibited an inverse dependence on ambient air temperature and relative humidity variability. Approximately 3% of all acute conjunctivitis reports were attributable to PM2.5. Particulate matter attributed acute conjunctivitis was disproportionately higher during transboundary haze episodes. CONCLUSION Our study strengthens the evidence linking particulate matter exposure to an increased risk of conjunctival disease, with a disproportionately higher disease burden during South-East Asia transboundary haze episodes. Our findings underscore the importance of reducing the health impact of indigenous and transboundary sources of ambient particulate matter pollution.
Collapse
Affiliation(s)
- Joel Aik
- School of Public Health and Community Medicine, Faculty of Medicine, University of New South Wales, Level 3, Samuels Building, Botany Road, Kensington, New South Wales 2052, Australia; Environmental Health Institute, National Environment Agency, 40 Scotts Road, #13-00, Singapore 228231, Singapore.
| | - Rae Chua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Natasha Jamali
- Pollution Control Department, National Environment Agency, 40 Scotts Road, #13-00, Singapore 228231, Singapore
| | - Elaine Chee
- Eye & Retina Surgeons, 38 Irrawaddy Road #07-63, Mount Elizabeth Novena Specialist Centre, Singapore 329563, Singapore; Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
| |
Collapse
|
222
|
Zhang W, Tong S, Jia C, Wang L, Liu B, Tang G, Ji D, Hu B, Liu Z, Li W, Wang Z, Liu Y, Wang Y, Ge M. Different HONO Sources for Three Layers at the Urban Area of Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12870-12880. [PMID: 32924447 DOI: 10.1021/acs.est.0c02146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gaseous nitrous acid (HONO) is a crucial precursor of the hydroxyl (OH) radical, which is a "detergent" in the atmosphere. Nowadays, HONO formation mechanisms at polluted urban areas are controversial, which restricts the understanding of atmospheric oxidative capacity and radical cycling. Herein, multiday vertical observation of HONO and NOx was simultaneously performed at three heights at the urban area of Beijing for the first time. The vertical distribution of HONO was often unexpected, and it had the highest HONO concentration at 120 m, followed by those at 8 and 240 m. 0D box model simulations suggest that ground and aerosol surfaces might play similar roles in NO2 conversion at 8 m during the whole measurement. NO2 conversion on aerosol surfaces was the most important HONO source aloft during haze days. At daytime, a strong missing HONO source unexpectedly existed in the urban aloft, and it was relevant to solar radiation and consumed OH.
Collapse
Affiliation(s)
- Wenqian Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengrui Tong
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chenhui Jia
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lili Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Baoxian Liu
- School of Environment, Tsinghua University, Beijing 100084, P. R. China
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environmental Monitoring Center, Beijing 100048, P. R. China
| | - Guiqian Tang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Dongsheng Ji
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Bo Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Weiran Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhen Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yang Liu
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environmental Monitoring Center, Beijing 100048, P. R. China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
223
|
Qiang W, Lee HF, Lin Z, Wong DWH. Revisiting the impact of vehicle emissions and other contributors to air pollution in urban built-up areas: A dynamic spatial econometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140098. [PMID: 32559545 DOI: 10.1016/j.scitotenv.2020.140098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 05/14/2023]
Abstract
Whether vehicle emissions are the primary source of PM2.5 in urban China remains controversial, which may be attributable to the insufficient consideration of the spatial autocorrelation and the spatial spillover effects of PM2.5. We employ data from built-up areas of 285 prefecture-level cities in China spanned 2001-2016 and dynamic spatial panel data analysis to resolve this controversy. Our results show that the direct and indirect effects of vehicles on PM2.5 concentration (annual mean and spatial variation within the city) in urban China are not significant in the short- and long-term. Alternatively, SO2 emission directly increases the mean and spatial variation of PM2.5 within the city in the short- and long-term. Short-term direct and indirect positive association and long-term indirect positive association are found relative to economic growth and PM2.5. Population density increases PM2.5 directly and indirectly in the short-term and yet, directly decreases and indirectly increases PM2.5 in the long-term. In the short- and long-term, the spatial spillover effect of secondary industry increases PM2.5, and industry also directly increases the spatial variation of PM2.5 within the city. Although real estate investment directly increases PM2.5 in the long-term, the spatial spillover effect of investment reduces PM2.5 in the short- and long-term. Our results show that other factors, rather than vehicle emissions, are the major contributors to PM2.5 in urban China. Furthermore, the Environmental Kuznets Curve hypothesis does not apply to the relationship between economic growth and PM2.5 proliferation in urban China. When tackling air pollution, owing to the significant spatial spillover of PM2.5 that is driven by multiple contributing factors, short- and long-term inter-regional coordination is required to achieve an effective positive outcome.
Collapse
Affiliation(s)
- Wei Qiang
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Harry F Lee
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Ziwei Lin
- Department of Geography, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong
| | - David W H Wong
- Division of Humanities and Social Sciences, Beijing Normal University - Hong Kong Baptist University United International College, Zhuhai, Guangdong Province, China
| |
Collapse
|
224
|
Liu Y, Wang T, Fang X, Deng Y, Cheng H, Bacha AUR, Nabi I, Zhang L. Brown carbon: An underlying driving force for rapid atmospheric sulfate formation and haze event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139415. [PMID: 32464390 DOI: 10.1016/j.scitotenv.2020.139415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The rapid sulfate formation is a crucial factor determining the explosive growth of fine particles and the frequent occurrence of severe haze events in China. Recent field observations also show that brown carbon is one of the most critical components in aerosol particles sampled during haze episodes. To this day, there is limited knowledge that accesses the role of brown carbon in atmospheric chemistry. In fact, these carbonaceous particulate matters, mainly derived from forest fires, biomass burning, and biogenic release, can act as photosensitizers and produce varieties of active intermediates to alter oxidation capacity. Experimental results in this work provide evidence that hydroxyl radical (∙OH) stems from brown carbon proxies fulvic acid /humic acid (FA/HA) upon irradiation, leading to rapid SO2 oxidation on brown carbon particles in the atmosphere. Further correlation analyses for sulfate formation and chromophore properties of 12 model compounds demonstrate that brown carbon particles with higher aromaticity and E2/E3 (the ratio of absorbance at 254 nm to that at 365 nm) would facilitate ∙OH production and SO2 photo-oxidation. Uptake coefficient measurements and sulfate production rate estimation indicate that brown carbon could gain importance in atmospheric SO2 oxidation. A better understanding of SO2 uptake kinetics on brown carbon surfaces favors in defining new regulations to improve air quality and reduce the harmful effects of haze events on resident health and the environment.
