201
|
Xing F, Jiang Y, Liu J, Zhao K, Mo Y, Liu Z, Zeng Y. Downregulation of human endothelial nitric oxide synthase promoter activity by p38 mitogen-activated protein kinase activation. Biochem Cell Biol 2006; 84:780-8. [PMID: 17167542 DOI: 10.1139/o06-092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human endothelial nitric oxide synthase (eNOS) plays a crucial role in maintaining blood pressure homeostasis and vascular integrity. eNOS gene expression may be upregulated by a signaling pathway, including PI-3Kgamma--> Jak2--> MEK1 --> ERK1/2--> PP2A. It remains unclear whether other mitogen-activated protein kinase (MAPK) family members, such as JNK, p38 kinase, and ERK5/BMK1, also modulate eNOS gene expression. Our purpose, therefore, is to shed light on the effect of the p38 MAPK signaling pathway on the regulation of eNOS promoter activity. The results showed that a red fluorescent protein reporter gene vector containing the full length of the human eNOS promoter was first successfully constructed, expressing efficiently in ECV304 cells with the characteristics of real time observation. The wild-types of p38alpha, p38beta, p38gamma, and p38delta signal molecules all markedly downregulated promoter activity, which could be reversed by their negative mutants, including p38alpha (AF), p38beta (AF), p38gamma (AF), and p38delta (AF). Promoter activity was also significantly downregulated by MKK6b (E), an active mutant of an upstream kinase of p38 MAPK. The reduction in promoter activity by p38 MAPK could be blocked by treatment with a p38 MAPK specific inhibitor, SB203580. Moreover, the activation of endogenous p38 MAPK induced by lipopolysaccharide resulted in a prominent reduction in promoter activity. These findings strongly suggest that the activation of the p38 MAPK signaling pathway may be implicated in the downregulation of human eNOS promoter activity.
Collapse
Affiliation(s)
- Feiyue Xing
- Key Laboratory of Ministry of Education, Department of Biochemistry, College of Life Science and Technology, Jinan University, 601# Huangpu West Avenue, Guangzhou 510632, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
202
|
Kadohama T, Akasaka N, Nishimura K, Hoshino Y, Sasajima T, Sumpio BE. p38 Mitogen-activated protein kinase activation in endothelial cell is implicated in cell alignment and elongation induced by fluid shear stress. ACTA ACUST UNITED AC 2006; 13:43-50. [PMID: 16885066 DOI: 10.1080/10623320600660219] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Fluid shear stress is thought to be important in maintaining the phenotype of endothelial cells (ECs) in vivo. The purpose of the study was to determine the effect of varying levels of laminar shear stress on EC elongation and alignment and the role of p38 mitogen-activated protein kinase (MAPK) on the morphologic change induced by shear stress. Cultured bovine aortic ECs were subjected to 1, 4, 7, 14, or 20 dyne/cm(2) laminar steady shear stress. On morphometric analysis of static ECs, the average orientation angle was 41 degrees , whereas after 24 h shear stress at 1, 4, 7, 14, and 20 dyne/cm(2) the angles were 34 degrees, 33 degrees, 16 degrees, 11 degrees, and 10 degrees, respectively. The shape index of static ECs was 0.76, whereas the indexes of ECs exposed to shear stress were 0.72, 0.72, 0.65, 0.50, and 0.47, respectively. The time and the magnitude of activation of p38 MAPK were dependent on the level of shear stress. The results indicate that a minimum shear stress of 7 to 14 dynes/cm(2) is necessary for cell alignment and elongation and this correlates with activity of p38 MAPK. ECs exposed to shear stress in the presence of the p38 MAPK inhibitor SB-203580 did not orient in any manner and the shape index was similar to the static cells.
Collapse
Affiliation(s)
- Takayuki Kadohama
- Department of Surgery, Section of Vascular Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
203
|
Aberg E, Perander M, Johansen B, Julien C, Meloche S, Keyse SM, Seternes OM. Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4. J Biol Chem 2006; 281:35499-510. [PMID: 16971392 DOI: 10.1074/jbc.m606225200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MAPK-activated protein kinase 5 (MK5) was recently identified as a physiological substrate of the atypical MAPK ERK3. Complex formation between ERK3 and MK5 results in phosphorylation and activation of MK5, concomitant stabilization of ERK3, and the nuclear exclusion of both proteins. However, ablation of ERK3 in HeLa cells using small interfering RNA or in fibroblasts derived from ERK3 null mice reduces the activity of endogenous MK5 by only 50%, suggesting additional mechanisms of MK5 regulation. Here we identify the ERK3-related kinase ERK4 as a bona fide interaction partner of MK5. Binding of ERK4 to MK5 is accompanied by phosphorylation and activation of MK5. Furthermore, complex formation also results in the relocalization of MK5 from nucleus to cytoplasm. However unlike ERK3, ERK4 is a stable protein, and its half-life is not modified by the presence or absence of MK5. Finally, although knock-down of ERK4 protein in HeLa cells reduces endogenous MK5 activity by approximately 50%, a combination of small interfering RNAs targeting both ERK4 and ERK3 causes a further reduction in the MK5 activity by more than 80%. We conclude that MK5 activation is dependent on both ERK3 and ERK4 in these cells and that these atypical MAPKs are both physiological regulators of MK5 activity.
Collapse
Affiliation(s)
- Espen Aberg
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway, and Cancer Research UK Stress Response Laboratory, Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
204
|
Rice KM, Desai DH, Kakarla SK, Katta A, Preston DL, Wehner P, Blough ER. Diabetes alters vascular mechanotransduction: pressure-induced regulation of mitogen activated protein kinases in the rat inferior vena cava. Cardiovasc Diabetol 2006; 5:18. [PMID: 16961925 PMCID: PMC1592078 DOI: 10.1186/1475-2840-5-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/08/2006] [Indexed: 12/30/2022] Open
Abstract
Background Diabetes mellitus is an important risk factor for increased vein graft failure after bypass surgery. However, the cellular and molecular mechanism(s) underlying vessel attrition in this population remain largely unexplored. Recent reports have suggested that the pathological remodeling of vein grafts may be mediated by mechanically-induced activation of the mitogen activated protein kinase (MAPK) signaling pathways and the MAPK-related induction of caspase-3 activity. On the basis of these findings, we hypothesized that diabetes may be associated with alterations in how veins "sense" and "respond" to altered mechanical loading. Methods Inferior venae cavae (IVC) from the non-diabetic lean (LNZ) and the diabetic obese (OSXZ) Zucker rats were isolated and incubated ex vivo under basal or pressurized conditions (120 mmHg). Protein expression, basal activation and the ability of increased pressure to activate MAPK pathways and apoptosis-related signaling was evaluated by immunoblot analysis. Results Immunoblot analyses revealed differential expression and activation of extracellular signal-regulated kinase (ERK1/2), p38 and c-Jun NH2-terminal kinase (JNK) MAPKs in the IVCs of diabetic rats as compared to non-diabetic rats. In particular, the expression and basal phosphorylation of p38β- (52.3 ± 11.8%; 45.8 ± 18.2%), JNK 1- (21.5 ± 9.3%; 19.4 ± 11.6%) and JNK3-MAPK (16.8 ± 3.3%; 29.5 ± 17.6%) were significantly higher (P < 0.05) in the diabetic vena cava. An acute increase in IVC intraluminal pressure failed to increase the phosphorylation of ERK1-, JNK-2, or any of the p38-MAPKs in the diabetic obese Zucker rats. Also, IVC loading in the LNZ led to a 276.0 ± 36.0% and 85.8 ± 25.1% (P < 0.05) increase in the cleavage of caspase-3 and caspase-9, respectively, with no effect on these molecules in the OSXZ. No differences were found in the regulation of Bax and Bcl-2 between groups. However, basal expression levels of Akt, phospho-Akt, PTEN, phospho-PTEN and phospho-Bad were higher in the diabetic venae cavae (P < 0.05). Conclusion These data suggest that diabetes is associated with significant alteration in the ability of the vena cava to activate MAPK- and apoptosis-related signaling. Whether these changes are associated with the increased vein graft attrition seen in the diabetic population will require further investigation.
Collapse
Affiliation(s)
- Kevin M Rice
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Devashish H Desai
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Sunil K Kakarla
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Anjaiah Katta
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Deborah L Preston
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| | - Paulette Wehner
- Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Eric R Blough
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
- Department of Biological Sciences, Marshall University, Huntington, WV, USA
| |
Collapse
|
205
|
Silva G, Cunha A, Grégoire IP, Seldon MP, Soares MP. The antiapoptotic effect of heme oxygenase-1 in endothelial cells involves the degradation of p38 alpha MAPK isoform. THE JOURNAL OF IMMUNOLOGY 2006; 177:1894-903. [PMID: 16849502 DOI: 10.4049/jimmunol.177.3.1894] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heme oxygenase-1 (HO-1) protects endothelial cells (EC) from undergoing apoptosis. This effect is mimicked by CO, generated via the catabolism of heme by HO-1. The antiapoptotic effect of CO in EC was abrogated when activation of the p38alpha and p38beta MAPKs was inhibited by the pyridinyl imidazole SB202190. Using small interfering RNA, p38beta was found to be cytoprotective in EC, whereas p38alpha was not. When overexpressed in EC, HO-1 targeted specifically the p38alpha but not the p38beta MAPK isoform for degradation by the 26S proteasome, an effect reversed by the 26S proteasome inhibitors MG-132 or lactacystin. Inhibition of p38alpha expression was also observed when HO-1 was induced physiologically by iron protoporphyrin IX (hemin). Inhibition of p38alpha no longer occurred when HO activity was inhibited by tin protoporphyrin IX, suggesting that p38alpha degradation was mediated by an end product of heme catabolism. Exogenous CO inhibited p38alpha expression in EC, suggesting that CO is the end product that mediates this effect. The antiapoptotic effect of HO-1 was impaired when p38alpha expression was restored ectopically or when its degradation by the 26S proteasome was inhibited by MG-132. Furthermore, the antiapoptotic effect of HO-1 was lost when p38beta expression was targeted by a specific p38beta small interfering RNA. In conclusion, the antiapoptotic effect of HO-1 in EC is dependent on the degradation of p38alpha by the 26S proteasome and on the expression of p38beta.
Collapse
|
206
|
Vergarajauregui S, Miguel AS, Puertollano R. Activation of p38 mitogen-activated protein kinase promotes epidermal growth factor receptor internalization. Traffic 2006; 7:686-98. [PMID: 16683917 PMCID: PMC1479226 DOI: 10.1111/j.1600-0854.2006.00420.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions.
