201
|
Ochi K, Derfoul A, Tuan RS. A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro. Osteoarthritis Cartilage 2006; 14:30-8. [PMID: 16188469 DOI: 10.1016/j.joca.2005.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 07/26/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage tissue engineering using multipotential human mesenchymal stem cells (hMSCs) is a promising approach to develop treatment for degenerative joint diseases. A key requirement is that the engineered tissues maintain their hyaline articular cartilage phenotype and not proceed towards hypertrophy. It is noteworthy that osteoarthritic articular cartilage frequently contains limited regions of reparative cartilage, suggesting the presence of bioactive factors with regenerative activity. Based on this idea, we recently performed cDNA microarray analysis to identify genes that are strongly expressed only in articular cartilage and encode secreted gene products. One of the genes that met our criteria was SCRG1. This study aims to analyze SCRG1 function in cartilage development using an in vitro mesenchymal chondrogenesis system. METHODS Full-length SCRG1 cDNA was subcloned into pcDNA5 vector, and transfected into hMSCs and murine C3H10T1/2 mesenchymal cells, placed in pellet cultures and micromass cultures, respectively. The cultures were analyzed by reverse transcription-polymerase chain reaction for the expression of SCRG1 and cartilage marker genes, and by histological staining for cartilage phenotype. RESULTS Induction of SCRG1 expression was seen during in vitro chondrogenesis, and was dependent on dexamethasone (DEX) known to promote chondrogenesis. Immunohistochemistry revealed that SCRG1 protein was localized to the extracellular matrix. Forced expression of SCRG1 in hMSCs suppressed their proliferation, and stimulated chondrogenesis in C3H10T1/2 cells, confirmed by reduced collagen type I and elevated collagen type IIB expression. CONCLUSION These results suggest that SCRG1 is involved in cell growth suppression and differentiation during DEX-dependent chondrogenesis. SCRG1 may be of utility in gene-mediated cartilage tissue engineering.
Collapse
Affiliation(s)
- Kensuke Ochi
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-8022, USA
| | | | | |
Collapse
|
202
|
Abstract
Bone and cartilage and their disorders are addressed under the following headings: functions of bone; normal and abnormal bone remodeling; osteopetrosis and osteoporosis; epithelial-mesenchymal interaction, condensation and differentiation; osteoblasts, markers of bone formation, osteoclasts, components of bone, and pathology of bone; chondroblasts, markers of cartilage formation, secondary cartilage, components of cartilage, and pathology of cartilage; intramembranous and endochondral bone formation; RUNX genes and cleidocranial dysplasia (CCD); osterix; histone deacetylase 4 and Runx2; Ligand to receptor activator of NFkappaB (RANKL), RANK, osteoprotegerin, and osteoimmunology; WNT signaling, LRP5 mutations, and beta-catenin; the role of leptin in bone remodeling; collagens, collagenopathies, and osteogenesis imperfecta; FGFs/FGFRs, FGFR3 skeletal dysplasias, craniosynostosis, and other disorders; short limb chondrodysplasias; molecular control of the growth plate in endochondral bone formation and genetic disorders of IHH and PTHR1; ANKH, craniometaphyseal dysplasia, and chondrocalcinosis; transforming growth factor beta, Camurati-Engelmann disease (CED), and Marfan syndrome, types I and II; an ACVR1 mutation and fibrodysplasia ossificans progressiva; MSX1 and MSX2: biology, mutations, and associated disorders; G protein, activation of adenylyl cyclase, GNAS1 mutations, McCune-Albright syndrome, fibrous dysplasia, and Albright hereditary osteodystrophy; FLNA and associated disorders; and morphological development of teeth and their genetic mutations.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
203
|
Payushina OV, Domaratskaya EI, Starostin VI. Mesenchymal stem cells: Sources, phenotype, and differentiation potential. BIOL BULL+ 2006. [DOI: 10.1134/s106235900601002x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
204
|
Weizmann S, Tong A, Reich A, Genina O, Yayon A, Monsonego-Ornan E. FGF upregulates osteopontin in epiphyseal growth plate chondrocytes: Implications for endochondral ossification. Matrix Biol 2005; 24:520-9. [PMID: 16253490 DOI: 10.1016/j.matbio.2005.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 06/15/2005] [Accepted: 07/13/2005] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor receptor 3 (FGFR3) signaling pathways are essential for normal longitudinal bone growth. Mutations in this receptor lead to various human growth disorders, including Achondroplasia, disproportionately short-limbed dwarfism, characterized by narrowing of the hypertrophic region of the epiphyseal growth plates. Here we find that FGF9, a preferred ligand for FGFR3 rapidly induces the upregulation and secretion of the matrix resident phosphoprotein, osteopontin (OPN) in cultured chicken chondrocytes. This effect was observed as early as two hours post stimulation and at FGF9 concentrations as low as 1.25 ng/ml at both mRNA and protein levels. OPN expression is known to be associated with chondrocyte and osteoblast differentiation and osteoclast activation. Unexpectedly, FGF9 induced OPN was accompanied by inhibition of differentiation and increased proliferation of the treated chondrocytes. Moreover, FGF9 stimulated OPN expression irrespective of the differentiation stage of the cells or culture conditions. In situ hybridization analysis of epiphyseal growth plates from chicken or mice homozygous for the Achondroplasia, G369C/mFGFR3 mutation demonstrated co-localization of OPN expression and osteoclast activity, as evidenced by tartarate resistant acid phosphatase positive cells in the osteochondral junction. We propose that FGF signaling directly activates OPN expression independent of chondrocytes differentiation. This may enhance the recruitment and activation of osteoclasts, and increase in cartilage resorption and remodeling in the chondro-osseus border.
Collapse
Affiliation(s)
- S Weizmann
- Institute of Animal Science, the Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
205
|
Abramovitch-Gottlib L, Gross T, Naveh D, Geresh S, Rosenwaks S, Bar I, Vago R. Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 2005; 20:138-46. [PMID: 16292614 DOI: 10.1007/s10103-005-0355-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
Mesenchymal stem cells (MSCs) seeded on three-dimensional (3D) coralline (Porites lutea) biomatrices were irradiated with low-level laser irradiation (LLLI). The consequent phenotype modulation and development of MSCs towards ossified tissue was studied in this combined 3D biomatrix/LLLI system and in a control group, which was similarly grown, but was not treated by LLLI. The irradiated and non irradiated MSC were tested at 1-7, 10, 14, 21, 28 days of culturing via analysis of cellular distribution on matrices (trypan blue), calcium incorporation to newly formed tissue (alizarin red), bone nodule formation (von Kossa), fat aggregates formation (oil red O), alkaline phosphatase (ALP) activity, scanning electron microscopy (SEM) and electron dispersive spectrometry (EDS). The results obtained from the irradiated samples showed enhanced tissue formation, appearance of phosphorous peaks and calcium and phosphate incorporation to newly formed tissue. Moreover, in irradiated samples ALP activity was significantly enhanced in early stages and notably reduced in late stages of culturing. These findings of cell and tissue parameters up to 28 days of culture revealed higher ossification levels in irradiated samples compared with the control group. We suggest that both the surface properties of the 3D crystalline biomatrices and the LLLI have biostimulatory effects on the conversion of MSCs into bone-forming cells and on the induction of ex-vivo ossification.
