201
|
Harris JC, Sterin EH, Day ES. Membrane-Wrapped Nanoparticles for Enhanced Chemotherapy of Acute Myeloid Leukemia. ACS Biomater Sci Eng 2022; 8:4439-4448. [PMID: 36103274 PMCID: PMC9633094 DOI: 10.1021/acsbiomaterials.2c00832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work reports the development of a biomimetic membrane-wrapped nanoparticle (MWNP) platform for targeted chemotherapy of acute myeloid leukemia (AML). Doxorubicin (DOX), a chemotherapeutic used to treat leukemias, lymphomas, and other cancers, was encapsulated in polymeric NPs that were coated with cytoplasmic membranes derived from human AML cells. The release rate of DOX from the MWNPs was characterized under both storage and physiological conditions, with faster release observed at pH 5.5 than pH 7.4. The system was then introduced to AML cell cultures to test the functionality of the released DOX cargo as compared to DOX delivered freely or via NPs coated with poly(ethylene glycol) (PEG). The MWNPs delivered DOX in an efficient and targeted manner, inducing up to 80% apoptosis in treated cells at a dose of 5 μM, compared to 15% for free DOX and 17% for DOX-loaded PEG-coated NPs at the same drug concentration. The mechanism of cell death was confirmed as DNA double-strand breaks through a γH2A.X assay, indicating that the released DOX retained its expected mechanism of action. These findings designate MWNPs as a robust drug delivery system with great potential for future development in treatments of AML and other blood cancers.
Collapse
Affiliation(s)
- Jenna C Harris
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
| | - Eric H Sterin
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, 4th Floor, Newark, Delaware 19713, United States
| | - Emily S Day
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, 590 Avenue 1743, 4th Floor, Newark, Delaware 19713, United States
- Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, Delaware 19713, United States
| |
Collapse
|
202
|
Brown Adipose Tissue Sheds Extracellular Vesicles That Carry Potential Biomarkers of Metabolic and Thermogenesis Activity Which Are Affected by High Fat Diet Intervention. Int J Mol Sci 2022; 23:ijms231810826. [PMID: 36142750 PMCID: PMC9504916 DOI: 10.3390/ijms231810826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brown adipose tissue (BAT) is a key target for the development of new therapies against obesity due to its role in promoting energy expenditure; BAT secretory capacity is emerging as an important contributor to systemic effects, in which BAT extracellular vesicles (EVs) (i.e., batosomes) might be protagonists. EVs have emerged as a relevant cellular communication system and carriers of disease biomarkers. Therefore, characterization of the protein cargo of batosomes might reveal their potential as biomarkers of the metabolic activity of BAT. In this study, we are the first to isolate batosomes from lean and obese Sprague–Dawley rats, and to establish reference proteome maps. An LC-SWATH/MS analysis was also performed for comparisons with EVs secreted by white adipose tissue (subcutaneous and visceral WAT), and it showed that 60% of proteins were exclusive to BAT EVs. Precisely, batosomes of lean animals contain proteins associated with mitochondria, lipid metabolism, the electron transport chain, and the beta-oxidation pathway, and their protein cargo profile is dramatically affected by high fat diet (HFD) intervention. Thus, in obesity, batosomes are enriched with proteins involved in signal transduction, cell communication, the immune response, inflammation, thermogenesis, and potential obesity biomarkers including UCP1, Glut1, MIF, and ceruloplasmin. In conclusion, the protein cargo of BAT EVs is affected by the metabolic status and contains potential biomarkers of thermogenesis activity.
Collapse
|
203
|
Wang Y, Wang X, Xu Q, Yin J, Wang H, Zhang L. CircRNA, lncRNA, and mRNA profiles of umbilical cord blood exosomes from preterm newborns showing bronchopulmonary dysplasia. Eur J Pediatr 2022; 181:3345-3365. [PMID: 35790551 PMCID: PMC9395505 DOI: 10.1007/s00431-022-04544-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023]
Abstract
Bronchopulmonary dysplasia (BPD) represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. The therapeutic role of exosomes in BPD has been feverishly investigated. Meanwhile, the potential roles of exosomal circRNAs, lncRNAs, and mRNAs in umbilical cord blood (UCB) serum have not been studied. This study aimed to detect the expression profiles of circRNAs, lncRNAs, and mRNAs in UCB-derived exosomes of infants with BPD. Microarray analysis was performed to compare the RNA profiles of UCB-derived exosomes of a preterm newborn with (BPD group) and without (non-BPD, NBPD group) BPD. Then, circRNA/lncRNA-miRNA-mRNA co-expression networks were built to determine their association with BPD. In addition, cell counting kit-8 (CCK-8) assay was used to evaluate the proliferation of lipopolysaccharide (LPS)-induced human bronchial epithelial cells (BEAS-2B cells) and human umbilical vein endothelial cells (HUVECs). The levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in LPS-induced BEAS-2B cells and HUVECs were assessed through Western blot analysis. Then, quantitative reverse transcription-polymerase chain reaction assay was used to evaluate the expression levels of four differentially expressed circRNAs (hsa_circ_0086913, hsa_circ_0049170, hsa_circ_0087059, and hsa_circ_0065188) and two lncRNAs (small nucleolar RNA host gene 20 (SNHG20) and LINC00582) detected in LPS-induced BEAS-2B cells or HUVECs. A total of 317 circRNAs, 104 lncRNAs, and 135 mRNAs showed significant differential expression in UCB-derived exosomes of preterm infants with BPD compared with those with NBPD. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to examine differentially expressed exosomal circRNAs, lncRNAs, and mRNAs. The results showed that the GO terms and KEGG pathways mostly involving differentially expressed exosomal RNAs were closely associated with endothelial or epithelial cell development. In vitro, CCK-8 and Western blot assays revealed that LPS remarkably inhibited the viability and promoted inflammatory responses (TNF-α and IL-1β) of BEAS-2B cells or HUVECs. The expression levels of circRNAs hsa_circ_0049170 and hsa_circ_0087059 were upregulated in LPS-induced BEAS-2B cells; the expression level of hsa_circ_0086913 was upregulated and that of hsa_circ_0065188 was downregulated in LPS-induced HUVECs. Moreover, the expression level of lncRNA SNHG20 was upregulated and that of LINC00582 was downregulated in LPS-induced BEAS-2B cells. Further, 455 circRNA/lncRNA-miRNA-mRNA interaction networks were predicted, including hsa_circ_0086913/hsa-miR-103a-3p/transmembrane 4 L six family member 1 (TM4SF1) and lncRNA-SNHG20/hsa-miR-6720-5p/spermine synthase (SMS) networks, which may take part in BPD. CONCLUSION This study provided a systematic perspective on UCB-derived exosomal circRNAs and lncRNAs and laid an important foundation for further investigating the potential biological functions of exosomal circRNAs and lncRNAs in BPD. WHAT IS KNOWN • BPD represents a multifactorial chronic pulmonary pathology and a major factor causing premature illness and death. • The therapeutic role of exosomes in BPD has been feverishly investigated, and exosomal RNAs were ignored. WHAT IS NEW • The profiles of UCB-derived exosomal circRNAs, lncRNAs, and mRNAs were performed. • Several differentially expressed circRNAs and lncRNAs were identified in LPS-induced BEAS-2B cells and HUVECs.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Xuan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Qiushi Xu
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Jiao Yin
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Huaiyan Wang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| | - Lin Zhang
- Department of Neonatology, Changzhou Maternal and Child Health Care Hospital, Changzhou, China
| |
Collapse
|
204
|
Tzaridis T, Weller J, Bachurski D, Shakeri F, Schaub C, Hau P, Buness A, Schlegel U, Steinbach J, Seidel C, Goldbrunner R, Schäfer N, Wechsler‐Reya RJ, Hallek M, Scheffler B, Glas M, Haeberle L, Herrlinger U, Coch C, Reiners KS, Hartmann G. “A novel serum extracellular vesicle protein signature to monitor glioblastoma tumor progression”. Int J Cancer 2022; 152:308-319. [DOI: 10.1002/ijc.34261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Theophilos Tzaridis
- Institute of Clinical Chemistry and Clinical Pharmacology University of Bonn Germany
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen‐Bonn‐Cologne‐Düsseldorf, Partner Site Bonn University of Bonn Germany
- Tumor Initiation & Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla USA
| | - Johannes Weller
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen‐Bonn‐Cologne‐Düsseldorf, Partner Site Bonn University of Bonn Germany
| | - Daniel Bachurski
- Department I of Internal Medicine, Center for Integrated Oncology Aachen‐Bonn‐Cologne‐Düsseldorf, Partner Site Cologne, Center for Molecular Medicine Cologne University of Cologne Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Institute for Genomic Statistics and Bioinformatics, Medical Faculty University of Bonn Germany
| | - Christina Schaub
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen‐Bonn‐Cologne‐Düsseldorf, Partner Site Bonn University of Bonn Germany
| | - Peter Hau
- Department of Neurology and Wilhelm Sander NeuroOncology Unit University Hospital Regensburg Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Institute for Genomic Statistics and Bioinformatics, Medical Faculty University of Bonn Germany
| | - Uwe Schlegel
- Department of Neurology University Hospital Knappschaftskrankenhaus, Ruhr–University Bochum Germany
| | | | - Clemens Seidel
- Department of Radiation Oncology University of Leipzig Germany
| | | | - Niklas Schäfer
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen‐Bonn‐Cologne‐Düsseldorf, Partner Site Bonn University of Bonn Germany
| | - Robert J. Wechsler‐Reya
- Tumor Initiation & Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla USA
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen‐Bonn‐Cologne‐Düsseldorf, Partner Site Cologne, Center for Molecular Medicine Cologne University of Cologne Germany
| | - Björn Scheffler
- DKFZ‐Division Translational Neurooncology at the West German Cancer Center, German Cancer Consortium, DKFZ Heidelberg & Partner Site University Hospital Essen Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center, German Cancer Consortium University Hospital Essen Germany
| | - Lothar Haeberle
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen‐EMN Friedrich Alexander University of Erlangen– Nuremberg Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen‐Bonn‐Cologne‐Düsseldorf, Partner Site Bonn University of Bonn Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology University of Bonn Germany
| | - Katrin S. Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology University of Bonn Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology University of Bonn Germany
| |
Collapse
|
205
|
Effects of extracellular vesicles derived from oral bacteria on osteoclast differentiation and activation. Sci Rep 2022; 12:14239. [PMID: 35987920 PMCID: PMC9396627 DOI: 10.1038/s41598-022-18412-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Dysbiosis of the oral microbiota plays an important role in the progression of periodontitis, which is characterized by chronic inflammation and alveolar bone loss, and associated with systemic diseases. Bacterial extracellular vesicles (EVs) contain various bioactive molecules and show diverse effects on host environments depending on the bacterial species. Recently, we reported that EVs derived from Filifactor alocis, a Gram-positive periodontal pathogen, had osteoclastogenic activity. In the present study, we analysed the osteoclastogenic potency and immunostimulatory activity of EVs derived from the Gram-negative periodontal pathogens Porphyromonas gingivalis and Tannerella forsythia, the oral commensal bacterium Streptococcus oralis, and the gut probiotic strain Lactobacillus reuteri. Bacterial EVs were purified by density gradient ultracentrifugation using OptiPrep (iodixanol) reagent. EVs from P. gingivalis, T. forsythia, and S. oralis increased osteoclast differentiation and osteoclstogenic cytokine expression in osteoclast precursors, whereas EVs from L. reuteri did not. EVs from P. gingivalis, T. forsythia, and S. oralis preferentially activated Toll-like receptor 2 (TLR2) rather than TLR4 or TLR9, and induced osteoclastogenesis mainly through TLR2. The osteoclastogenic effects of EVs from P. gingivalis and T. forsythia were reduced by both lipoprotein lipase and polymyxin B, an inhibitor of lipopolysaccharide (LPS), while the osteoclastogenic effects of EVs from S. oralis were reduced by lipoprotein lipase alone. These results demonstrate that EVs from periodontal pathogens and oral commensal have osteoclastogenic activity through TLR2 activation by lipoproteins and/or LPS.