Collapse
|
207
|
Ashwell JD. The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 2006; 6:532-40. [PMID: 16799472 DOI: 10.1038/nri1865] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Signals emanating from many cell-surface receptors and environmental cues converge on mitogen-activated protein kinases (MAPKs), which in turn phosphorylate and activate various transcription factors and other molecular effectors. Members of the p38 MAPK family, which respond to pro-inflammatory cytokines and cellular stresses, are typically activated by serial phosphorylation and activation of upstream kinases (the MAPK cascade). In this Review, I highlight the recent studies that indicate that p38-subfamily members can also be activated by non-canonical mechanisms, at least one of which seems to have an important role in antigen-receptor-activated T cells. These alternative pathways might have particular relevance for cells that participate in immune and inflammatory responses.
Collapse
Affiliation(s)
- Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
208
|
Aouadi M, Binetruy B, Caron L, Le Marchand-Brustel Y, Bost F. Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimie 2006; 88:1091-8. [PMID: 16854512 DOI: 10.1016/j.biochi.2006.06.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 06/02/2006] [Indexed: 01/02/2023]
Abstract
The ERK, p38MAPK, JNK mitogen-activated protein kinases (MAPKs) are intracellular signaling pathways that play a pivotal role in many essential cellular processes such as proliferation and differentiation. These cascades are activated by a large variety of stimuli and display a high degree of homology. So far, seven MAPK isoforms have been invalidated in mice leading to the discovery of their important functions in development and differentiation. As we could expect because of their multiple and specific properties in vitro, knockout (KO) of MAPK pathways leads to distinct phenotypes in mice. Surprisingly, into a given cascade, KOs of the various isoforms assign specific non-redundant biological functions to each isoform, without compensation by the others. These results emphasize the notion that, although initiated by the same external stimuli, these intracellular cascades activate kinase isoforms each with its own specific role.
Collapse
Affiliation(s)
- M Aouadi
- Inserm U568, faculté de médecine, Université de Nice Sophia-Antipolis, avenue de Valombrose, 06107 Nice cedex, France
| | | | | | | | | |
Collapse
|
209
|
Zhou H, Zheng M, Chen J, Xie C, Kolatkar AR, Zarubin T, Ye Z, Akella R, Lin S, Goldsmith EJ, Han J. Determinants that control the specific interactions between TAB1 and p38alpha. Mol Cell Biol 2006; 26:3824-34. [PMID: 16648477 PMCID: PMC1489000 DOI: 10.1128/mcb.26.10.3824-3834.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have revealed that transforming growth factor-beta-activated protein kinase 1 (TAB1) interacts with p38alpha and induces p38alpha autophosphorylation. Here, we examine the sequence requirements in TAB1 and p38alpha that drive their interaction. Deletion and point mutations in TAB1 reveal that a proline residue in the C terminus of TAB1 (Pro412) is necessary for its interaction with p38alpha. Furthermore, a cryptic D-domain-like docking site was identified adjacent to the N terminus of Pro412, putting Pro412 in the phi(B)+3 position of the docking site. Through mutational analysis, we found that the previously identified hydrophobic docking groove in p38alpha is involved in this interaction, whereas the CD domain and ED domain are not. Furthermore, chimeric analysis with p38beta (which does not bind to TAB1) revealed a previously unidentified locus of p38alpha comprising Thr218 and Ile275 that is essential for specific binding of p38alpha to TAB1. Converting either of these residues to the corresponding amino acid of p38beta abolishes p38alpha interaction with TAB1. These p38alpha mutants still can be fully activated by p38alpha upstream activating kinase mitogen-activated protein kinase kinase 6, but their basal activity and activation in response to some extracellular stimuli are reduced. Adjacent to Thr218 and Ile275 is a site where large conformational changes occur in the presence of docking-site peptides derived from p38alpha substrates and activators. This suggests that TAB1-induced autophosphorylation of p38alpha results from conformational changes that are similar but unique to those seen in p38alpha interactions with its substrates and activating kinases.
Collapse
Affiliation(s)
- Huamin Zhou
- The Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Fujian, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
210
|
Meng F, Yamagiwa Y, Ueno Y, Patel T. Over-expression of interleukin-6 enhances cell survival and transformed cell growth in human malignant cholangiocytes. J Hepatol 2006; 44:1055-65. [PMID: 16469407 PMCID: PMC1524858 DOI: 10.1016/j.jhep.2005.10.030] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 10/10/2005] [Indexed: 01/07/2023]
Abstract
BACKGROUND/AIMS Over-expression of IL-6 has been implicated in cholangiocarcinoma growth but the cellular mechanisms involved are unknown. Our aims were to assess the mechanisms by which over-expression of IL-6 promotes transformed cell growth in malignant cholangiocytes. METHODS Stably transfected cell lines over-expressing IL-6 were derived from malignant human cholangiocytes. Transformed cell growth was assessed by anchorage independent growth in vitro and by xenograft growth in nude mice. Expression of the anti-apoptotic protein Mcl-1 was quantitated by immunoblot analysis and by real-time PCR. Gene silencing was performed using siRNA. Dominant negative upstream kinase activators and isoform-specific constructs were used to evaluate the involvement of p38 MAP kinase signaling pathways. RESULTS Over-expression of IL-6 increased xenograft growth, anchorage independent growth and cell survival but did not significantly alter cell proliferation. The basal expression of Mcl-1 was increased in IL-6 over-expressing cells. Selective knockdown of Mcl-1 by siRNA increased gemcitabine-induced cytotoxicity. Moreover, IL-6 increased Mcl-1 mRNA and protein expression via a p38 MAPK dependent mechanism. CONCLUSIONS These data demonstrate a major role of survival signaling pathways in mediating the effects of IL-6 over-expression in cholangiocarcinoma growth. Mcl-1 is identified as a mediator of IL-6-induced tumor cell survival and shown to be transcriptionally regulated by IL-6 via a p38 MAPK dependent pathway. We conclude that modulation of IL-6 mediated survival signaling pathways involving the p38 MAPK or downstream targets such as Mcl-1 may prove useful therapeutic strategies for human cholangiocarcinoma.
Collapse
Affiliation(s)
- Fanyin Meng
- Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine Temple, TX
| | - Yoko Yamagiwa
- Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine Temple, TX
| | | | - Tushar Patel
- Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine Temple, TX
- Address for correspondence: Tushar Patel, MD, Associate Professor of Medicine, Scott and White Clinic, 2401 South 31 Street, Temple, TX 76502, Tel: 254 724 2237 or 254 724 6267, Fax: 254 724 8276 or 254 742 7181, e-mail:
| |
Collapse
|
211
|
Abstract
BACKGROUND/AIMS Over-expression of IL-6 has been implicated in cholangiocarcinoma growth but the cellular mechanisms involved are unknown. Our aims were to assess the mechanisms by which over-expression of IL-6 promotes transformed cell growth in malignant cholangiocytes. METHODS Stably transfected cell lines over-expressing IL-6 were derived from malignant human cholangiocytes. Transformed cell growth was assessed by anchorage independent growth in vitro and by xenograft growth in nude mice. Expression of the anti-apoptotic protein Mcl-1 was quantitated by immunoblot analysis and by real-time PCR. Gene silencing was performed using siRNA. Dominant negative upstream kinase activators and isoform-specific constructs were used to evaluate the involvement of p38 MAP kinase signaling pathways. RESULTS Over-expression of IL-6 increased xenograft growth, anchorage independent growth and cell survival but did not significantly alter cell proliferation. The basal expression of Mcl-1 was increased in IL-6 over-expressing cells. Selective knockdown of Mcl-1 by siRNA increased gemcitabine-induced cytotoxicity. Moreover, IL-6 increased Mcl-1 mRNA and protein expression via a p38 MAPK dependent mechanism. CONCLUSIONS These data demonstrate a major role of survival signaling pathways in mediating the effects of IL-6 over-expression in cholangiocarcinoma growth. Mcl-1 is identified as a mediator of IL-6-induced tumor cell survival and shown to be transcriptionally regulated by IL-6 via a p38 MAPK dependent pathway. We conclude that modulation of IL-6 mediated survival signaling pathways involving the p38 MAPK or downstream targets such as Mcl-1 may prove useful therapeutic strategies for human cholangiocarcinoma.
Collapse
|
212
|
Al-Masoudi NA, Al-Soud YA, Kalogerakis A, Pannecouque C, De Clercq E. Nitroimidazoles, Part 2. Chem Biodivers 2006; 3:515-26. [PMID: 17193287 DOI: 10.1002/cbdv.200690055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A series of 5-alkylamino and 5-alkylsulfanyl derivatives of 1-aryl-2-alkyl-4-nitro-1H-imidazoles 12-21, 31, and 34 were synthesized by a simple method with the aim to develop novel HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs). All the new compounds were tested against HIV-1 and HIV-2 in MT-4 cells. Compound 21, with an arylsulfanyl group at C(5) of the 4-nitro-1H-imidazole backbone showed an EC(50) value of 0.22 microg/ml against HIV-1 with a therapeutic index of 13. This means that compound 21 was cytotoxic to MT-4 cells at a CC(50) value of 2.57 microg/ml; also compounds 8, 22-25, 28, and 29 were cytotoxic to MT-4 cells within the 0.4-4 microg/ml concentration range. Compounds 8, and 12-21 were evaluated, as a rule, but found inactive at non-toxic concentrations against hepatitis C virus, herpes simplex type 1 and 2, cytomegalovirus (CMV), varicella-zoster virus (VZV), vaccinia virus, and vesicular stomatitis virus, and a number of other viruses. Yet, the therapeutic index of compounds 17 and 21 for CMV and VZV approached the tenfold cut-off point. Compounds 8 and 21 exhibited some cytostatic activity against leukemia and melanoma cell lines.
Collapse
Affiliation(s)
- Najim A Al-Masoudi
- Fachbereich Chemie, Universität Konstanz, Postfach 5560, D-78457 Konstanz.
| | | | | | | | | |
Collapse
|
213
|
Tan EY, Richard CL, Zhang H, Hoskin DW, Blay J. Adenosine downregulates DPPIV on HT-29 colon cancer cells by stimulating protein tyrosine phosphatase(s) and reducing ERK1/2 activity via a novel pathway. Am J Physiol Cell Physiol 2006; 291:C433-44. [PMID: 16611738 DOI: 10.1152/ajpcell.00238.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multifunctional cell-surface protein dipeptidyl peptidase IV (DPPIV/CD26) is aberrantly expressed in many cancers and plays a key role in tumorigenesis and metastasis. Its diverse cellular roles include modulation of chemokine activity by cleaving dipeptides from the chemokine NH(2)-terminus, perturbation of extracellular nucleoside metabolism by binding the ecto-enzyme adenosine deaminase, and interaction with the extracellular matrix by binding proteins such as collagen and fibronectin. We have recently shown that DPPIV can be downregulated from the cell surface of HT-29 colorectal carcinoma cells by adenosine, which is a metabolite that becomes concentrated in the extracellular fluid of hypoxic solid tumors. Most of the known responses to adenosine are mediated through four different subtypes of G protein-coupled adenosine receptors: A(1), A(2A), A(2B), and A(3). We report here that adenosine downregulation of DPPIV from the surface of HT-29 cells occurs independently of these classic receptor subtypes, and is mediated by a novel cell-surface mechanism that induces an increase in protein tyrosine phosphatase activity. The increase in protein tyrosine phosphatase activity leads to a decrease in the tyrosine phosphorylation of ERK1/2 MAP kinase that in turn links to the decline in DPPIV mRNA and protein. The downregulation of DPPIV occurs independently of changes in the activities of protein kinases A or C, phosphatidylinositol 3-kinase, other serine/threonine phosphatases, or the p38 or JNK MAP kinases. This novel action of adenosine has implications for our ability to manipulate adenosine-dependent events within the solid tumor microenvironment.