Collapse
Affiliation(s)
- Liat Abramovitch-Gottlib
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | | | | | | | | | | | | |
Collapse
|
206
|
Nozaki T, Takeyasu M, Hirao A, Shinohara M, Daito M, Ohura K. Differentiation of Rat Dental Pulp-derived Cells into an Osteoblastic Lineage. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1348-8643(05)80014-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
207
|
Niikura T, Miwa M, Sakai Y, Lee SY, Kuroda R, Fujishiro T, Kubo S, Doita M, Kurosaka M. Human hemarthrosis-derived progenitor cells can differentiate into osteoblast-like cells in vitro. Biochem Biophys Res Commun 2005; 336:1234-40. [PMID: 16171789 DOI: 10.1016/j.bbrc.2005.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 09/01/2005] [Indexed: 11/21/2022]
Abstract
We hypothesized that intraarticular osteochondral fracture-induced hemarthrosis could be a useful cell source for bone regeneration, as it is thought to contain osteoprogenitor cells derived from bone marrow. Therefore, we investigated whether human hemarthrosis-derived cells have the potential to differentiate into osteoblast-like cells in vitro. We aspirated hemarthrosis from patients suffering from osteochondral fractures of knee joints, and cultured hemarthrosis-derived cells in a medium supplemented with dexamethasone, beta-glycerophosphate, and ascorbic acid, or without them as control. The morphology of the treated cells appeared to be cuboidal shape, differing from spindle-like shape observed in the control. Matrix mineralization was observed only in the treated culture. Alkaline phosphatase activity and gene expression of alkaline phosphatase, parathyroid hormone receptor, osteopontin, and osteocalcin were up-regulated compared with the control. These studies demonstrate that human hemarthrosis-derived cells can differentiate into osteoblast-like cells, i.e., they contain osteoprogenitor cells and are a useful cell source for bone regeneration.
Collapse
Affiliation(s)
- Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Cao B, Deasy BM, Pollett J, Huard J. Cell Therapy for Muscle Regeneration and Repair. Phys Med Rehabil Clin N Am 2005; 16:889-907, viii. [PMID: 16214050 DOI: 10.1016/j.pmr.2005.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Baohong Cao
- Department of Orthopaedic Surgery, University of Pittsburgh, Growth and Development Laboratory, Children's Hospital of Pittsburgh, 4100 Rangos Research Center, 3460 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
209
|
Li CD, Zhang WY, Li HL, Jiang XX, Zhang Y, Tang PH, Mao N. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation. Cell Res 2005; 15:539-47. [PMID: 16045817 DOI: 10.1038/sj.cr.7290323] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblast-like morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and alpha-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class I major histocompatibility complex (MHC-I), but they did not express MHC-II molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.
Collapse
Affiliation(s)
- Chang Dong Li
- Beijing Gynecology and Obstetrics hospital, Affiliate of Capital University of Medical Sciences, Beijing 100026, China
| | | | | | | | | | | | | |
Collapse
|
210
|
Lee JW, Jhee O, Yuan H, Kim T, Kim D, Lee M, Om A, Lee B, Park SK, Kang J. Effect of Korean oriental medicine extract on bone mass as compared with alendronate in ovariectomized rats. J Med Food 2005; 8:369-76. [PMID: 16176149 DOI: 10.1089/jmf.2005.8.369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A number of alternative medicines (AMs) have often been used as traditional therapies for various diseases without scientific or clinical evidence supporting their use. The present study examined the pharmaceutical effects of an AM extract with a long history of use as a traditional medicine for various bone diseases. To evaluate it as a potential candidate for use as an anti-osteoporotic drug, we investigated the effects of the AM extract on the progression of bone loss in ovariectomized (OVX) rats fed a calcium (Ca)-deficient diet for 4 or 12 weeks. We also compared the AM extract with alendronate, an anti-resorptive drug. The AM extract did not influence bone turnover as indicated by biochemical markers [i.e., deoxypyridinoline (DPD)]. In contrast, alendronate treatment seemed to reduce bone turnover via inhibition of bone resorption as evidenced by reduced urinary DPD concentrations accompanied by a tendency for decreased serum tartrate-resistant acid phosphatase. Administration of alendronate or AM extracts did not significantly affect bone density, although both tended to increase bone mineral density (BMD) and bone strength of the femur. Although both treatments did not affect vertebral BMD and bone strength, histological analysis of vertebrae showed well-developed trabecular networking in OVX rats treated with alendronate or AM extract, in contrast to the thin and disconnected trabecule in OVX rats. In conclusion, the AM extract produced a very weak effect on the prevention of bone loss induced by OVX and Ca deficiency in rats, but was similar to the results observed with alendronate. Further verification is necessary to justify the use of the AM extract as a treatment for osteoporosis.
Collapse
Affiliation(s)
- Joo-Won Lee
- Department of Pharmacology & Clinical Pharmacology Laboratory, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Liu J, DeYoung SM, Zhang M, Zhang M, Cheng A, Saltiel AR. Changes in integrin expression during adipocyte differentiation. Cell Metab 2005; 2:165-77. [PMID: 16154099 DOI: 10.1016/j.cmet.2005.08.006] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 07/15/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
3T3-L1 preadipocytes require cAMP for maximal differentiation. Microarray analysis reveals that the integrins alpha5 and alpha6 are coordinately regulated by cAMP. alpha5 expression is gradually diminished during adipogenesis, whereas alpha6 is increased. Overexpression of alpha5 in preadipocytes results in enhanced proliferation and attenuated differentiation. Conversely, alpha6 overexpression is without effect. The GTPase Rac is normally inhibited during differentiation. However, overexpression of integrin alpha5 increases Rac activity. Constitutively active but not dominant-negative Rac inhibits differentiation when overexpressed in preadipocytes, implying its role downstream of alpha5 integrin in maintaining preadipocytes in an undifferentiated state. Moreover, alpha6 integrin is critically involved in clustering growth-arrested preadipocytes on basement membrane Matrigel. Perturbation of such clustering enhances Rho activity and promotes growth-arrested preadipocytes to reenter the cell cycle. These findings demonstrate a role for integrin alpha6 in connecting morphogenesis with signaling processes leading to terminal differentiation.
