201
|
Almeida HHS, Crugeira PJL, Amaral JS, Rodrigues AE, Barreiro MF. Disclosing the potential of Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu, and Melissa officinalis L. hydrosols as eco-friendly antimicrobial agents. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:1. [PMID: 38163838 PMCID: PMC10758378 DOI: 10.1007/s13659-023-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Antimicrobial resistance is a major global health concern, threatening the effective prevention and treatment of infections caused by microorganisms. These factors boosted the study of safe and green alternatives, with hydrosols, the by-products of essential oils extraction, emerging as promising natural antimicrobial agents. In this context, four hydrosols obtained from Cupressus leylandii A.B. Jacks & Dallim, Eucalyptus globulus Labill., Aloysia citrodora Paláu and Melissa officinalis L. were studied. Their chemical composition comprises neral, geranial, 1,8-cineole, terpinen-4-ol, and oplopanonyl acetate, compounds with recognised antimicrobial activity. Concerning antimicrobial activity, significant differences were found using different hydrosol concentrations (10-20% v/v) in comparison to a control (without hydrosol), showing the potential of the tested hydrosols to inhibit the microbial growth of Escherichia coli, Staphylococcus aureus, and Candida albicans. A. citrodora hydrosol was the most effective one, inhibiting 90% of E. coli growth and 80% of C. albicans growth, for both hydrosol concentrations (p < 0.0001). With hydrosol concentration increase, it was possible to observe an improved antimicrobial activity with significant reductions (p < 0.0001). The findings of this work indicate the viability of reusing and valuing the hydrosols, encouraging the development of green applications for different fields (e.g., food, agriculture, pharmaceuticals, and cosmetics).
Collapse
Affiliation(s)
- Heloísa H S Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Pedro J L Crugeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Joana S Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal
| | - Alírio E Rodrigues
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Maria-Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
- Laboratório Associado Para a Sustentabilidade Em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-252, Bragança, Portugal.
| |
Collapse
|
202
|
Hahaj-Siembida A, Nowakiewicz A, Korzeniowska-Kowal A, Szecówka K, Trościańczyk A, Zięba P, Kania MG. Red foxes (Vulpes vulpes) as a specific and underappreciated reservoir of resistant and virulent coagulase-positive Staphylococcus spp. strains. Res Vet Sci 2024; 166:105111. [PMID: 38113638 DOI: 10.1016/j.rvsc.2023.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
The aim of the study was to analyze the presence of coagulase-positive Staphylococcus in swabs collected from red foxes and to characterize the drug resistance and virulence of these bacteria. In total, 415 rectal and oral swabs were collected, and coagulase-positive strains of S. pseudintermedius (n = 104) and S. aureus (n = 27) were identified using multiplex-PCR and MALDI TOF MS. Subsequent analyses showed the highest phenotypic resistance of the strains to penicillin (16.8%) and tetracycline (30.5%) confirmed by the presence of the blaZ, tetM, and tetK genes. Slightly lower resistance to erythromycin (6.9%), clindamycin (9.2%), gentamicin, streptogramins, rifampicin, nitrofurantoin, and sulphamethoxazol/trimetophrim was exhibited by single strains. Several virulence genes in a few different combinations were detected in S. aureus; LukE-LukD, and seB were the most frequent genes (37%), LukE-LukD, seB, and seC were detected in 11% of the strains, and PVL, etA, etB, and tst genes were present in two or single strains. The results of our research have confirmed that the red fox is an underestimated reservoir of coagulase-positive Staphylococcus strains, with approximately 50% of carriers of at least one resistance gene. In turn, 88.8% of the S. aureus strains had one or more virulence genes; therefore, this species of wildlife animals should be monitored as part of epidemiological surveillance.
Collapse
Affiliation(s)
- Agata Hahaj-Siembida
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | - Aneta Nowakiewicz
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | - Agnieszka Korzeniowska-Kowal
- Polish Collection of Microorganisms (PCM), Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Kamila Szecówka
- Polish Collection of Microorganisms (PCM), Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland.
| | - Aleksandra Trościańczyk
- Sub-Department of Veterinary Microbiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325 Lublin, Poland
| | - Monika Greguła Kania
- Department of Animal Breeding and Agricultural Advisory, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| |
Collapse
|
203
|
Morris SD, Kumar VA, Biswas R, Mohan CG. Identification of a Staphylococcus aureus amidase catalytic domain inhibitor to prevent biofilm formation by sequential virtual screening, molecular dynamics simulation and biological evaluation. Int J Biol Macromol 2024; 254:127842. [PMID: 37924909 DOI: 10.1016/j.ijbiomac.2023.127842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Staphylococcus aureus (S. aureus) is one of the common causes of implant associated biofilm infections and their biofilms are resistant to antibiotics. S. aureus amidase (AM) protein, a cell wall hydrolase that cleaves the amide bond between N-acetylmuramic acid and L-alanine residue of the stem peptide, is several fold over-expressed under biofilm conditions. Previous studies demonstrated an autolysin mutant in S. aureus that lacks the AM protein, is highly impaired in biofilm development. We carried out a structure-based small molecule design using the crystal structure of AM protein catalytic domain to identify inhibitors that can block amidase activity and therefore inhibits S. aureus biofilm formation. Sequential virtual screening followed by pharmacokinetic analysis and bioassay studies filtered 25 small molecules from different databases. Two compounds from the SPECS database, SPECS-1 and SPECS-2, were selected based on the best docking score and minimum biofilm inhibitory concentration towards S. aureus biofilms. SPECS-1 and SPECS-2 were further tested for their structural/energetic stability in complex with the AM protein using molecular dynamics simulation and MM-GBSA techniques. In vitro, biofilm inhibition studies on different surfaces confirmed that treatment with SPECS-1 and SPECS-2 at a concentration of 250 μg/ml exhibited significant prevention and disruption of S. aureus biofilms. Finally, the in vitro anti-biofilm activities of these two compounds were validated against Methicillin-resistant S. aureus clinical isolates. We concluded that the discovered compounds SPECS-1 and SPECS-2 are safe and exhibit biofilm preventive and disruption activity for inhibiting the S. aureus biofilms and hence can be used to treat implant-associated biofilm infections.
Collapse
Affiliation(s)
- Sharon D Morris
- Bioinformatics and Computational Biology Lab, Amrita School of Nanosciences and Molecular Medicine, India
| | - V Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala State, India
| | - Raja Biswas
- Bioinformatics and Computational Biology Lab, Amrita School of Nanosciences and Molecular Medicine, India.
| | - C Gopi Mohan
- Bioinformatics and Computational Biology Lab, Amrita School of Nanosciences and Molecular Medicine, India.
| |
Collapse
|
204
|
Martins DM, Cardoso EM, Capellari L, Botelho LAB, Ferreira FA. Detection of Staphylococcus aureus from nares of elderly living in a Brazilian nursing home. Diagn Microbiol Infect Dis 2024; 108:116089. [PMID: 37931385 DOI: 10.1016/j.diagmicrobio.2023.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
Asymptomatically nasal colonization by Staphylococcus aureus is a well-established risk factor for S. aureus infections. The aimed of the study was to identify the prevalence and factors associated with nasal carriage of S. aureus and Methicillin-resistant S. aureus (MRSA) from individuals residing in one Brazilian nursing home (NH). Three time-separate nasal swab collections were obtained from the elderly enrolled. The S. aureus isolates identified were submitted to Antimicrobial Susceptibility test (AST). The study showed a high prevalence of S. aureus (n = 9; 60%) and MRSA (n = 4; 26.7%) among elderly. Resistance to erythromycin was the most detected. S. aureus or MRSA colonization could not be associated to the data collected on demographics, personal habits, and medical history of the participants. Despite the small number of individuals enrolled, our study can contribute to improve the control of S. aureus and MRSA dissemination within the community, especially among the most vulnerable like the elderly.
Collapse
Affiliation(s)
- Damaris Miriã Martins
- Laboratório de Genética Molecular Bacteriana (GeMBac), Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Emanuela Mendes Cardoso
- Laboratório de Genética Molecular Bacteriana (GeMBac), Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Lilian Capellari
- Laboratório de Genética Molecular Bacteriana (GeMBac), Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Larissa Alvarenga Batista Botelho
- Departamento de Microbiologia Medica, Instituto de Microbiologia Paulo de Goes, Centro de Ciencias da Saude, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fabienne Antunes Ferreira
- Laboratório de Genética Molecular Bacteriana (GeMBac), Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
205
|
Guo Z, Fan X, Wang X, Zhou Z, Zhang Y, Zhou N. Graphene oxide-enhanced colorimetric detection of Mec A gene based on toehold-mediated strand displacement. Anal Biochem 2024; 684:115365. [PMID: 37914003 DOI: 10.1016/j.ab.2023.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Mec A, as a representative gene mediating resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA), allows a new genetic analysis for the detection of MRSA. Here, a sensitive, prompt, and visual colorimetry is reported to detect the Mec A gene based on toehold-mediated strand displacement (TMSD) and the enrichment effect of graphene oxide (GO). The Mec A triggers to generate the profuse amount of signal units of single-stranded DNA (SG) composed of a long single-stranded base tail and a base head: the tail can be adsorbed and enriched on the surface of GO; the head can form a G quadruplex structure to exert catalytic function towards 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid). Therefore, through the enrichment effect of GO, the signal units SG reflects different degrees of signal amplification on different substrates (such as aqueous solution or filter membrane). This strategy demonstrates a broad linear working range from 100 pM to 1.5 nM (solution) and 1 pM to 1 nM (filter membrane), with a low detection limit of 39.53 pM (solution) and 333 fM (filter membrane). Analytical performance in real samples suggests that this developed colorimetry is endowed with immense potential for clinical detection applications.
Collapse
Affiliation(s)
- Zongkang Guo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xueting Fan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhemin Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
206
|
Markovich Z, Abreu A, Sheng Y, Han SM, Xiao R. Deciphering internal and external factors influencing intestinal junctional complexes. Gut Microbes 2024; 16:2389320. [PMID: 39150987 PMCID: PMC11332634 DOI: 10.1080/19490976.2024.2389320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
The intestinal barrier, an indispensable guardian of gastrointestinal health, mediates the intricate exchange between internal and external environments. Anchored by evolutionarily conserved junctional complexes, this barrier meticulously regulates paracellular permeability in essentially all living organisms. Disruptions in intestinal junctional complexes, prevalent in inflammatory bowel diseases and irritable bowel syndrome, compromise barrier integrity and often lead to the notorious "leaky gut" syndrome. Critical to the maintenance of the intestinal barrier is a finely orchestrated network of intrinsic and extrinsic factors that modulate the expression, composition, and functionality of junctional complexes. This review navigates through the composition of key junctional complex components and the common methods used to assess intestinal permeability. It also explores the critical intracellular signaling pathways that modulate these junctional components. Lastly, we delve into the complex dynamics between the junctional complexes, microbial communities, and environmental chemicals in shaping the intestinal barrier function. Comprehending this intricate interplay holds paramount importance in unraveling the pathophysiology of gastrointestinal disorders. Furthermore, it lays the foundation for the development of precise therapeutic interventions targeting barrier dysfunction.
Collapse
Affiliation(s)
- Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
207
|
Goormaghtigh F, Van Bambeke F. Understanding Staphylococcus aureus internalisation and induction of antimicrobial tolerance. Expert Rev Anti Infect Ther 2024; 22:87-101. [PMID: 38180805 DOI: 10.1080/14787210.2024.2303018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Staphylococcus aureus, a human commensal, is also one of the most common and serious pathogens for humans. In recent years, its capacity to survive and replicate in phagocytic and non-phagocytic cells has been largely demonstrated. In these intracellular niches, bacteria are shielded from the immune response and antibiotics, turning host cells into long-term infectious reservoirs. Moreover, neutrophils carry intracellular bacteria in the bloodstream, leading to systemic spreading of the disease. Despite the serious threat posed by intracellular S. aureus to human health, the molecular mechanisms behind its intracellular survival and subsequent antibiotic treatment failure remain elusive. AREA COVERED We give an overview of the killing mechanisms of phagocytes and of the impressive arsenal of virulence factors, toxins and stress responses deployed by S. aureus as a response. We then discuss the different barriers to antibiotic activity in this intracellular niche and finally describe innovative strategies to target intracellular persisting reservoirs. EXPERT OPINION Intracellular niches represent a challenge in terms of diagnostic and treatment. Further research using ad-hoc in-vivo models and single cell approaches are needed to better understand the molecular mechanisms underlying intracellular survival and tolerance to antibiotics in order to identify strategies to eliminate these persistent bacteria.