Collapse
Affiliation(s)
- Ernest Y Tan
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Medical Bldg., Dalhousie University, 1459 Oxford St., Halifax, Nova Scotia, Canada B3H 1X5
| | | | | | | | | |
Collapse
|
214
|
Abstract
Many biological functions of heme oxygenase (HO), such as cytoprotection against oxidative stress, vasodilation, neurotransmission in the central or peripheral nervous systems, and anti-inflammatory, anti-apoptotic, or anti-proliferative potential, have been attributed to its enzymatic byproduct carbon monoxide (CO), although roles for biliverdin/bilirubin and iron have also been proposed. In addition to these well-characterized effects, recent findings reveal that HO-derived CO may act as an oxygen sensor and circadian modulator of heme biosynthesis. In lymphocytes, CO may participate in regulatory T cell function. A number of the known signaling effects of CO depend on stimulation of soluble guanylate cyclase and/or activation of mitogen-activated protein kinases (MAPK). Furthermore, modulation of caveolin-1 status may serve as an essential component of certain aspects of CO action, such as growth control. In this review, we summarize recent findings of the beneficial or detrimental effects of endogenous CO with an emphasis on the signaling pathways and downstream targets that trigger the action of this gas.
Collapse
Affiliation(s)
- Hong Pyo Kim
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
215
|
Liu H, Deng X, Shyu YJ, Li JJ, Taparowsky EJ, Hu CD. Mutual regulation of c-Jun and ATF2 by transcriptional activation and subcellular localization. EMBO J 2006; 25:1058-69. [PMID: 16511568 PMCID: PMC1409714 DOI: 10.1038/sj.emboj.7601020] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 01/31/2006] [Indexed: 01/17/2023] Open
Abstract
ATF2 and c-Jun are key components of activating protein-1 and function as homodimers or heterodimers. c-Jun-ATF2 heterodimers activate the expression of many target genes, including c-jun, in response to a variety of cellular and environmental signals. Although it has been believed that c-Jun and ATF2 are constitutively localized in the nucleus, where they are phosphorylated and activated by mitogen-activated protein kinases, the molecular mechanisms underlying the regulation of their transcriptional activities remain to be defined. Here we show that ATF2 possesses a nuclear export signal in its leucine zipper region and two nuclear localization signals in its basic region, resulting in continuous shuttling between the cytoplasm and the nucleus. Dimerization with c-Jun in the nucleus prevents the export of ATF2 and is essential for the transcriptional activation of the c-jun promoter. Importantly, c-Jun-dependent nuclear localization of ATF2 occurs during retinoic acid-induced differentiation and UV-induced cell death in F9 cells. Together, these findings demonstrate that ATF2 and c-Jun mutually regulate each other by altering the dynamics of subcellular localization and by positively impacting transcriptional activity.
Collapse
Affiliation(s)
- Han Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Xuehong Deng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Y John Shyu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jian Jian Li
- School of Health Science, Purdue University, West Lafayette, IN, USA
- Purdue Cancer Center, Purdue University, West Lafayette, IN, USA
| | - Elizabeth J Taparowsky
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue Cancer Center, Purdue University, West Lafayette, IN, USA
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
- Purdue Cancer Center, Purdue University, West Lafayette, IN, USA
- Walther Cancer Institute, Indianapolis, IN, USA
| |
Collapse
|
216
|
Ivanova IA, D'Souza SJA, Dagnino L. E2F1 stability is regulated by a novel-PKC/p38beta MAP kinase signaling pathway during keratinocyte differentiation. Oncogene 2006; 25:430-7. [PMID: 16116476 DOI: 10.1038/sj.onc.1208999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
E2F transcription factors regulate proliferation, differentiation, DNA repair and apoptosis. Tight E2F regulation is crucial for epidermal formation and regeneration. However, virtually nothing is known about the molecular events modulating E2F during epidermal keratinocyte differentiation. Elucidation of these events is essential to understand epidermal morphogenesis, transformation and repair. Here we show that, in differentiating keratinocytes, Ca(2+)-induced protein kinase C (PKC) activation downregulates E2F1 protein levels. Further, we have identified PKC delta and eta as those isoforms specifically involved in induction of E2F1 proteasomal degradation. We also demonstrate that E2F1 downregulation by novel PKC isozymes requires activation of p38beta mitogen-activated protein kinase (MAPK). This is the first example of regulation in the E2F transcription factor family by activation of PKC and MAPK in the context of biologically significant differentiation stimuli in epithelia.
Collapse
Affiliation(s)
- I A Ivanova
- Department of Physiology and Pharmacology, University of Western Ontario, London Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
217
|
Wittmack EK, Rush AM, Hudmon A, Waxman SG, Dib-Hajj SD. Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase. J Neurosci 2006; 25:6621-30. [PMID: 16014723 PMCID: PMC6725417 DOI: 10.1523/jneurosci.0541-05.2005] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Nav1.6 is the major sodium channel isoform at nodes of Ranvier in myelinated axons and, additionally, is distributed along unmyelinated C-fibers of sensory neurons. Thus, modulation of the sodium current produced by Nav1.6 might significantly impact axonal conduction. Mitogen-activated protein kinases (MAPKs) are expressed in neurons and are activated after injury, for example, after sciatic nerve transection and hypoxia. Although the role of MAPK in signal transduction and in injury-induced regulation of gene expression is well established, the ability of these kinases to phosphorylate and modulate voltage-gated sodium channels has not been reported. Sequence analysis shows that Nav1.6 contains a putative MAP kinase-recognition module in the cytoplasmic loop (L1), which joins domains 1 and 2. We show in this study that sodium channels and p38 MAP kinase colocalize in rat brain tissue and that activated p38alpha phosphorylates L1 of Nav1.6, specifically at serine 553 (S553), in vitro. None of the other cytoplasmic loops and termini of the channel are phosphorylated by activated p38alpha in these assays. Activation of p38 in the neuronal ND7/23 cell line transfected with Nav1.6 leads to a significant reduction in the peak Nav1.6 current amplitude, without a detectable effect on gating properties. The substitution of S553 with alanine within L1 of the Nav1.6 channel prevents p38-mediated reduction of Nav1.6 current density. This is the first demonstration of MAPK phosphorylation and modulation of a voltage-gated sodium channel, and this modulation may represent an additional role for MAPK in regulating the neuronal response to injury.
Collapse
Affiliation(s)
- Ellen K Wittmack
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
218
|
Vander Griend DJ, Kocherginsky M, Hickson JA, Stadler WM, Lin A, Rinker-Schaeffer CW. Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Res 2006; 65:10984-91. [PMID: 16322247 DOI: 10.1158/0008-5472.can-05-2382] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in clinical, translational, and basic studies of metastasis have identified molecular changes associated with specific facets of the metastatic process. Studies of metastasis suppressor gene function are providing a critical mechanistic link between signaling cascades and biological outcomes. We have previously identified c-Jun NH2-terminal kinase (JNK) kinase 1/mitogen-activated protein kinase (MAPK) kinase 4 (JNKK1/MKK4) as a prostate cancer metastasis suppressor gene. The JNKK1/MKK4 protein is a dual-specificity kinase that has been shown to phosphorylate and activate the JNK and p38 MAPKs in response to a variety of extracellular stimuli. In this current study, we show that the kinase activity of JNKK1/MKK4 is required for suppression of overt metastases and is sufficient to prolong animal survival in the AT6.1 model of spontaneous metastasis. Ectopic expression of the JNK-specific kinase MKK7 suppresses the formation of overt metastases, whereas the p38-specific kinase MKK6 has no effect. In vivo studies show that both JNKK1/MKK4 and MKK7 suppress the formation of overt metastases by inhibiting the ability of disseminated cells to colonize the lung (secondary site). Finally, we show that JNKK1/MKK4 and MKK7 from disseminated tumor cells are active in the lung but not in the primary tumor, providing a biochemical explanation for why their expression specifically suppressed metastasis while exerting no effect on the primary tumor. Taken together, these studies contribute to a mechanistic understanding of the context-dependent function of metastasis regulatory proteins.
Collapse
|
219
|
Kim JK, Pedram A, Razandi M, Levin ER. Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem 2005; 281:6760-7. [PMID: 16407188 DOI: 10.1074/jbc.m511024200] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
From human and animal studies, estrogen is known to protect the myocardium from an ischemic insult. However, there is limited knowledge regarding mechanisms by which estrogen directly protects cardiomyocytes. In this report, we employed an in vitro model, in which cultured rat cardiomyocytes underwent prolonged hypoxia followed by reoxygenation (H/R), to study the cardioprotective mechanism of estrogen. 17-beta-estradiol (E2) acting via estrogen receptors inhibited H/R-induced apoptosis of cardiomyocytes. Mitochondrial reactive oxygen species (ROS) generated from H/R activated p38alpha MAPK, and inhibition of p38alpha with SB203580 significantly prevented H/R-induced cell death. E2 suppressed ROS formation and p38alpha activation by H/R and concomitantly augmented the activity of p38beta. Unlike p38alpha, p38beta was little affected by H/R. Dominant negative p38beta protein expression decreased E2-mediated cardiomyocyte survival and ROS suppression during H/R stress. The prosurvival signaling molecule, phosphoinositol-3 kinase (PI3K), has previously been linked to cell survival following ischemia-reperfusion injury. Here, E2-activated PI3K was found to inhibit ROS generated from H/R injury, leading to inhibition of downstream p38alpha. We further linked these signaling pathways in that p38beta was activated by E2 stimulation of PI3K. Thus, E2 differentially modulated two major isoforms of p38, leading to cardiomyocyte survival. This was achieved by signaling through PI3K, integrating cell survival mediators.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Division of Cardiology and Endocrinology, University of California, Irvine, California 92717, USA
| | | | | | | |
Collapse
|
220
|
Luo SF, Lin WN, Yang CM, Lee CW, Liao CH, Leu YL, Hsiao LD. Induction of cytosolic phospholipase A2 by lipopolysaccharide in canine tracheal smooth muscle cells: involvement of MAPKs and NF-kappaB pathways. Cell Signal 2005; 18:1201-11. [PMID: 16278065 DOI: 10.1016/j.cellsig.2005.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 09/17/2005] [Accepted: 09/19/2005] [Indexed: 12/22/2022]
Abstract
Cytosolic phospholipase A2 (cPLA2) plays a pivotal role in mediating agonist-induced arachidonic acid (AA) release for prostaglandins (PG) synthesis induced by bacterial lipopolysaccharide (LPS) and cytokines. However, the intracellular signaling pathways mediating LPS-induced cPLA2 expression and PGE2 synthesis in canine tracheal smooth muscle cells (TSMCs) remains unknown. LPS-induced expression of cPLA2 and release of PGE2 was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (D609), phosphatidylinositol-phospholipase C (U73122), PKC (GF109203X and staurosporine), removal of Ca2+ by BAPTA/AM plus EDTA, MEK1/2 (PD98059), p38 (SB202190), JNK (SP600125), and phosphatidylinositol 3-kinase (PI3-K; LY294002 and wortmannin). The involvement of MPAKs in LPS-induced responses was further confirmed by transfection of TSMCs with dominant negative mutants of ERK2 and p38. LPS-induced cPLA2 expression and PGE2 synthesis was inhibited by a selective NF-kappaB inhibitor (helenalin) and transfection with dominant negative mutants of NF-kappaB inducing kinase (NIK), IkappaB kinase (IKK)-alpha, and IKK-beta, consistent with that LPS-stimulated both IkappaB-alpha degradation and NF-kappaB translocation into nucleus in these cells. LPS-stimulated cPLA2 phosphorylation was inhibited by PD98059, GF109203X, and staurosporine, indicating the regulation by p42/p44 MAPK and PKC. Moreover, LPS-induced up-regulation of cPLA2 and COX-2 linked to PGE2 synthesis was inhibited by AACOCF3 (a selective cPLA2 inhibitor), implying the involvement of cPLA2 in these responses. These findings suggest that phosphorylation and expression of cPLA2 correlates with the release of PGE2 from LPS-challenged TSMCs, at least in part, mediated through MAPKs and NF-kappaB signaling pathways. LPS-mediated responses were modulated by PLC, Ca2+, PKC, tyrosine kinase, and PI3-K in TSMCs.