Collapse
|
206
|
Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol 2022; 13:941721. [PMID: 36052075 PMCID: PMC9427192 DOI: 10.3389/fimmu.2022.941721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
207
|
Okada-Tsuchioka M, Kajitani N, Omori W, Kurashige T, Boku S, Takebayashi M. Tetraspanin heterogeneity of small extracellular vesicles in human biofluids and brain tissue. Biochem Biophys Res Commun 2022; 627:146-151. [PMID: 36037746 DOI: 10.1016/j.bbrc.2022.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Extracellular vesicles (EVs) are particles released from most cell types delimited by a lipid bilayer. Small EVs (sEVs) are nanosized (<200 nm) and include exosomes. Brain-derived sEVs may provide a source for new biomarkers of brain status. CD9, CD63, and CD81 are major members of the tetraspanin family frequently used as sEV markers. However, according to a recent report, tetraspanins were not equally expressed in all sEVs, but rather show heterogeneity that reflects the expression levels in their secretory cells. We therefore investigated tetraspanin heterogeneity of sEVs in biofluids commonly used for clinical laboratory tests, and those in the brain. Expression levels and distributions of CD9, CD63 and CD81 on sEVs were determined in serum, plasma, and cerebrospinal fluid (CSF) samples collected from each healthy donor, and in post-mortem brain tissue samples. We found heterogeneous mixes of sEVs with various tetraspanin combinations among sEVs, and the predominant types and heterogeneous patterns of tetraspanins were specific to sample type. Hierarchical clustering revealed that brain sEVs were similar to those in the CSF, but different from those in peripheral blood. Our findings both provide basic information and contribute to the development of biomarkers for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Mami Okada-Tsuchioka
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure, 737-0023, Japan.
| | - Naoto Kajitani
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure, 737-0023, Japan; Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Wataru Omori
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure, 737-0023, Japan; Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure, 737-0023, Japan
| | - Shuken Boku
- Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Minoru Takebayashi
- Division of Psychiatry and Neuroscience, Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, 3-1 Aoyama, Kure, 737-0023, Japan; Department of Neuropsychiatry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
208
|
Shirasaki T, Feng H, Duyvesteyn HME, Fusco WG, McKnight KL, Xie L, Boyce M, Kumar S, Barouch-Bentov R, González-López O, McNamara R, Wang L, Hertel-Wulff A, Chen X, Einav S, Duncan JA, Kapustina M, Fry EE, Stuart DI, Lemon SM. Nonlytic cellular release of hepatitis A virus requires dual capsid recruitment of the ESCRT-associated Bro1 domain proteins HD-PTP and ALIX. PLoS Pathog 2022; 18:e1010543. [PMID: 35969644 PMCID: PMC9410543 DOI: 10.1371/journal.ppat.1010543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hui Feng
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| | - William G. Fusco
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin L. McKnight
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ling Xie
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Boyce
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sathish Kumar
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rina Barouch-Bentov
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Olga González-López
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan McNamara
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Li Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adriana Hertel-Wulff
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xian Chen
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan-Zuckerberg BioHub, San Francisco, California, United States of America
| | - Joseph A. Duncan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Maryna Kapustina
- Department of Cell Biology & Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elizabeth E. Fry
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David I. Stuart
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Diamond Light Source, Didcot, United Kingdom
| | - Stanley M. Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
209
|
Frigerio R, Musicò A, Strada A, Bergamaschi G, Panella S, Grange C, Marelli M, Ferretti AM, Andriolo G, Bussolati B, Barile L, Chiari M, Gori A, Cretich M. Comparing digital detection platforms in high sensitivity immune-phenotyping of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e53. [PMID: 38939054 PMCID: PMC11080918 DOI: 10.1002/jex2.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 06/29/2024]
Abstract
Despite their clinical potential, Extracellular Vesicles (EVs) struggle to take the scene as a preeminent source of biomarkers in liquid biopsy. Limitations in the use of EVs origin from their inherent complexity and heterogeneity and from the sensitivity demand in detecting low to very low abundant disease-specific sub-populations. Such need can be met by digital detection, namely capable to reach the single-molecule sensitivity. Here we set to compare, side by side, two digital detection platforms that have recently gained increasing importance in the field of EVs. The platforms, both commercially available, are based on the principles of the Single Particle Interferometric Reflectance Imaging Sensing (SP-IRIS) and the Single Molecule Array technology (SiMoA) respectively. Sensitivity in immune-phenotyping of a well characterized EV sample is reported, discussing possible applicative implications and rationales for alternative or complementary use of the two platforms in biomarker discovery or validation.
Collapse
Affiliation(s)
- Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Angelo Musicò
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Alessandro Strada
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Greta Bergamaschi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Stefano Panella
- Istituto Cardiocentro Ticino, Ente Ospedaliero CantonaleLuganoSwitzerland
| | | | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Anna M. Ferretti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Gabriella Andriolo
- Istituto Cardiocentro Ticino, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | - Lucio Barile
- Istituto Cardiocentro Ticino, Ente Ospedaliero CantonaleLuganoSwitzerland
| | - Marcella Chiari
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Alessandro Gori
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC) ‐ Consiglio Nazionale delle RicercheMilanoItaly
| |
Collapse
|
210
|
Detailed Characterization of Small Extracellular Vesicles from Different Cell Types Based on Tetraspanin Composition by ExoView R100 Platform. Int J Mol Sci 2022; 23:ijms23158544. [PMID: 35955677 PMCID: PMC9369185 DOI: 10.3390/ijms23158544] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Small extracellular vesicles (sEV) hold enormous potential as biomarkers, drug carriers, and therapeutic agents. However, due to previous limitations in the phenotypic characterization of sEV at the single vesicle level, knowledge of cell type-specific sEV signatures remains sparse. With the introduction of next-generation sEV analysis devices, such as the single-particle interferometric reflectance imaging sensor (SP-IRIS)-based ExoView R100 platform, single sEV analyses are now possible. While the tetraspanins CD9, CD63, and CD81 were generally considered pan-sEV markers, it became clear that sEV of different cell types contain several combinations and amounts of these proteins on their surfaces. To gain better insight into the complexity and heterogeneity of sEV, we used the ExoView R100 platform to analyze the CD9/CD63/CD81 phenotype of sEV released by different cell types at a single sEV level. We demonstrated that these surface markers are sufficient to distinguish cell-type-specific sEV phenotypes. Furthermore, we recognized that tetraspanin composition in some sEV populations does not follow a random pattern. Notably, the tetraspanin distribution of sEV derived from mesenchymal stem cells (MSCs) alters depending on cell culture conditions. Overall, our data provide an overview of the cell-specific characteristics of sEV populations, which will increase the understanding of sEV physiology and improve the development of new sEV-based therapeutic approaches.
Collapse
|
211
|
Lu B, Ku J, Flojo R, Olson C, Bengford D, Marriott G. Exosome- and extracellular vesicle-based approaches for the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114465. [PMID: 35878794 DOI: 10.1016/j.addr.2022.114465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we will provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and new directions in developing EV-based therapies and their potential impact on clinical medicine.
Collapse
Affiliation(s)
- Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Joy Ku
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Renceh Flojo
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Chris Olson
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - David Bengford
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, California 94720, USA.
| |
Collapse
|
212
|
Park S, Moon HY. Urinary extracellular vesicle as a potential biomarker of exercise-induced fatigue in young adult males. Eur J Appl Physiol 2022; 122:2175-2188. [PMID: 35781843 PMCID: PMC9463341 DOI: 10.1007/s00421-022-04995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose Previous studies have suggested that circulating extracellular vesicles (EVs) arise after high intensity exercise and urine could reflect the plasma proteome. Herein, we investigated the characteristic of urinary EVs from healthy young adult males who had completed a maximal effort exercise test. Methods Thirteen healthy men completed a 20 m shuttle run test (20 m SRT). Fresh urine samples were collected at first morning, right after, and 1 h rest after 20 m SRT. Also, blood lactate, heart rate, rating of perceived exertion, and blood pressure were measured before, right after, and 1 h rest after 20 m SRT. Urinary EVs were analyzed using Exoview instrument and microRNAs (miRNAs) sequencing on urinary EVs were performed. Results Urinary EVs increased significantly after exercise and returned to baseline value after 1 h of rest. miRNA sequencing on urinary EV revealed alterations in four miRNAs (1 up and 3 down) and nine miRNAs (2 up and 7 down) in pre- vs. post- and post- vs. post-1 h samples, respectively. Lastly, bioinformatic analysis of urinary EV miRNA suggests that predicted target genes could affect PI3K-Akt, mitogen-activated protein kinase, and insulin pathways by exercise. Conclusions Exercise to voluntary exhaustion increased the number of EVs in urine. Also, miRNAs in urinary EVs were altered after exercise. These findings could indicate the possibility of using the urinary EVs as a novel biomarker of acute exercise-induced fatigue.