Collapse
Affiliation(s)
- Frédéric Goormaghtigh
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
208
|
Monobe K, Taniguchi H, Aoki S. In silico Identification of Potential Inhibitors against Staphylococcus aureus Tyrosyl-tRNA Synthetase. Curr Comput Aided Drug Des 2024; 20:452-462. [PMID: 37309761 DOI: 10.2174/1573409919666230612120819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Drug-resistant Staphylococcus aureus (S. aureus) has spread from nosocomial to community-acquired infections. Novel antimicrobial drugs that are effective against resistant strains should be developed. S. aureus tyrosyl-tRNA synthetase (saTyrRS) is considered essential for bacterial survival and is an attractive target for drug screening. OBJECTIVES The purpose of this study was to identify potential new inhibitors of saTyrRS by screening compounds in silico and evaluating them using molecular dynamics (MD) simulations. METHODS A 3D structural library of 154,118 compounds was screened using the DOCK and GOLD docking simulations and short-time MD simulations. The selected compounds were subjected to MD simulations of a 75-ns time frame using GROMACS. RESULTS Thirty compounds were selected by hierarchical docking simulations. The binding of these compounds to saTyrRS was assessed by short-time MD simulations. Two compounds with an average value of less than 0.15 nm for the ligand RMSD were ultimately selected. The longtime (75 ns) MD simulation results demonstrated that two novel compounds bound stably to saTyrRS in silico. CONCLUSION Two novel potential saTyrRS inhibitors with different skeletons were identified by in silico drug screening using MD simulations. The in vitro validation of the inhibitory effect of these compounds on enzyme activity and their antibacterial effect on drug-resistant S. aureus would be useful for developing novel antibiotics.
Collapse
Affiliation(s)
- Kohei Monobe
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Hinata Taniguchi
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| | - Shunsuke Aoki
- Department of Bioscience and Bioinformatics, Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Japan
| |
Collapse
|
209
|
Kohl MP, Chane-Woon-Ming B, Bahena-Ceron R, Jaramillo-Ponce J, Antoine L, Herrgott L, Romby P, Marzi S. Ribosome Profiling Methods Adapted to the Study of RNA-Dependent Translation Regulation in Staphylococcus aureus. Methods Mol Biol 2024; 2741:73-100. [PMID: 38217649 DOI: 10.1007/978-1-0716-3565-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Noncoding RNAs, including regulatory RNAs (sRNAs), are instrumental in regulating gene expression in pathogenic bacteria, allowing them to adapt to various stresses encountered in their host environments. Staphylococcus aureus is a well-studied model for RNA-mediated regulation of virulence and pathogenicity, with sRNAs playing significant roles in shaping S. aureus interactions with human and animal hosts. By modulating the translation and/or stability of target mRNAs, sRNAs regulate the synthesis of virulence factors and regulatory proteins required for pathogenesis. Moreover, perturbation of the levels of RNA modifications in two other classes of noncoding RNAs, rRNAs, and tRNAs, has been proposed to contribute to stress adaptation. However, the study of how these various factors affect translation regulation has often been restricted to specific genes, using in vivo reporters and/or in vitro translation systems. Genome-wide sequencing approaches offer novel perspectives for studying RNA-dependent regulation. In particular, ribosome profiling methods provide a powerful resource for characterizing the overall landscape of translational regulation, contributing to a better understanding of S. aureus physiopathology. Here, we describe protocols that we have adapted to perform ribosome profiling in S. aureus.
Collapse
Affiliation(s)
- Maximilian P Kohl
- Architecture et Réactivité de l'ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | | | - Roberto Bahena-Ceron
- Architecture et Réactivité de l'ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Jose Jaramillo-Ponce
- Architecture et Réactivité de l'ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Laura Antoine
- Architecture et Réactivité de l'ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Lucas Herrgott
- Architecture et Réactivité de l'ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS 9002, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
210
|
Satapathy T, Kishore Y, Pandey RK, Shukla SS, Bhardwaj SK, Gidwani B. Recent Advancement in Novel Wound Healing Therapies by Using Antimicrobial Peptides Derived from Humans and Amphibians. Curr Protein Pept Sci 2024; 25:587-603. [PMID: 39188211 DOI: 10.2174/0113892037288051240319052435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 08/28/2024]
Abstract
The skin is the biggest organ in the human body. It is the first line of protection against invading pathogens and the starting point for the immune system. The focus of this review is on the use of amphibian-derived peptides and antimicrobial peptides (AMPs) in the treatment of wound healing. When skin is injured, a chain reaction begins that includes inflammation, the formation of new tissue, and remodelling of existing tissue to aid in the healing process. Collaborating with non-immune cells, resident and recruited immune cells in the skin remove foreign invaders and debris, then direct the repair and regeneration of injured host tissues. Restoration of normal structure and function requires the healing of damaged tissues. However, a major issue that slows wound healing is infection. AMPs are just one type of host-defense chemicals that have developed in multicellular animals to regulate the immune response and limit microbial proliferation in response to various types of biological or physical stress. Therefore, peptides isolated from amphibians represent novel therapeutic tools and approaches for regenerating damaged skin. Peptides that speed up the healing process could be used as therapeutic lead molecules in future research into novel drugs. AMPs and amphibian-derived peptides may be endogenous mediators of wound healing and treat non-life-threatening skin and epithelial lesions. Thus, the present article was drafted with to incorporate different peptides used in wound healing, their method of preparation and routes of administration.
Collapse
Affiliation(s)
- Trilochan Satapathy
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Yugal Kishore
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Ravindra Kumar Pandey
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Shiv Shankar Shukla
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Shiv Kumar Bhardwaj
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| | - Beena Gidwani
- Department of Pharmacology, Columbia Institute of Pharmacy, Raipur, Chhattisgarh, 493111, India
| |
Collapse
|
211
|
Sabino YNV, Araújo Domingues KCD, Mathur H, Gómez-Mascaraque LG, Drouin G, Martínez-Abad A, Tótola MR, Abreu LM, Cotter PD, Mantovani HC. Exopolysaccharides produced by Bacillus spp. inhibit biofilm formation by Staphylococcus aureus strains associated with bovine mastitis. Int J Biol Macromol 2023; 253:126689. [PMID: 37678679 DOI: 10.1016/j.ijbiomac.2023.126689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Bovine mastitis is a costly disease in the dairy sector worldwide. Here the objective was to identify and characterize anti-biofilm compounds produced by Bacillus spp. against S. aureus associated with bovine mastitis. Results showed that cell-free supernatants of three Bacillus strains (out of 33 analysed) reduced S. aureus biofilm formation by approximately 40 % without affecting bacterial growth. The anti-biofilm activity was associated with exopolysaccharides (EPS) secreted by Bacillus spp. The EPS decreased S. aureus biofilm formation in a dose-dependent manner, inhibiting biofilm formation by 83 % at 1 mg/mL. The EPS also showed some biofilm disruption activity (up to 36.4 %), which may be partially mediated by increased expression of the aur gene. The characterization of EPS produced by Bacillus velezensis 87 and B. velezensis TR47II revealed macromolecules with molecular weights of 31.2 and 33.7 kDa, respectively. These macromolecules were composed mainly of glucose (mean = 218.5 μg/mg) and mannose (mean = 241.5 μg/mg) and had similar functional groups (pyranose ring, beta-type glycosidic linkage, and alkynes) as revealed by FT-IR. In conclusion, this study shows the potential applications of EPS produced by B. velezensis as an anti-biofilm compound that could contribute to the treatment of bovine mastitis caused by S. aureus.
Collapse
Affiliation(s)
| | | | - Harsh Mathur
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - Gaetan Drouin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - Marcos Rogério Tótola
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lucas Magalhães Abreu
- Department of Phytopathology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, Cork, Ireland
| | - Hilario Cuquetto Mantovani
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
212
|
Torres A, Kuraieva A, Stone GG, Cillóniz C. Systematic review of ceftaroline fosamil in the management of patients with methicillin-resistant Staphylococcus aureus pneumonia. Eur Respir Rev 2023; 32:230117. [PMID: 37852658 PMCID: PMC10582922 DOI: 10.1183/16000617.0117-2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for an array of problematic community- and healthcare-acquired infections, including pneumonia, and is frequently associated with severe disease and high mortality rates. Standard recommended treatments for empiric and targeted coverage of suspected MRSA in patients with community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP), including ventilator-associated pneumonia (VAP), are vancomycin and linezolid. However, adverse events such as acute kidney injury and Clostridium difficile infection have been associated with these antibiotics. Ceftaroline fosamil is a β-lactam/extended-spectrum cephalosporin approved for the treatment of adults and children with CAP and complicated skin and soft tissue infections. Ceftaroline has in vitro activity against a range of common Gram-positive bacteria and is distinct among the β-lactams in retaining activity against MRSA. Due to the design of the pivotal randomised controlled trials of ceftaroline fosamil, outcomes in patients with MRSA CAP were not evaluated. However, various reports of real-world outcomes with ceftaroline fosamil for pneumonia caused by MRSA, including CAP and HAP/VAP, been published since its approval. A systematic literature review and qualitative analysis of relevant publications was undertaken to collate and summarise relevant published data on the efficacy and safety of ceftaroline fosamil in patients with MRSA pneumonia. While relatively few real-world outcomes studies are available, the available data suggest that ceftaroline fosamil is a possible alternative to linezolid and vancomycin for MRSA pneumonia. Specific scenarios in which ceftaroline fosamil might be considered include bacteraemia and complicating factors such as empyema.
Collapse
Affiliation(s)
- Antoní Torres
- Dept of Pulmonology, Hospital Clinic, University of Barcelona, IDIBAPS, ICREA, CIBERES, Barcelona, Spain
| | | | | | - Catia Cillóniz
- Dept of Pulmonology, Hospital Clinic, University of Barcelona, IDIBAPS, ICREA, CIBERES, Barcelona, Spain
- Faculty of Health Sciences, Continental University, Huancayo, Peru
| |
Collapse
|
213
|
Hai D, Guo B, Qiao M, Jiang H, Song L, Meng Z, Huang X. Evaluating the Potential Safety Risk of Plant-Based Meat Analogues by Analyzing Microbial Community Composition. Foods 2023; 13:117. [PMID: 38201145 PMCID: PMC10778452 DOI: 10.3390/foods13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Plant-based meat analogues offer an environmentally and scientifically sustainable option as a substitute for animal-derived meat. They contribute to reducing greenhouse gas emissions, freshwater consumption, and the potential risks associated with zoonotic diseases linked to livestock production. However, specific processing methods such as extrusion or cooking, using various raw materials, can influence the survival and growth of spoilage and pathogenic microorganisms, resulting in differences between plant-based meat analogues and animal meat. In this study, the microbial communities in five different types of plant-based meat analogues were investigated using high-throughput sequencing. The findings revealed a diverse range of bacteria, including Cyanobacteria, Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota, and Chloroflexi, as well as fungi such as Ascomycota, Basidiomycota, Phragmoplastophyta, Vertebrata, and Mucoromycota. Additionally, this study analyzed microbial diversity at the genus level and employed phenotype prediction to evaluate the relative abundance of various bacterium types, including Gram-positive and Gram-negative bacteria, aerobic, anaerobic, and facultative anaerobic bacteria, as well as potential pathogenic bacteria. The insights gained from this study provide valuable information regarding the microbial communities and phenotypes of different plant-based meat analogues, which could help identify effective storage strategies to extend the shelf-life of these products.
Collapse
Affiliation(s)
- Dan Hai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
- Henan Technology Innovation Center of Meat Processing and Research, Luohe 462000, China
| | - Baodang Guo
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
- Henan Technology Innovation Center of Meat Processing and Research, Luohe 462000, China
| | - Haisheng Jiang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
- Henan Technology Innovation Center of Meat Processing and Research, Luohe 462000, China
| | - Ziheng Meng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (D.H.); (B.G.); (M.Q.); (L.S.); (Z.M.)
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China;
- Henan Shuanghui Investment & Development Co., Ltd., Luohe 462000, China
- Henan Technology Innovation Center of Meat Processing and Research, Luohe 462000, China
| |
Collapse
|
214
|
Liu K, Tong J, Liu X, Liang D, Ren F, Jiang N, Hao Z, Li S, Wang Q. The Discovery of Novel Agents against Staphylococcus aureus by Targeting Sortase A: A Combination of Virtual Screening and Experimental Validation. Pharmaceuticals (Basel) 2023; 17:58. [PMID: 38256891 PMCID: PMC11100315 DOI: 10.3390/ph17010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus (S. aureus), commonly known as "superbugs", is a highly pathogenic bacterium that poses a serious threat to human health. There is an urgent need to replace traditional antibiotics with novel drugs to combat S. aureus. Sortase A (SrtA) is a crucial transpeptidase involved in the adhesion process of S. aureus. The reduction in virulence and prevention of S. aureus infections have made it a significant target for antimicrobial drugs. In this study, we combined virtual screening with experimental validation to identify potential drug candidates from a drug library. Three hits, referred to as Naldemedine, Telmisartan, and Azilsartan, were identified based on docking binding energy and the ratio of occupied functional sites of SrtA. The stability analysis manifests that Naldemedine and Telmisartan have a higher binding affinity to the hydrophobic pockets. Specifically, Telmisartan forms stable hydrogen bonds with SrtA, resulting in the highest binding energy. Our experiments prove that the efficiency of adhesion and invasion by S. aureus can be decreased without significantly affecting bacterial growth. Our work identifies Telmisartan as the most promising candidate for inhibiting SrtA, which can help combat S. aureus infection.