Collapse
Affiliation(s)
- Shue-Fen Luo
- Department of Internal Medicine, College of Medicine, Chang Gung University, Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-San, Tao-Yuan, Taiwan. lsf@
| | | | | | | | | | | | | |
Collapse
|
221
|
Kim HT, Qiang W, Liu N, Scofield VL, Wong PKY, Stoica G. Up-regulation of astrocyte cyclooxygenase-2, CCAAT/enhancer-binding protein-homology protein, glucose-related protein 78, eukaryotic initiation factor 2 alpha, and c-Jun N-terminal kinase by a neurovirulent murine retrovirus. J Neurovirol 2005; 11:166-79. [PMID: 16036795 DOI: 10.1080/13550280590922810] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In susceptible strains of mice, infection with the mutant retrovirus MoMuLV-ts1 causes a neurodegeneration and immunodeficiency syndrome that resembles human human immunodeficiency virus-acquired immunodeficiency syndrome (HIV-AIDS). In this study the authors show increased expression of cyclooxygenase-2 (COX-2) in the brainstem tissues of ts1-infected mice. Up-regulated central nervous system (CNS) levels of this enzyme are associated with HIV-associated dementia and other inflammatory and neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. In brainstem sections, the authors find that astrocytes surrounding spongiform lesions contain increased amounts of immunoreactive COX-2. COX-2 is also up-regulated in cultured ts1-infected cells from the C1 astrocytic cell line, and activation of c-Jun N-terminal kinase, or JNK, pathway. Markers of endoplasmic reticulum (ER) stress, specifically the CCAAT/enhancer-binding protein (CHOP), the glucose-related protein 78 (GRP78), and phosphorylated eukaryotic initiation factor 2 alpha (eIF2 alpha), were also up-regulated in ts1-infected C1 astrocytes. Up-regulation of COX-2 and the above ER signaling factors was reversed by treatment of the infected cells with curcumin which specifically inhibits the JNK/c-Jun pathway. These findings indicate that the JNK/c-Jun pathway is most likely responsible for COX-2 expression induced by ts1 in astrocytes, and that ts1 infection in astrocytes may lead to up-regulation of both inflammatory and ER stress pathways in the central nervous system. Because COX-2 inhibitors are now widely used to treat inflammatory conditions in animals and humans, this finding suggests that these drugs may be useful for therapeutic intervention in neurodegenerative syndromes as well.
Collapse
Affiliation(s)
- Hun-Taek Kim
- Department of Pathobiology, Texas A&M University, College Station, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
222
|
Chae KS, Dryer SE. The p38 mitogen-activated protein kinase pathway negatively regulates Ca2+-activated K+ channel trafficking in developing parasympathetic neurons. J Neurochem 2005; 94:367-79. [PMID: 15998288 DOI: 10.1111/j.1471-4159.2005.03201.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The trafficking of large-conductance Ca2+-activated K+ channels (K(Ca)) in chick ciliary ganglion neurons is regulated by growth factors. Here we show that a canonical p38 cascade inhibits K(Ca) trafficking in ciliary ganglion neurons. Two different p38 inhibitors (SB202190 or SB203580) or over-expression of dominant-negative forms of several components of the p38 cascade increased K(Ca) in ciliary neurons. Inhibition of protein synthesis or Golgi processing had no effect on this phenomenon, suggesting that p38 is acting at a distal step of the trafficking pathway. Depolymerization of filamentous actin (F-actin) increased functional expression of K(Ca), whereas stabilization of F-actin inhibited the effect of SB202190 on K(Ca) trafficking. SB202190 also caused an immunochemically detectable increase in K(Ca) on the plasma membrane. Inhibition of p38 decreased the extent of cortical F-actin in ciliary neurons. Macroscopic K(Ca) is suppressed by transforming growth factor (TGF) beta3. Application of TGFbeta3 increased the phosphorylation of p38 in ciliary neurons and increased cortical F-actin. Thus, the p38 signaling cascade endogenously suppresses development of functional K(Ca), in part by stabilizing an F-actin barrier that prevents plasma membrane insertion of functional channel complexes. This cascade also appears to mediate inhibitory effects of TGFbeta3 on the expression of K(Ca).
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | |
Collapse
|
223
|
Antonescu CN, Huang C, Niu W, Liu Z, Eyers PA, Heidenreich KA, Bilan PJ, Klip A. Reduction of insulin-stimulated glucose uptake in L6 myotubes by the protein kinase inhibitor SB203580 is independent of p38MAPK activity. Endocrinology 2005; 146:3773-81. [PMID: 15947002 DOI: 10.1210/en.2005-0404] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin increases glucose uptake through translocation of the glucose transporter GLUT4 to the plasma membrane. We previously showed that insulin activates p38MAPK, and inhibitors of p38MAPKalpha and p38MAPKbeta (e.g. SB203580) reduce insulin-stimulated glucose uptake without affecting GLUT4 translocation. This observation suggested that insulin may increase GLUT4 activity via p38alpha and/or p38beta. Here we further explore the possible participation of p38MAPK through a combination of molecular strategies. SB203580 reduced insulin stimulation of glucose uptake in L6 myotubes overexpressing an SB203580-resistant p38alpha (drug-resistant p38alpha) but barely affected phosphorylation of the p38 substrate MAPK-activated protein kinase-2. Expression of dominant-negative p38alpha or p38beta reduced p38MAPK phosphorylation by 70% but had no effect on insulin-stimulated glucose uptake. Gene silencing via isoform-specific small interfering RNAs reduced expression of p38alpha or p38beta by 60-70% without diminishing insulin-stimulated glucose uptake. SB203580 reduced photoaffinity labeling of GLUT4 by bio-LC-ATB-BMPA only in the insulin-stimulated state. Unless low levels of p38MAPK suffice to regulate glucose uptake, these results suggest that the inhibition of insulin-stimulated glucose transport by SB203580 is likely not mediated by p38MAPK. Instead, changes experienced by insulin-stimulated GLUT4 make it susceptible to inhibition by SB203580.
Collapse
Affiliation(s)
- C N Antonescu
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Endoh T. Involvement of Src tyrosine kinase and mitogen-activated protein kinase in the facilitation of calcium channels in rat nucleus of the tractus solitarius by angiotensin II. J Physiol 2005; 568:851-65. [PMID: 16123104 PMCID: PMC1464193 DOI: 10.1113/jphysiol.2005.095307] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It is recognized that brain contains all the components of the renin-angiotensin systems (RAS). The nucleus of the tractus solitarius (NTS) is known to play a major role in the regulation of cardiovascular, respiratory, gustatory, hepatic and swallowing functions. Voltage-dependent Ca2+ channels (VDCCs) serve as crucial mediators of membrane excitability and Ca2+-dependent functions such as neurotransmitter release, enzyme activity and gene expression. The purpose of this study was to investigate the effects of angiotensin II (Ang II) on VDCC currents (I(Ca)) in the NTS using patch-clamp recording methods. An application of Ang II caused facilitation of L-type I(Ca) in a concentration-dependent manner with an EC50 of 167 nm and a Hill coefficient of 1.73. AT1 receptor antagonist losartan antagonized the Ang II-induced facilitation of I(Ca). Intracellular dialysis of the Galpha(i)-protein antibody attenuated the Ang II-induced facilitation of I(Ca). Both Src tyrosine kinase inhibitor and mitogen-activated protein kinase (MAPK) inhibitor attenuated the Ang II-induced facilitation of I(Ca). p38 MAPK inhibitor also attenuated the Ang II-induced facilitation of I(Ca). These results indicate that Ang II facilitates L-type VDCCs via Galpha(i)-proteins involving Src tyrosine kinase and p38 MAPK kinase mediated by AT1 receptors in NTS.
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| |
Collapse
|
225
|
Robidoux J, Cao W, Quan H, Daniel KW, Moukdar F, Bai X, Floering LM, Collins S. Selective activation of mitogen-activated protein (MAP) kinase kinase 3 and p38alpha MAP kinase is essential for cyclic AMP-dependent UCP1 expression in adipocytes. Mol Cell Biol 2005; 25:5466-79. [PMID: 15964803 PMCID: PMC1157000 DOI: 10.1128/mcb.25.13.5466-5479.2005] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sympathetic nervous system regulates the activity and expression of uncoupling protein 1 (UCP1) through the three beta-adrenergic receptor subtypes and their ability to raise intracellular cyclic AMP (cAMP) levels. Unexpectedly, we recently discovered that the cAMP-dependent regulation of multiple genes in brown adipocytes, including Ucp1, occurred through the p38 mitogen-activated protein kinases (MAPK) (W. Cao, K. W. Daniel, J. Robidoux, P. Puigserver, A. V. Medvedev, X. Bai, L. M. Floering, B. M. Spiegelman, and S. Collins, Mol. Cell. Biol. 24:3057-3067, 2004). However, no well-defined pathway linking cAMP accumulation or cAMP-dependent protein kinase (PKA) to p38 MAPK has been described. Therefore, in the present study using both in vivo and in vitro models, we have initiated a retrograde approach to define the required components, beginning with the p38 MAPK isoforms themselves and the MAP kinase kinase(s) that regulates them. Our strategy included ectopic expression of wild-type and mutant kinases as well as targeted inhibition of gene expression using small interfering RNA. The results indicate that the beta-adrenergic receptors and PKA lead to a highly selective activation of the p38alpha isoform of MAPK, which in turn promotes Ucp1 gene transcription. In addition, this specific activation of p38alpha relies solely on the presence of MAP kinase kinase 3, despite the expression in brown fat of MKK3, -4, and -6. Finally, of the three scaffold proteins of the JIP family expressed in brown adipocytes, only JIP2 co-immunoprecipitates p38alpha MAPK and MKK3. Therefore, in the brown adipocyte the recently described scaffold protein JIP2 assembles the required factors MKK3 and p38alpha MAPK linking PKA to the control of thermogenic gene expression.