Collapse
Affiliation(s)
- Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Xiaozhong Fang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Yue Deng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Hanyun Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Aziz-Ur-Rahim Bacha
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Iqra Nabi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China..
| |
Collapse
|
225
|
Lin YC, Zhang YL, Song W, Yang X, Fan MY. Specific sources of health risks caused by size-resolved PM-bound metals in a typical coal-burning city of northern China during the winter haze event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:138651. [PMID: 32460085 DOI: 10.1016/j.scitotenv.2020.138651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
High particulate matter (PM) pollution frequently occurs in winter over northern China , resulting in threats to human health. To date, there are limited studies to link source apportionments and health risk assessments in the different size-resolved PM samples during high PM events. In this study, size-segregated PM samples were collected in Linfen, a typical coal-burning city, in northern China during a wintertime haze pollution. In addition to water-soluble ions and carbon contents, metallic elements in the different size-segregated PM samples were also determined for health risk assessments by inhalation of PM. During the sampling period, the average concentration of PM10 was 274 ± 57 μg m-3 with a major fraction (73%) of organic material and secondary-related aerosols, and an insignificant portion of trace elements (TEs, ~ 3%). The size distribution showed that As and Se, markers of coal combustion, exhibited a mono-modal distribution with a major peak at 0.4-0.7 μm and the others mostly possessed mono-/bi-modal patterns with a major peak at 3.3-5.8 μm. The cancer risk (CR) resulted from PM10 metals by inhalation was estimated to be 2.91 × 10-5 for children and 7.75 × 10-5 for adults while non-cancer risk (NCR) was 2.10 for children and 0.70 for adults. Chromium (Cr) was the dominant species (~89%) of cancer risk in PM10. Road dust was a major fraction (~65%) to total metals in coarse PM (dp > 3.3 μm) whereas coal combustion was a dominant source (~55%) in submicron (dp < 1.1 μm) PM metals. However, traffic emissions (40%) and coal combustion (36%) were the dominant sources of CR since both emissions contributed major fractions (74%) to Cr, especially in submicron PM which exhibited high deposition efficiency of TEs into respiratory tracts, resulting in high CR in Linfen City.
Collapse
Affiliation(s)
- Yu-Chi Lin
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Wenhuai Song
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xiaoying Yang
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mei-Yi Fan
- Yale-NUIST Center on Atmospheric Environment, School of Applied Meteorology, International Joint Laboratory on Climate and Environment Change, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
226
|
Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci Rep 2020; 10:14518. [PMID: 32883992 PMCID: PMC7471117 DOI: 10.1038/s41598-020-71338-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/13/2020] [Indexed: 11/21/2022] Open
Abstract
Extensive studies have been carried out on the impact of human activities on air pollution, but systematic investigation on the relationship between air pollutant and meteorological conditions is still insufficient, especially in the context of China’s site scale and recent comprehensive environmental pollution control. Here, we used a spatial interpolation technology to establish a set of data sets of pollutants and meteorological elements that are spatially matched at 896 stations in China to reveal the air pollutant-meteorological interactions between 2014 and 2019. We found that air pollution and meteorological elements have obvious seasonal and regional characteristics. Over the last few years, the concentration of most air pollutants in China has dropped significantly except for O3. The increase in O3 concentration was closely related to the decrease of particulate matter and NO2 concentration. The concentration of most air pollutants was affected by meteorological conditions, but the level of impact depended on the type of pollutants and varied across regions. The concentration of air pollutants at most stations was significantly negatively correlated with wind speed, precipitation and relative humidity, but positively correlated with atmospheric pressure. As the latitude increases, the impact of temperature on the concentration of air pollutants becomes more obvious. To effectively control air pollution, it is further urgent to reveal the relationship between air pollution and meteorological conditions based on long-term daily or real-time data.
Collapse
|
227
|
Hu R, Xu Q, Wang S, Hua Y, Bhattarai N, Jiang J, Song Y, Daellenbach KR, Qi L, Prevot ASH, Hao J. Chemical characteristics and sources of water-soluble organic aerosol in southwest suburb of Beijing. J Environ Sci (China) 2020; 95:99-110. [PMID: 32653198 DOI: 10.1016/j.jes.2020.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
PM2.5 filter sampling and components measurement were conducted in autumn and winter from 2014 to 2015 at a suburban site (referred herein as "LLH site") located in the southwest of Beijing. The offline aerosol mass spectrometry (offline-AMS) analysis and positive matrix factorization (PMF) were applied for measurement and source apportionment of water-soluble organic aerosol (WSOA). Organic aerosol (OA) always dominated PM2.5 during the sampling period, especially in winter. WSOA pollution was serious during the polluted period both in autumn (31.1 µg/m3) and winter (31.9 µg/m3), while WSOA accounted for 54.4% of OA during the polluted period in autumn, much more than that (21.3%) in winter. The oxidation degree of WSOA at LLH site was at a high level (oxygen-to-carbon ratio, O/C=0.91) and secondary organic aerosol (SOA) contributed more mass ratio of WSOA than primary organic aerosol (POA) during the whole observation period. In winter, coal combustion OA (CCOA) was a stable source of OA and on average accounted for 25.1% of WSOA. In autumn, biomass burning OA (BBOA) from household combustion contributed 38.3% of WSOA during polluted period. In addition to oxygenated OA (OOA), aqueous-oxygenated OA (aq-OOA) was identified as an important factor of SOA. During heavy pollution period, the mass proportion of aq-OOA to WSOA increased significantly, implying the significant SOA formation through aqueous-phase process. The result of this study highlights the concentration on controlling the residential coal and biomass burning, as well as the research needs on aqueous chemistry in OA formation.
Collapse
Affiliation(s)
- Ruolan Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Qingcheng Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China.
| | - Yang Hua
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Noshan Bhattarai
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yu Song
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science, Peking University, Beijing 100871, China
| | - Kaspar R Daellenbach
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland; Institute for Atmospheric and Earth System Research, University of Helsinki, Finland
| | - Lu Qi
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Andre S H Prevot
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
228
|
Zhao S, Yin D, Yu Y, Kang S, Qin D, Dong L. PM 2.5 and O 3 pollution during 2015-2019 over 367 Chinese cities: Spatiotemporal variations, meteorological and topographical impacts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114694. [PMID: 32402710 DOI: 10.1016/j.envpol.2020.114694] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 05/28/2023]
Abstract
The strict Clean Air Action Plan has been in place by central and local government in China since 2013 to alleviate haze pollution. In response to implementation of the Plan, daytime PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) showed significant downward trends from 2015 to 2019, with the largest reduction during spring and winter in the North China Plain. Unlike PM2.5, O3 (ozone) showed a general increasing trend, reaching 29.7 μg m-3 on summer afternoons. Increased O3 and reduced PM2.5 simultaneously occurred in more than half of Chinese cities, increasing to approximately three-fourths in summer. Declining trends in both PM2.5 and O3 occurred in only a few cities, varying from 19.1% of cities in summer to 33.7% in fall. Meteorological variables helped to decrease PM2.5 and O3 in some cities and increase PM2.5 and O3 in others, which is closely related to terrain. High wind speed and 24 h changing pressure favored PM2.5 dispersion and dilution, especially in winter in southern China. However, O3 was mainly affected by 24 h maximum temperature over most cities. Soil temperature was found to be a key factor modulating air pollution. Its impact on PM2.5 concentrations depended largely on soil depth and seasons; spring and fall soil temperature at 80 cm below the surface had largely negative impacts. Compared with PM2.5, O3 was more significantly affected by soil temperature, with the largest impact at 20 cm below the surface and with less seasonal variation.