Collapse
Affiliation(s)
- Kang Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Jiangbo Tong
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Xu Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China;
| | - Dan Liang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Fangzhe Ren
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Nan Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Zhenyu Hao
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Shixin Li
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (K.L.); (J.T.); (D.L.); (F.R.); (N.J.); (Z.H.)
| | - Qiang Wang
- Department of the Heart and Great Vessels, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
215
|
Cranmer KD, Pant MD, Quesnel S, Sharp JA. Clonal Diversity, Antibiotic Resistance, and Virulence Factor Prevalence of Community Associated Staphylococcus aureus in Southeastern Virginia. Pathogens 2023; 13:25. [PMID: 38251333 PMCID: PMC10821353 DOI: 10.3390/pathogens13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Staphylococcus aureus is a significant human pathogen with a formidable propensity for antibiotic resistance. Worldwide, it is the leading cause of skin and soft tissue infections (SSTI), septic arthritis, osteomyelitis, and infective endocarditis originating from both community- and healthcare-associated settings. Although often grouped by methicillin resistance, both methicillin-resistant (MRSA) and methicillin-sensitive (MSSA) strains are known to cause significant pathologies and injuries. Virulence factors and growing resistance to antibiotics play major roles in the pathogenicity of community-associated strains. In our study, we examined the genetic variability and acquired antibiograms of 122 S. aureus clinical isolates from SSTI, blood, and urinary tract infections originating from pediatric patients within the southeast region of Virginia, USA. We identified a suite of clinically relevant virulence factors and evaluated their prevalence within these isolates. Five genes (clfA, spA, sbi, scpA, and vwb) with immune-evasive functions were identified in all isolates. MRSA isolates had a greater propensity to be resistant to more antibiotics as well as significantly more likely to carry several virulence factors compared to MSSA strains. Further, the carriage of various genes was found to vary significantly based on the infection type (SSTI, blood, urine).
Collapse
Affiliation(s)
- Katelyn D. Cranmer
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Mohan D. Pant
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Suzanne Quesnel
- Children’s Hospital of the King’s Daughters, Norfolk, VA 23507, USA
| | - Julia A. Sharp
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
216
|
An J, Sun L, Liu M, Dai R, Ge G, Wang Z, Jia Y. Influences of Growth Stage and Ensiling Time on Fermentation Characteristics, Nitrite, and Bacterial Communities during Ensiling of Alfalfa. PLANTS (BASEL, SWITZERLAND) 2023; 13:84. [PMID: 38202392 PMCID: PMC10780930 DOI: 10.3390/plants13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
This study examined the impacts of growth stage and ensiling duration on the fermentation characteristics, nitrite content, and bacterial communities during the ensiling of alfalfa. Harvested alfalfa was divided into two groups: vegetative growth stage (VG) and late budding stage (LB). The fresh alfalfa underwent wilting until reaching approximately 65% moisture content, followed by natural fermentation. The experiment followed a completely randomized design, with samples collected after the wilting of alfalfa raw materials (MR) and on days 1, 3, 5, 7, 15, 30, and 60 of fermentation. The growth stage significantly influenced the chemical composition of alfalfa, with crude protein content being significantly higher in the vegetative growth stage alfalfa compared to that in the late budding stage (p < 0.05). Soluble carbohydrates, neutral detergent fiber, and acid detergent fiber content were significantly lower in the vegetative growth stage compared to the late budding stage (p < 0.05). Nitrite content, nitrate content, nitrite reductase activity, and nitrate reductase activity were all significantly higher in the vegetative growth stage compared to the late budding stage (p < 0.05). In terms of fermentation parameters, silage from the late budding stage exhibited superior characteristics compared to that from the vegetative growth stage. Compared to the alfalfa silage during the vegetative growth stage, the late budding stage group exhibited a higher lactate content and lower pH level. Notably, butyric acid was only detected in the silage from the vegetative growth stage group. Throughout the ensiling process, nitrite content, nitrate levels, nitrite reductase activity, and nitrate reductase activity decreased in both treatment groups. The dominant lactic acid bacteria differed between the two groups, with Enterococcus being predominant in vegetative growth stage alfalfa silage, and Weissella being predominant in late budding stage silage, transitioning to Lactiplantibacillus in the later stages of fermentation. On the 3rd day of silage fermentation, the vegetative growth stage group exhibited the highest abundance of Enterococcus, which subsequently decreased to its lowest level on the 15th day. Correlation analysis revealed that lactic acid bacteria, including Limosilactobacillus, Levilactobacillus, Loigolactobacillus, Pediococcus, Lactiplantibacillus, and Weissella, played a key role in nitrite and nitrate degradation in alfalfa silage. The presence of nitrite may be linked to Erwinia, unclassified_o__Enterobacterales, Pantoea, Exiguobacterium, Enterobacter, and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium.
Collapse
Affiliation(s)
- Jiangbo An
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China;
| | - Mingjian Liu
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Rui Dai
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Zhijun Wang
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, China; (J.A.); (M.L.); (R.D.); (G.G.); (Z.W.)
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010019, China
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010019, China
| |
Collapse
|
217
|
She P, Yang Y, Li L, Li Y, Liu S, Li Z, Zhou L, Wu Y. Repurposing of the antimalarial agent tafenoquine to combat MRSA. mSystems 2023; 8:e0102623. [PMID: 38047647 PMCID: PMC10734505 DOI: 10.1128/msystems.01026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE This study represents the first investigation into the antimicrobial effect of TAF against S. aureus and its potential mechanisms. Our data highlighted the effects of TAF against MRSA planktonic cells, biofilms, and persister cells, which is conducive to broadening the application of TAF. Through mechanistic studies, we revealed that TAF targets bacterial cell membranes. In addition, the in vivo experiments in mice demonstrated the safety and antimicrobial efficacy of TAF, suggesting that TAF could be a potential antibacterial drug candidate for the treatment of infections caused by multiple drug-resistant S. aureus.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| |
Collapse
|
218
|
Hou WT, Shen CR, Peng J, Jiang LW, Guo SY, Qiu XR, Zhang Y, Shen H, Jiang YY, An MM. Mechanism of Action for an All-in-One Monoclonal Antibody Against Staphylococcus aureus Infection. J Infect Dis 2023; 228:1789-1799. [PMID: 37335928 DOI: 10.1093/infdis/jiad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen associated with high mortality rates. The extensive use of antibiotics is associated with the rise of drug resistance, and exotoxins are not targeted by antibiotics. Therefore, monoclonal antibody (mAb) therapy has emerged as a promising solution to solve the clinical problems caused by refractory S aureus. Recent research suggests that the synergistic effects of several cytotoxins, including bicomponent toxins, are critical to the pathogenesis of S aureus. By comparing the amino acid sequences, researchers found that α-toxin and bicomponent toxins have high homology. Therefore, we aimed to screen an antibody, designated an all-in-one mAb, that could neutralize α-toxin and bicomponent toxins through hybridoma fusion. We found that this mAb has a significant pharmacodynamic effect within in vivo mouse models and in vitro experiments.
Collapse
Affiliation(s)
- Wei-Tong Hou
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen-Rui Shen
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ji Peng
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Wen Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shi-Yu Guo
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi-Ran Qiu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Shen
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuan-Ying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mao-Mao An
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
219
|
Stephens AC, Banerjee SK, Richardson AR. Specialized phosphate transport is essential for Staphylococcus aureus nitric oxide resistance. mBio 2023; 14:e0245123. [PMID: 37937971 PMCID: PMC10746193 DOI: 10.1128/mbio.02451-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is a bacterial pathogen capable of causing a wide variety of disease in humans. S. aureus is unique in its ability to resist the host immune response, including the antibacterial compound known as nitric oxide (NO·). We used an RNA-sequencing approach to better understand the impact of NO· on S. aureus in different environments. We discovered that inorganic phosphate transport is induced by the presence of NO·. Phosphate is important for the generation of energy from glucose, a carbon source favored by S. aureus. We show that the absence of these phosphate transporters causes lowered energy levels in S. aureus. We find that these phosphate transporters are essential for S. aureus to grow in the presence of NO· and to cause infection. Our work here contributes significantly to our understanding of S. aureus NO· resistance and provides a new context in which S. aureus phosphate transporters are essential.
Collapse
Affiliation(s)
- Amelia C. Stephens
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Srijon K. Banerjee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
220
|
de Araújo-Neto JB, Oliveira-Tintino CDDM, de Araújo GA, Alves DS, Ribeiro FR, Brancaglion GA, Carvalho DT, Lima CMG, Mohammed Ali HSH, Rather IA, Wani MY, Emran TB, Coutinho HDM, Balbino VDQ, Tintino SR. 3-Substituted Coumarins Inhibit NorA and MepA Efflux Pumps of Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1739. [PMID: 38136773 PMCID: PMC10741188 DOI: 10.3390/antibiotics12121739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Coumarins are compounds with scientifically proven antibacterial properties, and modifications to the chemical structure are known to improve their effects. This information is even more relevant with the unbridled advances of antibiotic resistance, where Staphylococcus aureus and its efflux pumps play a prominent role. The study's objective was to evaluate the potential of synthetic coumarins with different substitutions in the C-3 position as possible inhibitors of the NorA and MepA efflux pumps of S. aureus. For this evaluation, the following steps took place: (i) the determination of the minimum inhibitory concentration (MIC); (ii) the association of coumarins with fluoroquinolones and ethidium bromide (EtBr); (iii) the assessment of the effect on EtBr fluorescence emission; (iv) molecular docking; and (v) an analysis of the effect on membrane permeability. Coumarins reduced the MICs of fluoroquinolones and EtBr between 50% and 87.5%. Coumarin C1 increased EtBr fluorescence emission between 20 and 40% by reinforcing the evidence of efflux inhibition. The molecular docking results demonstrated that coumarins have an affinity with efflux pumps and establish mainly hydrogen bonds and hydrophobic interactions. Furthermore, C1 did not change the permeability of the membrane. Therefore, we conclude that these 3-substituted coumarins act as inhibitors of the NorA and MepA efflux pumps of S. aureus.
Collapse
Affiliation(s)
- José B. de Araújo-Neto
- Postgraduate Program in Biological Sciences, Biosciences Center, Federal University of Pernambuco, Recife 50740-570, PE, Brazil; (J.B.d.A.-N.); (V.d.Q.B.)
| | - Cícera D. de M. Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Gildênia A. de Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Daniel S. Alves
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Fernanda R. Ribeiro
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | - Guilherme A. Brancaglion
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | - Diogo T. Carvalho
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | | | - Hani S. H. Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.H.M.A.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.H.M.A.); (I.A.R.)
| | - Mohmmad Y. Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Talha B. Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Henrique D. M. Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Valdir de Q. Balbino
- Postgraduate Program in Biological Sciences, Biosciences Center, Federal University of Pernambuco, Recife 50740-570, PE, Brazil; (J.B.d.A.-N.); (V.d.Q.B.)
| | - Saulo R. Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| |
Collapse
|
221
|
Wang J, Liang S, Lu X, Xu Q, Zhu Y, Yu S, Zhang W, Liu S, Xie F. Bacteriophage endolysin Ply113 as a potent antibacterial agent against polymicrobial biofilms formed by enterococci and Staphylococcus aureus. Front Microbiol 2023; 14:1304932. [PMID: 38152375 PMCID: PMC10751913 DOI: 10.3389/fmicb.2023.1304932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Antibiotic resistance in Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus remains a major public health concern worldwide. Furthermore, these microbes frequently co-exist in biofilm-associated infections, largely nullifying antibiotic-based therapy. Therefore, it is imperative to develop an efficient therapeutic strategy for combating infections caused by polymicrobial biofilms. In this study, we investigated the antibacterial and antibiofilm activity of the bacteriophage endolysin Ply113 in vitro. Ply113 exhibited high and rapid lytic activity against E. faecium, E. faecalis, and S. aureus, including vancomycin-resistant Enterococcus and methicillin-resistant S. aureus isolates. Transmission electron microscopy revealed that Ply113 treatment led to the detachment of bacterial cell walls and considerable cell lysis. Ply113 maintained stable lytic activity over a temperature range of 4-45°C, over a pH range of 5.0-8.0, and in the presence of 0-400 mM NaCl. Ply113 treatment effectively eliminated the mono-species biofilms formed by E. faecium, E. faecalis, and S. aureus in a dose-dependent manner. Ply113 was also able to eliminate the dual-species biofilms of E. faecium-S. aureus and E. faecalis-S. aureus. Additionally, Ply113 exerted potent antibacterial efficacy in vivo, distinctly decreasing the bacterial loads in a murine peritoneal septicemia model. Our findings suggest that the bacteriophage endolysin Ply113 is a promising antimicrobial agent for the treatment of polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
222
|
Behera S, Mumtaz S, Singh M, Mukhopadhyay K. Synergistic Potential of α-Melanocyte Stimulating Hormone Based Analogues with Conventional Antibiotic against Planktonic, Biofilm-Embedded, and Systemic Infection Model of MRSA. ACS Infect Dis 2023; 9:2436-2447. [PMID: 38009640 DOI: 10.1021/acsinfecdis.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The repotentiation of the existing antibiotics by exploiting the combinatorial potential of antimicrobial peptides (AMPs) with them is a promising approach to address the challenges of slow antibiotic development and rising antimicrobial resistance. In the current study, we explored the ability of lead second generation Ana-peptides viz. Ana-9 and Ana-10, derived from Alpha-Melanocyte Stimulating Hormone (α-MSH), to act synergistically with different classes of conventional antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). The peptides exhibited prominent synergy with β-lactam antibiotics, namely, oxacillin, ampicillin, and cephalothin, against planktonic MRSA. Furthermore, the lead combination of Ana-9/Ana-10 with oxacillin provided synergistic activity against clinical MRSA isolates. Though the treatment of MRSA is complicated by biofilms, the lead combinations successfully inhibited biofilm formation and also demonstrated biofilm disruption potential. Encouragingly, the peptides alone and in combination were able to elicit in vivo anti-MRSA activity and reduce the bacterial load in the liver and kidney of immune-compromised mice. Importantly, the presence of Ana-peptides at sub-MIC doses slowed the resistance development against oxacillin in MRSA cells. Thus, this study highlights the synergistic activity of Ana-peptides with oxacillin advocating for the potential of Ana-peptides as an alternative therapeutic and could pave the way for the reintroduction of less potent conventional antibiotics into clinical use against MRSA infections.