Collapse
Affiliation(s)
- Jacques Robidoux
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Petro TM. Disparate expression of IL-12 by SJL/J and B10.S macrophages during Theiler's virus infection is associated with activity of TLR7 and mitogen-activated protein kinases. Microbes Infect 2005; 7:224-32. [PMID: 15777634 DOI: 10.1016/j.micinf.2004.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 10/08/2004] [Accepted: 10/26/2004] [Indexed: 10/25/2022]
Abstract
Differences in components of innate anti-viral immune responses may account for the contrast in susceptibility to Theiler's murine encephalomyelitis virus (TMEV) between SJL/J and B10.S mice. Herein, the expression of IL-12, interferon (IFN)-beta, Toll-like receptors 3 (TLR3), TLR7, and mitogen-activated protein (MAP)-kinases was evaluated in SJL/J and B10.S macrophages infected with TMEV. Twenty-four hours after infection, SJL/J macrophages exhibited higher levels of TMEV RNA, IL-12 p40, and TLR3 but lower levels of IL-12 p70 and the IL-12 p35 subunit compared with B10.S macrophages. Addition of exogenous IL-12 p70 or IFN-beta increased the resistance of SJL/J macrophages to TMEV infection. To assess MAP-kinases, macrophages were pretreated with the p38 MAP-kinase inhibitor SB203580 or extracellular signal-regulated kinases (ERK) MAP-kinase inhibitor U0126 before TMEV infection. U0126 reduced SJL/J but increased B10.S macrophage expression of IL-12 p40 and p70 in response to TMEV. U0126 decreased the IL-12 p35 response of SJL/J macrophages. To assess TLR7, SJL/J and B10.S macrophages were stimulated with loxoribine, a TLR7 ligand. Loxoribine induced more IL-12 p70 production and p35 expression in B10.S than SJL/J macrophages. U0126 increased loxoribine-induced expression of IL-12 p40 and IL-12 p70 in B10.S but not SJL/J macrophages. Thus, differences in production of IL-12 p70 due to expression of the p35 subunit and in activity of TLR7, as well as activation of factors downstream of ERK MAP-kinases likely underlie the disparity in innate immunity between SJL/J and B10.S macrophages to TMEV.
Collapse
Affiliation(s)
- Thomas M Petro
- Department of Oral Biology and Nebraska Center for Virology, University of Nebraska Medical Center, 40th and Holdrege Streets, Lincoln, NE 68583-0740, USA.
| |
Collapse
|
227
|
Abstract
The family members of the mitogen-activated protein (MAP) kinases mediate a wide variety of cellular behaviors in response to extracellular stimuli. One of the four main sub-groups, the p38 group of MAP kinases, serve as a nexus for signal transduction and play a vital role in numerous biological processes. In this review, we highlight the known characteristics and components of the p38 pathway along with the mechanism and consequences of p38 activation. We focus on the role of p38 as a signal transduction mediator and examine the evidence linking p38 to inflammation, cell cycle, cell death, development, cell differentiation, senescence and tumorigenesis in specific cell types. Upstream and downstream components of p38 are described and questions remaining to be answered are posed. Finally, we propose several directions for future research on p38.
Collapse
Affiliation(s)
- Tyler Zarubin
- Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
228
|
Drissi H, Zuscik M, Rosier R, O'Keefe R. Transcriptional regulation of chondrocyte maturation: Potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med 2005; 26:169-79. [PMID: 15811433 DOI: 10.1016/j.mam.2005.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The principle function of articular cartilage is to provide a low friction load-bearing surface that facilitates free movement of joints. Maintenance of this surface depends on the maturational arrest of chondrocytes before terminal hypertrophic differentiation occurs [Exp. Cell Res. 216 (1995) 191; Osteoarthritis Cartilage 7 (1999) 389; J. Cell Biol. 139 (1997) 541; J. Cell Biol. 145 (1999) 783]. In contrast to endochondral ossification which involves a programmed process of chondrocyte maturation culminating in terminal hypertrophy and mineralization [Nat. Genet. 9 (1995) 15], articular chondrocytes (ACs) are constrained from completing the maturational program as evidenced by a lack of type X collagen (colX) and alkaline phosphatase expression [Arthritis Res. 3 (2001) 107; Biochem. J. 362 (2002) 473]. Also, ACs are not responsive to factors that impact the maturational process, including bone morphogenetic protein-2 (BMP-2), a potent stimulator of chondrocyte maturation [J. Orthop. Res. 14 (1996) 937]. Factors that constrain AC maturation are only relieved under unique circumstances such as in osteoarthritis (OA), where proliferation and an increase in the expression of hypertrophic hallmarks indicates that the cells have differentiated into a mature phenotype [Calcif. Tissue Int. 63 (2000) 230]. OA may thus involve the functional loss of mechanisms that arrest articular cartilage differentiation. Responsiveness to various growth or systemic factors translates into activation or repression of specific genes through transcriptional mediators. Understanding the downstream mechanisms involved in this process is of paramount importance. Thus, unraveling the molecular interplay between various factors that regulate chondrocyte maturation during OA occurrence and progression is the main focus of ongoing efforts.
Collapse
Affiliation(s)
- Hicham Drissi
- The Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, United States.
| | | | | | | |
Collapse
|
229
|
Meng F, Yamagiwa Y, Taffetani S, Han J, Patel T. IL-6 activates serum and glucocorticoid kinase via p38alpha mitogen-activated protein kinase pathway. Am J Physiol Cell Physiol 2005; 289:C971-81. [PMID: 15917303 PMCID: PMC1513290 DOI: 10.1152/ajpcell.00081.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-6 (IL-6) has been implicated as an autocrine factor involved in growth of several human cancers, such as tumors arising from the biliary tract or cholangiocarcinoma. In malignant biliary tract epithelia, IL-6 activates the p38 MAPK pathway, which mediates a dominant survival signaling pathway. Serum and glucocorticoid-stimulated kinase (SGK) has been implicated as a survival kinase, but its role in survival signaling by IL-6 is unknown. After IL-6 stimulation, p38 MAPK activation preceded phosphorylation of SGK at Ser78. Pretreatment with the pharmacological inhibitors of p38 MAPK SB-203580 or SB-202190 blocked IL-6-induced SGK phosphorylation at Ser78 and SGK activation. Overexpression of p38alpha increased constitutive SGK phosphorylation at Ser78, whereas dominant negative p38alpha MAPK blocked IL-6-induced SGK phosphorylation and nuclear translocation. Interestingly, in addition to stimulating SGK phosphorylation, both IL-6 stimulation and p38alpha MAPK overexpression increased SGK mRNA and protein expression. An increase in p38 MAPK and SGK occurred following enforced expression of IL-6 in vivo. Furthermore, inhibition of SGK expression by siRNA increased toxicity due to chemotherapeutic drugs. Taken together, these data identify SGK as both a downstream kinase substrate as well as a transcriptionally regulated gene target of p38 MAPK in response to IL-6 and support a role of SGK during survival signaling by IL-6 in human cancers, such as cholangiocarcinoma.
Collapse
Affiliation(s)
- Fanyin Meng
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas; and
| | - Yoko Yamagiwa
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas; and
| | - Silvia Taffetani
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas; and
| | - Jiahuai Han
- Department of Immunology, The Scripps Research Institute, La Jolla, California
| | - Tushar Patel
- Department of Internal Medicine, Scott and White Clinic, Texas A&M University System Health Science Center College of Medicine, Temple, Texas; and
- Address for reprint requests and other correspondence: T. Patel, Scott and White Clinic, Texas A&M Univ. Health Science Center, 2401 South 31st St., Temple, TX 76508 (e-mail: )
| |
Collapse
|
230
|
Daoud G, Amyot M, Rassart E, Masse A, Simoneau L, Lafond J. ERK1/2 and p38 regulate trophoblasts differentiation in human term placenta. J Physiol 2005; 566:409-23. [PMID: 15890698 PMCID: PMC1464762 DOI: 10.1113/jphysiol.2005.089326] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) control many cellular events from complex programmes, such as embryogenesis, cell differentiation and proliferation, and cell death, to short-term changes required for homeostasis and acute hormonal responses. However, little is known about expression and activation of classical MAPKs, extracellular signal-regulated kinase1/2 (ERK1/2) and p38 in human placenta. Therefore, we examined the expression of ERK1/2 and p38 in trophoblasts from human term placenta, and their implication in differentiation. In vitro, freshly isolated cytotrophoblast cells, cultivated in 10% fetal bovine serum (FBS), spontaneously aggregate and fuse to form multinucleated cells that phenotypically resemble mature syncytiotrophoblasts, that concomitantly produce human chorionic gonadotropin (hCG) and human placental lactogen (hPL). This study shows that the level of ERK1/2 and p38 decreases with increasing days of culture, to reach an undetectable level after 5 days of culture. Moreover, pretreatment of cells with an ERK1/2-specific inhibitor (PD98059) and/or a p38-specific inhibitor (SB203580) suppressed trophoblast differentiation. Our results also demonstrate that the p38 pathway is highly solicited as compared to the ERK1/2 pathway in the differentiation process. Furthermore, ERK1/2 and p38 are rapidly activated upon addition of FBS, but the activation of p38 is delayed compared to that of ERK1/2. In summary, this study showed that ERK1/2 and p38 pathways are essential to mediate initiation of trophoblast differentiation.