Collapse
Affiliation(s)
- Suhong Park
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea. .,Institute of Sport Science, Seoul National University, 71-1, 407, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
213
|
Effects of Hypoxia on RNA Cargo in Extracellular Vesicles from Human Adipose-Derived Stromal/Stem Cells. Int J Mol Sci 2022; 23:ijms23137384. [PMID: 35806391 PMCID: PMC9266528 DOI: 10.3390/ijms23137384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stromal/stem cells and their derivates are the most promising cell source for cell therapies in regenerative medicine. The application of extracellular vesicles (EVs) as cell-free therapeuticals requires particles with a maximum regenerative capability to enhance tissue and organ regeneration. The cargo of mRNA and microRNA (miR) in EVs after hypoxic preconditioning has not been extensively investigated. Therefore, the aim of our study was the characterization of mRNA and the miR loading of EVs. We further investigated the effects of the isolated EVs on renal tubular epithelial cells in vitro. We found 3131 transcripts to be significantly regulated upon hypoxia. Only 15 of these were downregulated, but 3116 were up-regulated. In addition, we found 190 small RNAs, 169 of these were miRs and 21 were piwi-interacting RNAs (piR). However, only 18 of the small RNAs were significantly altered, seven were miRs and 11 were piRs. Interestingly, all seven miRs were down-regulated after hypoxic pretreatment, whereas all 11 piRs were up-regulated. Gene ontology term enrichment and miR-target enrichment analysis of the mRNAs and miR were also performed in order to study the biological background. Finally, the therapeutic effect of EVs on human renal tubular epithelial cells was shown by the increased expression of three anti-inflammatory molecules after incubation with EVs from hypoxic pretreatment. In summary, our study demonstrates the altered mRNA and miR load in EVs after hypoxic preconditioning, and their anti-inflammatory effect on epithelial cells.
Collapse
|
214
|
Hu S, Zou Y, Jiang Y, Zhang Q, Cheng H, Wang H, Li X. Scutellarin‐mediated autophagy activates exosome release of rat nucleus pulposus cells by positively regulating Rab8a via the PI3K/PTEN/Akt pathway. Cell Biol Int 2022; 46:1588-1603. [PMID: 35762224 DOI: 10.1002/cbin.11838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/13/2022] [Accepted: 05/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shun‐Qi Hu
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Yan‐Pei Zou
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Yun‐Qi Jiang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Qi‐Chen Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Hong‐Xia Cheng
- Liver Cancer Institute, Zhongshan Hospital Fudan University Shanghai China
| | - Hui‐Ren Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| | - Xi‐Lei Li
- Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
215
|
Horie K, Nanashima N, Yokoyama Y, Yoshioka H, Watanabe J. Exosomal MicroRNA as Biomarkers for Diagnosing or Monitoring the Progression of Ovarian Clear Cell Carcinoma: A Pilot Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123953. [PMID: 35745075 PMCID: PMC9228939 DOI: 10.3390/molecules27123953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is the most common cause of gynecological malignancy-related mortality since early-stage disease is difficult to diagnose. Advanced clear cell carcinoma of the ovary (CCCO) has dismal prognosis, and its incidence has been increasing in Japan, emphasizing the need for highly sensitive diagnostic and prognostic CCCO biomarkers. Exosomal microRNAs (miRNAs) secreted by tumor cells are known to play a role in carcinogenesis; however, their involvement in ovarian cancer is unclear. In this study, we performed expression profiling of miRNAs from exosomes released by five cell lines representing different histological types of ovarian cancer. Exosomes isolated from culture media of cancer and normal cells were compared for miRNA composition using human miRNA microarray. We detected 143 exosomal miRNAs, whose expression was ≥1.5-fold higher in ovarian cancer cells than in the control. Among them, 28 miRNAs were upregulated in cells of all histological ovarian cancer types compared to control, and three were upregulated in CCCO cells compared to other types. Functional analyses indicated that miR-21 overexpressed in CCCO cells targeted tumor suppressor genes PTEN, TPM1, PDCD4, and MASP1. The identified miRNAs could represent novel candidate biomarkers to diagnose or monitor progression of ovarian cancer, particularly CCCO.
Collapse
Affiliation(s)
- Kayo Horie
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
- Correspondence: ; Tel.: +81-172-39-5527
| | - Naoki Nanashima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| | - Yoshihito Yokoyama
- Department of Obstetrics and Gynecology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8203, Japan;
| | - Haruhiko Yoshioka
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| | - Jun Watanabe
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki 036-8564, Japan; (N.N.); (H.Y.); (J.W.)
| |
Collapse
|
216
|
Imanbekova M, Suarasan S, Lu Y, Jurchuk S, Wachsmann-Hogiu S. Recent advances in optical label-free characterization of extracellular vesicles. NANOPHOTONICS 2022; 11:2827-2863. [PMID: 35880114 PMCID: PMC9128385 DOI: 10.1515/nanoph-2022-0057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are complex biological nanoparticles endogenously secreted by all eukaryotic cells. EVs carry a specific molecular cargo of proteins, lipids, and nucleic acids derived from cells of origin and play a significant role in the physiology and pathology of cells, organs, and organisms. Upon release, they may be found in different body fluids that can be easily accessed via noninvasive methodologies. Due to the unique information encoded in their molecular cargo, they may reflect the state of the parent cell and therefore EVs are recognized as a rich source of biomarkers for early diagnostics involving liquid biopsy. However, body fluids contain a mixture of EVs released by different types of healthy and diseased cells, making the detection of the EVs of interest very challenging. Recent research efforts have been focused on the detection and characterization of diagnostically relevant subpopulations of EVs, with emphasis on label-free methods that simplify sample preparation and are free of interfering signals. Therefore, in this paper, we review the recent progress of the label-free optical methods employed for the detection, counting, and morphological and chemical characterization of EVs. We will first briefly discuss the biology and functions of EVs, and then introduce different optical label-free techniques for rapid, precise, and nondestructive characterization of EVs such as nanoparticle tracking analysis, dynamic light scattering, atomic force microscopy, surface plasmon resonance spectroscopy, Raman spectroscopy, and SERS spectroscopy. In the end, we will discuss their applications in the detection of neurodegenerative diseases and cancer and provide an outlook on the future impact and challenges of these technologies to the field of liquid biopsy via EVs.
Collapse
Affiliation(s)
- Meruyert Imanbekova
- Bioengineering, McGill University Faculty of Engineering, Montreal, QC, Canada
| | - Sorina Suarasan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271, Cluj-Napoca, Romania
| | - Yao Lu
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, 1006, Montreal, QC, H3C6W1, Canada
| | - Sarah Jurchuk
- Bioengineering, McGill University Faculty of Engineering, 3480 Rue Universite, Rm#350, Montreal, QC, H3A 0E9, Canada
| | - Sebastian Wachsmann-Hogiu
- Bioengineering, McGill University Faculty of Engineering, 3480 University St., MC362, Montreal, H3A 0E9l, Canada
| |
Collapse
|
217
|
Ahn SH, Ryu SW, Choi H, You S, Park J, Choi C. Manufacturing Therapeutic Exosomes: from Bench to Industry. Mol Cells 2022; 45:284-290. [PMID: 35534190 PMCID: PMC9095511 DOI: 10.14348/molcells.2022.2033] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Process of manufacturing therapeutics exosome development for commercialization. The development of exosome treatment starts at the bench, and in order to be commercialized, it goes through the manufacturing, characterization, and formulation stages, production under Good Manufacturing Practice (GMP) conditions for clinical use, and close consultation with regulatory authorities. Exosome, a type of nanoparticles also known as small extracellular vesicles are gaining attention as novel therapeutics for various diseases because of their ability to deliver genetic or bioactive molecules to recipient cells. Although many pharmaceutical companies are gradually developing exosome therapeutics, numerous hurdles remain regarding manufacture of clinical-grade exosomes for therapeutic use. In this mini-review, we will discuss the manufacturing challenges of therapeutic exosomes, including cell line development, upstream cell culture, and downstream purification process. In addition, developing proper formulations for exosome storage and, establishing good manufacturing practice facility for producing therapeutic exosomes remains as challenges for developing clinicalgrade exosomes. However, owing to the lack of consensus regarding the guidelines for manufacturing therapeutic exosomes, close communication between regulators and companies is required for the successful development of exosome therapeutics. This review shares the challenges and perspectives regarding the manufacture and quality control of clinical grade exosomes.
Collapse
Affiliation(s)
- So-Hee Ahn
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | | | - Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | | | - Jun Park
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
218
|
Igami K, Uchiumi T, Shiota M, Ueda S, Tsukahara S, Akimoto M, Eto M, Kang D. Extracellular vesicles expressing CEACAM proteins in the urine of bladder cancer patients. Cancer Sci 2022; 113:3120-3133. [PMID: 35611462 PMCID: PMC9459299 DOI: 10.1111/cas.15438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022] Open
Abstract
Early detection and long‐term monitoring are important for urothelial carcinoma of the bladder (UCB). Urine cytology and existing markers have insufficient diagnostic performance. Here, we examined medium‐sized extracellular vesicles (EVs) in urine to identify specific markers for UCB and evaluated their usefulness as diagnostic material. To identify specific markers in urinary EVs derived from UCB, we undertook shotgun proteomics using urine from four UCB patients and four healthy subjects. Next, 29 healthy specimens, 18 noncancer specimens, and 33 UCB specimens, all from men, were analyzed for urinary EVs by flow cytometry to evaluate the diagnostic performance of UCB‐specific EVs. Nanoparticle‐tracking analysis indicated that the size of EVs extracted from urine was mostly <400 nm. By shotgun proteomics, we detected several proteins characteristic of UCB and found that carcinoembryonic antigen‐related adhesion molecule (CEACAM) proteins were increased in patients. Flow cytometric analysis revealed that the degree of expression of CEACAM1, CEACAM5, and CEACAM6 proteins on the surface of EVs varied among patients. Extracellular vesicles expressing CEACAM proteins also expressed mucin 1, suggesting that they were derived from tumorigenic uroepithelial cells. The number of EVs expressing CEACAM1, 5, and 6 proteins was significantly increased in UCB (mean ± SD, 8.6 ± 13%) compared to non‐UCB (0.69 ± 0.46) and healthy (0.46 ± 0.34) by flow cytometry. The results of receiver operating characteristic (ROC) analysis showed a good score of area under the ROC curve of 0.907. We identified EVs that specifically express CEACAM proteins in urine and have potential for diagnostic applications. These EVs are potential targets in a new liquid biopsy test for UCB patients.