Collapse
Affiliation(s)
- Swastik Behera
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Madhuri Singh
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
223
|
Pryjmaková J, Grossberger D, Kutová A, Vokatá B, Šlouf M, Slepička P, Siegel J. A New Promising Material for Biological Applications: Multilevel Physical Modification of AgNP-Decorated PEEK. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3079. [PMID: 38132977 PMCID: PMC10745567 DOI: 10.3390/nano13243079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
In the case of polymer medical devices, the surface design plays a crucial role in the contact with human tissue. The use of AgNPs as antibacterial agents is well known; however, there is still more to be investigated about their anchoring into the polymer surface. This study describes the changes in the surface morphology and behaviour in the biological environment of polyetheretherketone (PEEK) with immobilised AgNPs after different surface modifications. The initial composites were prepared by immobilising silver nanoparticles from a colloid solution in the upper surface layers of polyetheretherketone (PEEK). The prepared samples (Ag/PEEK) had a planar morphology and were further modified with a KrF laser, a GaN laser, and an Ar plasma. The samples were studied using the AFM method to visualise changes in surface morphology and obtain information on the height of the structures and other surface parameters. A comparative analysis of the nanoparticles and polymers was performed using FEG-SEM. The chemical composition of the surface of the samples and optical activity were studied using XPS and UV-Vis spectroscopy. Finally, drop plate antibacterial and cytotoxicity tests were performed to determine the role of Ag nanoparticles after modification and suitability of the surface, which are important for the use of the resulting composite in biomedical applications.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| | - Daniel Grossberger
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| | - Anna Kutová
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| | - Barbora Vokatá
- Department of Microbiology, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic;
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Prague, Czech Republic;
| | - Petr Slepička
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| | - Jakub Siegel
- Department of Solid-State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic; (J.P.); (D.G.); (A.K.); (J.S.)
| |
Collapse
|
224
|
Herrera-Hidalgo L, Muñoz P, Álvarez-Uría A, Alonso-Menchén D, Luque-Marquez R, Gutiérrez-Carretero E, Fariñas MDC, Miró JM, Goenaga MA, López-Cortés LE, Angulo-Lara B, Boix-Palop L, de Alarcón A. Contemporary use of cefazolin for MSSA infective endocarditis: analysis of a national prospective cohort. Int J Infect Dis 2023; 137:134-143. [PMID: 37926195 DOI: 10.1016/j.ijid.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVES This study aimed to assess the real use of cefazolin for methicillin-susceptible Staphylococcus aureus (MSSA) infective endocarditis (IE) in the Spanish National Endocarditis Database (GAMES) and to compare it with antistaphylococcal penicillin (ASP). METHODS Prospective cohort study with retrospective analysis of a cohort of MSSA IE treated with cloxacillin and/or cefazolin. Outcomes assessed were relapse; intra-hospital, overall, and endocarditis-related mortality; and adverse events. Risk of renal toxicity with each treatment was evaluated separately. RESULTS We included 631 IE episodes caused by MSSA treated with cloxacillin and/or cefazolin. Antibiotic treatment was cloxacillin, cefazolin, or both in 537 (85%), 57 (9%), and 37 (6%) episodes, respectively. Patients treated with cefazolin had significantly higher rates of comorbidities (median Charlson Index 7, P <0.01) and previous renal failure (57.9%, P <0.01). Patients treated with cloxacillin presented higher rates of septic shock (25%, P = 0.033) and new-onset or worsening renal failure (47.3%, P = 0.024) with significantly higher rates of in-hospital mortality (38.5%, P = 0.017). One-year IE-related mortality and rate of relapses were similar between treatment groups. None of the treatments were identified as risk or protective factors. CONCLUSION Our results suggest that cefazolin is a valuable option for the treatment of MSSA IE, without differences in 1-year mortality or relapses compared with cloxacillin, and might be considered equally effective.
Collapse
Affiliation(s)
- Laura Herrera-Hidalgo
- Department of Pharmacy, University Hospital Virgen del Rocío, Seville, Spain; Department of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Spanish National Research Council, University of Seville, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital Gregorio Marañón, Madrid, Spain; Gregorio Marañón Health Research Institute, Gregorio Marañón General University Hospital, Madrid, Spain; Complutense University of Madrid, Madrid, Spain; Biomedical Research Centre Network for Respiratory Diseases-CIBERES, Madrid, Spain
| | - Ana Álvarez-Uría
- Department of Clinical Microbiology and Infectious Diseases, Hospital Gregorio Marañón, Madrid, Spain; Gregorio Marañón Health Research Institute, Gregorio Marañón General University Hospital, Madrid, Spain; Complutense University of Madrid, Madrid, Spain
| | - David Alonso-Menchén
- Department of Clinical Microbiology and Infectious Diseases, Hospital Gregorio Marañón, Madrid, Spain; Gregorio Marañón Health Research Institute, Gregorio Marañón General University Hospital, Madrid, Spain; Complutense University of Madrid, Madrid, Spain
| | - Rafael Luque-Marquez
- Department of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Spanish National Research Council, University of Seville, Spain
| | - Encarnación Gutiérrez-Carretero
- Department of Cardiac Surgery, Institute of Biomedicine of Seville (IBiS) University of Seville/CSIC/University Hospital Virgen del Rocío Seville, Spain; Biomedical Research Centre Network for Cardiovascular Diseases-CIBERCV, Madrid, Spain
| | - María Del Carmen Fariñas
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department Servicio de of Infectious Diseases, Health Research Institute Valdecilla (IDIVAL), University Hospital Universitario Marqués de Valdecilla/ University of Cantabria, Santander
| | - Jose Maria Miró
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases. Hospital Clínic/ Biomedical Research Institute August Pi i Sunyer (IDIBAPS)/ University of Barcelona, Barcelona, Spain
| | - Miguel Angel Goenaga
- Department of Infectious Diseases, Donosti Hospital, Donostia-San Sebastian, Spain
| | - Luis Eduardo López-Cortés
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases and Microbiology Clinical, University Hospital Virgen Macarena, Sevilla, Spain; Department of Medicine, School of Medicine, University of Sevilla, Sevilla, Spain; Biomedicine Institute of Sevilla (IBiS)/CSIC, Seville, Spain
| | - Basilio Angulo-Lara
- Department of Cardiology, University Hospital Puerta del Hierro, Madrid, Spain
| | - Lucia Boix-Palop
- Department of Infectious Diseases, University Hospital Mútua Terrassa, Barcelona, Spain
| | - Arístides de Alarcón
- Department of Infectious Diseases, Microbiology and Parasitology, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío, Spanish National Research Council, University of Seville, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
225
|
Wang Q, Nurxat N, Zhang L, Liu Y, Wang Y, Zhang L, Zhao N, Dai Y, Jian Y, He L, Wang H, Bae T, Li M, Liu Q. Diabetes mellitus promotes the nasal colonization of high virulent Staphylococcus aureus through the regulation of SaeRS two-component system. Emerg Microbes Infect 2023; 12:2276335. [PMID: 37882148 PMCID: PMC10796126 DOI: 10.1080/22221751.2023.2276335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Diabetic foot infections are a common complication of diabetes. Staphylococcus aureus is frequently isolated from diabetic foot infections and commonly colonizes human nares. According to the study, the nasal microbiome analysis revealed that diabetic patients had a significantly altered nasal microbial composition and diversity. Typically, the fasting blood glucose (FBG) level had an impact on the abundance and sequence type (ST) of S. aureus in diabetic patients. We observed that highly virulent S. aureus ST7 strains were more frequently colonized in diabetic patients, especially those with poorly controlled FBG, while ST59 was dominant in healthy individuals. S. aureus ST7 strains were more resistant to human antimicrobial peptides and formed stronger biofilms than ST59 strains. Critically, S. aureus ST7 strains displayed higher virulence compared to ST59 strains in vivo. The dominance of S. aureus ST7 strains in hyperglycemic environment is due to the higher activity of the SaeRS two-component system (TCS). S. aureus ST7 strains outcompeted ST59 both in vitro, and in nasal colonization model in diabetic mice, which was abolished by the deletion of the SaeRS TCS. Our data indicated that highly virulent S. aureus strains preferentially colonize diabetic patients with poorly controlled FBG through SaeRS TCS. Detection of S. aureus colonization and elimination of colonizing S. aureus are critical in the care of diabetic patients with high FBG.
Collapse
Affiliation(s)
- Qichen Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Nadira Nurxat
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lei Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yingxin Dai
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
226
|
Isiordia-Espinoza MA, Terán-Rosales F, Serafín-Higuera NA, Alonso-Castro ÁJ, Aragon-Martínez OH. Isobolographic analysis of the ciprofloxacin-gentamicin combination against beta-lactamase-producing Staphylococcus aureus. Fundam Clin Pharmacol 2023; 37:1198-1204. [PMID: 37350449 DOI: 10.1111/fcp.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Bacterial multi-resistance is a serious global problem that continues to worsen over time due to multiple factors. Among these factors, it is important to highlight the clinical misuse of antibiotics and the mechanisms that microorganisms have developed to protect themselves from these drugs. In this sense, Staphylococcus aureus (S. aureus) is a pathogen that has found a way to resist many of the drugs currently in use, so infections by this bacterium represent a serious clinical problem. OBJECTIVES The purpose of this study was to determine the type of interaction between ciprofloxacin and gentamicin against beta-lactamase-producing S. aureus using isobolographic analysis. METHODS Ciprofloxacin (0.5-0.05 mg/mL) and gentamicin (10-1 mg/mL) were used to make concentration-dependent curves for each individual drug. Thereafter, the 50 inhibitory concentration (IC50 ) of each drug was obtained, and different proportions of the ciprofloxacin-gentamicin combination-0.5:0.5, 0.8:0.2, 0.2:0.8, 0.9:0.1, 0.1:0.9, 0.95:0.05, and 0.05:0.95-were evaluated. The isobolographic analysis and the interaction index were used to analyze the data. RESULTS The isobolographic evaluation of the combination showed that the ratios 0.5:0.5, 0.8:0.2, 0.2:0.8, and 0.9:0.1 produced a synergistic anti-staphylococcal effect, and the 0.95:0.05 ratio induced an additive antibacterial effect. Finally, the 0.1:0.9 and 0.05:0.95 ratios of the combination presented antagonistic effects against S. aureus. On the other hand, the interaction index showed similar results to the isobolographic analysis. CONCLUSION The isobolographic results of this in vitro assay show that the ciprofloxacin-gentamicin combination induces synergistic, additive, and antagonistic antimicrobial effects against S. aureus.