Collapse
Affiliation(s)
- Jun Liu
- Department of Internal Medicine, Life Sciences Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
212
|
Takahashi Y, Yamamoto M, Tabata Y. Design of an osteoinductive biodegradable cell scaffold based on controlled release technology of bone morphogenetic protein. Isr J Chem 2005. [DOI: 10.1560/03pc-wv9d-hwv8-0l9y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
213
|
Miyazaki T, Kitagawa Y, Toriyama K, Kobori M, Torii S. Isolation of two human fibroblastic cell populations with multiple but distinct potential of mesenchymal differentiation by ceiling culture of mature fat cells from subcutaneous adipose tissue. Differentiation 2005; 73:69-78. [PMID: 15811130 DOI: 10.1111/j.1432-0436.2005.07302004.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissue is a source of adult multipotent stem cells that can differentiate along mesenchymal lineage. When mature fat cells obtained from human subcutaneous adipose tissue were maintained with attachment to the ceiling surface of culture flasks filled with medium, two fibroblastic cell populations appeared at the ceiling and the bottom surface. Both populations were positive to CD13, CD90, and CD105, moderately positive to CD9, CD166, and CD54, negative to CD31. CD34, CD66b, CD106, and CD117, exhibited potential of unlimited proliferation, and differentiated along mesenchymal lineage to produce adipocytes, osteoblasts, and chondrocytes. The population that appeared at the ceiling surface showed higher potential of adipogenic differentiation. These observations showed that the cells tightly attached to mature fat cells can generate two fibroblastic cell populations with multiple but distinct potential of differentiation. Since enough number of both populations for clinical transplantation can be easily obtained by maintaining fat cells from a small amount of subcutaneous adipose tissue, this method has an advantage in preparing autologous cells for patients needing repair of damaged tissues by reconstructive therapy.
Collapse
Affiliation(s)
- Takamichi Miyazaki
- Department of Bioengineering Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
214
|
Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 2005; 26:3587-96. [PMID: 15621249 DOI: 10.1016/j.biomaterials.2004.09.046] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
Biodegradable gelatin sponges incorporating various amounts of beta-tricalcium phosphate (betaTCP) (gelatin-betaTCP) were fabricated and the in vitro osteogenic differentiation of mesenchymal stem cells (MSC) isolated from the rat bone marrow in the sponges was investigated. The gelatin sponges incorporating betaTCP have an interconnected pore structure with the average size of 180-200 microm, irrespective of the betaTCP amount. The stiffness of the sponges became higher with an increase in the amount of betaTCP. When seeded into the sponges by an agitated method, MSC were homogeneously distributed throughout the sponge. The morphology of cells attached got more spreaded with the increased betaTCP amount. The rate of MSC proliferation depended on the betaTCP amount and culture method: the higher the betaTCP amount in the stirring culture, the higher the proliferation rate. The deformed extent of gelatin-betaTCP sponges was suppressed with the increased amount of betaTCP. When measured to evaluate the osteogenic differentiation of MSC, the alkaline phosphatase activity and osteocalcin content became maximum for the sponge with a betaTCP amount of 50 wt%, although both the values were significantly high in the stirring culture compared with those in the static culture. We concluded that the attachment, proliferation, and osteogenic differentiation of MSC were influenced by sponge composition of gelatin and betaTCP as the cell scaffold.
Collapse
Affiliation(s)
- Yoshitake Takahashi
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
215
|
Jaquet K, Krause KT, Denschel J, Faessler P, Nauerz M, Geidel S, Boczor S, Lange C, Stute N, Zander A, Kuck KH. Reduction of Myocardial Scar Size after Implantation of Mesenchymal Stem Cells in Rats: What Is the Mechanism? Stem Cells Dev 2005; 14:299-309. [PMID: 15969625 DOI: 10.1089/scd.2005.14.299] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of a cellular therapy offers a promising approach for the treatment of heart disease. Besides other precursor cells, bone marrow (BM)-derived stem cells were discovered that migrate into ischemic myocardium and participate in myogenesis as well as angiogenesis. A subpopulation of those are the mesenchymal stem cells (MSC), which may be potential candidates for repairing ischemic heart tissue. MSC are easy to prepare and can be used in an autologous strategy. Here we demonstrate the effect of transplanted MSC in our autologous rat model of myocardial injury. BM was isolated from tibiae and femurs of Wistar rats. After 24 h, the adhering MSC were separated, expanded, retrovirally transduced using green fluorescent protein (GFP), and cloned. A cryo-infarct was generated in the rat hearts, and immediately after this the cells were injected into the border zone of the lesion. After a 10-week follow up, the hearts were excised and the myocardial scar areas were measured using computer-guided morphometry. When comparing transplanted rats (n = 8) with control animals (n = 5) treated rats demonstrated a significant reduction in the width (p < 0.05) of the myocardial scar area. The depth of the scars of the cell therapy rats was less extended (p > 0.05) and the myocardium of these animals was thicker than in the controls (p > 0.05). Immunohistochemical analyses revealed neither evidence of MSC transdifferentiation into cardiomyocytes, nor could an increased neovascularization be found. In conclusion, MSC are responsible for a remarkable reduction of the myocardial scar size in the treated animals. But, whether this strategy is directly transferable to the patient suffering from heart disease has to be determined. In addition, the mechanism by which MSC act in the ischemic heart remains to be determined.
Collapse
Affiliation(s)
- Kai Jaquet
- Department of Cardiology/Cell Biology, St. Georg Hospital, Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
In Vivo Chondrogenesis of BMSCs at Non-Chondrogenesis Site by Co-Transplantation of BMSCs and Chondrocytes with Pluronic as Biomaterial. ACTA ACUST UNITED AC 2005. [DOI: 10.4028/www.scientific.net/kem.288-289.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone Marrow Stromal Cells (BMSCs) have chondrogenesis potential if chondrogenic environments or factors are provided. This study tests the hypothesis that chondrocytes can promote BMSC chondrogenesis at non-chondrogensis site. Porcine BMSCs and auricular chondrocytes were mixed at different ratios and 2.5×107 mixed cells were resuspended in 0.5 ml 30% Pluronic, and then the mixture was injected into nude mice subcutaneously as experimental groups. Chondrocytes or BMSCs at the same cell number were mixed with 0.5 ml Pluronic and injected respectively as controls. 2.5×107 chondrocytes were mixed and injected as low concentration chondrocyte control. 8 weeks later, all specimens in experimental groups and chondrocyte group formed mature cartilage with abundant collagen II expression. Mature lacuna structures and metachromatic matrices were also observed in these specimens with the same level of GAG contents. Average wet weight of specimens in experimental groups was over 70% of that in chondrocyte group. In contrast, specimens in BMSC group showed mainly fibrous tissue. Only a small amount of cartilage was formed in specimens of low concentration chondrocyte group and the average wet weight was below 30% of that in chondrocyte group. These results demonstrate that chondrocytes can provide chondrogenic microenvironment and thus promote in vivo chondrogenesis of BMSCs at non-chondrogenesis sites. It also indicates that Pluronic is an ideal injectable biomaterial for cartilage tissue engineering.