Collapse
Affiliation(s)
- Ko Igami
- Business Management Division, Clinical Laboratory Business Segment, LSI Medience Corporation, Tokyo, Japan.,Kyushu Pro Search Limited Liability Partnership, Fukuoka, Japan.,Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saori Ueda
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Shigehiro Tsukahara
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan.,Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Akimoto
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
219
|
Huang G, Zhu Y, Wen S, Mei H, Liu Y, Wang D, Maddahfar M, Su QP, Lin G, Chen Y, Jin D. Single Small Extracellular Vesicle (sEV) Quantification by Upconversion Nanoparticles. NANO LETTERS 2022; 22:3761-3769. [PMID: 35500253 DOI: 10.1021/acs.nanolett.2c00724] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer-derived small extracellular vesicles (sEVs) are potential circulating biomarkers in liquid biopsies. However, their small sizes, low abundance, and heterogeneity in molecular makeups pose major technical challenges for detecting and characterizing them quantitatively. Here, we demonstrate a single-sEV enumeration platform using lanthanide-doped upconversion nanoparticles (UCNPs). Taking advantage of the unique optical properties of UCNPs and the background-eliminating property of total internal reflection fluorescence (TIRF) imaging technique, a single-sEV assay recorded a limit of detection 1.8 × 106 EVs/mL, which was nearly 3 orders of magnitude lower than the standard enzyme-linked immunosorbent assay (ELISA). Its specificity was validated by the difference between EpCAM-positive and EpCAM-negative sEVs. The accuracy of the UCNP-based single-sEV assay was benchmarked with immunomagnetic-beads flow cytometry, showing a high correlation (R2> 0.99). The platform is suitable for evaluating the heterogeneous antigen expression of sEV and can be easily adapted for biomarker discoveries and disease diagnosis.
Collapse
Affiliation(s)
- Guan Huang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Ying Zhu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- St. George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, New South Wales 2052, Australia
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Haoqi Mei
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yongtao Liu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dejiang Wang
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Mahnaz Maddahfar
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Qian Peter Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Gungun Lin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-User Analysis at Low Levels, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yinghui Chen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-User Analysis at Low Levels, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Alcolizer Technology Pty Ltd, 36 Mumford Place, Balcatta, Perth, Western Australia 6021, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- ARC Research Hub for Integrated Device for End-User Analysis at Low Levels, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
220
|
An Ex Vivo Study on Release, Uptake, and miRNA Profile of Exosomes in Rat Lens. J Ophthalmol 2022; 2022:6706172. [PMID: 35496773 PMCID: PMC9050248 DOI: 10.1155/2022/6706172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose To identify the ability of releasing and uptaking exosomes in rat lens and characterize the exosomal microRNA profile of lens-derived exosomes. Methods The rat lenses were cultured ex vivo and the medium was collected. The exosomes were isolated from medium and measured in size and concentration by nanoflow cytometry (nFCM) and transmission electron microscopy (TEM) and verified with CD63 and TSG101 by Western blot. The miRNAs in exosomes released from lens epithelial cells (LECs) were sequenced. The plasma exosomes labeled by PKH26 were used to verify the exosomes uptake LECs, and their colocalized fluorescence was imaged by confocal microscopy. Results LECs released numerous exosomes into the medium through the capsule, which contained abundant miRNAs. The most abundant miRNAs included miR-184, let-7c-5p, let-7a-5p, let-7b-5p, let-7f-5p, miR-125a-5p, miR-204-5p, miR-125b-5p, miR-1b, and miR-23a-3p. The LECs but not the lens fibre cells showed exosome uptake. The LECs uptake more PKH26-labeled exosomes at day 7 than day 3 and day 14. Conclusions Our results suggested that LECs can release and uptake exosomes through the capsule. Exosomes may be an important way for the lens to communicate among LECs, aqueous humour, vitreous body, and other ocular tissues.
Collapse
|
221
|
Borup A, Boysen AT, Ridolfi A, Brucale M, Valle F, Paolini L, Bergese P, Nejsum P. Comparison of separation methods for immunomodulatory extracellular vesicles from helminths. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e41. [PMID: 38939526 PMCID: PMC11080882 DOI: 10.1002/jex2.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 06/29/2024]
Abstract
Helminths survive within their host by secreting immunomodulatory compounds, which hold therapeutic potential for inflammatory conditions. Helminth-derived extracellular vesicles (EVs) are one such component proposed to possess immunomodulatory activities. Due to the recent discovery of helminth EVs, standardised protocols for EV separation are lacking. Excretory/secretory products of the porcine helminth, Ascaris suum, were used to compare three EV separation methods: Size exclusion chromatography (SEC), ultracentrifugation (UC) and a combination of the two. Their performance was evaluated by EV yield, sample purity and the ability of EVs to suppress lipopolysaccharide (LPS)-induced inflammation in vitro. We found that all three separation methods successfully separated helminth EVs with a similar EV yield. Functional studies showed that EVs from all three methods reduced LPS-induced levels of tumour necrosis factor (TNF-α) in a dose-dependent manner. Overall, the three separation methods showed similar performance, however, the combination of UC+SEC presented with slightly higher purity than either method alone.
Collapse
Affiliation(s)
- Anne Borup
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Andrea Ridolfi
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Consiglio Nazionale delle Ricerche (CNR)Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)University of BolognaBolognaItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Marco Brucale
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Consiglio Nazionale delle Ricerche (CNR)Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)University of BolognaBolognaItaly
| | - Francesco Valle
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Consiglio Nazionale delle Ricerche (CNR)Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)University of BolognaBolognaItaly
| | - Lucia Paolini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)University of FlorenceFlorenceItaly
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Consiglio Nazionale delle Ricerche (CNR)Institute for Research and Biomedical Innovation (IRIB)University of PalermoPalermoItaly
| | - Peter Nejsum
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| |
Collapse
|
222
|
Karimi N, Dalirfardouei R, Dias T, Lötvall J, Lässer C. Tetraspanins distinguish separate extracellular vesicle subpopulations in human serum and plasma - Contributions of platelet extracellular vesicles in plasma samples. J Extracell Vesicles 2022; 11:e12213. [PMID: 35524458 PMCID: PMC9077141 DOI: 10.1002/jev2.12213] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ability to isolate extracellular vesicles (EVs) from blood is vital in the development of EVs as disease biomarkers. Both serum and plasma can be used, but few studies have compared these sources in terms of the type of EVs that are obtained. The aim of this study was to determine the presence of different subpopulations of EVs in plasma and serum. METHOD Blood was collected from healthy subjects, and plasma and serum were isolated in parallel. ACD or EDTA tubes were used for the collection of plasma, while serum was obtained in clot activator tubes. EVs were isolated utilising a combination of density cushion and SEC, a combination of density cushion and gradient or by a bead antibody capturing system (anti-CD63, anti-CD9 and anti-CD81 beads). The subpopulations of EVs were analysed by NTA, Western blot, SP-IRIS, conventional and nano flow cytometry, magnetic bead ELISA and mass spectrometry. Additionally, different isolation protocols for plasma were compared to determine the contribution of residual platelets in the analysis. RESULTS This study shows that a higher number of CD9+ EVs were present in EDTA-plasma compared to ACD-plasma and to serum, and the presence of CD41a on these EVs suggests that they were released from platelets. Furthermore, only a very small number of EVs in blood were double-positive for CD63 and CD81. The CD63+ EVs were enriched in serum, while CD81+ vesicles were the rarest subpopulation in both plasma and serum. Additionally, EDTA-plasma contained more residual platelets than ACD-plasma and serum, and two centrifugation steps were crucial to reduce the number of platelets in plasma prior to EV isolation. CONCLUSION These results show that human blood contains multiple subpopulations of EVs that carry different tetraspanins. Blood sampling methods, including the use of anti-coagulants and choice of centrifugation protocols, can affect EV analyses and should always be reported in detail.
Collapse
Affiliation(s)
- Nasibeh Karimi
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Razieh Dalirfardouei
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Endometrium and Endometriosis Research CenterHamadan University of Medical SciencesHamadanIran
- Faculty of MedicineDepartment of Medical BiotechnologyMashhad University of Medical SciencesMashhadIran
| | | | - Jan Lötvall
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Cecilia Lässer
- Krefting Research CentreDepartment of Internal Medicine and Clinical NutritionInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
223
|
Concentration Quantification of TiO 2 Nanoparticles Synthesized by Laser Ablation of a Ti Target in Water. MATERIALS 2022; 15:ma15093146. [PMID: 35591479 PMCID: PMC9104483 DOI: 10.3390/ma15093146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
In this work, we present a quantitative method for determining the concentration of metal oxide nanoparticles (NP) synthesized by laser ablation in liquid. The case study was performed with titanium dioxide nanoparticles (TiO2 NP), which were synthesized by laser ablation of a Ti target in water. After synthesis, a colloidal solution was analyzed with UV-Vis spectroscopy. At the same time, the craters that remained on the Ti target after ablation were evaluated with an optical microscope to determine the volume of the ablated material. SEM microscopy was used to determine the TiO2 NP size distribution. It was found that synthesized TiO2 NP followed a Log-Normal diameter distribution with a maximum at about 64 nm. From the volume of ablated material and NP size distribution, under the assumption that most of the ablated material is consumed to form nanoparticles, a concentration of nanoparticles can be determined. The proposed method is verified by comparing the calculated concentrations to the values obtained from the Beer–Lambert law using the Mie scattering theory for the NP cross-section calculation.
Collapse
|
224
|
Han X, Wang C, Song L, Wang X, Tang S, Hou T, Liu C, Liang X, Qiu C, Wang Y, Du Y. KIBRA regulates amyloid β metabolism by controlling extracellular vesicles secretion. EBioMedicine 2022; 78:103980. [PMID: 35367771 PMCID: PMC8983338 DOI: 10.1016/j.ebiom.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Previous research has revealed that KIBRA controls secretion of extracellular vesicles (EVs) by inhibiting the proteasomal degradation of Rab27a and EVs play an important role in amyloid β (Aβ) metabolism and transmission during Alzheimer's disease (AD) pathogenesis. Here, we further test the hypothesis that KIBRA regulates Aβ metabolism via the endosomal-lysosomal system. Methods We generated KIBRA knockout mice on a 5XFAD background and KIBRA knockdown cells in murine HT22 cells with stably overexpressing APP. Various forms of Aβ and quantification of EVs were analyzed by biochemical methods and nanoparticle tracking analysis, respectively. Multivesicular bodies (MVBs) were visualized by electron microscopy and confocal fluorescent microscopy. In a population-based cohort (n = 1419), KIBRA genotypes and plasma Aβ levels were analyzed using multiple-PCR amplification and Simoa, respectively. Findings Multiple forms of Aβ were dramatically attenuated in KIBRA knockout mouse brain, including monomers, oligomers, and extracellular deposition, but KIBRA knockout had no effect on intraneuronal APP C-terminal fragment β (APP-CTFβ)/Aβ levels. KIBRA depletion also decreased APP-CTFβ/Aβ-associated EVs secretion and subsequently enhanced MVBs number. Furthermore, we found that excessive accumulation of MVBs harboring APP-CTFβ/Aβ promoted the MVBs-lysosome fusion for degradation and inhibition of lysosomal function rescued secretion of APP-CTFβ/Aβ-associated EVs. More importantly, whole exon sequencing of KIBRA in a large population-based cohort identified the association of KIBRA rs28421695 polymorphism with plasma Aβ levels. Interpretation These results demonstrate that KIBRA regulates Aβ metabolism via controlling the secretion of APP-CTFβ/Aβ-associated EVs. Funding National Key R&D Program of China, and National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Chaoqun Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Xiaojie Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Xiaoyan Liang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China.