Collapse
Affiliation(s)
- Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Flavio Terán-Rosales
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Ángel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | | |
Collapse
|
227
|
Heng P, Shi B, Li D, Ou H, He Y, Zhou L. Rapid visualization molecular fluorescence detection of methicillin-resistant Staphylococcus aureus using the multiplex MIRA-qPCR method. Biotechnol J 2023; 18:e2300200. [PMID: 37626194 DOI: 10.1002/biot.202300200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Multidrug-resistant (MDR) bacterial infections constitute a major public health problem worldwide. A rapid method for the detection of methicillin-resistant Staphylococcus aureus (MRSA) is critical for the timely prevention of bacterial infections and the accurate clinical use of drugs. The nuc and mecA genes are potentially indicative of MRSA infection and in this study, a multiplex molecular fluorescence multi-enzyme isothermal rapid amplification visual assay was proposed and established. The method is capable of detecting MRSA at 17 min, 40°C amplification, and is well differentiated from common clinical bacteria in specific assays, with 500 colony-forming units (CFU) mL-1 of MRSA detected under optimal conditions. This method has excellent diagnostic capabilities versus classical methods to detect clinical samples and shows potential in the identification of pathogenic microorganisms in a clinical setting.
Collapse
Affiliation(s)
- Pengfei Heng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bo Shi
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Dongmei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hua Ou
- Department of Laboratory Medicine, People's Hospital of Xinjin District, Chengdu, Sichuan, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lili Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
228
|
Jin S, Sun J, Liu G, Shen L, Weng Y, Li J, Chen M, Wang Y, Gao Z, Jiang F, Li S, Chen D, Pang Q, Wu Y, Wang Z. Nrf2/PHB2 alleviates mitochondrial damage and protects against Staphylococcus aureus-induced acute lung injury. MedComm (Beijing) 2023; 4:e448. [PMID: 38077250 PMCID: PMC10701464 DOI: 10.1002/mco2.448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024] Open
Abstract
Staphylococcus aureus (SA) is a major cause of sepsis, leading to acute lung injury (ALI) characterized by inflammation and oxidative stress. However, the role of the Nrf2/PHB2 pathway in SA-induced ALI (SA-ALI) remains unclear. In this study, serum samples were collected from SA-sepsis patients, and a SA-ALI mouse model was established by grouping WT and Nrf2-/- mice after 6 h of intraperitoneal injection. A cell model simulating SA-ALI was developed using lipoteichoic acid (LTA) treatment. The results showed reduced serum Nrf2 levels in SA-sepsis patients, negatively correlated with the severity of ALI. In SA-ALI mice, downregulation of Nrf2 impaired mitochondrial function and exacerbated inflammation-induced ALI. Moreover, PHB2 translocation from mitochondria to the cytoplasm was observed in SA-ALI. The p-Nrf2/total-Nrf2 ratio increased in A549 cells with LTA concentration and treatment duration. Nrf2 overexpression in LTA-treated A549 cells elevated PHB2 content on the inner mitochondrial membrane, preserving genomic integrity, reducing oxidative stress, and inhibiting excessive mitochondrial division. Bioinformatic analysis and dual-luciferase reporter assay confirmed direct binding of Nrf2 to the PHB2 promoter, resulting in increased PHB2 expression. In conclusion, Nrf2 plays a role in alleviating SA-ALI by directly regulating PHB2 transcription and maintaining mitochondrial function in lung cells.
Collapse
Affiliation(s)
- Si‐Hao Jin
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
- Department of Nursing, School of MedicineShaoxing Vocational & Technical CollegeShaoxingChina
| | - Jiao‐Jiao Sun
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Gang Liu
- Department of Nosocomial InfectionThe Forth Affiliated Hospital of Zhejiang UniversityJinhuaChina
| | - Li‐Juan Shen
- Department of Critical Care MedicineWuxi Hospital of Traditional Chinese MedicineWuxiChina
| | - Yuan Weng
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Jin‐You Li
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Min Chen
- Department of LaboratoryAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Ying‐Ying Wang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Zhi‐Qi Gao
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Feng‐Juan Jiang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Sheng‐Peng Li
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Dan Chen
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Qing‐Feng Pang
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Ya‐Xian Wu
- Department of Basic Medicine, Wuxi School of MedicineJiangnan UniversityWuxiChina
| | - Zhi‐Qiang Wang
- Department of Cardiothoracic SurgeryAffiliated Hospital of Jiangnan UniversityWuxiChina
| |
Collapse
|
229
|
de Sousa Ferreira F, de Araújo Neto JB, de Morais Oliveira-Tintino CD, de Araújo ACJ, Ribeiro-Filho J, Freitas PR, Araújo IM, Lima MA, de Azevedo FR, Tintino SR, Coutinho HDM, Navarro DMDAF. Chemical composition and antibacterial effects of Etlingera elatior (Jack) R.M. Smith against Staphylococcus aureus efflux pumps. Chem Biol Interact 2023; 386:110751. [PMID: 37821044 DOI: 10.1016/j.cbi.2023.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Multidrug resistance is a significant health problem worldwide, with increasing mortality rates, especially in the last few years. In this context, a consistent effort has been made to discover new antibacterial agents, and evidence points to natural products as the most promising source of bioactive compounds. This research aimed to characterize the antibacterial effect of the essential oil of Etlingera elatior (EOEE) and its major constituents against efflux pump-carrying Staphylococcus aureus strains. The essential oil was extracted from fresh inflorescences by hydrodistillation. Chemical analysis was performed using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography equipped with a flame ionization detector (GC-FID). The strains RN-4220, 1199B, IS-58, and 1199 of S. aureus were used to evaluate the antibacterial activity and the inhibition of efflux pumps. A total of 23 compounds were identified, including dodecanal and 1-dodecanol as major compounds. EOEE and dodecanal showed weak activity against the strains, while 1-dodecanol inhibited bacterial growth at low concentrations, indicating strong antibacterial activity. In addition, this compound potentiated the activity of norfloxacin against S. aureus 1199. In conclusion, 1-dodecanol was identified as the most effective compound of EOEE, showing significant potential to be used in antibacterial drug development.
Collapse
Affiliation(s)
- Felipe de Sousa Ferreira
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, Brazil
| | - José Bezerra de Araújo Neto
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Ana Carolina Justino de Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | | | - Priscilla Ramos Freitas
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Isaac Moura Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Micheline Azevedo Lima
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, URCA, Crato, CE, Brazil.
| | | |
Collapse
|
230
|
Seebach E, Sonnenmoser G, Kubatzky KF. Staphylococcus aureus planktonic but not biofilm environment induces an IFN-β macrophage immune response via the STING/IRF3 pathway. Virulence 2023; 14:2254599. [PMID: 37655977 PMCID: PMC10496530 DOI: 10.1080/21505594.2023.2254599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
Chronic implant-related bone infections are a severe complication in orthopaedic surgery. Biofilm formation on the implant impairs the immune response, leading to bacterial persistence. In a previous study, we found that Staphylococcus aureus (SA) induced interferon regulatory factor 3 (IRF3) activation and Ifnb expression only in its planktonic form but not in the biofilm. The aim of this study was to clarify the role of the stimulator of interferon genes (STING) in this process. We treated RAW 264.7 macrophages with conditioned media (CM) generated from planktonic or biofilm cultured SA in combination with agonists or inhibitors of the cyclic GMP-AMP synthase (cGAS)/STING pathway. We further evaluated bacterial gene expression of planktonic and biofilm SA to identify potential mediators. STING inhibition resulted in the loss of IRF3 activation and Ifnb induction in SA planktonic CM, whereas STING activation induced an IRF3 dependent IFN-β response in SA biofilm CM. The expression levels of virulence-associated genes decreased during biofilm formation, but genes associated with cyclic dinucleotide (CDN) synthesis did not correlate with Ifnb induction. We further observed that cGAS contributed to Ifnb induction by SA planktonic CM, although cGAS activation was not sufficient to induce Ifnb expression in SA biofilm CM. Our data indicate that the different degrees of virulence associated with SA planktonic and biofilm environments result in an altered induction of the IRF3 mediated IFN-β response via the STING pathway. This finding suggests that the STING/IRF3/IFN-β axis is a potential candidate as an immunotherapeutic target for implant-related bone infections.
Collapse
Affiliation(s)
- Elisabeth Seebach
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Gabriele Sonnenmoser
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
231
|
Jiang T, Yuan D, Wang R, Zhao C, Xu Y, Liu Y, Song W, Su X, Wang B. Echinacoside, a promising sortase A inhibitor, combined with vancomycin against murine models of MRSA-induced pneumonia. Med Microbiol Immunol 2023; 212:421-435. [PMID: 37796314 DOI: 10.1007/s00430-023-00782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium responsible for a range of severe infections, such as skin infections, bacteremia, and pneumonia. Due to its antibiotic-resistant nature, current research focuses on targeting its virulence factors. Sortase A (SrtA) is a transpeptidase that anchors surface proteins to the bacterial cell wall and is involved in adhesion and invasion to host cells. Through fluorescence resonance energy transfer (FRET), we identified echinacoside (ECH), a natural polyphenol, as a potential SrtA inhibitor with an IC50 of 38.42 μM in vitro. It was demonstrated that ECH inhibited SrtA-mediated S. aureus fibrinogen binding, surface protein A anchoring, and biofilm formation. The fluorescence quenching assay determined the binding mode of ECH to SrtA and calculated the KA-binding constant of 3.09 × 105 L/mol, demonstrating the direct interaction between the two molecules. Molecular dynamics simulations revealed that ECH-SrtA interactions occurred primarily at the binding sites of A92G, A104G, V168A, G192A, and R197A. Importantly, the combination of ECH and vancomycin offered protection against murine models of MRSA-induced pneumonia. Therefore, ECH may serve as a potential antivirulence agent against S. aureus infections, either alone or in combination with vancomycin.
Collapse
Affiliation(s)
- Tao Jiang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Dai Yuan
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Rong Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Chunhui Zhao
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yangming Xu
- Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yinghui Liu
- Changchun University of Chinese Medicine, Changchun, 130117, China
- Jilin Provincial People's Hospital, Changchun, 130021, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Xin Su
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
232
|
Tian L, Wang L, Yang F, Zhou T, Jiang H. Exploring the modulatory impact of isosakuranetin on Staphylococcus aureus: Inhibition of sortase A activity and α-haemolysin expression. Virulence 2023; 14:2260675. [PMID: 37733916 PMCID: PMC10543341 DOI: 10.1080/21505594.2023.2260675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/13/2023] [Indexed: 09/23/2023] Open
Abstract
The ubiquity of methicillin-resistant Staphylococcus aureus (MRSA) and the mounting prevalence of antibiotic resistance necessitate the identification of novel therapeutic approaches to reduce the selective pressure of antibiotics. Targeting bacterial virulence factors, such as the pivotal Sortase A (SrtA) in S. aureus for adhesion and invasion, and the salient toxin α-Hemolysin (Hla), offers a sophisticated approach to attenuate pathogenicity without bacterial elimination. Herein, we report the discovery of a flavonoid, isosakuranetin, which inhibits the activity of S. aureus SrtA. A fluorescence resonance energy transfer assay revealed that isosakuranetin exhibited a low IC50 of 21.20 μg/mL. Furthermore, isosakuranetin significantly inhibited SrtA-related virulence properties, such as bacterial adhesion to fibrinogen, biofilm formation, and invasion of A549 cells. We employed fluorescence quenching and molecular docking to determine the interactions between isosakuranetin and SrtA, revealing the key amino acid sites for binding. Importantly, isosakuranetin inhibited the haemolytic activity of S. aureus in vitro at a concentration of 32 μg/mL. Moreover, isosakuranetin effectively suppressed the transcription and expression of Hla in a dose-dependent manner and regulated the transcription of RNAIII, the upstream operator of Hla. Notably, isosakuranetin demonstrated in vivo efficacy in a mouse model of S. aureus-induced pneumonia by significantly improving survival rates and reducing lung damage. This is a valuable finding, as isosakuranetin's dual inhibitory effects on SrtA and haemolytic activity, as well as its anti-virulence activity against MRSA, make it an excellent candidate for therapeutic development.
Collapse
Affiliation(s)
- Lili Tian
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Fengying Yang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Tiezhong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Hong Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
233
|
Chen F, Di H, Wang Y, Peng C, Chen R, Pan H, Yang CG, Liang H, Lan L. The enzyme activity of sortase A is regulated by phosphorylation in Staphylococcus aureus. Virulence 2023; 14:2171641. [PMID: 36694285 PMCID: PMC9928477 DOI: 10.1080/21505594.2023.2171641] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In many Gram-positive bacteria, the transpeptidase enzyme sortase A (SrtA) anchors surface proteins to cell wall and plays a critical role in the bacterial pathogenesis. Here, we show that in Staphylococcus aureus, an important human pathogen, the SrtA is phosphorylated by serine/threonine protein kinase Stk1. S. aureus SrtA can also be phosphorylated by small-molecule phosphodonor acetyl phosphate (AcP) in vitro. We determined that various amino acid residues of S. aureus SrtA are subject to phosphorylation, primarily on its catalytic site residue cysteine-184 in the context of a bacterial cell lysate. Both Stk1 and AcP-mediated phosphorylation inhibited the enzyme activity of SrtA in vitro. Consequently, deletion of gene (i.e. stp1) encoding serine/threonine phosphatase Stp1, the corresponding phosphatase of Stk1, caused an increase in the phosphorylation level of SrtA. The stp1 deletion mutant mimicked the phenotypic traits of srtA deletion mutant (i.e. attenuated growth where either haemoglobin or haem as a sole iron source and reduced liver infections in a mouse model of systemic infection). Importantly, the phenotypic defects of the stp1 deletion mutant can be alleviated by overexpressing srtA. Taken together, our finding suggests that phosphorylation plays an important role in modulating the activity of SrtA in S. aureus.