Collapse
Affiliation(s)
- Suping Zhao
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Daiying Yin
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ye Yu
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Dahe Qin
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Longxiang Dong
- Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
229
|
Wang T, Huang X, Wang Z, Liu Y, Zhou D, Ding K, Wang H, Qi X, Ding A. Secondary aerosol formation and its linkage with synoptic conditions during winter haze pollution over eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138888. [PMID: 32402961 DOI: 10.1016/j.scitotenv.2020.138888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 05/16/2023]
Abstract
Eastern China has been facing severe winter haze pollution due mainly to secondary aerosol. Existing studies have suggested that stagnant weather or fast chemical production led to frequent haze in this region. However, few works focus on the linkage between secondary production of sulfate, nitrate, and ammonium (SNA) and synoptic conditions, and their joint contribution to PM2.5. In this study, by combining in-situ measurements on meteorology and aerosol chemical composition at three main cities together with a regional model with improved diagnose scheme, we investigated the chemical formation and accumulation of main secondary composition, i.e. SNA under typical synoptic conditions. It is indicated that SNA did play a vital role in haze pollution across eastern China, contributing more than 40% to PM2.5 mass concentration. As most fast developing region, the Yangtze River Delta (YRD) was slightly polluted during stable weather with local chemical production accounting for 61% SNA pollution. While under the influence of cold front, the pollution was aggravated and advection transport became the predominant contributive process (85%). Nevertheless, the chemical production of SNA was notably enhanced due to the uplift of air pollutant and elevated humidity ahead of the cold front, which then facilitated the heterogeneous and aqueous-phase oxidation of precursors. We also found the substantial difference in the phase equilibrium of nitrate over the land surface and ocean due to changes in temperature, ammonia availability and dry deposition. This study highlights the close link between synoptic weather and chemical production, and the resultant vertical and spatial heterogeneity of pollution.
Collapse
Affiliation(s)
- Tianyi Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Xin Huang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China.
| | - Zilin Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Yuliang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Derong Zhou
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Ke Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Hongyue Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Ximeng Qi
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Jiangsu Provincial Collaborative Innovation Center of Climate Change, Nanjing 210023, China
| |
Collapse
|
230
|
Chen X, Wang H, Lu K, Li C, Zhai T, Tan Z, Ma X, Yang X, Liu Y, Chen S, Dong H, Li X, Wu Z, Hu M, Zeng L, Zhang Y. Field Determination of Nitrate Formation Pathway in Winter Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9243-9253. [PMID: 32589840 DOI: 10.1021/acs.est.0c00972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Particulate nitrate (pNO3-) has often been found to be the major component of fine particles in urban air-sheds in China, the United States, and Europe during winter haze episodes in recent years. However, there is a lack of knowledge regarding the experimentally determined contribution of different chemical pathways to the formation of pNO3-. Here, for the first time, we combine ground and tall-tower observations to quantify the chemical formation of pNO3- using observationally constrained model approach based on direct observations of OH and N2O5 for the urban air-shed. We find that the gas-phase oxidation pathway (OH+NO2) during the daytime is the dominant channel over the nocturnal uptake of N2O5 during pollution episodes, with percentages of 74% in urban areas and 76% in suburban areas. This is quite different from previous studies in some regions of the US, in which the uptake of N2O5 was concluded to account for a larger contribution in winter. These results indicate that the driving factor of nitrate pollution in Beijing and different regions of the US is different, as are the mitigation strategies for particulate nitrate.
Collapse
Affiliation(s)
- Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chunmeng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianyu Zhai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhaofeng Tan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuhan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huabin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Science, Xiamen 361021, China
| |
Collapse
|
231
|
Liu H, Hu Z, Zhou M, Zhang H, Li Z, Zhang H, Hu J, Yao X, Lou L, Xi C, Zhu L, Xu X, Zheng P, Hu B. Airborne microorganisms exacerbate the formation of atmospheric ammonium and sulfate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114293. [PMID: 32208227 DOI: 10.1016/j.envpol.2020.114293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Haze pollution is inseparable from the transformation of air pollutants especially the ammonium and sulfate. Chemical and physical processes play important roles in this transformation. However, the role of microbial processes has rarely been studied. In this report, we applied the cultivation-independent metagenomic approach to study airborne microorganisms, investigating the potential microbial-catalyzed transformation of ammonium and sulfate in PM2.5 samples. Functional genes predict that airborne microorganisms have the potential to catalyze ammonium formation but not ammonium oxidation since no ammoxidation genes were identified. We also found that the frequency of sulfate-forming genes was 1.56 times of those for sulfate-reducing genes. It was speculated that microbial metabolisms in the atmosphere could contribute to the accumulation of ammonium and sulfate. With the increase of PM2.5 concentration, the frequency of functional genes and the relative abundance of genera which involved in nitrogen and sulfur metabolisms increased. That suggested air pollution was conducive to the microbial-mediated formation of ammonium and sulfate. Overall, our results provided evidence for the possible role of microbial processes in the air pollutant transformation and brought a new perspective for studying the formation of secondary air pollutants.