| |
Collapse
|
225
|
Nanomechanical characterization of exosomes and concomitant nanoparticles from blood plasma by PeakForce AFM in liquid. Biochim Biophys Acta Gen Subj 2022; 1866:130139. [DOI: 10.1016/j.bbagen.2022.130139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/26/2022] [Accepted: 03/31/2022] [Indexed: 12/19/2022]
|
226
|
Bağcı C, Sever-Bahcekapili M, Belder N, Bennett APS, Erdener ŞE, Dalkara T. Overview of extracellular vesicle characterization techniques and introduction to combined reflectance and fluorescence confocal microscopy to distinguish extracellular vesicle subpopulations. NEUROPHOTONICS 2022; 9:021903. [PMID: 35386596 PMCID: PMC8978261 DOI: 10.1117/1.nph.9.2.021903] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/04/2022] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are nanoparticles (30 to 1000 nm in diameter) surrounded by a lipid-bilayer which carry bioactive molecules between local and distal cells and participate in intercellular communication. Because of their small size and heterogenous nature they are challenging to characterize. Here, we discuss commonly used techniques that have been employed to yield information about EV size, concentration, mechanical properties, and protein content. These include dynamic light scattering, nanoparticle tracking analysis, flow cytometry, transmission electron microscopy, atomic force microscopy, western blotting, and optical methods including super-resolution microscopy. We also introduce an innovative technique for EV characterization which involves immobilizing EVs on a microscope slide before staining them with antibodies targeting EV proteins, then using the reflectance mode on a confocal microscope to locate the EV plane. By then switching to the microscope's fluorescence mode, immunostained EVs bearing specific proteins can be identified and the heterogeneity of an EV preparation can be determined. This approach does not require specialist equipment beyond the confocal microscopes that are available in many cell biology laboratories, and because of this, it could become a complementary approach alongside the aforementioned techniques to identify molecular heterogeneity in an EV preparation before subsequent analysis requiring specialist apparatus.
Collapse
Affiliation(s)
- Canan Bağcı
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Bahçeşehir University, Department of Biomedical Engineering, İstanbul, Turkey
| | | | - Nevin Belder
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
- Ankara University, Institute of Biotechnology, Ankara, Turkey
| | - Adam P. S. Bennett
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Şefik Evren Erdener
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
227
|
Sung SE, Seo MS, Kang KK, Choi JH, Lee SJ, Lim JH, Yang SY, Kim SK, Lee GW. Isolation and Characterization of Extracellular Vesicle from Mesenchymal Stem Cells of the Epidural Fat of the Spine. Asian Spine J 2022; 16:153-161. [PMID: 34461688 PMCID: PMC9066249 DOI: 10.31616/asj.2021.0129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
STUDY DESIGN An experimental study with extracellular vesicles (EVs) from mesenchymal stem cell (MSC) of the epidural fat (EF) of the spine. PURPOSE This study aims to isolate the exosomes from epidural fat-derived mesenchymal stem cells (EF-MSCs) and fully characterize the EF-MSC-EVs. OVERVIEW OF LITERATURE EF-MSCs were reported in 2019, and a few studies have shown the positive outcomes of using EF-MSCs to treat specific spine pathologies. However, MSCs have significant limitations for conducting basic studies or developing therapeutic agents. Although EVs are an emerging research topic, no studies have focused on EVs, especially exosomes, from EF and EF-MSCs. METHODS In this study, we isolated the exosomes using the tangential flow filtration (TFF) system with exosome-depleted fetal bovine serum and performed the characterization tests via western blotting, reverse transcription-polymerase chain reaction, nanoparticle tracking analysis (NTA), and transmission electron microscopy. RESULTS In transmission electron microscopy, the exosome had a diameter of approximately 100-200 nm and had a spherical shape, whereas in the NTA, the exosome had an average diameter of 142.8 nm with a concentration of 1.27×1010 particles/mL. The flow cytometry analysis showed the expression of CD63 and CD81. The western blotting analysis showed the positive markers. CONCLUSIONS These findings showed that isolating the exosomes via TFF resulted in high-quality EF-MSC exosome yield. Further studies with exosomes from EF-MSC are needed to evaluate the function and role of the EF tissue.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu,
Korea
| | - Min-Soo Seo
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu,
Korea
| | - Kyung-Ku Kang
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu,
Korea
| | - Joo-Hee Choi
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu,
Korea
| | - Si-Joon Lee
- Department of Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu,
Korea
| | - Ju-Hyeon Lim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheonju,
Korea
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu,
Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Pusan National University, Pusan,
Korea
| | - Seul-Ki Kim
- Efficacy Evaluation Team, Food Science R&D Center, KolmarBNH Co. Ltd., Seoul,
Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University Medical Center, Yeungnam University College of Medicine, Daegu,
Korea
| |
Collapse
|
228
|
Yamaguchi H, Kawahara H, Kodera N, Kumaki A, Tada Y, Tang Z, Sakai K, Ono K, Yamada M, Hanayama R. Extracellular Vesicles Contribute to the Metabolism of Transthyretin Amyloid in Hereditary Transthyretin Amyloidosis. Front Mol Biosci 2022; 9:839917. [PMID: 35402512 PMCID: PMC8983912 DOI: 10.3389/fmolb.2022.839917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Hereditary (variant) transthyretin amyloidosis (ATTRv amyloidosis), which is caused by variants in the transthyretin (TTR) gene, leads to TTR amyloid deposits in multiple organs and various symptoms such as limb ataxia, muscle weakness, and cardiac failure. Interaction between amyloid proteins and extracellular vesicles (EVs), which are secreted by various cells, is known to promote the clearance of the proteins, but it is unclear whether EVs are involved in the formation and deposition of TTR amyloid in ATTRv amyloidosis. To clarify the relationship between ATTRv amyloidosis and EVs, serum-derived EVs were analyzed. In this study, we showed that cell-derived EVs are involved in the formation of TTR amyloid deposits on the membrane of small EVs, as well as the deposition of TTR amyloid in cells. Human serum-derived small EVs also altered the degree of aggregation and deposition of TTR. Furthermore, the amount of TTR aggregates in serum-derived small EVs in patients with ATTRv amyloidosis was lower than that in healthy controls. These results indicate that EVs contribute to the metabolism of TTR amyloid, and suggest that TTR in serum-derived small EVs is a potential target for future ATTRv amyloidosis diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroki Yamaguchi
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hironori Kawahara
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
- *Correspondence: Hironori Kawahara, ; Rikinari Hanayama,
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Ayanori Kumaki
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasutake Tada
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Zixin Tang
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Kenjiro Ono
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- Department of Internal Medicine, Division of Neurology, Kudanzaka Hospital, Tokyo, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
- *Correspondence: Hironori Kawahara, ; Rikinari Hanayama,
| |
Collapse
|
229
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
230
|
Bai S, Hou W, Yao Y, Meng J, Wei Y, Hu F, Hu X, Wu J, Zhang N, Xu R, Tian F, Wang B, Liao H, Du Y, Fang H, He W, Liu Y, Shen B, Du J. Exocyst controls exosome biogenesis via Rab11a. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:535-546. [PMID: 35036064 PMCID: PMC8739877 DOI: 10.1016/j.omtn.2021.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Tumor cells actively release large quantities of exosomes, which pivotally participate in the regulation of cancer biology, including head and neck cancer (HNC). Exosome biogenesis and release are complex and elaborate processes that are considered to be similar to the process of exocyst-mediated vesicle delivery. By analyzing the expression of exocyst subunits and their role in patients with HNC, we aimed to identify exocyst and its functions in exosome biogenesis and investigate the molecular mechanisms underlying the regulation of exosome transport in HNC cells. We observed that exocysts were highly expressed in HNC cells and could promote exosome secretion in these cells. In addition, downregulation of exocyst expression inhibited HN4 cell proliferation by reducing exosome secretion. Interestingly, immunofluorescence and electron microscopy revealed the accumulation of multivesicular bodies (MVBs) after the knockdown of exocyst. Autophagy, the major pathway of exosome degradation, is not activated by this intracellular accumulation of MVBs, but these MVBs are consumed when autophagy is activated under the condition of cell starvation. Rab11a, a small GTPase that is involved in MVB fusion, also interacted with the exocyst. These findings suggest that the exocyst can regulate exosome biogenesis and participate in the malignant behavior of tumor cells.
Collapse
Affiliation(s)
- Suwen Bai
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Wenxuan Hou
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yanheng Yao
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
| | - Yuan Wei
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangfang Hu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xianyu Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui, China
| | - Jing Wu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ning Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui, China
| | - Ruihuan Xu
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Faqing Tian
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Benguo Wang
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Hailan Liao
- Longgang District People’s Hospital of Shenzhen & The Second Affiliated Hospital of The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Haoshu Fang
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Wei He
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yehai Liu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Du
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
231
|
Zhang F, Guo J, Zhang Z, Duan M, Wang G, Qian Y, Zhao H, Yang Z, Jiang X. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 2022; 29:14. [PMID: 35189894 PMCID: PMC8862579 DOI: 10.1186/s12929-022-00798-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
All cells, including prokaryotes and eukaryotes, could release extracellular vesicles (EVs). EVs contain many cellular components, including RNA, and surface proteins, and are essential for maintaining normal intercellular communication and homeostasis of the internal environment. EVs released from different tissues and cells exhibit excellent properties and functions (e.g., targeting specificity, regulatory ability, physical durability, and immunogenicity), rendering them a potential new option for drug delivery and precision therapy. EVs have been demonstrated to transport antitumor drugs for tumor therapy; additionally, EVs' contents and surface substance can be altered to improve their therapeutic efficacy in the clinic by boosting targeting potential and drug delivery effectiveness. EVs can regulate immune system function by affecting the tumor microenvironment, thereby inhibiting tumor progression. Co-delivery systems for EVs can be utilized to further improve the drug delivery efficiency of EVs, including hydrogels and liposomes. In this review, we discuss the isolation technologies of EVs, as well as engineering approaches to their modification. Moreover, we evaluate the therapeutic potential of EVs in tumors, including engineered extracellular vesicles and EVs' co-delivery systems. Technologies such as microfluidics can improve EVs isolation efficiency. Engineering technologies can improve EVs drug loading efficiency and tumor targeting. EVs-based drug co-delivery systems are being developed, such as those with liposomes and hydrogels.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenghou Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqi Duan
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiping Qian
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
232
|
Auger C, Brunel A, Darbas T, Akil H, Perraud A, Bégaud G, Bessette B, Christou N, Verdier M. Extracellular Vesicle Measurements with Nanoparticle Tracking Analysis: A Different Appreciation of Up and Down Secretion. Int J Mol Sci 2022; 23:ijms23042310. [PMID: 35216426 PMCID: PMC8875573 DOI: 10.3390/ijms23042310] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
As is the case with most eucaryotic cells, cancer cells are able to secrete extracellular vesicles (EVs) as a communication means towards their environment and surrounding cells. EVs are represented by microvesicles and smaller vesicles called exosomes, which are known for their involvement in cancer aggressiveness. The release of such EVs requires the intervention of trafficking-associated proteins, mostly represented by the RAB-GTPases family. In particular, RAB27A is known for its role in addressing EVs-to-be secreted towards the the plasma membrane. In this study, shRNAs targeting RAB27A were used in colorectal (CRC) and glioblastoma (GB) cell lines in order to alter EVs secretion. To study and monitor EVs secretion in cell lines’ supernatants, nanoparticle tracking analysis (NTA) was used through the NanoSight NS300 device. Since it appeared that NanoSight failed to detect the decrease in the EVs secretion, we performed another approach to drop EVs secretion (RAB27A-siRNA, indomethacin, Nexihnib20). Similar results were obtained i.e., no variation in EVs concentration. Conversely, NTA allowed us to monitor EVs up-secretion following rotenone treatment or hypoxia conditions. Therefore, our data seemed to point out the insufficiency of using only this technique for the assessment of EVs secretion decrease.