Collapse
Affiliation(s)
- Feifei Chen
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongxia Di
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Rongrong Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Pan
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi’an, China,School of Medicine, Southern University of Science and Technology, Shenzhen, China,Haihua Liang School of Medicine Southern University of Science and Technology, Shenzhen, China
| | - Lefu Lan
- College of Life Science, Northwest University, Xi’an, China,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,University of Chinese Academy of Sciences, Beijing, China,CONTACT Lefu Lan
| |
Collapse
|
234
|
Wang W, Gu Y, Ou Y, Zhou J, Liu B, Zuo H, Du Y, Wang Y, Tang T, Zou Q, Zuo Q. Human monoclonal antibodies against Staphylococcus aureus A protein identified by high-throughput single-cell sequencing of phase I clinical volunteers' B cells. Clin Immunol 2023; 257:109843. [PMID: 37981106 DOI: 10.1016/j.clim.2023.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Methicillin-resistant Staphylococcus aureus, poses a significant threat through infections in both community and hospital settings. To address this challenge, we conducted a phase I clinical trial study involving a recombinant Staphylococcus aureus vaccine. Utilizing peripheral blood lymphocytes from 64 subjects, we isolated antigen-specific memory B cells for subsequent single-cell sequencing. Among the 676 identified antigen-binding IgG1+ clones, we selected the top 10 antibody strains for construction within expression vectors. Successful expression and purification of these monoclonal antibodies led to the discovery of a highly expressed human antibody, designated as IgG-6. This antibody specifically targets the pentameric form of the Staphylococcus aureus protein A (SpA5). In vivo assessments revealed that IgG-6 provided prophylactic protection against MRSA252 infection. This study underscores the potential of human antibodies as an innovative strategy against Staphylococcus aureus infections, offering a promising avenue for further research and clinical development.
Collapse
Affiliation(s)
- WenHao Wang
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - YaRu Gu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400038, PR China
| | - YangXue Ou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - JinRui Zhou
- College of Medicine, Southwest Jiaotong University, Chengdu 610083, PR China
| | - BiXia Liu
- College of Medicine, Southwest Jiaotong University, Chengdu 610083, PR China
| | - HouYi Zuo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - YeXiang Du
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China
| | - Ying Wang
- 953th Hospital, Shigatse Branch, Xinqiao Hospital, Army Medical University, 857000 Shigatse, China
| | - TengQian Tang
- Department of Hepatobiliary Surgery, First Affiliated Hospital, Army Medical University, Chongqing 400038, PR China.
| | - QuanMing Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China.
| | - QianFei Zuo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, PR China.
| |
Collapse
|
235
|
Santos AM, Júnior JA, Cézar SV, Araújo AA, Júnior LJ, Aragón DM, Serafini MR. Cyclodextrin inclusion complexes improving antibacterial drug profiles: an update systematic review. Future Microbiol 2023; 18:1363-1379. [PMID: 37910070 DOI: 10.2217/fmb-2023-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023] Open
Abstract
Aim: The study aimed to review experimental models using cyclodextrins to improve antibacterial drugs' physicochemical characteristics and biological activities. Methods: The following terms and their combinations were used: cyclodextrins and antibacterial agents in title or abstract, and the total study search was conducted over a period up to October 2022. The review was carried out using PubMed, Scopus and Embase databases. A total of 1580 studies were identified, of which 27 articles were selected for discussion in this review. Results: The biological results revealed that the antibacterial effect of the inclusion complexes was extensively improved. Cyclodextrins can enhance the therapeutic effects of antibiotics already existing on the market, natural products and synthetic molecules. Conclusion: Overall, CDs as drug-delivery vehicles have been shown to improve antibiotics solubility, stability, and bioavailability, leading to enhanced antibacterial activity.
Collapse
Affiliation(s)
- Anamaria M Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
| | - José Acn Júnior
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe,São Cristóvão, 49060-100, Sergipe, Brazil
| | - Silvia Vs Cézar
- Department of Pharmacy,Federal University of Sergipe, São Cristóvão, 49060-100, Sergipe, Brazil
| | - Adriano As Araújo
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe,São Cristóvão, 49060-100, Sergipe, Brazil
- Department of Pharmacy,Federal University of Sergipe, São Cristóvão, 49060-100, Sergipe, Brazil
| | - Lucindo Jq Júnior
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe,São Cristóvão, 49060-100, Sergipe, Brazil
| | - Diana M Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Mairim R Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, 49060-100, Sergipe, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe,São Cristóvão, 49060-100, Sergipe, Brazil
- Department of Pharmacy,Federal University of Sergipe, São Cristóvão, 49060-100, Sergipe, Brazil
| |
Collapse
|
236
|
Gao P, Wei Y, Hou S, Lai PM, Liu H, Tai SSC, Tang VYM, Prakash PH, Sze KH, Chen JHK, Sun H, Li X, Kao RYT. SaeR as a novel target for antivirulence therapy against Staphylococcus aureus. Emerg Microbes Infect 2023; 12:2254415. [PMID: 37671453 PMCID: PMC10494732 DOI: 10.1080/22221751.2023.2254415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide range of clinical infections. SaeRS is one of the two-component systems in S. aureus that modulate multiple virulence factors. Although SaeR is required for S. aureus to develop an infection, inhibitors have not been reported. Using an in vivo knockdown method, we demonstrated that SaeR is targetable for the discovery of antivirulence agent. HR3744 was discovered through a high-throughput screening utilizing a GFP-Lux dual reporter system driven by saeP1 promoter. The antivirulence efficacy of HR3744 was tested using Western blot, Quantitative Polymerase Chain Reaction, leucotoxicity, and haemolysis tests. In electrophoresis mobility shift assay, HR3744 inhibited SaeR-DNA probe binding. WaterLOGSY-NMR test showed HR3744 directly interacted with SaeR's DNA-binding domain. When SaeR was deleted, HR3744 lost its antivirulence property, validating the target specificity. Virtual docking and mutagenesis were used to confirm the target's specificity. When Glu159 was changed to Asn, the bacteria developed resistance to HR3744. A structure-activity relationship study revealed that a molecule with a slight modification did not inhibit SaeR, indicating the selectivity of HR3744. Interestingly, we found that SAV13, an analogue of HR3744, was four times more potent than HR3744 and demonstrated identical antivirulence properties and target specificity. In a mouse bacteraemia model, both HR3744 and SAV13 exhibited in vivo effectiveness. Collectively, we identified the first SaeR inhibitor, which exhibited in vitro and in vivo antivirulence properties, and proved that SaeR could be a novel target for developing antivirulence drugs against S. aureus infections.
Collapse
Affiliation(s)
- Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuanxin Wei
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Suying Hou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pok-Man Lai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Han Liu
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Sherlock Shing Chiu Tai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Victor Yat Man Tang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pradeep Halebeedu Prakash
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kong-Hung Sze
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jonathan Hon Kwan Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hongzhe Sun
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Xuechen Li
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
237
|
Hasbi A, Shatriah I, A Rahim H, Zamli AH, Tai E. Staphylococcus aureus Orbital Abscess With Impending Compressive Optic Neuropathy in an Immunocompetent Individual With Subclinical Bacteriuria: A Case Report. Cureus 2023; 15:e50693. [PMID: 38229775 PMCID: PMC10791544 DOI: 10.7759/cureus.50693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
This is a case of an orbital abscess evidenced radiologically in a 41-year-old female with no comorbidities. She was healthy and had no history of trauma or infection of the adjacent structures. She denied having symptoms of upper or lower respiratory and urinary tract infections. The decision for surgical drainage was made following a slow response to antimicrobial agents after 24 hours, a progressive painful erythematous eyelid swelling, and further deterioration of vision. Her clinical condition and visual acuity improved following cutaneous incision and drainage. Culture and sensitivity results for urine and orbital abscess were positive for Staphylococcus (S.) aureus. The patient regained full visual recovery without any sequelae. In conclusion, an orbital abscess is a blinding and life-threatening condition that rarely occurs in immunocompetent individuals and uncommonly arises from distant sources. A high index of suspicion, early institution of appropriate diagnostic imaging, and aggressive medical and surgical treatment are necessary for a favorable visual outcome in orbital abscess cases.
Collapse
Affiliation(s)
- Amirul Hasbi
- Department of Ophthalmology and Visual Sciences, School of Medical Sciences Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Ismail Shatriah
- Department of Ophthalmology and Visual Sciences, School of Medical Sciences Universiti Sains Malaysia, Kubang Kerian, MYS
| | - Haslinda A Rahim
- Department of Ophthalmology, Hospital Raja Perempuan Zainab II, Kota Bharu, MYS
| | | | - Evelyn Tai
- Department of Ophthalmology and Visual Sciences, School of Medical Sciences Universiti Sains Malaysia, Kubang Kerian, MYS
| |
Collapse
|
238
|
Vargová Z, Olejníková P, Kuzderová G, Rendošová M, Havlíčková J, Gyepes R, Vilková M. Silver(I) complexes with amino acid and dipeptide ligands - Chemical and antimicrobial relevant comparison (mini review). Bioorg Chem 2023; 141:106907. [PMID: 37844541 DOI: 10.1016/j.bioorg.2023.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Diseases caused by various microorganisms accompany humans (as well as animals) throughout their whole lives. After germs penetration to the body, the incubation period and infection developing, an infection can cause mild or severe symptoms, not infrequently even death. The immune system naturally defends itself against pathogens with various mechanisms. One of them is the synthesis of antimicrobial peptides. In the case of serious and severe infections, it is currently possible to help the natural immunity by administration of antimicrobial drugs (AMB) with good success since their discovery at the beginning of the last century. However, their excessive use leads to the development of pathogenic microorganisms' resistance to AMB drugs. Based on this, it is necessary to constantly develop new classes of AMB drugs that will be effective against pathogens, even resistant ones. The field of bioinorganic chemistry, similarly to other biological, chemical, or pharmaceutical sciences, discovers various options and approaches for antimicrobial treatment, from the development of new drugs to drug delivery systems. One of the approaches is the design and preparation of potential drugs based on metal ions and antimicrobial peptides. Various metal ions and amino acid or peptide ligands are used for this purpose. In this mini review, we focused on a reliable comparison of the chemical structure and biological properties of selected silver(I) complexes based on amino acids and dipeptides.
Collapse
Affiliation(s)
- Zuzana Vargová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia.
| | - Petra Olejníková
- Department of Biochemistry and Microbiology, Slovak University of Technology, Radlinského 9, Bratislava 812 37, Slovakia
| | - Gabriela Kuzderová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Michaela Rendošová
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| | - Jana Havlíčková
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Róbert Gyepes
- Institute of Chemistry, Charles University, Hlavova 2030, Prague 128 00, Czechia
| | - Mária Vilková
- Institute of Chemistry, Pavol Jozef Šafárik University, Moyzesova 11, Košice 041 54, Slovakia
| |
Collapse
|
239
|
Worku S, Abebe T, Seyoum B, Alemu A, Shimelash Y, Yimer M, Abdissa A, Beyene GT, Swedberg G, Mihret A. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus among Patients Diagnosed with Surgical Site Infection at Four Hospitals in Ethiopia. Antibiotics (Basel) 2023; 12:1681. [PMID: 38136715 PMCID: PMC10741212 DOI: 10.3390/antibiotics12121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of severe surgical site infections (SSI). The molecular epidemiology of MRSA is poorly documented in Ethiopia. This study is designed to determine the prevalence of MRSA and associated factors among patients diagnosed with SSI. A multicenter study was conducted at four hospitals in Ethiopia. A wound culture was performed among 752 SSI patients. This study isolated S. aureus and identified MRSA using standard bacteriology, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS), and cefoxitin disk diffusion test. The genes mecA, femA, vanA, and vanB were detected through PCR tests. S. aureus was identified in 21.6% of participants, with 24.5% of these being methicillin-resistant Staphylococci and 0.6% showing vancomycin resistance. Using MALDI-TOF MS for the 40 methicillin-resistant Staphylococci, we confirmed that 31 (77.5%) were S. aureus, 6 (15%) were Mammaliicoccus sciuri, and the other 3 (2.5%) were Staphylococcus warneri, Staphylococcus epidermidis, and Staphylococcus haemolyticus. The gene mecA was detected from 27.5% (11/40) of Staphylococci through PCR. Only 36.4% (4/11) were detected in S. aureus, and no vanA or vanB genes were identified. Out of 11 mecA-gene-positive Staphylococci, 8 (72.7%) were detected in Debre Tabor Comprehensive Specialized Hospital. Methicillin-resistant staphylococcal infections were associated with the following risk factors: age ≥ 61 years, prolonged duration of hospital stay, and history of previous antibiotic use, p-values < 0.05. Hospitals should strengthen infection prevention and control strategies and start antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Seble Worku
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 1165, Ethiopia; (T.A.); (A.M.)