Collapse
Affiliation(s)
- Huan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huihui Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zheng Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiajie Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangwu Yao
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liping Lou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanwu Xi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lizhong Zhu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ping Zheng
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Baolan Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
232
|
Zhou W, Xu W, Kim H, Zhang Q, Fu P, Worsnop DR, Sun Y. A review of aerosol chemistry in Asia: insights from aerosol mass spectrometer measurements. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1616-1653. [PMID: 32672265 DOI: 10.1039/d0em00212g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropogenic emissions in Asia have significantly increased during the last two decades; as a result, the induced air pollution and its influences on radiative forcing and public health are becoming increasingly prominent. The Aerodyne Aerosol Mass Spectrometer (AMS) has been widely deployed in Asia for real-time characterization of aerosol chemistry. In this paper, we review the AMS measurements in Asia, mainly in China, Korea, Japan, and India since 2001 and summarize the key results and findings. The mass concentrations of non-refractory submicron aerosol species (NR-PM1) showed large spatial distributions with high mass loadings occurring in India and north and northwest China (60.2-81.3 μg m-3), whereas much lower values were observed in Korea, Japan, Singapore and regional background sites (7.5-15.1 μg m-3). Aerosol composition varied largely in different regions, but was overall dominated by organic aerosols (OA, 32-75%), especially in south and southeast Asia due to the impact of biomass burning. While sulfate and nitrate showed comparable contributions in urban and suburban regions in north China, sulfate dominated inorganic aerosols in south China, Japan and regional background sites. Positive matrix factorization analysis identified multiple OA factors from different sources and processes in different atmospheric environments, e.g., biomass burning OA in south and southeast Asia and agricultural seasons in China, cooking OA in urban areas, and coal combustion in north China. However, secondary OA (SOA) was a ubiquitous and dominant aerosol component in all regions, accounting for 43-78% of OA. The formation of different SOA subtypes associated with photochemical production or aqueous-phase/fog processing was widely investigated. The roles of primary emissions, secondary production, regional transport, and meteorology on severe haze episodes, and different chemical responses of primary and secondary aerosol species to source emission changes and meteorology were also demonstrated. Finally, future prospects of AMS studies on long-term and aircraft measurements, water-soluble OA, the link of OA volatility, oxidation levels, and phase state were discussed.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029 Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
233
|
Luo L, Kao S, Wu Y, Zhang X, Lin H, Zhang R, Xiao H. Stable oxygen isotope constraints on nitrate formation in Beijing in springtime. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114515. [PMID: 32283400 DOI: 10.1016/j.envpol.2020.114515] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Rapid accumulation of aerosol nitrate (NO3-) contributes to haze pollution; however, studies quantifying NO3- formation mechanisms remain scarce. To explore aerosol nitrate formation pathways, total suspended particulate (TSP) samples were collected in Beijing during the spring of 2013, and the concentration of NO3- and δ18O- NO3- value were analyzed. The NO3- concentrations on polluted days (PD) were higher than those on non-polluted days (NPD). Furthermore, higher δ18O- NO3- values were observed on PD (86.8 ± 8.1‰) as compared with NPD (73.7 ± 11.0‰) suggest that more nitrate was produced by pathways with relative high δ18O-HNO3 values during PD. Based on the calculated δ18O-HNO3 values from different formation pathways and the observed δ18O- NO3- values, the possible fractional contributions of HNO3 formed via various pathways to TSP NO3- were estimated using the Bayesian isotope mixing model. The δ18O- NO3- constrained calculations suggest that the pathways of N2O5 + H2O/Cl-, NO3 + VOCs, and ClNO3 + H2O possibly contributed 53%-89% to nitrate production during PD. During NPD, the NO2 + OH pathway produced 37%-69% of the NO3-. Using the δ18O- NO3- value combined with the isotope mixing model is a promising approach for exploring NO3- formation pathways.
Collapse
Affiliation(s)
- Li Luo
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| | - ShuhJi Kao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - YunFei Wu
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - XiaoLing Zhang
- School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Hua Lin
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - RenJian Zhang
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - HuaYun Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
234
|
Cui W, Chen H, Liu Q, Cui M, Chen X, Fei Z, Huang J, Tao Z, Wang M, Qiao X. Mn/Co Redox Cycle Promoted Catalytic Performance of Mesoporous SiO
2
‐Confined Highly Dispersed LaMn
x
Co
1‐x
O
3
Perovskite Oxides in n‐Butylamine Combustion. ChemistrySelect 2020. [DOI: 10.1002/slct.202002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Cui
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Huawei Chen
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Qing Liu
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Mifen Cui
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Xian Chen
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Zhaoyang Fei
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Jincan Huang
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Zuliang Tao
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Minghong Wang
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
| | - Xu Qiao
- College of Chemical EngineeringNanjing Tech University Nanjing 211816 PR China State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 PR China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing 211816 PR China
| |
Collapse
|
235
|
Qi X, Zhu S, Zhu C, Hu J, Lou S, Xu L, Dong J, Cheng P. Smog chamber study of the effects of NOx and NH 3 on the formation of secondary organic aerosols and optical properties from photo-oxidation of toluene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138632. [PMID: 32315905 DOI: 10.1016/j.scitotenv.2020.138632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 05/24/2023]
Abstract
Secondary organic aerosols (SOAs) have been receiving significant attention because of their significant impacts on air quality and human health. In this study, the influences of nitrogen oxides (NOx) and ammonia (NH3) on SOA formation from photooxidation of toluene was investigated in the Shanghai university smog chamber. The chemical and physical characteristics of gas-phase products and SOAs from toluene photo-oxidation were characterized using laboratory-developed single photon ionization time-of-flight mass spectrometry, single particle aerosol mass spectrometry, and cavity ring-down aerosol extinction albedo spectroscopy instruments. It was observed that increasing the initial nitrogen oxides ([NOx]0) under low-[NOx]0 conditions enhanced the SOA yield, while increasing [NOx]0 under high-[NOx]0 conditions suppressed the SOA yield. After adding NH3, the number concentration, average SOA diameter, and extinction and scattering coefficients showed an immediate and rapid increase due to the formation of significant amounts of condensable ammonium nitrate and nitrogen-containing (NOC) compounds. Moreover, a simplified reaction mechanism for the photooxidation of toluene initiated by the hydroxyl radical (OH) was believed to follow two reaction channels: minor H abstraction, and major OH addition, which continuously induced the subsequent reactions. The results of this study presented rapid analytical method for the joint use of a smog chamber with on-line analytical instruments to immediately characterize the effects of SOA formation, which will help in understanding the new particle formation and particle growth, and thus provides a new insight for in-depth understanding of the haze pollution in China.
Collapse
Affiliation(s)
- Xue Qi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuping Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenzhang Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Science, Shanghai 200233, China.
| | - Li Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junguo Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
236
|
The Urban–Rural Heterogeneity of Air Pollution in 35 Metropolitan Regions across China. REMOTE SENSING 2020. [DOI: 10.3390/rs12142320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Urbanization and air pollution are major anthropogenic impacts on Earth’s environment, weather, and climate. Each has been studied extensively, but their interactions have not. Urbanization leads to a dramatic variation in the spatial distribution of air pollution (fine particles) by altering surface properties and boundary-layer micrometeorology, but it remains unclear, especially between the centers and suburbs of metropolitan regions. Here, we investigated the spatial variation, or inhomogeneity, of air quality in urban and rural areas of 35 major metropolitan regions across China using four different long-term observational datasets from both ground-based and space-borne observations during the period 2001–2015. In general, air pollution in summer in urban areas is more serious than in rural areas. However, it is more homogeneously polluted, and also more severely polluted in winter than that in summer. Four factors are found to play roles in the spatial inhomogeneity of air pollution between urban and rural areas and their seasonal differences: (1) the urban–rural difference in emissions in summer is slightly larger than in winter; (2) urban structures have a more obvious association with the spatial distribution of aerosols in summer; (3) the wind speed, topography, and different reductions in the planetary boundary layer height from clean to polluted conditions have different effects on the density of pollutants in different seasons; and (4) relative humidity can play an important role in affecting the spatial inhomogeneity of air pollution despite the large uncertainties.