Collapse
|
217
|
Kim SW, Her SJ, Kim SY, Shin CS. Ectopic overexpression of adipogenic transcription factors induces transdifferentiation of MC3T3-E1 osteoblasts. Biochem Biophys Res Commun 2005; 327:811-9. [PMID: 15649418 DOI: 10.1016/j.bbrc.2004.12.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Indexed: 10/26/2022]
Abstract
Osteoblasts and adipocytes originate from common mesenchymal progenitor cells. We have investigated whether mouse osteoblastic MC3T3-E1 cells can be induced to transdifferentiate into mature adipocytes by the ectopic expression of adipogenic transcription factors, PPARgamma, C/EBPalpha, or both. Retrovirus-mediated overexpression of PPARgamma alone or both PPARgamma and C/EBPalpha resulted in reduced alkaline phosphatase activity and osteoblast-specific gene expression. Moreover, foci of adipocytes were identified in conditions favoring osteoblastic maturation. Upon treatment with insulin, dexamethasone, and IBMX, cells overexpressing PPARgamma alone or both PPARgamma and C/EBPalpha showed marked transdifferentiation to mature adipocytes expressing molecular markers of adipocytes. Cells expressing both PPARgamma and C/EBPalpha showed more robust phenotype of adipocytes than the cells expressing PPARgamma alone. Overexpression of C/EBPalpha alone did not result in adipogenesis. These results suggest that PPARgamma is a key molecular switch for the transdifferentiation to adipocytes whereas C/EBPalpha may differentiate MC3T3-E1 cells into osteoblasts and adipocytes.
Collapse
Affiliation(s)
- Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 28 Yungun-Dong, Chongno-Gu, Seoul 110-744, Republic of Korea
| | | | | | | |
Collapse
|
218
|
Yang L, Butcher M, Simon RR, Osip SL, Shaughnessy SG. The effect of heparin on osteoblast differentiation and activity in primary cultures of bovine aortic smooth muscle cells. Atherosclerosis 2005; 179:79-86. [PMID: 15721012 DOI: 10.1016/j.atherosclerosis.2004.10.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 09/30/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
Recent studies have suggested that aortic smooth muscle cells undergo a phenotypic transition into osteoblast-like cells and mineralize when cultured in the presence of beta-glycerophosphate. Since we had previously demonstrated that heparin could inhibit osteoblast differentiation and mineralization in primary cultures of murine calvaria cells, we were interested in determining if heparin would have a similar effect when primary aortic smooth muscle cells were cultured in the presence of beta-glycerophosphate. The effect of heparin and low molecular weight heparin (LMWH) on osteoblast differentiation and activity was therefore examined in primary cultures of bovine aortic smooth muscle cells (BASMC) over a 14-day period. Here, we report that BASMC differentiate into osteoblast-like cells when cultured in the presence of beta-glycerophosphate. Moreover, we report that heparin not only inhibits this process but that it also inhibits the ability of BASMC to mineralize as well. Importantly, these effects were found not to be dependent upon heparins' anticoagulant activity since unfractionated heparin and heparins with low anti-thrombin III affinities inhibited the mineralization process equally well. Sulfation, however, was found to be a major determinant of heparins ability to inhibit BASMC mineralization since neither dermatan sulfate nor N-desulfated heparin were able to demonstrate an effect. We conclude that BASMC cultures can undergo a phenotypic transition into mature osteoblasts and that both the differentiation process and their ability to mineralize are inhibited by heparin.
Collapse
Affiliation(s)
- Lufang Yang
- Department of Pathology and Molecular Medicine, McMaster University and the Henderson Research Center, 711 Concession Street, Hamilton, Ont., Canada L8V 1C3
| | | | | | | | | |
Collapse
|
219
|
Dressler MR, Butler DL, Boivin GP. Effects of age on the repair ability of mesenchymal stem cells in rabbit tendon. J Orthop Res 2005; 23:287-93. [PMID: 15734238 DOI: 10.1016/j.orthres.2004.06.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2004] [Indexed: 02/04/2023]
Abstract
Successful tissue engineered repair in the aging adult requires an abundant source of autologous, multipotent mesenchymal stem cells (MSCs). Although the number of bone marrow-derived MSCs declines dramatically with aging, their effectiveness in repair with increasing age has not been studied. We tested the hypothesis that MSCs harvested from geriatric rabbits would not repair patellar tendon defects as well as MSCs harvested from younger adult rabbits. In a novel within-subjects experiment, autologous MSCs were isolated from 1-year old rabbits, culture expanded, and cryogenically preserved. After housing the rabbits for 3 years, MSCs were re-harvested from the 4-year old rabbits and expanded. Five hundred thousand thawed and fresh MSCs were each separately mixed with type I collagen gel (333.3 x 10(3) cells/mg collagen) 24 h before surgery, and the resulting constructs implanted in bilateral full-length central third tendon defects. Twelve weeks post-surgery, the bone-tendon repair-bone units were failed in tension. Intra-animal (paired) comparisons between repair tissue treated with 1-year old MSCs and repair tissue treated with 4-year old MSCs resulted in no significant differences (alpha=0.05) in material properties including maximum stress (10.8 MPa vs. 9.9 MPa; p=0.762), modulus (139.8 MPa vs. 146.2 MPa; p=0.914), and strain energy density (0.52 N mm/mm(3) vs. 0.53 N mm/mm(3); p=0.966). Despite an age-related trend, there were also no significant differences in structural properties including maximum force (62.9 N vs. 27.0 N; p=0.070), stiffness (24.9 N/mm vs. 12.0 N/mm; p=0.111), and strain energy (87.2 N mm vs. 31.4 N mm; p=0.061). A subset of the rabbits (n=4 1 yrMSC, n=2 4 yrMSC) showed the presence of ectopic bone in the repair region and were not included in the mechanical analyses. We conclude that in the rabbit model MSCs do not lose their benefit as a tendon repair therapy with aging and that MSCs can be cryogenically stored for 3 years and still effectively repair soft tissue injuries.
Collapse
Affiliation(s)
- M R Dressler
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, P.O. Box 670048, Cincinnati, OH 45267-0048, USA
| | | | | |
Collapse
|
220
|
Abstract
Although stem cells hold considerable promise for the treatment of numerous diseases including cardiovascular disease, neurodegenerative disease, musculoskeletal disease, diabetes and cancer, obstacles such as the control of stem cell fate, allogenic rejection and limited cell availability must be overcome before their therapeutic potential can be realized. This requires an improved understanding of the signaling pathways that affect stem cell fate. Cell-based phenotypic and pathway-specific screens of natural products and synthetic compounds have recently provided a number of small molecules that can be used to selectively control stem cell proliferation and differentiation. Examples include the selective induction of neurogenesis and cardiomyogenesis in murine embryonic stem cells, osteogenesis in mesenchymal stem cells and dedifferentiation in skeletal muscle cells. Such molecules will likely provide new insights into stem cell biology, and may ultimately contribute to effective medicines for tissue repair and regeneration.