- Department of Medical Laboratory Science, College of Health Sciences, Debre Tabor University, Debre Tabor P.O. Box 272, Ethiopia
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa 1165, Ethiopia; (B.S.); (A.A.); (M.Y.); (A.A.); (G.T.B.)
| | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 1165, Ethiopia; (T.A.); (A.M.)
| | - Berhanu Seyoum
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa 1165, Ethiopia; (B.S.); (A.A.); (M.Y.); (A.A.); (G.T.B.)
| | - Ashenafi Alemu
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa 1165, Ethiopia; (B.S.); (A.A.); (M.Y.); (A.A.); (G.T.B.)
| | - Yidenek Shimelash
- Debre Tabor Comprehensive Specialized Hospital, Debre Tabor P.O. Box 272, Ethiopia;
| | - Marechign Yimer
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa 1165, Ethiopia; (B.S.); (A.A.); (M.Y.); (A.A.); (G.T.B.)
| | - Alemseged Abdissa
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa 1165, Ethiopia; (B.S.); (A.A.); (M.Y.); (A.A.); (G.T.B.)
| | - Getachew Tesfaye Beyene
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa 1165, Ethiopia; (B.S.); (A.A.); (M.Y.); (A.A.); (G.T.B.)
| | - Göte Swedberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, 750 08 Uppsala, Sweden;
| | - Adane Mihret
- Department of Microbiology, Immunology and Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa 1165, Ethiopia; (T.A.); (A.M.)
- Bacterial and Viral Diseases Research Directorate, Armauer Hansen Research Institute, Addis Ababa 1165, Ethiopia; (B.S.); (A.A.); (M.Y.); (A.A.); (G.T.B.)
| |
Collapse
|
240
|
Arumugam P, Kielian T. Metabolism Shapes Immune Responses to Staphylococcus aureus. J Innate Immun 2023; 16:12-30. [PMID: 38016430 PMCID: PMC10766399 DOI: 10.1159/000535482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a common cause of hospital- and community-acquired infections that can result in various clinical manifestations ranging from mild to severe disease. The bacterium utilizes different combinations of virulence factors and biofilm formation to establish a successful infection, and the emergence of methicillin- and vancomycin-resistant strains introduces additional challenges for infection management and treatment. SUMMARY Metabolic programming of immune cells regulates the balance of energy requirements for activation and dictates pro- versus anti-inflammatory function. Recent investigations into metabolic adaptations of leukocytes and S. aureus during infection indicate that metabolic crosstalk plays a crucial role in pathogenesis. Furthermore, S. aureus can modify its metabolic profile to fit an array of niches for commensal or invasive growth. KEY MESSAGES Here we focus on the current understanding of immunometabolism during S. aureus infection and explore how metabolic crosstalk between the host and S. aureus influences disease outcome. We also discuss how key metabolic pathways influence leukocyte responses to other bacterial pathogens when information for S. aureus is not available. A better understanding of how S. aureus and leukocytes adapt their metabolic profiles in distinct tissue niches may reveal novel therapeutic targets to prevent or control invasive infections.
Collapse
Affiliation(s)
- Prabhakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
241
|
Benedec D, Oniga I, Hanganu D, Tiperciuc B, Nistor A, Vlase AM, Vlase L, Pușcaș C, Duma M, Login CC, Niculae M, Silaghi-Dumitrescu R. Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential. Antibiotics (Basel) 2023; 12:1644. [PMID: 37998846 PMCID: PMC10669438 DOI: 10.3390/antibiotics12111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023] Open
Abstract
This study aimed to investigate the polyphenolic composition and antioxidant and antimicrobial potential of six Romanian Stachys species: S. officinalis, S. germanica, S. byzantina, S. sylvatica, S. palustris, and S. recta. The LC-MS/MS method was used to analyze the polyphenolic profile, while the phenolic contents were spectrophotometrically determined. The antioxidant activity was evaluated using the following methods: DPPH, FRAP, nitrite-induced autooxidation of hemoglobin, inhibition of cytochrome c-catalyzed lipid peroxidation, and electron paramagnetic resonance spectroscopy. The in vitro antimicrobial properties were assessed using agar-well diffusion, broth microdilution, and antibiofilm assays. Fifteen polyphenols were identified using LC-MS and chlorogenic acid was the major component in all the samples (1131.8-6761.4 μg/g). S. germanica, S. palustris, and S. byzantina extracts each displayed an intense antiradical action in relation to high contents of TPC (6.40 mg GAE/mL), flavonoids (3.90 mg RE/mL), and caffeic acid derivatives (0.89 mg CAE/mL). In vitro antimicrobial and antibiofilm properties were exhibited towards Candida albicans, Gram-positive and Gram-negative strains, with the most intense efficacy recorded for S. germanica and S. byzantina when tested against S. aureus. These results highlighted Stachys extracts as rich sources of bioactive compounds with promising antioxidant and antimicrobial efficacies and important perspectives for developing phytopharmaceuticals.
Collapse
Affiliation(s)
- Daniela Benedec
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Daniela Hanganu
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeş Street, 400012 Cluj-Napoca, Romania;
| | - Adriana Nistor
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania; (D.B.); (I.O.); (A.N.)
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 I. Creanga Street, 400010 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 V. Babeş Street, 400012 Cluj-Napoca, Romania;
| | - Cristina Pușcaș
- Department of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 A. Janos Street, 400028 Cluj-Napoca, Romania; (C.P.); (R.S.-D.)
| | - Mihaela Duma
- State Animal Health and Safety Veterinary Laboratory, 1 Piata Marasti Street, 400609 Cluj-Napoca, Romania
| | - Cristian Cezar Login
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 1 Clinicilor Street, 400006 Cluj-Napoca, Romania;
| | - Mihaela Niculae
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 A. Janos Street, 400028 Cluj-Napoca, Romania; (C.P.); (R.S.-D.)
| |
Collapse
|
242
|
Witek K, Kaczor A, Żesławska E, Podlewska S, Marć MA, Czarnota-Łydka K, Nitek W, Latacz G, Tejchman W, Bischoff M, Jacob C, Handzlik J. Chalcogen-Varied Imidazolone Derivatives as Antibiotic Resistance Breakers in Staphylococcus aureus Strains. Antibiotics (Basel) 2023; 12:1618. [PMID: 37998820 PMCID: PMC10669504 DOI: 10.3390/antibiotics12111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
In this study, a search for new therapeutic agents that may improve the antibacterial activity of conventional antibiotics and help to successfully overcome methicillin-resistant Staphylococcus aureus (MRSA) infections has been conducted. The purpose of this work was to extend the scope of our preliminary studies and to evaluate the adjuvant potency of new derivatives in a set of S. aureus clinical isolates. The study confirmed the high efficacy of piperazine derivatives of 5-arylideneimidazol-4-one (7-9) tested previously, and it enabled the authors to identify even more efficient modulators of bacterial resistance among new analogs. The greatest capacity to enhance oxacillin activity was determined for 1-benzhydrylpiperazine 5-spirofluorenehydantoin derivative (13) which, at concentrations as low as 0.0625 mM, restores the effectiveness of β-lactam antibiotics against MRSA strains. In silico studies showed that the probable mechanism of action of 13 is related to the binding of the molecule with the allosteric site of PBP2a. Interestingly, thiazole derivatives tested were shown to act as both oxacillin and erythromycin conjugators in S. aureus isolates, suggesting a complex mode of action (i.e., influence on the Msr(A) efflux pump). This high enhancer activity indicates the high potential of imidazolones to become commercially available antibiotic adjuvants.
Collapse
Affiliation(s)
- Karolina Witek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Department of Pharmaceutical Microbiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
- Bioorganic Chemistry, School of Pharmacy, University of Saarland, Campus B2.1, D-66123 Saarbrüecken, Germany;
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany;
| | - Aneta Kaczor
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Ewa Żesławska
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Krakow, Poland; (E.Ż.); (W.T.)
| | - Sabina Podlewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland
| | - Małgorzata Anna Marć
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Kinga Czarnota-Łydka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Św. Łazarza 15, 31-530 Krakow, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| | - Waldemar Tejchman
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Krakow, Poland; (E.Ż.); (W.T.)
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, D-66421 Homburg, Germany;
| | - Claus Jacob
- Bioorganic Chemistry, School of Pharmacy, University of Saarland, Campus B2.1, D-66123 Saarbrüecken, Germany;
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (K.W.); (A.K.); (S.P.); (M.A.M.); (K.C.-Ł.); (G.L.)
| |
Collapse
|
243
|
Hong J, Son M, Sin J, Kim H, Chung DK. Nanoparticles of Lactiplantibacillus plantarum K8 Reduce Staphylococcus aureus Respiratory Infection and Tumor Necrosis Factor Alpha- and Interferon Gamma-Induced Lung Inflammation. Nutrients 2023; 15:4728. [PMID: 38004123 PMCID: PMC10675637 DOI: 10.3390/nu15224728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple studies have confirmed that Lactiplantibacillus plantarum has beneficial effects in respiratory diseases, including respiratory tract infections, asthma, and chronic obstructive pulmonary disease. However, the role of L. plantarum lysates in respiratory diseases is unclear. Staphylococcus aureus infects the lungs of mice, recruits immune cells, and induces structural changes in alveoli. Lung diseases can be further aggravated by inflammatory cytokines such as CCL2 and interleukin (IL)-6. In in vivo studies, L. plantarum K8 nanoparticles (K8NPs) restored lung function and prevented lung damage caused by S. aureus infection. They inhibited the S. aureus infection and the infiltration of immune cells and prevented the increase in goblet cell numbers in the lungs of S. aureus-infected mice. K8NPs suppressed the expression of CCL2 and IL-6, which were increased by the combination treatment of tumor necrosis factor alpha and interferon gamma (TI), in a dose-dependent manner. In in vitro studies, the anti-inflammatory effect of K8NPs in TI-treated A549 cells and TI-injected mice occurred through the reduction in activated mitogen-activated protein kinases and nuclear factor kappa-B. These findings suggest that the efficacy of K8NPs in controlling respiratory inflammation and infection can be used to develop functional materials that can prevent or alleviate respiratory diseases.
Collapse
Affiliation(s)
- Jonghyo Hong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.); (M.S.); (J.S.)
| | - Minseong Son
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.); (M.S.); (J.S.)
| | - Jaeeun Sin
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.); (M.S.); (J.S.)
| | - Hangeun Kim
- Research and Development Center, Skin Biotechnology Center Co., Ltd., Yongin 17104, Republic of Korea
| | - Dae-Kyun Chung
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.); (M.S.); (J.S.)
| |
Collapse
|
244
|
Dreyer A, Lenz C, Groß U, Bohne W, Zautner AE. Characterization of Campylobacter jejuni proteome profiles in co-incubation scenarios. Front Microbiol 2023; 14:1247211. [PMID: 38029072 PMCID: PMC10666060 DOI: 10.3389/fmicb.2023.1247211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
In dynamic microbial ecosystems, bacterial communication is a relevant mechanism for interactions between different microbial species. When C. jejuni resides in the intestine of either avian or human hosts, it is exposed to diverse bacteria from the microbiome. This study aimed to reveal the influence of co-incubation with Enterococcus faecalis, Enterococcus faecium, or Staphylococcus aureus on the proteome of C. jejuni 81-176 using data-independent-acquisition mass spectrometry (DIA-MS). We compared the proteome profiles during co-incubation with the proteome profile in response to the bile acid deoxycholate (DCA) and investigated the impact of DCA on proteomic changes during co-incubation, as C. jejuni is exposed to both factors during colonization. We identified 1,375 proteins by DIA-MS, which is notably high, approaching the theoretical maximum of 1,645 proteins. S. aureus had the highest impact on the proteome of C. jejuni with 215 up-regulated and 230 down-regulated proteins. However, these numbers are still markedly lower than the 526 up-regulated and 516 down-regulated proteins during DCA exposure. We identified a subset of 54 significantly differentially expressed proteins that are shared after co-incubation with all three microbial species. These proteins were indicative of a common co-incubation response of C. jejuni. This common proteomic response partly overlapped with the DCA response; however, several proteins were specific to the co-incubation response. In the co-incubation experiment, we identified three membrane-interactive proteins among the top 20 up-regulated proteins. This finding suggests that the presence of other bacteria may contribute to increased adherence, e.g., to other bacteria but eventually also epithelial cells or abiotic surfaces. Furthermore, a conjugative transfer regulon protein was typically up-expressed during co-incubation. Exposure to both, co-incubation and DCA, demonstrated that the two stressors influenced each other, resulting in a unique synergistic proteomic response that differed from the response to each stimulus alone. Data are available via ProteomeXchange with identifier PXD046477.