Collapse
|
237
|
Chemical Composition and Light Absorption of PM2.5 Observed at Two Sites near a Busy Road during Summer and Winter. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To examine the difference in the major chemical composition of fine particulate matter (PM2.5) between two roadway sites, 24 h integrated PM2.5 samples were simultaneously collected both 15 m (Buk-Ku District Office (BKO) site) and 150 m (Chonnam National University campus (CNU) site) away from busy roads during the summer and winter periods; these samples were taken to determine the concentrations of organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), and water-soluble inorganic species. In addition, the real-time aerosol light absorption coefficients (Abs) were measured using a dual-spot seven-wavelength aethalometer at the CNU site to evaluate the influence of traffic and biomass burning (BB) emissions on the concentrations of organic aerosol particles. The hourly NO2 concentration was also observed at an air pollution monitoring network that is about 2 km away from the CNU site. During summer, 24 h PM2.5 concentrations (PM2.5 episode) which exceeded the Korean PM2.5 standard (35 μg/m3) were linked to increases in organic matter (OM) and SO42− concentrations that accounted for on average 35–41% and 26–30%, respectively, of the PM2.5 at the two sites. The increased SO42− concentration was most likely attributable to the inflow of long-range transported aerosols, rather than local production, as demonstrated by both the MODIS (Moderate Resolution Imaging Spectroradiometer) images and transport pathways of air masses reaching the sites. On the other hand, the OM, WSOC, and EC concentrations were directly attributable to traffic emissions at the sampling sites, as supported by the tight correlation between the OC and EC. A small difference between the absorption Ångström exponent (AAE) values calculated at wavelengths of 370–950 nm (AAE370–950nm) and 370–520 nm (AAE370–520nm), and the poor correlation of absorption coefficient by brown carbon (BrC) at 370 nm (AbsBrC370nm) with K+ (R2 = 0.00) also suggest a significant contribution of traffic emissions to OM. However, the wintertime PM2.5 episode was strongly related to the enhanced OM and NO3− concentrations, which contributed 26–28% and 22–23% of the PM2.5 concentration, respectively. It is interesting to note that there were two distinct OC/EC ratios in winter: a lower OC/EC (~3.0), which indicates a significant contribution of traffic emissions to the OC and EC, and a higher OC/EC (~6.5), which suggests an additional influence of BB emissions as well as traffic emissions at the sites. Strong correlations between the OC and EC (R2 = 0.72–0.83) and the enhanced AAE370–520nm values compared to the AAE370–950nm support that BB emissions were also an important contributor to the wintertime OM concentrations as well as traffic emissions at the two sites. A good correlation between the gaseous NO2 and NO3− and meteorological conditions (e.g., low wind speed and high relative humidity) suggest that the heterogeneous oxidation of NO2 on moist particles could be an important contributor to wintertime particulate NO3− formation at the sites. The OC concentrations during summer and winter were higher at the BKO site, with a higher traffic flow and a shorter distance from the roadway than at the CNU site. However, there were slight differences in the concentrations of secondary inorganic species (NO3−, SO42−, and NH4+) between the sites during summer and winter.
Collapse
|
238
|
Temporal variations in ambient air quality indicators in Shanghai municipality, China. Sci Rep 2020; 10:11350. [PMID: 32647237 PMCID: PMC7347849 DOI: 10.1038/s41598-020-68201-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/19/2020] [Indexed: 11/08/2022] Open
Abstract
Official data on daily PM2.5, PM10, SO2, NO2, CO, and maximum 8-h average O3 (O3_8h) concentrations from January 2015 to December 2018 were evaluated and air pollution status and dynamics in Shanghai municipality were examined. Factors affecting air quality, including meteorological factors and socio-economic indicators, were analyzed. The main findings were that: (1) Overall air quality status in Shanghai municipality has improved and number of days meeting 'Chinese ambient air quality standards' (CAAQS) Grade II has increased. (2) The most frequent major pollutant in Shanghai municipality is O3 (which exceeded the standard on 110 days in 2015, 84 days in 2016, 126 days in 2017, 113 days in 2018), followed by PM2.5 (120days in 2015, 104 days in 2016, 67 days in 2017, 61 days in 2018) and NO2 (50 days in 2015, 67 days in 2016, 79 days in 2017, 63 days in 2018). (3) PM2.5 pollution in winter and O3 pollution in summer are the main air quality challenges in Shanghai municipality. (4) Statistical analysis suggested that PM2.5, PM10, SO2 and NO2 concentrations were significantly negatively associated with precipitation (Prec) and atmosphere temperature (T) (p < 0.05), while the O3 concentration was significantly positively associated with Prec and T (p < 0.05). Lower accumulation of PM, SO2, NO2, and CO and more serious O3 pollution were revealed during months with higher temperature and more precipitation in Shanghai. The correlation between the socio-economic factors and the air pollutants suggest that further rigorous measures are needed to control PM2.5 and that further studies are needed to identify O3 formation mechanisms and control strategies. The results provide scientific insights into meteorological factors and socio-economic indicators influencing air pollution in Shanghai.
Collapse
|
239
|
Kirichenko KY, Vakhniuk IA, Ivanov VV, Tarasenko IA, Kosyanov DY, Medvedev SA, Soparev VP, Drozd VA, Kholodov AS, Golokhvast KS. Complex study of air pollution in electroplating workshop. Sci Rep 2020; 10:11282. [PMID: 32647208 PMCID: PMC7347620 DOI: 10.1038/s41598-020-67771-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
A comprehensive analysis of the state of air inside an industrial workshop with electroplating production was carried out. The data of quantitative distribution of suspended particles by size fractions (PM0.3, PM0.5, PM1, PM3, PM5, PM10) are presented for 15 main processes of electroplating. Morphometric and chemical composition of the surface of particles were studied. We observed particles of rounded shape, various agglomerates with complex geometric shapes, acute-angular particles, which when inhaled pose a maximum threat to human health. Chemical analysis of these particles showed an absolute predominance of oxides of non-ferrous metals, the percentage of which varied depending on the type of electroplating bath. The content of highly hazardous substances of the 1st (Zn, Pb, and Cd) and the 2nd (Cu, Cr, Ni, Co, and Mo) hazard classes in each sample was recorded.
Collapse
Affiliation(s)
- K Yu Kirichenko
- Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russian Federation
| | - I A Vakhniuk
- Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russian Federation
| | - V V Ivanov
- Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russian Federation
| | - I A Tarasenko
- Far Eastern Geological Institute, FEB RAS, pr-t 100-let Vladivostok, 159, Vladivostok, 690022, Russian Federation
| | - D Yu Kosyanov
- Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russian Federation
| | - S A Medvedev
- Joint Stock Company "Izumrud", Vladivostok, Russian Federation
| | - V P Soparev
- Public Joint Stock Company "Dalpribor", Vladivostok, Russian Federation
| | - V A Drozd
- Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russian Federation
| | - A S Kholodov
- Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russian Federation.,Far Eastern Geological Institute, FEB RAS, pr-t 100-let Vladivostok, 159, Vladivostok, 690022, Russian Federation
| | - K S Golokhvast
- Far Eastern Federal University, 8 Sukhanova Street, Vladivostok, 690950, Russian Federation. .,Far Eastern Scientific Center of Physiology and Pathology of Breath SB RAMS, 73G Russkaya Street, Vladivostok, 690105, Russian Federation.