Collapse
Affiliation(s)
- Sheng Ding
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
221
|
Centrella M, Christakos S, McCarthy TL. Skeletal hormones and the C/EBP and Runx transcription factors: interactions that integrate and redefine gene expression. Gene 2005; 342:13-24. [PMID: 15527960 DOI: 10.1016/j.gene.2004.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 05/27/2004] [Accepted: 06/17/2004] [Indexed: 11/27/2022]
Abstract
Systemic hormones and local growth factors have significant and often complex roles in normal tissue development, growth, remodeling, and repair. Early efforts in skeletal tissue attempted to define active panels of these agents and their direct effects on cell proliferation, matrix production, and secretion of other soluble mediators of differentiated cell function. Initial results resolved many of these questions and began to unveil functional interactions between specific hormones and growth factors. More recent evidence suggests that interactions between individual hormone systems also occur in less anticipated but probably not less meaningful ways. In some cases, these interactions may help to define a spectrum of effects on gene expression by focusing, refocusing, or integrating the activity of previously recognized transcription regulators. Other studies in isolated osteoblasts predict that certain steroid hormones have distinctive effects on specific transcription factors with important roles in bone growth and repair. In this review, we focus on studies that define functional and physical interactions between molecular mediators of hormone activity that could directly effect skeletal growth factor biology.
Collapse
Affiliation(s)
- Michael Centrella
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8041, USA.
| | | | | |
Collapse
|
222
|
Non-classical mechanisms of heart repair. Mol Cell Biochem 2005. [DOI: 10.1007/s11010-005-5117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
223
|
Harrison JR, Huang YF, Wilson KA, Kelly PL, Adams DJ, Gronowicz GA, Clark SH. Col1a1 promoter-targeted expression of p20 CCAAT enhancer-binding protein beta (C/EBPbeta), a truncated C/EBPbeta isoform, causes osteopenia in transgenic mice. J Biol Chem 2004; 280:8117-24. [PMID: 15598659 DOI: 10.1074/jbc.m410076200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
CCAAT enhancer-binding protein (C/EBP) transcription factors regulate adipocyte differentiation, and recent evidence suggests that osteoblasts and adipocytes share a common pluripotent progenitor in bone marrow. However, little is known about the role of C/EBP transcription factors in the control of osteoblast differentiation or function. In this study, the function of C/EBP transcription factors was disrupted in osteoblast lineage cells by overexpressing a naturally occurring dominant negative C/EBP isoform. Expression of FLp20C/EBPbeta was driven by a 3.6-kb Col1a1 promoter/first intron construct, and four transgenic (TG) mouse lines were established. Northern blotting and reverse transcription-PCR indicated that the transgene was targeted to bone, with lower levels of expression in lung, skin, and adipose tissue. TG mice from two lines showed reduced body weight compared with wild type littermates. All TG lines showed evidence of osteopenia, ranging from mild to severe, as evidenced by reduced trabecular bone volume. Severely affected lines also showed reduced cortical bone width. Dynamic histomorphometry demonstrated an associated decrease in mineral apposition and bone formation rates. Long bones and calvariae of TG mice showed reduced COL1A1 and osteocalcin mRNA levels and increased bone sialoprotein mRNA, consistent with an inhibition of terminal osteoblast differentiation. Ex vivo analysis of primary osteoblast differentiation showed similar effects on marker expression and reduced expression of the mature osteoblast marker Col2.3-green fluorescent protein, demonstrating a cell-autonomous effect of the transgene. These data suggested that C/EBP transcription factors may be important determinants of osteoblast function and bone mass.
Collapse
Affiliation(s)
- John R Harrison
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
224
|
Taichman RS. Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2004; 105:2631-9. [PMID: 15585658 DOI: 10.1182/blood-2004-06-2480] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms of bone and blood formation have traditionally been viewed as distinct, unrelated processes, but compelling evidence suggests that they are intertwined. Based on observations that hematopoietic precursors reside close to endosteal surfaces, it was hypothesized that osteoblasts play a central role in hematopoiesis, and it has been shown that osteoblasts produce many factors essential for the survival, renewal, and maturation of hematopoietic stem cells (HSCs). Preceding these observations are studies demonstrating that the disruption or perturbation of normal osteoblastic function has a profound and central role in defining the operational structure of the HSC niche. These observations provide a glimpse of the dimensions and ramifications of HSC-osteoblast interactions. Although more research is required to secure a broader grasp of the molecular mechanisms that govern blood and bone biology, the central role for osteoblasts in hematopoietic stem cell regulation is reviewed herein from the perspectives of (1) historical context; (2) the role of the osteoblast in supporting stem cell survival, proliferation, and maintenance; (3) the participation, if any, of osteoblasts in the creation of a stem cell niche; (4) the molecules that mediate HSC-osteoblast interactions; (5) the role of osteoblasts in stem cell transplantation; and (6) possible future directions for investigation.
Collapse
Affiliation(s)
- Russell S Taichman
- Department of Periodontics, Prevention and Geriatrics, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
225
|
Kii I, Amizuka N, Shimomura J, Saga Y, Kudo A. Cell-cell interaction mediated by cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage. J Bone Miner Res 2004; 19:1840-9. [PMID: 15476585 DOI: 10.1359/jbmr.040812] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 06/03/2004] [Accepted: 07/09/2004] [Indexed: 01/21/2023]
Abstract
UNLABELLED We studied cadherin-11 function in the differentiation of mesenchymal cells. Teratomas harboring the cadherin-11 gene generated bone and cartilage preferentially. Cadherin-11 transfectants of C2C12 cells and cadherin-11 and/or N-cadherin transfectants of L cells showed that cadherin-11 together with N-cadherin-induced expression of ALP and FGF receptor 2. These results suggest that cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage in a different manner from N-cadherin. INTRODUCTION Cell-cell interaction is an essential event for tissue formation; however, the role of cell-cell adhesion in mesenchymal tissue formation as well as in cell differentiation in this tissue remains unclear. cadherins, which are calcium-dependent cell adhesion receptors, form adherence junctions after adherence and aggregation of cells. Because cadherin-11 as well as N-cadherin has been reported to be a mesenchyme-related cadherin, we examined the cadherin-11 action in teratomas and in the cell lines C2C12 and L cell. Herein, we show that cell-cell interaction mediated by cadherin-11 is responsible for bone and cartilage formation. MATERIALS AND METHODS It has been previously reported that N-cadherin-expressing E-cadherin-/- ES transfectants formed neuroepithelium and cartilage in teratomas. Thus, we transfected the E-cadherin-/- ES cell line with the cadherin-11 gene. Moreover, we also transfected C2C12 cells and L cells with the cadherin-11 gene for morphological analysis and study of the induced differentiation at the molecular level. RESULTS AND CONCLUSION Teratomas derived from embryonic stem cells in which the cadherin-11 gene had been expressed exogenously contained bone and cartilage preferentially, showing that cadherin-11 is involved in mesenchymal tissue formation, specifically in controlling the differentiation of these cells into osteoblasts and chondrocytes. Therefore, we further examined the functional difference between cadherin-11 and N-cadherin. The expression patterns of cadherin-11 and N-cadherin in cells of the mouse osteoblastic cell line MC3T3-E1 showed that each cadherin was located independently of the cell-cell adhesion site and acted individually. In hanging drop cultures, cadherin-11 L cell transfectants aggregated in a sheet-like structure, whereas N-cadherin transfectants aggregated in a spherical form, indicating that each cadherin confers a different 3D architecture because of its individual adhesive property. To investigate the molecular mechanism of cadherin-11 action in cell differentiation, we analyzed cadherin-11 transfectants of C2C12 cells and cadherin-11 and/or N-cadherin transfectants of L cells and showed that cadherin-11, together with N-cadherin, induced expression of alkaline phosphatase (ALP) and fibroblast growth factor receptor 2. These results suggest that cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage in a different manner from N-cadherin.