Collapse
Affiliation(s)
- Annika Dreyer
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Uwe Groß
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Bohne
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Erich Zautner
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
245
|
Bacińska Z, Baberowska K, Surowiak AK, Balcerzak L, Strub DJ. Exploring the Antimicrobial Properties of 99 Natural Flavour and Fragrance Raw Materials against Pathogenic Bacteria: A Comparative Study with Antibiotics. PLANTS (BASEL, SWITZERLAND) 2023; 12:3777. [PMID: 37960133 PMCID: PMC10648197 DOI: 10.3390/plants12213777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Currently, one of the most serious global problems is the increasing incidence of infectious diseases. This is closely related to the increase in antibiotic use, which has resulted in the development of multidrug resistance in microorganisms. Another problem is the numerous microbiological contaminations of cosmetic products, which can lead to dangerous bacterial infections in humans. Natural fragrance raw materials exhibit a wide spectrum of biological properties, including antimicrobial properties. Despite their prevalence and availability on the commercial market, there is little research into their effects on multidrug-resistant microorganisms. This study examines the inhibitory effect of natural substances on Gram-positive and Gram-negative bacteria. For this purpose, screening and appropriate assays were carried out to determine the minimum inhibitory concentration (MIC) value of individual substances, using the alamarBlueTM reagent. The lowest MIC values were observed for Staphylococcus aureus (black seed (Nigella sativa) expressed oil, MIC = 25 µg/mL), Kocuria rhizophila (fir balsam absolute, MIC = 12.5 µg/mL), and Pseudomonas putida (cubeb oil and fir balsam absolute, MIC = 12.5 µg/mL). The most resistant Gram-negative species was Enterobacter gergoviae, while Staphylococcus epidermidis was the most resistant Gram-positive species.
Collapse
Affiliation(s)
- Zuzanna Bacińska
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kinga Baberowska
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Alicja Karolina Surowiak
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Lucyna Balcerzak
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Daniel Jan Strub
- Department of Chemical Biology and Bioimaging, Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
246
|
Green MJ, Murray EJ, Williams P, Ghaemmaghami AM, Aylott JW, Williams PM. Modelled-Microgravity Reduces Virulence Factor Production in Staphylococcus aureus through Downregulation of agr-Dependent Quorum Sensing. Int J Mol Sci 2023; 24:15997. [PMID: 37958979 PMCID: PMC10648752 DOI: 10.3390/ijms242115997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Bacterial contamination during space missions is problematic for human health and damages filters and other vital support systems. Staphylococcus aureus is both a human commensal and an opportunistic pathogen that colonizes human tissues and causes acute and chronic infections. Virulence and colonization factors are positively and negatively regulated, respectively, by bacterial cell-to-cell communication (quorum sensing) via the agr (accessory gene regulator) system. When cultured under low-shear modelled microgravity conditions (LSMMG), S. aureus has been reported to maintain a colonization rather than a pathogenic phenotype. Here, we show that the modulation of agr expression via reduced production of autoinducing peptide (AIP) signal molecules was responsible for this behavior. In an LSMMG environment, the S. aureus strains JE2 (methicillin-resistant) and SH1000 (methicillin-sensitive) both exhibited reduced cytotoxicity towards the human leukemia monocytic cell line (THP-1) and increased fibronectin binding. Using S. aureus agrP3::lux reporter gene fusions and mass spectrometry to quantify the AIP concentrations, the activation of agr, which depends on the binding of AIP to the transcriptional regulator AgrC, was delayed in the strains with an intact autoinducible agr system. This was because AIP production was reduced under these growth conditions compared with the ground controls. Under LSMMG, S. aureus agrP3::lux reporter strains that cannot produce endogenous AIPs still responded to exogenous AIPs. Provision of exogenous AIPs to S. aureus USA300 during microgravity culture restored the cytotoxicity of culture supernatants for the THP-1 cells. These data suggest that microgravity does not affect AgrC-AIP interactions but more likely the generation of AIPs.
Collapse
Affiliation(s)
- Macauley J. Green
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (M.J.G.)
| | - Ewan J. Murray
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK (P.W.)
| | - Paul Williams
- Biodiscovery Institute and School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK (P.W.)
| | - Amir M. Ghaemmaghami
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jonathan W. Aylott
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (M.J.G.)
| | - Philip M. Williams
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; (M.J.G.)
| |
Collapse
|
247
|
Kim N, Sengupta S, Lee J, Dash U, Kim S, Kim HJ, Song C, Sim T. Synthesis and antibacterial activities of baulamycin A inspired derivatives. Eur J Med Chem 2023; 259:115592. [PMID: 37478559 DOI: 10.1016/j.ejmech.2023.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023]
Abstract
SbnE is an essential enzyme for staphyloferrin B biosynthesis in Staphylococcus aureus. An earlier study showed that natural product baulamycin A has in vitro inhibitory activity against SbnE and antibacterial potency. A SAR study with analogues of baulamycin A was conducted to identify potent inhibitors of SbnE and/or effective antibiotics against MRSA. The results show that selected analogues, including 11, 18, 21, 24a, 24c, 24m and 24n, exhibit single-digit micromolar inhibitory potencies against SbnE (IC50s = 1.81-8.94 μM) and 11, 24m, 24n possess significant activities against both SbnE (IC50s = 4.12-6.12 μM) and bacteria (MICs = 4-32 μg/mL). Biological investigations revealed that these substances possess potent cell wall disruptive activities and that they inhibit siderophore production in MRSA. Among the selected analogues, 7 has excellent antibiotic activities both gram-positive and -negative bacteria (0.5-4 μg/mL). Moreover, these analogues significantly impede biofilm formation in a concentration-dependent manner. Taken together, the results of the investigation provide valuable insight into the nature of novel baulamycin A analogues that have potential efficacy against MRSA owing to their membrane damaging activity and/or inhibitory efficacy against siderophore production.
Collapse
Affiliation(s)
- Namkyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sandip Sengupta
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwon Lee
- Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Uttam Dash
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soojeung Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hak Joong Kim
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Chiman Song
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea; Severance Biomedical Science Institute, Graduate School of Medicinal Science, Brain Korea 21 Project, Yonsei University College of Medicine, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
248
|
Wu P, Yang J, Chen C, Li R, Chen S, Weng Y, Lin Y, Chen Z, Yu F, Lü X, Ni L, Han J. Rational design of Abhisin-like peptides enables generation of potent antimicrobial activity against pathogens. Appl Microbiol Biotechnol 2023; 107:6621-6640. [PMID: 37672069 DOI: 10.1007/s00253-023-12748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Infections caused by pathogens can be a significant challenge in wound healing, particularly when antimicrobial resistance is a factor. This can pose a serious threat to human health and well-being. In this scenario, it is imperative to explore novel antimicrobial agents to fight against multi-drug resistant (MDR) pathogenic bacteria. This study employed rational design strategies, including truncation, amino acid replacement, and heterozygosity, to obtain seven α-helical, cationic, and engineered peptides based on the original template of Abhisin. Among the analogs of Abhisin, AB7 displayed broad-spectrum and potent antimicrobial activity, superior targeting of membranes and DNA, and the ability to disrupt biofilms and anti-endotoxins in vitro. Additionally, we evaluated the anti-infection ability of AB7 using a murine skin wound model infected with methicillin-resistant Staphylococcus aureus (MRSA) and found that AB7 displayed negligible toxicity both in vitro and in vivo. Furthermore, AB7 exhibited desirable therapeutic efficacy by reducing bacterial burden and pro-inflammatory mediators, modulating cytokines, promoting wound healing, and enhancing angiogenesis. These results highlight the potential of AB7 as a promising candidate for a new antibiotic. KEY POINTS: • A α-helical, cationic, and engineered peptide AB7 was obtained based on Abhisin. • AB7 exhibited potent antimicrobial activity and multiple bactericidal actions. • AB7 effectively treated infected skin wounds in mice.
Collapse
Affiliation(s)
- Peifen Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jie Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Chi Chen
- College of Modern Agricultural Engineering, Fujian Vocational College of Agriculture, Fuzhou, 350303, China
| | - Ruili Li
- College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shunxian Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yanlin Weng
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yayi Lin
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhiying Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Fengfan Yu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xucong Lü
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jinzhi Han
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
249
|
Agyirifo DS, Mensah TA, Senya ASY, Hounkpe A, Dornyoh CD, Otwe EP. Dynamics of antimicrobial resistance and virulence of staphylococcal species isolated from foods traded in the Cape Coast metropolitan and Elmina municipality of Ghana. Heliyon 2023; 9:e21584. [PMID: 38027608 PMCID: PMC10663863 DOI: 10.1016/j.heliyon.2023.e21584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The impact of staphylococci on food poisoning and infections could be higher than previously reported. In this study, we characterised the occurrence and coexistence of antimicrobial resistance and virulence genes of staphylococci isolates in foods. Staphylococci were isolated from 236 samples of selected street-vended foods and identified. The pattern of antimicrobial resistance and virulence genes in the staphylococci were assessed using disc diffusion, PCR and analysis of next-generation sequencing data. The food samples (70.76 %) showed a high prevalence of staphylococci and differed among the food categories. Forty-five Staphylococcus species were identified and comprised coagulase-negative and positive species. Staphylococcus sciuri (now Mammaliicoccus sciuri), S. aureus, S. kloosii, S. xylosus, S. saprophyticus, S. haemolyticus and S. succinus were the most abundant species. The staphylococcal isolates exhibited resistance to tetracycline, levofloxacin, ciprofloxacin, norfloxacin, gentamicin and amikacin and susceptibility to nitrofurantoin. Antimicrobial susceptibilities were also reported for cefoperazone, ceftriaxone, cefotaxime, nalidixic acid and piperacillin-tazobactam. The antimicrobial resistance and virulence genes commonly detected consisted of tet, arl, macB, van, gyr, nor, optrA, bcrA, blaZ, taeA and S. aureus lmrS. The isolates frequently exhibited multiple resistance (30.42 %) of up to eight antimicrobial drug classes. The isolates predominantly harboured genes that express efflux pump proteins (50.53 %) for antibiotic resistance compared with inactivation (10.05 %), target alteration (26.72 %), protection (7.67 %) and replacement (3.17 %). The virulence determinants comprised genes of pyrogenic toxin superantigens (eta, etb, tst), adhesions (clf, fnbA, fnbB, cna, map, ebp, spA, vWbp, coa) and genes that express exoproteins (nuclease, metalloprotease, γ-hemolysin, hyaluronate lyase). There was a statistically significant difference in the prevalence of staphylococci isolates and their antimicrobial resistance and virulence profile as revealed by the phenotypic, PCR and next-generation sequencing techniques. The findings suggest a higher health risk for consumers. We recommend a critical need for awareness and antimicrobial susceptibility and anti-virulence strategies to ensure food safety and counteract the spread of this clinically relevant genus.
Collapse
Affiliation(s)
- Daniel Sakyi Agyirifo
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Theophilus Abonyi Mensah
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Andrews Senyenam Yao Senya
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Alphonse Hounkpe
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Cindy Deladem Dornyoh
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Plas Otwe
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
250
|
Antropenko A, Caruso F, Fernandez-Trillo P. Stimuli-Responsive Delivery of Antimicrobial Peptides Using Polyelectrolyte Complexes. Macromol Biosci 2023; 23:e2300123. [PMID: 37449448 DOI: 10.1002/mabi.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Antimicrobial peptides (AMPs) are antibiotics with the potential to address antimicrobial resistance. However, their translation to the clinic is hampered by issues such as off-target toxicity and low stability in biological media. Stimuli-responsive delivery from polyelectrolyte complexes offers a simple avenue to address these limitations, wherein delivery is triggered by changes occurring during microbial infection. The review first provides an overview of pH-responsive delivery, which exploits the intrinsic pH-responsive nature of polyelectrolytes as a mechanism to deliver these antimicrobials. The examples included illustrate the challenges faced when developing these systems, in particular balancing antimicrobial efficacy and stability, and the potential of this approach to prepare switchable surfaces or nanoparticles for intracellular delivery. The review subsequently highlights the use of other stimuli associated with microbial infection, such as the expression of degrading enzymes or changes in temperature. Polyelectrolyte complexes with dual stimuli-response based on pH and temperature are also discussed. Finally, the review presents a summary and an outlook of the challenges and opportunities faced by this field. This review is expected to encourage researchers to develop stimuli-responsive polyelectrolyte complexes that increase the stability of AMPs while providing targeted delivery, and thereby facilitate the translation of these antimicrobials.
Collapse
Affiliation(s)
- Alexander Antropenko
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paco Fernandez-Trillo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Cientı́ficas Avanzadas (CICA), Universidade da Coruña, A Coruña, 15071, Spain
| |
Collapse
|