| |
Collapse
|
240
|
Wu H, Li Z, Li H, Luo K, Wang Y, Yan P, Hu F, Zhang F, Sun Y, Shang D, Liang C, Zhang D, Wei J, Wu T, Jin X, Fan X, Cribb M, Fischer ML, Kulmala M, Petäjä T. The impact of the atmospheric turbulence-development tendency on new particle formation: a common finding on three continents. Natl Sci Rev 2020; 8:nwaa157. [PMID: 34691590 PMCID: PMC8288356 DOI: 10.1093/nsr/nwaa157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 11/15/2022] Open
Abstract
A new mechanism of new particle formation (NPF) is investigated using comprehensive measurements of aerosol physicochemical quantities and meteorological variables made in three continents, including Beijing, China; the Southern Great Plains site in the USA; and SMEAR II Station in Hyytiälä, Finland. Despite the considerably different emissions of chemical species among the sites, a common relationship was found between the characteristics of NPF and the stability intensity. The stability parameter (ζ = Z/L, where Z is the height above ground and L is the Monin-Obukhov length) is found to play an important role; it drops significantly before NPF as the atmosphere becomes more unstable, which may serve as an indicator of nucleation bursts. As the atmosphere becomes unstable, the NPF duration is closely related to the tendency for turbulence development, which influences the evolution of the condensation sink. Presumably, the unstable atmosphere may dilute pre-existing particles, effectively reducing the condensation sink, especially at coarse mode to foster nucleation. This new mechanism is confirmed by model simulations using a molecular dynamic model that mimics the impact of turbulence development on nucleation by inducing and intensifying homogeneous nucleation events.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Zhanqing Li
- ESSIC and Department of Atmospheric Science, University of Maryland, College Park, MD 21029, USA
| | - Hanqing Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kun Luo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yuying Wang
- School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Peng Yan
- Meteorological Observation Center, China Meteorological Administration, Beijing 100081, China
| | - Fei Hu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Fang Zhang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chunsheng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongmei Zhang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jing Wei
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Tong Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoai Jin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xinxin Fan
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Maureen Cribb
- ESSIC and Department of Atmospheric Science, University of Maryland, College Park, MD 21029, USA
| | - Marc L Fischer
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research / Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
241
|
Spatiotemporal Differences and Dynamic Evolution of PM2.5 Pollution in China. SUSTAINABILITY 2020. [DOI: 10.3390/su12135349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Air pollution, especially the urban haze, has become an urgent issue affecting the sustainable development of cities. Based on the PM2.5 concentration data of 225 Chinese cities collected by satellite remote sensing from 1998 to 2016, we quantitatively analyzed the spatiotemporal distribution characteristics and dynamic evolution trends of PM2.5 concentration in the four regions of China, namely the East, the Central, the West and the Northeast, by using statistical classification, GIS visualization, Dagum Gini coefficient decomposition and kernel density estimation. The results are as follows: First, the PM2.5 pollution in China showed a trend of fluctuation, which appeared to be increasing first and then decreasing, with the year 2007 as an important turning point for PM2.5 pollution changes across the country, as well as in the eastern and central regions. Second, PM2.5 pollution in China had significant spatial agglomeration. The intra-regional difference within the eastern region was the largest, and the inter-regional differences were the main source of overall differences. Third, kernel density estimation showed that the absolute difference of PM2.5 concentration distribution in China was expanding, with a significant phenomenon of polarization and the characteristics of spatial imbalance. This paper aimed to provide a scientific basis and effective reference for further advancing the sustainable development strategy of China in the new era.
Collapse
|
242
|
Aklilu D, Wang T, Amsalu E, Feng W, Li Z, Li X, Tao L, Luo Y, Guo M, Liu X, Guo X. Short-term effects of extreme temperatures on cause specific cardiovascular admissions in Beijing, China. ENVIRONMENTAL RESEARCH 2020; 186:109455. [PMID: 32311528 DOI: 10.1016/j.envres.2020.109455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Extreme temperature-related cardiovascular diseases (CVDs) have become a growing public health concern. However, the impact of temperature on the cause of specific CVDs has not been well studied in the study area. The objective of this study was to assess the impact of temperature on cause-specific cardiovascular hospital admissions in Beijing, China. We obtained data from 172 large general hospitals from the Beijing Public Health Information Center Cardiovascular Case Database and China. Meteorological Administration covering 16 districts in Beijing from 2013 to 2017. We used a time-stratified case crossover design with a distributed lag nonlinear model (DLNM) to derive the impact of temperature on CVD in hospitals back to 27 days on CVD admissions. The temperature data were stratified as cold (extreme and moderate ) and hot (moderate and extreme ). Within five years (January 2013-December 2017), a total of 460,938 (male 54.9% and female 45.1%) CVD admission cases were reported. The exposure-response relationship for hospitalization was described by a "J" shape for the total and cause-specific. An increase in the six-day moving average temperature from moderate hot (30.2 °C) to extreme hot (36.9 °C) resulted in a significant increase in CVD admissions of 16.1%(95% CI = 12.8%-28.9%). However, the effect of cold temperature exposure on CVD admissions over a lag time of 0-27 days was found to be non significant, with a relative risk of 0.45 (95% CI = 0.378-0.55) for extreme cold (-8.5 °C)and 0.53 (95% CI = 0.47-0.60) for moderate cold (-5.6 °C). The results of this study indicate that exposure to extremely high temperatures is highly associated with an increase in cause-specific CVD admissions. These finding may guide to create and raise awareness of the general population, government and private sectors regarding on the effects of current weather conditions on CVD.
Collapse
Affiliation(s)
- Deginet Aklilu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Tianqi Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Commission of Health and Family Planning Information Center, China
| | - Endwoke Amsalu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Wei Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| | - Zhiwei Li
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Melbourne, Victoria, Australia
| | - Lixin Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Yanxia Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
| | - Moning Guo
- Beijing Municipal Commission of Health and Family Planning Information Center, China
| | - Xiangtong Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| | - Xiuhua Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China.
| |
Collapse
|
243
|
Yuan C, Zheng J, Ma Y, Jiang Y, Li Y, Wang Z. Significant restructuring and light absorption enhancement of black carbon particles by ammonium nitrate coating. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114172. [PMID: 32155545 DOI: 10.1016/j.envpol.2020.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Field observations have suggested that particulate nitrate can promote the aging of black carbon (BC), yet the mechanisms of the aging process and its impacts on BC's light absorption are undetermined. Here we performed laboratory simulation of internal mixing of flame-generated BC aggregates with ammonium nitrate. Variations in particle size, mass, coating thickness, effective density, dynamic shape factor, and optical properties were determined online by a suite of instruments. With the development of coatings, the particle size initially decreased until reaching a coating thickness of ∼10 nm and then started increasing, accompanied by an increase in effective density and a decrease in dynamic shape factor, reflecting the transformation of BC particles from highly fractal to near-spherical morphology. This is partially attributable to the restructuring of BC cores to more compact forms. Exposing coated particles to elevated relative humidity (RH) led to additional BC morphology changes, even after drying. Particle light absorption and scattering were also amplified with ammonium nitrate coating, increasing with coating thickness and RH. For BC particles with a 17.8 nm coating, absorption and scattering were increased by 1.5- and 7.9-fold when cycled through 70% RH (5-70-5% RH), respectively. The irreversible restructuring of the BC core caused by condensation of ammonium nitrate and water altered both absorption and scattering, with a magnitude comparable to or even exceeding the effects of increased coating. Results show that ammonium nitrate is among the most efficient coating materials with respect to modifying BC morphology and optical properties compared with other inorganic and organic species investigated previously. Accordingly, mitigation of nitrate aerosols is necessary for the benefits of both air pollution control and reducing the impacts of BC on visibility impairment and radiative forcing on climate change. Our results also pointed out that the effect of BC core restructuring needs to be considered when evaluating BC's light absorption enhancement.