Collapse
Affiliation(s)
- Georges Daoud
- Laboratoire de Physiologie materno-foetale, Départment des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada, H3C 3P8
| | | | | | | | | | | |
Collapse
|
231
|
Shiratsuchi H, Basson MD. Activation of p38 MAPKalpha by extracellular pressure mediates the stimulation of macrophage phagocytosis by pressure. Am J Physiol Cell Physiol 2005; 288:C1083-C1093. [PMID: 15625302 DOI: 10.1152/ajpcell.00543.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that constant 20 mmHg extracellular pressure increases serum-opsonized latex bead phagocytosis by phorbol 12-myristate 13-acetate (PMA)- differentiated THP-1 macrophages in part by inhibiting focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Because p38 MAPK is activated by physical forces in other cells, we hypothesized that modulation of p38 MAPK might also contribute to the stimulation of macrophage phagocytosis by pressure. We studied phagocytosis in PMA-differentiated THP-1 macrophages, primary human monocytes, and human monocyte-derived macrophages (MDM). p38 MAPK activation was inhibited using SB-203580 or by p38 MAPKalpha small interfering RNA (siRNA). Pressure increased phagocytosis in primary monocytes and MDM as in THP-1 cells. Increased extracellular pressure for 30 min increased phosphorylated p38 MAPK by 46.4 +/- 20.5% in DMSO-treated THP-1 macrophages and by 20.9 +/- 9% in primary monocytes (P < 0.05 each). SB-203580 (20 microM) reduced basal p38 MAPK phosphorylation by 34.7 +/- 2.1% in THP-1 macrophages and prevented pressure activation of p38. p38 MAPKalpha siRNA reduced total p38 MAPK protein by 50-60%. Neither SB-203580 in THP-1 cells and peripheral monocytes nor p38 MAPK siRNA in THP-1 cells affected basal phagocytosis, but each abolished pressure-stimulated phagocytosis. SB-203580 did not affect basal or pressure-reduced FAK activation in THP-1 macrophages, but significantly attenuated the reduction in ERK phosphorylation associated with pressure. p38 MAPKalpha siRNA reduced total FAK protein by 40-50%, and total ERK by 10-15%, but increased phosphorylated ERK 1.4 +/- 0.1-fold. p38 MAPKalpha siRNA transfection did not affect the inhibition of FAK-Y397 phosphorylation by pressure but prevented inhibition of ERK phosphorylation. Changes in extracellular pressure during infection or inflammation regulate macrophage phagocytosis by a FAK-dependent inverse effect on p38 MAPKalpha that might subsequently downregulate ERK.
Collapse
Affiliation(s)
- Hiroe Shiratsuchi
- John D. Dingell VA Medical Center, 4646 John R. St., Detroit, MI 48201-1932, USA
| | | |
Collapse
|
232
|
Svensson CI, Fitzsimmons B, Azizi S, Powell HC, Hua XY, Yaksh TL. Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem 2005; 92:1508-20. [PMID: 15748168 DOI: 10.1111/j.1471-4159.2004.02996.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antagonist studies show that spinal p38 mitogen-activated protein kinase plays a crucial role in spinal sensitization. However, there are two p38 isoforms found in spinal cord and the relative contribution of these two to hyperalgesia is not known. Here we demonstrate that the isoforms are distinctly expressed in spinal dorsal horn: p38alpha in neurons and p38beta in microglia. In lieu of isoform selective inhibitors, we examined the functional role of these two individual isoforms in nociception by using intrathecal isoform-specific antisense oligonucleotides to selectively block the expression of the respective isoform. In these rats, down-regulation of spinal p38beta, but not p38alpha, prevented nocifensive flinching evoked by intraplantar injection of formalin and hyperalgesia induced by activation of spinal neurokinin-1 receptors through intrathecal injection of substance P. Both intraplantar formalin and intrathecal substance P produced an increase in spinal p38 phosphorylation and this phosphorylation (activation) was prevented when spinal p38beta, but not p38alpha, was down-regulated. Thus, spinal p38beta, probably in microglia, plays a significant role in spinal nociceptive processing and represents a potential target for pain therapy.
Collapse
Affiliation(s)
- Camilla I Svensson
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
233
|
Katada J, Saito H, Ohashi A. Significance of cyclooxygenase-2 induced via p38 mitogen-activated protein kinase in mechanical stimulus-induced peritoneal adhesion in mice. J Pharmacol Exp Ther 2005; 313:286-92. [PMID: 15576468 DOI: 10.1124/jpet.104.078717] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postoperative peritoneal adhesion represents a major complication of surgery, but the molecular mechanism underlying pathogenesis of adhesion is not fully understood. The present study investigated the roles of cyclooxygenase (COX)-1 and COX-2 in peritoneal adhesion induced by scraping the surface of the cecum and abdominal wall in mice. Slight, but macroscopically observable, peritoneal adhesion was induced even on day 1, and the extent of adhesion reached a maximum on day 7 and beyond. COX-1 mRNA was constitutively expressed in the intact cecum, and its expression level was not altered after the mechanical stimulus. In contrast, expression of the COX-2 gene was markedly increased after the stimulus, and maximum expression was observed on days 3 to 7. Mofezolac, a specific COX-1 inhibitor, had no effect on peritoneal adhesion at 30 mg/kg and had only marginal effects on prostaglandin (PG)E2 levels in the cecum or peritoneal fluid. On the other hand, two highly selective inhibitors for COX-2, NS-398 (N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide) and CAY10404 [3-(4-methylsulphonylphenyl)-4-phenyl-5-trifluoromethylisoxazole], dose-dependently inhibited both adhesion formation and the increase in PGE2 levels (3-30 mg/kg). The effects of NS-398 were eliminated when PGE2 or (R)-butaprost was administered exogenously. A COX-2 antisense oligonucleotide also attenuated adhesion formation. Activation of p38 mitogen-activated protein (MAP) kinase was observed in the traumatized cecum, and an MAP kinase inhibitor, SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole], inhibited adhesion formation (54% inhibition at 15 microM) and also reduced the COX-2 mRNA level and PGE2 levels. In conclusion, COX-2, but not COX-1, plays a significant role in mechanical stimulus-induced peritoneal formation in the mouse cecum.
Collapse
Affiliation(s)
- Jun Katada
- KEIO Research Park 2N4, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
234
|
Geiger PC, Wright DC, Han DH, Holloszy JO. Activation of p38 MAP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2005; 288:E782-8. [PMID: 15585585 DOI: 10.1152/ajpendo.00477.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Muscle contractile activity is followed by an increase in the sensitivity of glucose transport to insulin. There is evidence suggesting that activation of p38 MAP kinase (p38) is involved in the stimulation of glucose transport by insulin and contractions. Exercise results in an increase in p38 phosphorylation that lasts for hours. In this context, we tested the hypothesis that activation of p38 results in an increase in insulin sensitivity. Muscles were exposed to anisomycin for 30 min to activate p38. Anisomycin increased p38 phosphorylation approximately 2.5-fold and glucose transport activity 2- to 3-fold. Three hours after anisomycin treatment, by which time the acute effect on glucose transport had partially worn off, sensitivity of muscle glucose transport to 60 microU/ml insulin was markedly increased. Both the activation of p38 and the increase in insulin sensitivity induced by anisomycin were completely prevented by pretreatment of muscles with the p38 inhibitor SB-202190. However, in contrast to the finding with anisomycin, inhibition of p38 activation did not prevent the contraction-induced increase in insulin sensitivity. Thus our results show that activation of p38 is followed by an increase in insulin sensitivity of muscle glucose transport. However, activation of p38 is not necessary for induction of an increase in muscle insulin sensitivity by contractions. This finding provides evidence that contractions have an additional effect that makes p38 activation unnecessary for enhancement of insulin sensitivity by contractile activity.
Collapse
Affiliation(s)
- Paige C Geiger
- Departemnt of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
235
|
Kim JM, White JM, Shaw AS, Sleckman BP. MAPK p38 alpha is dispensable for lymphocyte development and proliferation. THE JOURNAL OF IMMUNOLOGY 2005; 174:1239-44. [PMID: 15661878 DOI: 10.4049/jimmunol.174.3.1239] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signals mediated by the p38alpha MAPK have been implicated in many processes required for the development and effector functions of innate and adaptive immune responses. As mice deficient in p38alpha exhibit embryonic lethality, most analyses of p38alpha function in lymphocytes have relied on the use of pharmacologic inhibitors and dominant-negative or constitutively active transgenes. In this study, we have generated a panel of low passage p38alpha(+/+), p38alpha(+/-), and p38alpha(-/-) embryonic stem (ES) cells through the intercrossing of p38alpha(+/-) mice. These ES cells were used to generate chimeric mice by RAG-deficient blastocyst complementation, with the lymphocytes in these mice being derived entirely from the ES cells. Surprisingly, B and T cell development were indistinguishable when comparing chimeric mice generated with p38alpha(+/+), p38alpha(+/-), and p38alpha(-/-) ES cell lines. Moreover, proliferation of p38alpha(-/-) B and T cells in response to Ag receptor and non-Ag receptor stimuli was intact. Thus, p38alpha is not an essential component of signaling pathways required for robust B and T lymphocyte developmental, nor is p38alpha essential for the proliferation of mature B and T cells.
Collapse
Affiliation(s)
- Jeong M Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
236
|
Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, Schiff R, Osborne CK, Dowsett M. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol 2005; 23:2469-76. [PMID: 15753463 DOI: 10.1200/jco.2005.01.172] [Citation(s) in RCA: 349] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To evaluate growth factor receptor cross talk with the estrogen receptor (ER) in paired clinical breast cancer specimens and in a xenograft model before tamoxifen and at tumor progression as a possible mechanism for tamoxifen resistance. METHODS Specimen pairs from 39 patients were tissue arrayed and stained for ER, progesterone receptor (PgR), Bcl-2, c-ErbB2 (HER-2), and phosphorylated (p) p38 mitogen-activated protein kinase (MAPK), p-ERK1/2 MAPK, and p-Akt. Xenograft MCF-7 tumors before and after tamoxifen resistance were assessed for levels of p-p38. RESULTS Pretreatment, there were strong correlations between ER, PgR, and Bcl-2, and an inverse correlation between ER and HER-2. These correlations were lost in the tamoxifen- resistant tumors and replaced by strong correlations between ER and p-p38 and p-ERK. ER expression was lost in 17% of resistant tumors. Three (11%) of the 26 tumors originally negative for HER-2 became amplified and/or overexpressed at resistance. All ER-positive tumors that overexpressed HER-2 originally or at resistance expressed high levels of p-p38. In the pretreatment and tamoxifen-resistant specimens, there were strong correlations between p-p38 and p-ERK. In the tamoxifen-resistant xenograft tumors, like the clinical samples, there was a striking increase in p-p38. CONCLUSION The molecular pathways driving tumor growth can change as the tumor progresses. Crosstalk between ER, HER-2, p38, and ERK may contribute to tamoxifen resistance and may provide molecular targets to overcome this resistance.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Biopsy
- Breast Neoplasms/drug therapy
- Breast Neoplasms/physiopathology
- Chemotherapy, Adjuvant
- Disease Progression
- Drug Resistance, Neoplasm
- Female
- Humans
- Immunohistochemistry
- Mice
- Mice, Nude
- Middle Aged
- Receptor, ErbB-2/physiology
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/physiology
- Signal Transduction
- Tamoxifen/administration & dosage
- Tamoxifen/pharmacology
- Tamoxifen/therapeutic use
- Transplantation, Heterologous
- p38 Mitogen-Activated Protein Kinases/pharmacology
Collapse
Affiliation(s)
- M Carolina Gutierrez
- Breast Center and Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Abstract
p38 is a mitogen-activated protein (MAP) kinase with structural and functional characteristics that distinguish it from JNK and ERK MAP kinases. p38 activity is upregulated when cells are exposed to a variety of stimuli including bacterial pathogens, proinflammatory cytokines, certain growth factors, and other forms of environmental stress. By regulating downstream substrates that include protein kinases and transcription factors, p38 participates in transmission, amplification, and diversification of the extracellular signal, initiating several different cellular responses. Studies have revealed that activation of p38 pathway is related to many pathological changes that occur in the course of inflammatory/immunologic and cardiovascular diseases.