Collapse
Affiliation(s)
- Isao Kii
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
226
|
Osyczka AM, Diefenderfer DL, Bhargave G, Leboy PS. Different effects of BMP-2 on marrow stromal cells from human and rat bone. Cells Tissues Organs 2004; 176:109-19. [PMID: 14745240 PMCID: PMC1463182 DOI: 10.1159/000075032] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) promote the differentiation of osteoprogenitor cells, and also induce osteogenesis in bone marrow stromal cells (MSC) from rats and mice. However, compared to results with animal models, BMPs are relatively inefficient in inducing human MSC to undergo osteogenesis, and are much less effective in promoting bone formation in human clinical trials. Previous studies indicated that, while human MSC respond to dexamethasone with elevated levels of the osteoblast marker alkaline phosphatase, most isolates of human MSC fail to show alkaline phosphatase induction in response to BMP-2, BMP-4, or BMP-7. Several other genes known to be induced by BMPs are appropriately regulated; thus, human MSC are capable of some BMP-activated signaling. Analysis of the BMP receptors ALK-3 and ALK-6 indicated that, although ALK-6 mRNA was not expressed in human MSC, overexpressing a constitutively active ALK-6 receptor did not induce elevated alkaline phosphatase. Real-time RT-PCR was used to investigate expression of several osteoblast-related transcription factors in MSC after 6 days' exposure to BMP2 or dexamethasone. Msx-2, a transcription factor that has been reported to inhibit differentiation of osteoprogenitor cells, showed 10-fold elevation in BMP-2-treated human MSC, but not in BMP-2-treated rat MSC. Overexpression of Msx-2 in human and rat MSC, however, did not alter alkaline phosphatase levels, which suggests that absence of BMP-stimulated alkaline phosphatase was not caused by the BMP-2-induced increase in Msx-2. Although Runx2 isoforms have been implicated in control of osteoblast differentiation, levels of this transcription factor were unaffected by BMP treatment. Expression of the FKHR transcription factor, which has been reported to regulate alkaline phosphatase transcription in mouse cells, showed a modest increase in response to BMP-2, but a much greater increase in dexamethasone-treated cells. We propose that BMP regulation of the bone/liver/kidney alkaline phosphatase gene is indirect, requiring expression of new transcription factor(s) that behave differently in rodent and human MSC.
Collapse
Affiliation(s)
- Anna M Osyczka
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pa., USA
| | | | | | | |
Collapse
|
227
|
Abstract
Cellular and molecular processes that regulate the development of skeletal tissues resemble those required for regeneration. Given the prevalence of degenerative skeletal disorders in an increasingly aging population, the molecular mechanisms of skeletal development must be understood in detail if novel strategies are to be developed in regenerative medicine. Research in this area over the past decade has revealed that cell differentiation is largely controlled at the level of gene transcription, which in turn is regulated by transcription factors. Transcription factors usually recognize and bind to specific DNA sequences in the promoter of target genes via characteristic DNA-binding domains. Although the gene family containing C2H2 zinc fingers as DNA-binding motifs is the largest family of transciptional regulators, with several hundred individual members in mammals, only a small but increasing number of zinc finger genes have been implicated in bone, cartilage, or tooth development. These zinc finger proteins (ZFPs) contain multiple structural motifs that require zinc to maintain their structural integrity and function. Interestingly, zinc deficiency is known to result in skeletal growth retardation and has been identified as a risk factor in the pathogenesis of osteoporosis. This review attempts to summarize our current state of knowledge regarding the role of ZFPs in the molecular regulation of skeletogenesis.
Collapse
|
228
|
Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC. BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem 2004; 90:1112-27. [PMID: 14635186 DOI: 10.1002/jcb.10734] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular mechanisms by which bone morphogenetic proteins (BMPs) promote skeletal cell differentiation were investigated in the murine mesenchymal stem cell line C3H10T1/2. Both BMP-7 and BMP-2 induced C3H10T1/2 cells to undergo a sequential pattern of chondrogenic followed by osteogenic differentiation that was dependent on both the concentration and the continuous presence of BMP in the growth media. Differentiation was determined by the expression of chondrogenesis and osteogenesis associated matrix genes. Subsequent experiments using BMP-7 demonstrated that withdrawal of BMP from the growth media led to a complete loss of skeletal cell differentiation accompanied by adipogenic differentiation of these cells. Continuous treatment with BMP-7 increased the expression of Sox9, Msx 2, and c-fos during the periods of chondrogenic differentiation after which point their expression decreased. In contrast, Dlx 5 expression was induced by BMP-7 treatment and remained elevated throughout the time-course of skeletal cell differentiation. Runx2/Cbfa1 was not detected by ribonuclease protection assay (RPA) and did not appear to be induced by BMP-7. The sequential nature of differentiation of chondrocytic and osteoblastic cells and the necessity for continuous BMP treatment to maintain skeletal cell differentiation suggests that the maintenance of selective differentiation of the two skeletal cell lineages might be dependent on BMP-7-regulated expression of other morphogenetic factors. An examination of the expression of Wnt, transforming growth factor-beta (TGF-beta), and the hedgehog family of morphogens showed that Wnt 5b, Wnt 11, BMP-4, growth and differentiation factor-1 (GDF-1), Sonic hedgehog (Shh), and Indian hedgehog (Ihh) were endogenously expressed by C3H10T1/2 cells. Wnt 11, BMP-4, and GDF-1 expression were inhibited by BMP-7 treatment in a dose-dependent manner while Wnt 5b and Shh were selectively induced by BMP-7 during the period of chondrogenic differentiation. Ihh expression also showed induction by BMP-7 treatment, however, the period of maximal expression was during the later time-points, corresponding to osteogenic differentiation. An interesting phenomenon was that BMP-7 activity could be further enhanced twofold by growing the cells in a more nutrient-rich media. In summary, the murine mesenchymal stem cell line C3H10T1/2 was induced to follow an endochondral sequence of chondrogenic and osteogenic differentiation dependent on both dose and continual presence of BMP-7 and enhanced by a nutrient-rich media. Our preliminary results suggest that the induction of osteogenesis is dependent on the secondary regulation of factors that control osteogenesis through an autocrine mechanism.