Collapse
Affiliation(s)
- Clément Auger
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
| | - Aude Brunel
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
| | - Tiffany Darbas
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Service d’Oncologie, CHU of Limoges, 2 rue Martin Luther King, 87025 Limoges, France
| | - Hussein Akil
- UMR CNRS 7276/INSERM U1262, Faculté de Médecine, Université de Limoges, 2 rue du Martin Luther King, 87025 Limoges, France;
| | - Aurélie Perraud
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Endocrine, General and Digestive Surgery Department, CHU of Limoges, 2 rue Martin Luther King, 87042 Limoges, France
| | - Gaëlle Bégaud
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Laboratoire de Chimie Analytique, Faculté de Medecine & Pharmacie, 87025 Limoges, France
| | - Barbara Bessette
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
| | - Niki Christou
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Endocrine, General and Digestive Surgery Department, CHU of Limoges, 2 rue Martin Luther King, 87042 Limoges, France
| | - Mireille Verdier
- UMR Inserm 1308, CAPTuR, Faculty of Medicine, University of Limoges, 2 rue du Dr. Marcland, 87025 Limoges, France; (C.A.); (A.B.); (T.D.); (A.P.); (G.B.); (B.B.); (N.C.)
- Correspondence:
| |
Collapse
|
233
|
Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 2022; 21:56. [PMID: 35180868 PMCID: PMC8855550 DOI: 10.1186/s12943-022-01509-9] [Citation(s) in RCA: 455] [Impact Index Per Article: 151.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/15/2022] [Indexed: 02/08/2023] Open
Abstract
Liquid biopsy, characterized by minimally invasive detection through biofluids such as blood, saliva, and urine, has emerged as a revolutionary strategy for cancer diagnosis and prognosis prediction. Exosomes are a subset of extracellular vesicles (EVs) that shuttle molecular cargoes from donor cells to recipient cells and play a crucial role in mediating intercellular communication. Increasing studies suggest that exosomes have a great promise to serve as novel biomarkers in liquid biopsy, since large quantities of exosomes are enriched in body fluids and are involved in numerous physiological and pathological processes. However, the further clinical application of exosomes has been greatly restrained by the lack of high-quality separation and component analysis methods. This review aims to provide a comprehensive overview on the conventional and novel technologies for exosome isolation, characterization and content detection. Additionally, the roles of exosomes serving as potential biomarkers in liquid biopsy for the diagnosis, treatment monitoring, and prognosis prediction of cancer are summarized. Finally, the prospects and challenges of applying exosome-based liquid biopsy to precision medicine are evaluated.
Collapse
Affiliation(s)
- Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixin Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China.
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
234
|
Sahr T, Escoll P, Rusniok C, Bui S, Pehau-Arnaudet G, Lavieu G, Buchrieser C. Translocated Legionella pneumophila small RNAs mimic eukaryotic microRNAs targeting the host immune response. Nat Commun 2022; 13:762. [PMID: 35140216 PMCID: PMC8828724 DOI: 10.1038/s41467-022-28454-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/26/2022] [Indexed: 02/08/2023] Open
Abstract
Legionella pneumophila is an intracellular bacterial pathogen that can cause a severe form of pneumonia in humans, a phenotype evolved through interactions with aquatic protozoa in the environment. Here, we show that L. pneumophila uses extracellular vesicles to translocate bacterial small RNAs (sRNAs) into host cells that act on host defence signalling pathways. The bacterial sRNA RsmY binds to the UTR of ddx58 (RIG-I encoding gene) and cRel, while tRNA-Phe binds ddx58 and irak1 collectively reducing expression of RIG-I, IRAK1 and cRel, with subsequent downregulation of IFN-β. Thus, RsmY and tRNA-Phe are bacterial trans-kingdom regulatory RNAs downregulating selected sensor and regulator proteins of the host cell innate immune response. This miRNA-like regulation of the expression of key sensors and regulators of immunity is a feature of L. pneumophila host-pathogen communication and likely represents a general mechanism employed by bacteria that interact with eukaryotic hosts.
Collapse
Affiliation(s)
- Tobias Sahr
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Christophe Rusniok
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France
| | - Sheryl Bui
- Université de Paris, INSERM ERL U1316, UMR 7057/CNRS, Paris, France
| | - Gérard Pehau-Arnaudet
- Unité de Technologie et Service BioImagerie Ultrastructurale and CNRS UMR 3528, Paris, France
| | - Gregory Lavieu
- Université de Paris, INSERM ERL U1316, UMR 7057/CNRS, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Université de Paris, Biologie des Bactéries Intracellulaires and CNRS UMR 6047, 75724, Paris, France.
| |
Collapse
|
235
|
Xu D, Tang WJ, Zhu YZ, Liu Z, Yang K, Liang MX, Chen X, Wu Y, Tang JH, Zhang W. Hyperthermia promotes exosome secretion by regulating Rab7b while increasing drug sensitivity in adriamycin-resistant breast cancer. Int J Hyperthermia 2022; 39:246-257. [PMID: 35100921 DOI: 10.1080/02656736.2022.2029585] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To investigate the mechanism through which hyperthermia promotes exosome secretion and drug sensitivity in adriamycin-resistant breast cancer. MATERIALS AND METHODS We first evaluated the effect of hyperthermia on adriamycin-resistant breast cancer viability and used transmission electron microscopy, nanoparticle tracking analysis, and a bicinchoninic acid kit to validate the effect of hyperthermia on exosome secretion. The effective targeting molecules and pathways changed by hyperthermia were explored by RNA microarray and verified in vitro. The adriamycin-resistant MCF-7/ADR cells co-incubated with the exosomes produced by MCF-7/ADR cells after hyperthermia were assessed. The uptake of exosomes by MCF-7/ADR cells after hyperthermia treatment was evaluated by confocal microscopy. Finally, the mechanism through which hyperthermia promotes exosome secretion by hyperthermia was determined. RESULTS Hyperthermia significantly suppressed the growth of adriamycin-resistant breast cancer cells and increased drug sensitivity by upregulating FOS and CREB5, genes related to longer overall survival in breast cancer patients. Moreover, hyperthermia promoted exosome secretion through Rab7b, a small GTPase that controls endosome transport. The upregulated FOS and CREB5 antioncogenes can be transferred to MCF-7/ADR cells by hyperthermia-treated MCF-7/ADR cell-secreted exosomes. CONCLUSIONS Our results demonstrated a novel function of hyperthermia in promoting exosome secretion in adriamycin-resistant breast cancer cells and revealed the effects of hyperthermia on tumor cell biology. These hyperthermia-triggered exosomes can carry antitumor genes to the residual tumor and tumor microenvironment, which may be more beneficial to the effects of hyperthermia. These results represent an exploration of the relationship between therapeutic strategies and exosome biology.
Collapse
Affiliation(s)
- Di Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Wen-Juan Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yi-Zhi Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Zhen Liu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Kai Yang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, P. R. China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Yang Wu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| |
Collapse
|
236
|
Serratì S, Guida M, Di Fonte R, De Summa S, Strippoli S, Iacobazzi RM, Quarta A, De Risi I, Guida G, Paradiso A, Porcelli L, Azzariti A. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma. Mol Cancer 2022; 21:20. [PMID: 35042524 PMCID: PMC8764806 DOI: 10.1186/s12943-021-01490-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The immunotherapy with immune checkpoints inhibitors (ICI) has changed the life expectancy in metastatic melanoma (MM) patients. Nevertheless, several patients do not respond hence, the identification and validation of novel biomarkers of response to ICI is of crucial importance. Circulating extracellular vesicles (EVs) such as PD-L1+ EV mediate resistance to anti-PD1, instead the role of PD1+ EV is not fully understood. METHODS We isolated the circulating EVs from the plasma of an observational cohort study of 71 metastatic melanoma patients and correlated the amount of PD-L1+ EVs and PD1+ EVs with the response to ICI. The analysis was performed according to the origin of EVs from the tumor and the immune cells. Subsequently, we analysed the data in a validation cohort of 22 MM patients to assess the reliability of identified EV-based biomarkers. Additionally we assessed the involvement of PD1+ EVs in the seizure of nivolumab and in the perturbation of immune cells-mediated killing of melanoma spheroids. RESULTS The level of PD-L1+ EVs released from melanoma and CD8+ T cells and that of PD1+ EVs irrespective of the cellular origin were higher in non-responders. The Kaplan-Meier curves indicated that higher levels of PD1+ EVs were significantly correlated with poorer progression-free survival (PFS) and overall survival (OS). Significant correlations were found for PD-L1+ EVs only when released from melanoma and T cells. The multivariate analysis showed that high level of PD1+ EVs, from T cells and B cells, and high level of PD-L1+ EVs from melanoma cells, are independent biomarkers of response. The reliability of PD-L1+ EVs from melanoma and PD1+ EVs from T cells in predicting PFS was confirmed in the validation cohort through the univariate Cox-hazard regression analysis. Moreover we discovered that the circulating EVs captured nivolumab and reduced the T cells trafficking and tumor spheroids killing. CONCLUSION Our study identified circulating PD1+ EVs as driver of resistance to anti-PD1, and highlighted that the analysis of single EV population by liquid biopsy is a promising tool to stratify MM patients for immunotherapy.