Collapse
Affiliation(s)
- L New
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
238
|
Tan X, Sanders P, Bolado J, Whitney M. Integration of G-protein coupled receptor signaling pathways for activation of a transcription factor (EGR-3). GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 1:173-9. [PMID: 15629029 PMCID: PMC5172350 DOI: 10.1016/s1672-0229(03)01022-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We recently reported the use of a gene-trapping approach to isolate cell clones in which a reporter gene had integrated into genes modulated by T-cell activation. We have now tested a panel of clones from that report and identified the one that responds to a variety of G-protein coupled receptors (GPCR). The β-lactamase tagged EGR-3 Jurkat cell was used to dissect specific GPCR signaling in vivo. Three GPCRs were studied, including the chemokine receptor CXCR4 (Gi-coupled) that was endogenously expressed, the platelet activation factor (PAF) receptor (Gq-coupled), and β2 adrenergic receptor (Gs-coupled) that was both stably transfected. Agonists for each receptor activated transcription of the β-lactamase tagged EGR-3 gene. Induction of EGR-3 through CXCR4 was blocked by pertussis toxin and PD58059, a specific inhibitor of MEK (MAPK/ERK kinase). Neither of these inhibitors blocked isoproterenol or PAF-mediated activation of EGR-3. Conversely, β2- and PAF-mediated EGR-3 activation was blocked by the p38, specific inhibitor SB580. In addition, both β2- and PAF-mediated EGR-3 activation could be synergistically activated by CXCR4 activation. This combined result indicates that EGR-3 can be activated through distinct signal transduction pathways by different GPCRs and that signals can be integrated and amplified to efficiently tune the level of activation.
Collapse
Affiliation(s)
- Xuehai Tan
- Beijing Genomics Institute, Beijing 101300, China.
| | | | | | | |
Collapse
|
239
|
The inhibition of p38 MAPK utilising oxalic amides attached to an azaindole scaffold. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.2.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
240
|
Jin X, Han CS, Zhang XS, Yuan JX, Hu ZY, Liu YX. Signal transduction of stem cell factor in promoting early follicle development. Mol Cell Endocrinol 2005; 229:3-10. [PMID: 15607523 DOI: 10.1016/j.mce.2004.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 10/15/2004] [Accepted: 10/20/2004] [Indexed: 10/26/2022]
Abstract
Stem cell factor (SCF), another alternative name is kit ligand, is essential for the development of early follicles. However, the underlying molecular mechanism remains to be defined. By using cultured ovaries that are rich in primordial follicles, the action of SCF (kit ligand) on early follicular development and the activated signal transduction pathways were investigated. SCF (kit ligand) promoted early follicle development. PKC and MEK but not PKA were involved in the signal transduction of SCF (kit ligand) as indicated by results using their specific pharmacological inhibitors. SCF (kit ligand) also enhanced the phosphorylation of two MEK substrates, Erk1 and 2 (Erk1/2) in thecal-interstitial cells where PKC might play an important role indicated by results using its inhibitors. SCF (kit ligand) elevated the expression of steroidogenic factor 1 (SF-1) in thecal-interstitial cells probably through a pathway that consists of Erk1/2. These results suggest that SCF (kit ligand) promotes follicular growth by stimulating the function of thecal-interstitial cells through the Erk1/2 pathway.
Collapse
Affiliation(s)
- Xuan Jin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
241
|
Li G, Xiao Y, Zhang L. Cocaine induces apoptosis in fetal rat myocardial cells through the p38 mitogen-activated protein kinase and mitochondrial/cytochrome c pathways. J Pharmacol Exp Ther 2005; 312:112-9. [PMID: 15365088 DOI: 10.1124/jpet.104.073494] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cocaine induces apoptosis in fetal rat myocardial cells (FRMCs). However, the mechanisms are not clear. The present study examined the role of p38 mitogen-activated protein kinase (MAPK) and cytochrome c release in the cocaine-induced apoptosis in primary culture of FRMCs prepared from the fetal heart of gestational age of 21 days. Cocaine induced time-dependent, concurrent increases in cytochrome c release and activities of caspase-9 and caspase-3, which preceded apoptosis. Caspase-8 was not activated. In accordance, cyclosporin A and the inhibitors of caspase-9 and caspase-3 inhibited cocaine-induced caspase activation and apoptosis. Cocaine stimulated a transient increase in the p38 MAPK activity at a time point of 15 min but reduced the extracellular signal-regulated kinase (ERK) activity at 5 and 15 min in FRMCs. The p38alpha MAPK inhibitor SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole] inhibited cocaine-induced activation of caspases and apoptosis. In contrast, the p38beta MAPK and mitogen-activated protein kinase kinase/ERK inhibitors SB 202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole] and PD98059 (2'-amino-3'-methoxyflavone), respectively, increased apoptosis in the absence of cocaine and potentiated cocaine-induced apoptosis. Consistent with its inhibition of apoptosis, SB203580 inhibited cocaine-induced cytochrome c release and activation of caspase-9 and caspase-3. In addition, cocaine induced a decrease in Bcl-2 protein levels, with no effect on Bax levels. The cocaine-mediated reduction of Bcl-2 levels was not affected with SB203580 and the caspase inhibitors. The results suggest that in FRMCs, p38alpha MAPK plays an important role in the cocaine-induced apoptosis by promoting cytochrome c release, downstream or independent of Bcl-2 protein-mediated regulation. In contrast, p38beta MAPK and ERK protect fetal myocardial cells against apoptosis.
Collapse
Affiliation(s)
- Guohu Li
- Center for Perinatal Biology, Department of Pharmacology and Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
242
|
Al Sarraj J, Vinson C, Han J, Thiel G. Regulation of GTP cyclohydrolase I gene transcription by basic region leucine zipper transcription factors. J Cell Biochem 2005; 96:1003-20. [PMID: 16149046 DOI: 10.1002/jcb.20580] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tetrahydrobiopterin is an essential cofactor for the phenylalanine, tyrosine and tryptophan hydroxylases, and the family of nitric oxide synthases. The initial and rate-limiting enzyme in the biosynthesis of tetrahydrobiopterin is GTP cyclohydrolase I. The proximal promoter of the human GTP cyclohydrolase I gene contains the sequence motif 5'-TGACGCGA-3', resembling a cAMP response element (CRE). The objective of this study was to analyze the regulation of GTP cyclohydrolase I gene transcription by basic region leucine zipper (bZIP) transcription factors. A constitutively active mutant of the cAMP response element binding (CREB) protein strongly stimulated GTP cyclohydrolase I promoter activity, indicating that the CRE in the context of the GTP cyclohydrolase I gene is functional. Likewise, GTP cyclohydrolase I promoter/luciferase gene transcription was stimulated following nuclear expression of the catalytic subunit of cAMP-dependent protein kinase. Constitutively active mutants of activating transcription factor 2 (ATF2) and c-Jun additionally stimulated GTP cyclohydrolase I promoter activity, but to a lesser extent than the constitutively active CREB mutant. The fact that stress-activated protein kinases target the GTP cyclohydrolase I gene was corroborated by expression experiments involving p38 and MEKK1 protein kinases. We conclude that signaling pathways involving either the cAMP-dependent protein kinase or stress-activated protein kinases converge to the GTP cyclohydrolase I gene. Hence, enzymatic reactions that require tetrahydrobiopterin as cofactor are therefore indirectly controlled by signaling cascades involving the signal-responsive transcription factors CREB, c-Jun, and ATF2.
Collapse
Affiliation(s)
- Jude Al Sarraj
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Homburg, Germany
| | | | | | | |
Collapse
|
243
|
Lin CC, Sun CC, Luo SF, Tsai AC, Chien CS, Hsiao LD, Lee CW, Hsieh JT, Yang CM. Induction of cyclooxygenase-2 expression in human tracheal smooth muscle cells by interleukin-1beta: involvement of p42/p44 and p38 mitogen-activated protein kinases and nuclear factor-kappaB. J Biomed Sci 2004; 11:377-90. [PMID: 15067222 DOI: 10.1007/bf02254443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/07/2003] [Indexed: 10/25/2022] Open
Abstract
Interleukin-1beta (IL-1beta) has been recognized as a potent stimulus for the synthesis of prostaglandin (PG), which has been implicated in inflammatory responses of the airways. However, the mechanisms underlying IL-1beta-induced cyclooxygenase (COX) expression and PGE(2) synthesis via activation of p42/p44 and p38 mitogen-activated protein kinases (MAPKs) in human tracheal smooth muscle cells (HTSMCs) are not completely understood. We found that IL-1beta increased COX-2 expression and PGE(2) synthesis in time- and concentration-dependent manners. Both specific phosphatidylcholine-phospholipase C inhibitor (D609) and protein kinase C inhibitor (GF109203X) attenuated IL-1beta-induced responses in HTSMCs. IL-1beta-induced COX-2 expression and PGE(2) synthesis were also inhibited by an inhibitor of MEK1/2 (PD98059) and inhibitors of p38 MAPK (SB203580 and SB202190), respectively, suggesting the involvement of p42/p44 and p38 MAPKs in these responses. This hypothesis was further supported by the transient activation of p42/p44 and p38 MAPKs induced by IL-1beta. Furthermore, IL-1beta-induced activation of nuclear factor-kappaB (NF-kappaB) was inversely correlated with the degradation of IkappaB-alpha in HTSMCs. IL-1beta-induced COX-2 expression and PGE(2) synthesis were inhibited by the NF-kappaB inhibitor pyrrolidinedithiocarbamate. These findings suggest that the expression of COX-2 is correlated with the release of PGE(2) from IL-1beta-challenged HTSMCs, which is mediated, at least in part, through p42/p44 and p38 MAPKs and NF-kappaB signaling pathways in HTSMCs.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Sheikh-Hamad D, Gustin MC. MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 2004; 287:F1102-10. [PMID: 15522988 DOI: 10.1152/ajprenal.00225.2004] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adaptation to hypertonicity in mammalian cells is driven by multiple signaling pathways that include p38 kinase, Fyn, the catalytic subunit of PKA, ATM, and JNK2. In addition to the well-characterized tonicity enhancer (TonE)-TonE binding protein interaction, other transcription factors (and their respective cis elements) can potentially respond to hypertonicity. This review summarizes the current knowledge about the signaling pathways that regulate the adaptive response to osmotic stress and discusses new insights from yeast that could be relevant to the osmostress response in mammals.