Collapse
Affiliation(s)
- Colleen M Shea
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratory, Boston University Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
229
|
Ishizeki K, Takahashi N, Nawa T. Induction of adipogenesis by the intrasplenic transplantation of chick serum clots. ACTA ACUST UNITED AC 2004; 67:21-30. [PMID: 15125020 DOI: 10.1679/aohc.67.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chick serum contains a factor that stimulates adipogenesis in Meckel's chondrocytes in vitro. The present study examined whether chick serum has a capacity for adipogenic induction in vivo, by transplanting serum clots (created by drying chick serum for up to 4 weeks) into mouse spleens. Specimens were harvested for histological analyses, which included light and electron microscopy and immunohistochemistry. The transplanted serum clots induced the appearance of lipid droplet-containing cells in splenic cords and sinus. Almost all the lipid droplet-containing cells were positive for sudan staining and consisted of multilocular lipid vacuoles. Immunostaining showed that the adipocytes induced by transplantation of the serum clots initially appeared as peroxisome proliferator-activated receptor-gamma (PPARgamma)-positive cells and developed into leptin and alpha-glycerophosphate dehydrogenase (GPDH)-producing cells, in addition to type III collagen synthesis. Furthermore, double immunofluorescence staining revealed that the immunoreactivity for GPDH was detected not only in stromal cells but also in macrophages. It was thus confirmed that stromal cells and macrophages in the spleen contain lipid droplets as seen in intact white adipose cells. The present results suggest that chick serum contains factors for adipocyte induction not only in vitro but also in vivo, and that the adipogenic potential does not depend on the supplements used during the cell culture.
Collapse
Affiliation(s)
- Kiyoto Ishizeki
- Department of Oral Anatomy, School of Dentistry, Iwate Medical University, Morioka, Japan.
| | | | | |
Collapse
|
230
|
de la Fuente R, Abad JL, García-Castro J, Fernández-Miguel G, Petriz J, Rubio D, Vicario-Abejón C, Guillén P, González MA, Bernad A. Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells. Exp Cell Res 2004; 297:313-28. [PMID: 15212937 DOI: 10.1016/j.yexcr.2004.02.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 02/10/2004] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To test the hypothesis that dedifferentiated adult human cartilage chondrocytes (HAC) are a true multipotent primitive population. METHODS Studies to characterize dedifferentiated HAC included cell cycle and quiescence analysis, cell fusion, flow-FISH telomere length assays, and ABC transporter analysis. Dedifferentiated HAC were characterized by flow cytometry, in parallel with bone marrow mesenchymal stem cells (MSC) and processed lipoaspirate (PLA) cells. The in vitro differentiation potential of dedifferentiated HAC was studied by cell culture under several inducing conditions, in multiclonal and clonal cell populations. RESULTS Long-term HAC cultures were chromosomically stable and maintained cell cycle dynamics while showing telomere shortening. The phenotype of dedifferentiated HAC was quite similar to that of human bone marrow MSC. In addition, this population expressed human embryonic stem cell markers. Multiclonal populations of dedifferentiated HAC differentiated to chondrogenic, osteogenic, adipogenic, myogenic, and neurogenic lineages. Following VEGF induction, dedifferentiated HAC expressed characteristics of endothelial cells, including AcLDL uptake. A total of 53 clonal populations of dedifferentiated HAC were efficiently expanded; 17 were able to differentiate to chondrogenic, osteogenic, and adipogenic lineages. No correlation was observed between telomere length or quiescent population and differentiation potential in the clones assayed. CONCLUSION Dedifferentiated HAC should be considered a human multipotent primitive population.
Collapse
Affiliation(s)
- Ricardo de la Fuente
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004; 6:483-95. [PMID: 15068789 DOI: 10.1016/s1534-5807(04)00075-9] [Citation(s) in RCA: 3037] [Impact Index Per Article: 151.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 02/12/2004] [Accepted: 02/12/2004] [Indexed: 12/13/2022]
Abstract
Commitment of stem cells to different lineages is regulated by many cues in the local tissue microenvironment. Here we demonstrate that cell shape regulates commitment of human mesenchymal stem cells (hMSCs) to adipocyte or osteoblast fate. hMSCs allowed to adhere, flatten, and spread underwent osteogenesis, while unspread, round cells became adipocytes. Cell shape regulated the switch in lineage commitment by modulating endogenous RhoA activity. Expressing dominant-negative RhoA committed hMSCs to become adipocytes, while constitutively active RhoA caused osteogenesis. However, the RhoA-mediated adipogenesis or osteogenesis was conditional on a round or spread shape, respectively, while constitutive activation of the RhoA effector, ROCK, induced osteogenesis independent of cell shape. This RhoA-ROCK commitment signal required actin-myosin-generated tension. These studies demonstrate that mechanical cues experienced in developmental and adult contexts, embodied by cell shape, cytoskeletal tension, and RhoA signaling, are integral to the commitment of stem cell fate.
Collapse
Affiliation(s)
- Rowena McBeath
- The Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
232
|
Yamashiro H, Inamoto T, Yagi M, Ueno M, Kato H, Takeuchi M, Miyatake SI, Tabata Y, Yamaoka Y. Efficient proliferation and adipose differentiation of human adipose tissue-derived vascular stromal cells transfected with basic fibroblast growth factor gene. ACTA ACUST UNITED AC 2004; 9:881-92. [PMID: 14633373 DOI: 10.1089/107632703322495538] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human vascular stromal (VS) cells obtained from mature adipose tissue were transfected with an adenovirus vector carrying the basic fibroblast growth factor (bFGF) gene. bFGF protein was observed in VS cell nuclei 24 h after transfection and in the cytoplasm and extracellular space 72 h after transfection. Naive VS cells were almost static in vitro and proliferated in a dose-dependent manner on stimulation with recombinant bFGF (rbFGF). However, bFGF-transfected VS cells proliferated spontaneously to the same extent as naive VS cells when stimulated with rbFGF at 100 ng/ml. The former cells started to proliferate on day 3 after transfection and the proliferation pattern was similar to that of the latter cells, although only a slight amount of bFGF protein was detected in the culture medium when the bFGF-transfected cells started to proliferate. The proliferation of bFGF-transfected VS cells was completely inhibited by bFGF neutralizing antibody, which also completely inhibited the proliferation of naive VS cells stimulated with rbFGF. Under conditions favoring differentiation to adipocytes, bFGF-transfected VS cells stopped proliferating and started to accumulate lipid in the cytoplasm. bFGF-transfected VS cells, which spontaneously and efficiently proliferate while preserving their ability to differentiate into adipocytes, may be an adequate cell source for human adipose tissue regeneration.