Collapse
Affiliation(s)
- Simona Serratì
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Sabino Strippoli
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Alessandra Quarta
- CNR NANOTEC-Istituto di Nanotecnologia, National Research Council (CNR), via Monteroni, 73100, Lecce, Italy
| | - Ivana De Risi
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Gabriella Guida
- Department of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Angelo Paradiso
- Scientific Directorate, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy.
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy.
| |
Collapse
|
237
|
Pesce E, Manfrini N, Cordiglieri C, Santi S, Bandera A, Gobbini A, Gruarin P, Favalli A, Bombaci M, Cuomo A, Collino F, Cricrì G, Ungaro R, Lombardi A, Mangioni D, Muscatello A, Aliberti S, Blasi F, Gori A, Abrignani S, De Francesco R, Biffo S, Grifantini R. Exosomes Recovered From the Plasma of COVID-19 Patients Expose SARS-CoV-2 Spike-Derived Fragments and Contribute to the Adaptive Immune Response. Front Immunol 2022; 12:785941. [PMID: 35111156 PMCID: PMC8801440 DOI: 10.3389/fimmu.2021.785941] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by beta-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has rapidly spread across the globe starting from February 2020. It is well established that during viral infection, extracellular vesicles become delivery/presenting vectors of viral material. However, studies regarding extracellular vesicle function in COVID-19 pathology are still scanty. Here, we performed a comparative study on exosomes recovered from the plasma of either MILD or SEVERE COVID-19 patients. We show that although both types of vesicles efficiently display SARS-CoV-2 spike-derived peptides and carry immunomodulatory molecules, only those of MILD patients are capable of efficiently regulating antigen-specific CD4+ T-cell responses. Accordingly, by mass spectrometry, we show that the proteome of exosomes of MILD patients correlates with a proper functioning of the immune system, while that of SEVERE patients is associated with increased and chronic inflammation. Overall, we show that exosomes recovered from the plasma of COVID-19 patients possess SARS-CoV-2-derived protein material, have an active role in enhancing the immune response, and possess a cargo that reflects the pathological state of patients in the acute phase of the disease.
Collapse
Affiliation(s)
- Elisa Pesce
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Nicola Manfrini
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Chiara Cordiglieri
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Spartaco Santi
- Unit of Bologna, Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Andrea Gobbini
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Paola Gruarin
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Andrea Favalli
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Mauro Bombaci
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, Istituto Europeo di Oncologia (IEO), European Institute of Oncology Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Giulia Cricrì
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione Ca’ Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Riccardo Ungaro
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Davide Mangioni
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Aliberti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Respiratory Unit and Cystic Fibrosis Adult Center, Respiratory Unit and Cystic Fibrosis Adult Center, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), Università degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| |
Collapse
|
238
|
Zhou T, He C, Lai P, Yang Z, Liu Y, Xu H, Lin X, Ni B, Ju R, Yi W, Liang L, Pei D, Egwuagu CE, Liu X. miR-204-containing exosomes ameliorate GVHD-associated dry eye disease. SCIENCE ADVANCES 2022; 8:eabj9617. [PMID: 35020440 PMCID: PMC8754411 DOI: 10.1126/sciadv.abj9617] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Graft-versus-host disease (GVHD)–associated dry eye disease is characterized by extensive inflammatory destruction in the ocular surface and causes unbearable pain and visual impairment. Current treatments provide limited benefits. Here, we report that exosomes from mesenchymal stromal cells (MSC-exo) administered as eye drops notably alleviate GVHD-associated dry eye disease by suppressing inflammation and improving epithelial recovery in mice and humans. In a prospective clinical trial, 28 eyes with refractory GVHD–dry eye disease exhibited substantial relief after MSC-exo treatment, showing reduced fluorescein scores, longer tear-film breakup time, increased tear secretion, and lower OSDI scores. Mechanistically, MSC-exo reprogramed proinflammatory M1 macrophages toward the immunosuppressive M2 via miR-204–mediated targeting of the IL-6/IL-6R/Stat3 pathway. Blockade of miR-204 abolished the effects of MSC-exo, while overloading L929-exo with miR-204 markedly attenuated dry eye. Thus, this study suggests that MSC-exo are efficacious in treating GVHD-associated dry eye disease and highlights miR-204 as a potential therapeutic agent.
Collapse
Affiliation(s)
- Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
- Corresponding author. (X.L.); (C.H.)
| | - Peilong Lai
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, P. R. China
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Ziqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Yan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Huiyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Xiaojing Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Biyan Ni
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Wei Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Lingyi Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
| | - Duanqing Pei
- Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou 510530, P. R. China
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, P. R. China
- Corresponding author. (X.L.); (C.H.)
| |
Collapse
|
239
|
Deng F, Ratri A, Deighan C, Daaboul G, Geiger PC, Christenson LK. Single-Particle Interferometric Reflectance Imaging Characterization of Individual Extracellular Vesicles and Population Dynamics. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/62988. [PMID: 35068480 PMCID: PMC8968924 DOI: 10.3791/62988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (EVs) are nanometer-sized vesicles with a lipid bilayer that are secreted by most cells. EVs carry a multitude of different biological molecules, including protein, lipid, DNA, and RNA, and are postulated to facilitate cell-to-cell communication in diverse tissues and organs. Recently, EVs have attracted significant attention as biomarkers for diagnostics and therapeutic agents for various diseases. Many methods have been developed for EV characterization. However, current methods for EV analysis all have different limitations. Thus, developing efficient and effective methods for EV isolation and characterization remains one of the crucial steps for this cutting-edge research field as it matures. Here, we provide a detailed protocol outlining a single-particle interferometric reflectance imaging sensor (SP-IRIS), as a method that is capable of detecting and characterizing EVs from unpurified biological sources and purified EVs by other methodologies. This advanced technique can be used for multi-level and comprehensive measurements for the analysis of EV size, EV count, EV phenotype, and biomarker colocalization.
Collapse
Affiliation(s)
- Fengyan Deng
- University of Kansas Medical Center, Department of Molecular and Integrative Physiology, Kansas City, KS
| | - Anamika Ratri
- University of Kansas Medical Center, Department of Molecular and Integrative Physiology, Kansas City, KS
| | | | | | - Paige C. Geiger
- University of Kansas Medical Center, Department of Molecular and Integrative Physiology, Kansas City, KS
| | - Lane K. Christenson
- University of Kansas Medical Center, Department of Molecular and Integrative Physiology, Kansas City, KS
| |
Collapse
|
240
|
Rufino-Ramos D, Lule S, Mahjoum S, Ughetto S, Cristopher Bragg D, Pereira de Almeida L, Breakefield XO, Breyne K. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 2022; 281:121366. [PMID: 35033904 PMCID: PMC8886823 DOI: 10.1016/j.biomaterials.2022.121366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sevda Lule
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Shadi Mahjoum
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Stefano Ughetto
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - D Cristopher Bragg
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Xandra O Breakefield
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Koen Breyne
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
241
|
Yu M, Yu J, Zhang Y, Sun X, Sun R, Xia M, Li S, Cui X. A novel circRNA-miRNA-mRNA network revealed exosomal circ-ATP10A as a biomarker for multiple myeloma angiogenesis. Bioengineered 2022; 13:667-683. [PMID: 34852710 PMCID: PMC8805983 DOI: 10.1080/21655979.2021.2012553] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
The importance of angiogenesis in multiple myeloma (MM) is unquestionable; however, to date, the success of antiangiogenic therapies has been fairly limited. Exosomal circular RNAs (circRNAs) have been proven to be pivotal players in angiogenesis in various cancers. Nevertheless, their role in MM remains unknown. Therefore, we aimed to identify differentially expressed circRNAs in peripheral blood exosomes from MM patients and explore their diagnostic and prognostic values. We screened 2,052 circRNAs with significant differential expression between MM patients and healthy controls via high-throughput sequencing. qRT-PCR confirmed that the expression of circ-ATP10A was significantly increased in MM patients. The bioinformatics analyses suggested that circ-ATP10A can act as a microRNA (miRNA) sponge and regulate the expression of downstream vascular endothelial growth factor-B (VEGFB), hypoxia-inducible factor-1alpha (HIF1A), platelet-derived growth factor subunit A (PDGFA), and fibroblast growth factor (FGF). The immunohistochemical results indicated that the circ-ATP10A level was positively correlated with the protein levels of VEGFB and marrow microvessel density (MVD) in MM patients, and the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC) and Kaplan-Meier survival curve analyses confirmed it as a prognostic biomarker. Collectively, our study indicates that exosomal circ-ATP10A is a valuable prognostic biomarker in MM and may promote MM angiogenesis by targeting hsa-miR-6758-3p/hsa-miR-3977/hsa-miR-6804-3p/hsa-miR-1266-3p/hsa-miR-3620-3p and modulating their downstream mRNAs, such as VEGFB, HIF1A, PDGF, and FGF.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Female
- Humans
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Multiple Myeloma/blood supply
- Multiple Myeloma/genetics
- Multiple Myeloma/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
Collapse
Affiliation(s)
- Manya Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Yu
- Third Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yanyu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoqi Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Runjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengting Xia
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sumei Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xing Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
242
|
Piffoux M, Silva AKA, Gazeau F, Salmon H. Potential of on‐chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. VIEW 2022. [DOI: 10.1002/viw.20200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology Centre Léon Bérard Lyon France
- INSERM UMR 1197‐Interaction cellules souches‐niches: physiologie tumeurs et réparation tissulaire Villejuif France
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Hugo Salmon
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
- Université de Paris, T3S, INSERM Paris France
| |
Collapse
|
243
|
Rasuleva K, Elamurugan S, Bauer A, Khan M, Wen Q, Li Z, Steen P, Guo A, Xia W, Mathew S, Jansen R, Sun D. β-Sheet Richness of the Circulating Tumor-Derived Extracellular Vesicles for Noninvasive Pancreatic Cancer Screening. ACS Sens 2021; 6:4489-4498. [PMID: 34846848 PMCID: PMC8715533 DOI: 10.1021/acssensors.1c02022] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Tumor-derived extracellular
vesicles (EVs) are under intensive
study for their potential as noninvasive diagnosis biomarkers. Most
EV-based cancer diagnostic assays trace supernumerary of a single
cancer-associated marker or marker signatures. These types of biomarker
assays are either subtype-specific or vulnerable to be masked by high
background signals. In this study, we introduce using the β-sheet
richness (BR) of the tumor-derived EVs as an effective way to discriminate
EVs originating from malignant and nonmalignant cells, where EV contents
are evaluated as a collective attribute rather than single factors.