Collapse
Affiliation(s)
- David Sheikh-Hamad
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
245
|
Sakurai K, Matsuo Y, Sudo T, Takuwa Y, Kimura S, Kasuya Y. Role of p38 Mitogen-Activated Protein Kinase in Thrombus Formation. J Recept Signal Transduct Res 2004; 24:283-96. [PMID: 15648447 DOI: 10.1081/rrs-200040324] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The present study was designed to elucidate the role of p38 mitogen-activated protein kinase (p38) in thrombus formation. We used p38alpha heterozygous (p38alpha+/-) mice and used ferric chloride (FeCl3)-induced carotid artery injury as a model of thrombus formation. The time to thrombotic occlusion induced by FeCl3 in p38alpha+/- mice was prolonged compared to that in wild-type (WT) mice. Platelets prepared from p38alpha+/- mice showed impairment of the aggregatory response to a low concentration of U46619, a thromboxane A2 analogue. Furthermore, platelets prepared from p38alpha+/- mice and activated by U46619 were poorly bound to fibrinogen compared with those from WT mice. Both the expression and activity of tissue factor induced by FeCl3 in WT mice were higher than those in p38alpha+/- mice. These results suggest that p38 plays an important role in thrombus formation by regulating platelet function and tissue factor activity.
Collapse
Affiliation(s)
- Kanako Sakurai
- Department of Biochemistry and Molecular Pharmacology and Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
246
|
Tourian L, Zhao H, Srikant CB. p38alpha, but not p38beta, inhibits the phosphorylation and presence of c-FLIPS in DISC to potentiate Fas-mediated caspase-8 activation and type I apoptotic signaling. J Cell Sci 2004; 117:6459-71. [PMID: 15572410 DOI: 10.1242/jcs.01573] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pharmacological inhibitors of JNK (SP600125) and p38 (PD169316) sensitize tumor cells to Fas-mediated apoptosis. PD169316 is less potent than SP600125 and diminishes its effect when present together. Because the p38 isoforms that promote (p38alpha) or inhibit (p38beta) apoptosis are both suppressed by PD169316, we investigated their regulatory involvement in Fas-signaling. We report here, that p38alpha, but not p38beta, exerts its proapoptotic effect by inhibiting the phosphorylation and presence of c-FLIPS, but not c-FLIPL, in the DISC to promote caspase-8 activation and type I signaling in Fas-activated Jurkat cells. Its effect was enhanced by enforced expression of Flag-tagged p38alpha and was attenuated by its inactive mutant (p38alpha-AGF) or by translational silencing. By contrast, type II signaling was facilitated by p38alpha-dependent mitochondrial presence of tBid and inhibition of Bcl-2 (Ser70) phosphorylation as well as by p38alpha/beta-dependent mitochondrial localization of Bax and inhibition of phosphorylation of Bad (Ser112/Ser155). Potentiation of Fas-mediated apoptosis by the inhibition of JNK1/2 correlated with the loss of Bad (Ser136) phosphorylation and was dependent on the stimulatory effect of p38alpha on DISC and the downstream effects of both p38alpha and p38beta. These data underscore the need to reassess the findings obtained with pan-p38 inhibitors and suggest that activation of p38alpha coupled with targeted inhibition of p38beta and JNK1/2 should optimally sensitize tumor cells to Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Leon Tourian
- Fraser Laboratories, Department of Medicine, McGill University Health Centre and Royal Victoria Hospital, Montreal, Quebec, H3A 1A1, Canada
| | | | | |
Collapse
|
247
|
Wang CC, Lin WN, Lee CW, Lin CC, Luo SF, Wang JS, Yang CM. Involvement of p42/p44 MAPK, p38 MAPK, JNK, and NF-kappaB in IL-1beta-induced VCAM-1 expression in human tracheal smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2004; 288:L227-37. [PMID: 15489374 DOI: 10.1152/ajplung.00224.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin-1beta (IL-1beta) has been shown to induce the expression of adhesion molecules on airway epithelial and smooth cells and contributes to inflammatory responses. Here, the roles of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappaB (NF-kappaB) pathways for IL-1beta-induced vascular cell adhesion molecule (VCAM)-1 expression were investigated in human tracheal smooth muscle cells (HTSMC). IL-1beta induced expression of VCAM-1 protein and mRNA in a time-dependent manner, which was significantly inhibited by inhibitors of MEK1/2 (U0126 and PD-98059), p38 (SB-202190), and c-Jun NH(2)-terminal kinase (JNK; SP-600125). Consistently, IL-1beta-stimulated phosphorylation of p42/p44 MAPK, p38, and JNK was attenuated by pretreatment with U0126, SB-202190, or SP-600125, respectively. IL-1beta-induced VCAM-1 expression was significantly blocked by the specific NF-kappaB inhibitors helenalin and pyrrolidine dithiocarbamate. As expected, IL-1beta-stimulated translocation of NF-kappaB into the nucleus and degradation of IkappaB-alpha were blocked by helenalin but not by U0126, SB-202190, or SP-600125. Moreover, the resultant enhancement of VCAM-1 expression increased the adhesion of polymorphonuclear cells to a monolayer of HTSMC, which was blocked by pretreatment with helenalin, U0126, SB-202190, or SP-600125 before IL-1beta exposure or by anti-VCAM-1 antibody. Together, these results suggest that in HTSMC, activation of p42/p44 MAPK, p38, JNK, and NF-kappaB pathways is essential for IL-1beta-induced VCAM-1 gene expression. These results provide new insight into the mechanisms of IL-1beta action that cytokines may promote inflammatory responses in airway disease.
Collapse
Affiliation(s)
- Chien-Chun Wang
- Graduate Institute of Natural Products, Department of Pharmacology, 259 Wen-Hwa 1st Road, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
248
|
Yin ZM, Sima J, Wu YF, Zhu J, Jiang Y. The effect of C-terminal fragment of JNK2 on the stability of p53 and cell proliferation. Cell Res 2004; 14:434-8. [PMID: 15538975 DOI: 10.1038/sj.cr.7290244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The basal activity of JNK is low in normal growing cells and inactivated JNK targets p53 for ubiquitination. To elucidate if the C-terminal part of JNK is responsible for its binding to p53, the low background tet-off inducible NIH3T3 cell line was selected by luciferase reporter gene and a double stable C-JNK Aa (203-424) cell line was established. After withdrawing tetracycline, the C-JNK fragment expression was induced and cell growth was dramatically inhibited 24 h later. However, the expression of p53 was found to be increased after the induction of C-JNK fragment, evaluated by transfecting p21waf-luciferase reporter genes. Our further studies showed that C-JNK fragment could form complex with p53 both in vivo and in vitro. Induction of C-JNK fragment in vivo can increase p53 stability by inhibiting p53 ubiquitination.
Collapse
Affiliation(s)
- Zhi Min Yin
- Jiangsu Province Key Laboratory of Biochemistry and Molecular Biology, College of Life Science, Nanjing Normal University, Nanjing 210097, China.
| | | | | | | | | |
Collapse
|
249
|
Lin CC, Hsiao LD, Chien CS, Lee CW, Hsieh JT, Yang CM. Tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in human tracheal smooth muscle cells: involvement of p42/p44 and p38 mitogen-activated protein kinases and nuclear factor-kappaB. Cell Signal 2004; 16:597-607. [PMID: 14751545 DOI: 10.1016/j.cellsig.2003.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study was to determine the mechanism of tumor necrosis factor-alpha (TNF-alpha)-enhanced cyclooxygenase (COX)-2 expression associated with prostaglandin E2 (PGE2) synthesis in human tracheal smooth muscle cells (HTSMCs). TNF-alpha markedly increased COX-2 expression and PGE2 synthesis in a time- and concentration-dependent manner, whereas COX-1 remained unaltered. Tyrosine kinase inhibitor (genistein), phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor (D-609) and PKC inhibitor (GF109203X) attenuated TNF-alpha-induced COX-2 expression and PGE2 synthesis in HTSMCs. TNF-alpha-induced COX-2 expression and PGE2 synthesis were also inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 and SB202190 (inhibitors of p38 MAPK), respectively, suggesting the involvement of p42/p44 and p38 MAPKs in these responses. This hypothesis was further supported by that TNF-alpha induced a transient activation of p42/p44 and p38 MAPKs in a time-and concentration-dependent manner. Furthermore, TNF-alpha-induced activation of nuclear factor-kappaB (NF-kappaB) reversely correlated with the degradation of IkappaB-alpha in HTSMCs. TNF-alpha-induced COX-2 expression and PGE2 synthesis was also inhibited by NF-kappaB inhibitor pyrrolidinedithiocarbamate (PDTC). These findings suggest that the increased expression of COX-2 correlates with the release of PGE2 from TNF-alpha-challenged HTSMCs, at least in part, mediated through p42/p44 and p38 MAPKs as well as NF-kappaB signaling pathways in HTSMCs.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Anesthetics, College of Medicine, Chang Gung University Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
250
|
Bix G, Fu J, Gonzalez EM, Macro L, Barker A, Campbell S, Zutter MM, Santoro SA, Kim JK, Höök M, Reed CC, Iozzo RV. Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through alpha2beta1 integrin. ACTA ACUST UNITED AC 2004; 166:97-109. [PMID: 15240572 PMCID: PMC2172143 DOI: 10.1083/jcb.200401150] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endorepellin, the COOH-terminal domain of the heparan sulfate proteoglycan perlecan, inhibits several aspects of angiogenesis. We provide evidence for a novel biological axis that links a soluble fragment of perlecan protein core to the major cell surface receptor for collagen I, α2β1 integrin, and provide an initial investigation of the intracellular signaling events that lead to endorepellin antiangiogenic activity. The interaction between endorepellin and α2β1 integrin triggers a unique signaling pathway that causes an increase in the second messenger cAMP; activation of two proximal kinases, protein kinase A and focal adhesion kinase; transient activation of p38 mitogen-activated protein kinase and heat shock protein 27, followed by a rapid down-regulation of the latter two proteins; and ultimately disassembly of actin stress fibers and focal adhesions. The end result is a profound block of endothelial cell migration and angiogenesis. Because perlecan is present in both endothelial and smooth muscle cell basement membranes, proteolytic activity during the initial stages of angiogenesis could liberate antiangiogenic fragments from blood vessels' walls, including endorepellin.
Collapse
Affiliation(s)
- Gregory Bix
- Department of Pathology, Anatomy and Cell Biology, Rm. 249 JAH, Thomas Jefferson University, 1020 Locust St., Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|