Collapse
Affiliation(s)
- Cheng Yuan
- School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jun Zheng
- School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yan Ma
- School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China; NUIST Reading Academy, Nanjing University of Information Science & Technology, Nanjing, 210044, China; NUIST-University of Reading International Research Institute, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Youling Jiang
- School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yilin Li
- NUIST Reading Academy, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Ziqiong Wang
- NUIST Reading Academy, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
244
|
Gu Y, Huang RJ, Li Y, Duan J, Chen Q, Hu W, Zheng Y, Lin C, Ni H, Dai W, Cao J, Liu Q, Chen Y, Chen C, Ovadnevaite J, Ceburnis D, O'Dowd C. Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms. ENVIRONMENT INTERNATIONAL 2020; 140:105732. [PMID: 32361073 DOI: 10.1016/j.envint.2020.105732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/18/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
To mitigate air pollution in China, a legislative 'Air Pollution Prevention and Control Action Plan' has been implemented by the Chinese government since 2013. There is, however, a lack of investigations for long-term trends in the composition, sources and evolution processes of PM1 (particulate matter with diameter less than 1 μm) after the implementation. To evaluate the effectiveness of these control measures, we present a year-long real-time measurement of the chemical composition of PM1 at an urban site in Beijing from November 2014 to November 2015, and the results are compared with previous studies from 2008 to 2013 to gain insights into the variations of the chemical composition and sources of PM1 in Beijing. Large seasonal differences were observed in the mass concentrations of PM1 species and general declining trend was observed in the last seven years. Specifically, the annual averages of mass concentrations in 2014-2015 decrease by 16-43% (PM1), 23-43% (organic aerosol, OA), 38-68% (sulfate), 26-51% (nitrate), 18-33% (ammonium) and 27-38% (chloride) compared to those from 2008 to 2013. During winter and summer, the seasonal mass concentrations of sulfate and nitrate show more significant declines especially in summer 2008 (79% and 81%) and summer 2011 (76% and 77%). The nitrate-to-sulfate ratio is higher in 2014-2015 (1.5 ± 0.6) than that in 2013 (1.0 ± 0.3), largely due to significant reduction in SO2 emissions, suggesting that nitrate is becoming more important than sulfate in particulate pollution in Beijing. OA is the dominant PM1 fraction (>45%) in all seasons and the mass concentrations/contributions of both primary and secondary OA show different seasonality. As for the more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA), the contributions of MO-OOA are much higher than those of LO-OOA (27-62% vs. 6-26%) in both high-pollution and low-pollution days. Aqueous-phase processes are found to facilitate the formation of MO-OOA while photochemical oxidation formation is a major contributor of LO-OOA in winter, and photochemical oxidation plays a major role in the formation of MO-OOA in summer and fall. The current study provides a comprehensive seasonal comparison of chemical composition and formation of PM1 in Beijing and a pacesetter in tackling PM pollution for other equally polluted megacities, after implementation of more stringent control measures after 2013.
Collapse
Affiliation(s)
- Yifang Gu
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Yongjie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau 999078, China
| | - Jing Duan
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Weiwei Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yan Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chunshui Lin
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Haiyan Ni
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wenting Dai
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Junji Cao
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Quan Liu
- Beijing Weather Modification Office, Beijing 100089, China
| | - Yang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Jurgita Ovadnevaite
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway H91CF50, Ireland
| | - Darius Ceburnis
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway H91CF50, Ireland
| | - Colin O'Dowd
- School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, National University of Ireland Galway, University Road, Galway H91CF50, Ireland
| |
Collapse
|
245
|
Zhang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc Natl Acad Sci U S A 2020; 117:14857-14863. [PMID: 32527856 DOI: 10.1002/er.4919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023] Open
Abstract
Various mitigation measures have been implemented to fight the coronavirus disease 2019 (COVID-19) pandemic, including widely adopted social distancing and mandated face covering. However, assessing the effectiveness of those intervention practices hinges on the understanding of virus transmission, which remains uncertain. Here we show that airborne transmission is highly virulent and represents the dominant route to spread the disease. By analyzing the trend and mitigation measures in Wuhan, China, Italy, and New York City, from January 23 to May 9, 2020, we illustrate that the impacts of mitigation measures are discernable from the trends of the pandemic. Our analysis reveals that the difference with and without mandated face covering represents the determinant in shaping the pandemic trends in the three epicenters. This protective measure alone significantly reduced the number of infections, that is, by over 78,000 in Italy from April 6 to May 9 and over 66,000 in New York City from April 17 to May 9. Other mitigation measures, such as social distancing implemented in the United States, are insufficient by themselves in protecting the public. We conclude that wearing of face masks in public corresponds to the most effective means to prevent interhuman transmission, and this inexpensive practice, in conjunction with simultaneous social distancing, quarantine, and contact tracing, represents the most likely fighting opportunity to stop the COVID-19 pandemic. Our work also highlights the fact that sound science is essential in decision-making for the current and future public health pandemics.
Collapse
Affiliation(s)
- Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843;
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Annie L Zhang
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712
| | - Yuan Wang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Mario J Molina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
246
|
Zhang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airborne transmission as the dominant route for the spread of COVID-19. Proc Natl Acad Sci U S A 2020; 117:14857-14863. [PMID: 32527856 PMCID: PMC7334447 DOI: 10.1073/pnas.2009637117] [Citation(s) in RCA: 707] [Impact Index Per Article: 176.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Various mitigation measures have been implemented to fight the coronavirus disease 2019 (COVID-19) pandemic, including widely adopted social distancing and mandated face covering. However, assessing the effectiveness of those intervention practices hinges on the understanding of virus transmission, which remains uncertain. Here we show that airborne transmission is highly virulent and represents the dominant route to spread the disease. By analyzing the trend and mitigation measures in Wuhan, China, Italy, and New York City, from January 23 to May 9, 2020, we illustrate that the impacts of mitigation measures are discernable from the trends of the pandemic. Our analysis reveals that the difference with and without mandated face covering represents the determinant in shaping the pandemic trends in the three epicenters. This protective measure alone significantly reduced the number of infections, that is, by over 78,000 in Italy from April 6 to May 9 and over 66,000 in New York City from April 17 to May 9. Other mitigation measures, such as social distancing implemented in the United States, are insufficient by themselves in protecting the public. We conclude that wearing of face masks in public corresponds to the most effective means to prevent interhuman transmission, and this inexpensive practice, in conjunction with simultaneous social distancing, quarantine, and contact tracing, represents the most likely fighting opportunity to stop the COVID-19 pandemic. Our work also highlights the fact that sound science is essential in decision-making for the current and future public health pandemics.