Circular dichroism, Fourier transform infrared spectroscopy, fluorescence
staining assays, and a de novo workflow combining proteomics, bioinformatics,
and protein folding simulations were employed to validate the collective
attribute at both cellular and EV levels. Based on the BR of the tumorous
EVs, we integrated immunoprecipitation and fluorescence labeling targeting
the circulating tumor-derived EVs in serum and developed the process
into a clinical assay, named EvIPThT. The assay can distinguish patients
with and without malignant disease in a pilot cohort, with weak correlations
to prognosis biomarkers, suggesting the potential for a cancer screening
panel with existing prognostic biomarkers to improve overall performance.
Collapse
Affiliation(s)
- Komila Rasuleva
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101S, Fargo, North Dakota 58102, United States
| | - Santhalingam Elamurugan
- Biomedical Engineering Program, North Dakota State University, 1401 Centennial Blvd, Engineering Administration, Room 203, Fargo, North Dakota 58102, United States
| | - Aaron Bauer
- Biomedical Engineering Program, North Dakota State University, 1401 Centennial Blvd, Engineering Administration, Room 203, Fargo, North Dakota 58102, United States
| | - Mdrakibhasan Khan
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101S, Fargo, North Dakota 58102, United States
| | - Qian Wen
- Department of Statistics, North Dakota State University, 1230 Albrecht Blvd, Fargo, North Dakota 58102, United States
| | - Zhaofan Li
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 North 14th Avenue, CIE 201, Fargo, North Dakota 58102, United States
| | - Preston Steen
- Sanford Roger Maris Cancer Center, 820 4th Street N, Fargo, North Dakota 58122, United States
| | - Ang Guo
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, North Dakota 58102, United States
| | - Wenjie Xia
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 North 14th Avenue, CIE 201, Fargo, North Dakota 58102, United States
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, North Dakota State University, 1401 Albrecht Blvd, Fargo, North Dakota 58102, United States
| | - Rick Jansen
- Department of Public Health, North Dakota State University, 1455 14th Ave N, Fargo, North Dakota 58102, United States
- Genomics and Bioinformatics Program, North Dakota State University, 1230 161/2 Street North, Fargo, North Dakota 58102, United States
| | - Dali Sun
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101S, Fargo, North Dakota 58102, United States
- Biomedical Engineering Program, North Dakota State University, 1401 Centennial Blvd, Engineering Administration, Room 203, Fargo, North Dakota 58102, United States
| |
Collapse
|
244
|
Small Extracellular Vesicles Derived from Human Chorionic MSCs as Modern Perspective towards Cell-Free Therapy. Int J Mol Sci 2021; 22:ijms222413581. [PMID: 34948379 PMCID: PMC8706681 DOI: 10.3390/ijms222413581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest to scientists due to their application in cell therapy of many diseases, as well as regenerative medicine and tissue engineering. Recently, there has been growing evidence surrounding the research based on extracellular vesicles (EVs), especially small EVs (sEVs)/exosomes derived from MSCs. EVs/exosomes can be secreted by almost all cell types and various types of EVs show multiple functions. In addition, MSCs-derived exosomes have similar characteristics and biological activities to MSCs and their therapeutic applications are considered as a safe strategy in cell-free therapy. The aim of this study was the characterization of MSCs isolated from the chorion (CHo-MSCs) of human full-term placenta, as well as the isolation and analysis of small EVs obtained from these cells. Accordingly, in this study, the ability of small EVs' uptake is indicated by synovial fibroblasts, osteoblasts and periosteum-derived MSCs. Improvement in the understanding of the structure, characteristics, mechanism of action and potential application of MSCs-derived small EVs can provide new insight into improved therapeutic strategies.
Collapse
|
245
|
Li SR, Man QW, Gao X, Lin H, Wang J, Su FC, Wang HQ, Bu LL, Liu B, Chen G. Tissue-derived extracellular vesicles in cancers and non-cancer diseases: Present and future. J Extracell Vesicles 2021; 10:e12175. [PMID: 34918479 PMCID: PMC8678102 DOI: 10.1002/jev2.12175] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid‐bilayer membrane structures secreted by most cell types. EVs act as messengers via the horizontal transfer of lipids, proteins, and nucleic acids, and influence various pathophysiological processes in both parent and recipient cells. Compared to EVs obtained from body fluids or cell culture supernatants, EVs isolated directly from tissues possess a number of advantages, including tissue specificity, accurate reflection of tissue microenvironment, etc., thus, attention should be paid to tissue‐derived EVs (Ti‐EVs). Ti‐EVs are present in the interstitium of tissues and play pivotal roles in intercellular communication. Moreover, Ti‐EVs provide an excellent snapshot of interactions among various cell types with a common histological background. Thus, Ti‐EVs may be used to gain insights into the development and progression of diseases. To date, extensive investigations have focused on the role of body fluid‐derived EVs or cell culture‐derived EVs; however, the number of studies on Ti‐EVs remains insufficient. Herein, we summarize the latest advances in Ti‐EVs for cancers and non‐cancer diseases. We propose the future application of Ti‐EVs in basic research and clinical practice. Workflows for Ti‐EV isolation and characterization between cancers and non‐cancer diseases are reviewed and compared. Moreover, we discuss current issues associated with Ti‐EVs and provide potential directions.
Collapse
Affiliation(s)
- Su-Ran Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi-Wen Man
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Xin Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hao Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fu-Chuan Su
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Han-Qi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
246
|
Holcar M, Kandušer M, Lenassi M. Blood Nanoparticles - Influence on Extracellular Vesicle Isolation and Characterization. Front Pharmacol 2021; 12:773844. [PMID: 34867406 PMCID: PMC8635996 DOI: 10.3389/fphar.2021.773844] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Blood is a rich source of disease biomarkers, which include extracellular vesicles (EVs). EVs are nanometer-to micrometer-sized spherical particles that are enclosed by a phospholipid bilayer and are secreted by most cell types. EVs reflect the physiological cell of origin in terms of their molecular composition and biophysical characteristics, and they accumulate in blood even when released from remote organs or tissues, while protecting their cargo from degradation. The molecular components (e.g., proteins, miRNAs) and biophysical characteristics (e.g., size, concentration) of blood EVs have been studied as biomarkers of cancers and neurodegenerative, autoimmune, and cardiovascular diseases. However, most biomarker studies do not address the problem of contaminants in EV isolates from blood plasma, and how these might affect downstream EV analysis. Indeed, nonphysiological EVs, protein aggregates, lipoproteins and viruses share many molecular and/or biophysical characteristics with EVs, and can therefore co-isolate with EVs from blood plasma. Consequently, isolation and downstream analysis of EVs from blood plasma remain a unique challenge, with important impacts on the outcomes of biomarker studies. To help improve rigor, reproducibility, and reliability of EV biomarker studies, we describe here the major contaminants of EV isolates from blood plasma, and we report on how different EV isolation methods affect their levels, and how contaminants that remain can affect the interpretation of downstream EV analysis.
Collapse
Affiliation(s)
- Marija Holcar
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maša Kandušer
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Lenassi
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
247
|
Potential Applications and Functional Roles of Exosomes in Cardiometabolic Disease. Pharmaceutics 2021; 13:pharmaceutics13122056. [PMID: 34959338 PMCID: PMC8703910 DOI: 10.3390/pharmaceutics13122056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite diagnostic and therapeutic advances, cardiometabolic disease remains the leading cause of death worldwide. Extracellular vesicles (EVs), which include exosomes and microvesicles, have gained particular interest because of their role in metabolic homeostasis and cardiovascular physiology. Indeed, EVs are recognized as critical mediators of intercellular communication in the cardiovascular system. Exosomes are naturally occurring nanocarriers that transfer biological information in the setting of metabolic abnormalities and cardiac dysfunction. The study of these EVs can increase our knowledge on the pathophysiological mechanisms of metabolic disorders and their cardiovascular complications. Because of their inherent properties and composition, exosomes have been proposed as diagnostic and prognostic biomarkers and therapeutics for specific targeting and drug delivery. Emerging fields of study explore the use exosomes as tools for gene therapy and as a cell-free alternative for regenerative medicine. Furthermore, innovative biomaterials can incorporate exosomes to enhance tissue regeneration and engineering. In this work, we summarize the most recent knowledge on the role of exosomes in cardiometabolic pathophysiology while highlighting their potential therapeutic applications.
Collapse
|
248
|
Abstract
Exosomes are nano-sized extracellular vesicles (30–160 nm diameter) with lipid bilayer membrane secrete by various cells that mediate the communication between cells and tissue, which contain a variety of non-coding RNAs, mRNAs, proteins, lipids and other functional substances. Adipose tissue is important energy storage and endocrine organ in the organism. Recent studies have revealed that adipose tissue-derived exosomes (AT-Exosomes) play a critical role in many physiologically and pathologically functions. Physiologically, AT-Exosomes could regulate the metabolic homoeostasis of various organs or cells including liver and skeletal muscle. Pathologically, they could be used in the treatment of disease and or that they may be involved in the progression of the disease. In this review, we describe the basic principles and methods of exosomes isolation and identification, as well as further summary the specific methods. Moreover, we categorize the relevant studies of AT-Exosomes and summarize the different components and biological functions of mammalian exosomes. Most importantly, we elaborate AT-Exosomes crosstalk within adipose tissue and their functions on other tissues or organs from the physiological and pathological perspective. Based on the above analysis, we discuss what remains to be discovered problems in AT-Exosomes studies and prospect their directions needed to be further explored in the future.
Collapse
Affiliation(s)
- Rui Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Tiantian Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Zhaozhao He
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Rui Cai
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&f University, Yangling, China
| |
Collapse
|
249
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
250
|
Mena-Giraldo P, Orozco J. Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery. Polymers (Basel) 2021; 13:3920. [PMID: 34833219 PMCID: PMC8621231 DOI: 10.3390/polym13223920] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Smart polymer-based micro/nanoassemblies have emerged as a promising alternative for transporting and delivering a myriad of cargo. Cargo encapsulation into (or linked to) polymeric micro/nanocarrier (PC) strategies may help to conserve cargo activity and functionality when interacting with its surroundings in its journey to the target. PCs for cargo phototriggering allow for excellent spatiotemporal control via irradiation as an external stimulus, thus regulating the delivery kinetics of cargo and potentially increasing its therapeutic effect. Micromotors based on PCs offer an accelerated cargo-medium interaction for biomedical, environmental, and many other applications. This review collects the recent achievements in PC development based on nanomicelles, nanospheres, and nanopolymersomes, among others, with enhanced properties to increase cargo protection and cargo release efficiency triggered by ultraviolet (UV) and near-infrared (NIR) irradiation, including light-stimulated polymeric micromotors for propulsion, cargo transport, biosensing, and photo-thermal therapy. We emphasize the challenges of positioning PCs as drug delivery systems, as well as the outstanding opportunities of light-stimulated polymeric micromotors for practical applications.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 # 52-20, Medellin 050010, Colombia;
| |
Collapse
|