Collapse
Affiliation(s)
- Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843;
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Annie L Zhang
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712
| | - Yuan Wang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125
| | - Mario J Molina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
247
|
Chang Y, Huang R, Ge X, Huang X, Hu J, Duan Y, Zou Z, Liu X, Lehmann MF. Puzzling Haze Events in China During the Coronavirus (COVID-19) Shutdown. GEOPHYSICAL RESEARCH LETTERS 2020; 47:e2020GL088533. [PMID: 32836517 PMCID: PMC7300478 DOI: 10.1029/2020gl088533] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 05/20/2023]
Abstract
It is a puzzle as to why more severe haze formed during the New Year Holiday in 2020 (NYH-20), when China was in an unprecedented state of shutdown to contain the coronavirus (COVID-19) outbreak, than in 2019 (NYH-19). We performed a comprehensive measurement and modeling analysis of the aerosol chemistry and physics at multiple sites in China (mainly in Shanghai) before, during, and after NYH-19 and NYH-20. Much higher secondary aerosol fraction in PM2.5 were observed during NYH-20 (73%) than during NYH-19 (59%). During NYH-20, PM2.5 levels correlated significantly with the oxidation ratio of nitrogen (r 2 = 0.77, p < 0.01), and aged particles from northern China were found to impede atmospheric new particle formation and growth in Shanghai. A markedly enhanced efficiency of nitrate aerosol formation was observed along the transport pathways during NYH-20, despite the overall low atmospheric NO2 levels.
Collapse
Affiliation(s)
- Yunhua Chang
- KLME & CIC‐FEMD, Yale‐NUIST Center on Atmospheric EnvironmentNanjing University of Information Science and TechnologyNanjingChina
| | - Ru‐Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and PhysicsInstitute of Earth and Environment, Chinese Academy of SciencesXi'anChina
| | - Xinlei Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and EngineeringNanjing University of Information Science and TechnologyNanjingChina
| | - Xiangpeng Huang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and EngineeringNanjing University of Information Science and TechnologyNanjingChina
| | - Jianlin Hu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and EngineeringNanjing University of Information Science and TechnologyNanjingChina
| | - Yusen Duan
- Shanghai Environmental Monitoring CenterShanghaiChina
| | - Zhong Zou
- Department of Environmental Science and EngineeringFudan UniversityShanghaiChina
| | - Xuejun Liu
- College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Moritz F. Lehmann
- Department of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
248
|
Statistical Learning of the Worst Regional Smog Extremes with Dynamic Conditional Modeling. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper is concerned with the statistical learning of the extreme smog (PM 2.5 ) dynamics of a vast region in China. Differently from classical extreme value modeling approaches, this paper develops a dynamic model of conditional, exponentiated Weibull distribution modeling and analysis of regional smog extremes, particularly for the worst scenarios observed in each day. To gain higher modeling efficiency, weather factors will be introduced in an enhanced model. The proposed model and the enhanced model are illustrated with temporal/spatial maxima of hourly PM 2.5 observations each day from smog monitoring stations located in the Beijing–Tianjin–Hebei geographical region between 2014 and 2019. The proposed model performs more precisely on fittings compared with other previous models dealing with maxima with autoregressive parameter dynamics, and provides relatively accurate prediction as well. The findings enhance the understanding of how severe extreme smog scenarios can be and provide useful information for the central/local government to conduct coordinated PM 2.5 control and treatment. For completeness, probabilistic properties of the proposed model were investigated. Statistical estimation based on the conditional maximum likelihood principle is established. To demonstrate the estimation and inference efficiency of studies, extensive simulations were also implemented.
Collapse
|
249
|
Huang X, Ding A, Gao J, Zheng B, Zhou D, Qi X, Tang R, Wang J, Ren C, Nie W, Chi X, Xu Z, Chen L, Li Y, Che F, Pang N, Wang H, Tong D, Qin W, Cheng W, Liu W, Fu Q, Liu B, Chai F, Davis SJ, Zhang Q, He K. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl Sci Rev 2020; 8:nwaa137. [PMID: 34676092 PMCID: PMC7337733 DOI: 10.1093/nsr/nwaa137] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/02/2022] Open
Abstract
To control the spread of the 2019 novel coronavirus (COVID-19), China imposed nationwide restrictions on the movement of its population (lockdown) after the Chinese New Year of 2020, leading to large reductions in economic activities and associated emissions. Despite such large decreases in primary pollution, there were nonetheless several periods of heavy haze pollution in eastern China, raising questions about the well-established relationship between human activities and air quality. Here, using comprehensive measurements and modeling, we show that the haze during the COVID lockdown was driven by enhancements of secondary pollution. In particular, large decreases in NOx emissions from transportation increased ozone and nighttime NO3 radical formation, and these increases in atmospheric oxidizing capacity in turn facilitated the formation of secondary particulate matter. Our results, afforded by the tragic natural experiment of the COVID-19 pandemic, indicate that haze mitigation depends upon a coordinated and balanced strategy for controlling multiple pollutants.
Collapse
Affiliation(s)
- Xin Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Aijun Ding
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bo Zheng
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Derong Zhou
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Ximeng Qi
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Rong Tang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Jiaping Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Chuanhua Ren
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Nie
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Xuguang Chi
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Zheng Xu
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Liangduo Chen
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yuanyuan Li
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Fei Che
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Nini Pang
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haikun Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Dan Tong
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Wei Qin
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Wei Cheng
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Weijing Liu
- Jiangsu Provincial Academy of Environment Science, Nanjing 210036, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200030, China
| | - Baoxian Liu
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environmental Monitoring Center, Beijing 100048, China
| | - Fahe Chai
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Steven J Davis
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Qiang Zhang
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Kebin He
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
250
|
He G, He H. Water Promotes the Oxidation of SO 2 by O 2 over Carbonaceous Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7070-7077. [PMID: 32338880 DOI: 10.1021/acs.est.0c00021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Severe haze episodes typically occur with concurrent high relative humidity. Here, the vital role of water in promoting the oxidation of SO2 by O2 on carbonaceous soot surfaces was identified at the atomic level by first-principles calculations. Water molecules can dissociate into surface hydroxyl groups through a self-catalyzed process under ambient conditions. The surface hydroxyl groups, acting as facilitators, can significantly accelerate the conversion of SO2 to SO3 (precursor of particulate sulfate) over soot aerosols by reducing the reaction barriers. Specifically, the hydroxyl groups activate the reactants and stabilize the transition states and products through hydrogen-bonding interactions, making the reactions both thermodynamically and kinetically more favorable at room temperature. The findings indicate that atmospheric humidity plays an important role in enhancing the atmospheric oxidation capacity, thus exacerbating SO2 oxidation and severe haze development. Also, this study unravels a mechanism of surface hydroxyl-assisted O2 and H2O dissociation over metal-free carbocatalysts under normal conditions.
Collapse
Affiliation(s)
- Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|