Collapse
Affiliation(s)
- Hiroyasu Yamashiro
- Department of Gastroenterological Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Kadowaki A, Tsukazaki T, Hirata K, Shibata Y, Okubo Y, Bessho K, Komori T, Yoshida N, Yamaguchi A. Isolation and characterization of a mesenchymal cell line that differentiates into osteoblasts in response to BMP-2 from calvariae of GFP transgenic mice. Bone 2004; 34:993-1003. [PMID: 15193545 DOI: 10.1016/j.bone.2004.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/28/2003] [Accepted: 01/22/2004] [Indexed: 11/21/2022]
Abstract
We established the clonal mesenchymal cell line, GFP-C3 (C3), which differentiates into osteoblasts in response to BMP-2 from calvariae of newborn green fluorescence protein (GFP) transgenic mice. This cell line cultured with control medium expressed low levels of alkaline phosphatase (ALP) activity and osterix mRNA and undetectable ALP and osteocalcin mRNA. Incubation of these cells with rhBMP-2 increased ALP activity dose-dependently and induced substantial levels of ALP, osteocalcin and osterix mRNA expression. C3 cells infected with adenovirus vector encoding BMP-2 (AdBMP-2) or Runx2 (AdRunx2) showed greatly increased ALP mRNA expression in a time-dependent fashion. Transduction with AdRunx2-induced expression of ALP and osteocalcin mRNA, but not osterix mRNA by day 3. Transduction with AdBMP-2 induced apparent expression of ALP and osterix mRNA by day 1 after transduction, but induced only weak expression of osteocalcin mRNA day 3 after transduction. Transplantation of C3 cells transduced with AdBMP-2 into back subfascia in wild-type mice with a complex of poly-d,l-lactic-co-glycolic acid/gelatin sponge (PGS) generated ectopic bone formation involving GFP-positive osteoblasts and osteocytes 2 weeks after transplantation. C3 cells transduced with AdRunx2 or AdLacZ failed to induce ectopic bone formation. Transplantation of C3 cells transduced with AdBMP-2 into craniotomy defects in wild-type mice using PGS as a carrier induced bone formation 2 weeks after transplantation, and replaced defects 4 weeks after transplantation. C3 cells transduced with AdRunx2 failed to induce bone repair after transplantation into craniotomy defects. These results indicate that C3 cells retain differentiation potential into osteoblasts in response to BMP-2. They are useful tools for analyzing the process of osteoblast differentiation in vivo after transplantation.
Collapse
Affiliation(s)
- A Kadowaki
- Division of Oral Pathology and Bone Metabolism, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Chen S, Zhang Q, Wu X, Schultz PG, Ding S. Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 2004; 126:410-1. [PMID: 14719906 DOI: 10.1021/ja037390k] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combinatorial libraries were screened for molecules that induce mouse myogenic lineage committed cells to dedifferentiate in vitro. A 2,6-disubstituted purine, reversine, was discovered that induces lineage reversal of C2C12 cells to become multipotent progenitor cells which can redifferentiate into osteoblasts and adipocytes. This and other such molecules are likely to provide new insights into the molecular mechanisms that control cellular dedifferentiation and may ultimately be useful to in vivo stem cell biology and therapy.
Collapse
Affiliation(s)
- Shuibing Chen
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
235
|
Krupnick AS, Balsara KR, Kreisel D, Riha M, Gelman AE, Estives MS, Amin KM, Rosengard BR, Flake AW. Fetal Liver as a Source of Autologous Progenitor Cells for Perinatal Tissue Engineering. ACTA ACUST UNITED AC 2004; 10:723-35. [PMID: 15265289 DOI: 10.1089/1076327041348419] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mesenchymal progenitor cells, isolated from adult bone marrow, have been shown to have utility for autologous tissue engineering. The possibility of isolating from the fetal hematopoietic system a cell population with similar potential, which could be used for autologous reconstruction of prenatally diagnosed congenital anomalies, has not been explored to date. Liver stromal cells isolated from a portion of the right lateral hepatic lobe of midgestation fetal lambs were expanded in vitro. Passage 1 cells displayed a uniform fibroblast-like morphology but could be induced to differentiate into skeletal muscle, adipocytes, chondrocytes, and endothelial cells by selective medium supplementation. By manipulating the extracellular matrix in vitro, spontaneously contracting cardiac myocyte-like cells could be generated as well. Multilineage differentiation was confirmed by morphology, protein expression, and upregulation of lineage-specific mRNA. The potential for engineering myocardial tissue was then investigated by transplanting early-passage progenitor cells, organized on a three-dimensional matrix, into the ventricle of an immunocompromised rat utilizing a previously described model of left ventricular tissue engineering. Survival, incorporation into the host myocardium, and cardiomyocytic differentiation of the transplanted cells were confirmed. We have demonstrated that mesenchymal progenitor cells with multilineage potential can be isolated from the fetal liver and have potential utility for autologous tissue engineering.
Collapse
Affiliation(s)
- Alexander S Krupnick
- Harrison's Department of Surgical Research, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Yagami K, Uyama Y, Yoshizawa Y, Kakuta S, Yamaguchi A, Nagumo M. RETRACTED: A human chondrogenic cell line retains multi-potency that differentiates into osteoblasts and adipocytes. Bone 2004; 34:648-55. [PMID: 15050895 DOI: 10.1016/j.bone.2003.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 11/06/2003] [Accepted: 12/02/2003] [Indexed: 11/16/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the author, Dr. Kimihito Yagami. Dr. Yagami's collaborators Yohei Uyama, Yasumasa Yoshizawa, Saburo Kakuta, Akira Yamaguchi, Masao Nagumo were not involved in the RT-PCR experiments and figure preparation The editor, Sundeep Khosla, was notified by an independent group that specific bands in Figure 3 of the paper appear to be duplicated. This was brought to the attention of the authors. Due to the long interval from the original publication of the paper, the raw data was not available; however, the authors subsequently chose to retract the entire manuscript, and the editor agreed.
Collapse
Affiliation(s)
- Kimitoshi Yagami
- Second Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
237
|
Oliver AE, Jamil K, Crowe JH, Tablin F. Loading Human Mesenchymal Stem Cells with Trehalose by Fluid-Phase Endocytosis. ACTA ACUST UNITED AC 2004. [DOI: 10.1089/153834404322708745] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
238
|
Gimble JM, Nuttall ME. Bone and fat: old questions, new insights. Endocrine 2004; 23:183-8. [PMID: 15146099 DOI: 10.1385/endo:23:2-3:183] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 11/14/2003] [Accepted: 11/14/2003] [Indexed: 02/05/2023]
Abstract
Until recently, adipose tissue was considered to serve only as a triglyceride reservoir and was relegated to a passive endocrine role. With the discovery of leptin and other adipokines, adipose tissue is now recognized as an active participant in systemic metabolism. This review focuses on the complex relationship existing between adipose tissue and bone metabolism and differentiation. It explores the paradigms that have shaped the past decade's research and what these findings forecast for the future. Particular attention is given to the multipotent adult stem cell populations that reside within bone and fat. These adult stem cells have critical importance to the emerging field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Pennington Biomedical Research Center, LSU, 6400 Perkins Rd, Baton Rouge, LA,70808, USA.
| | | |
Collapse
|
239
|
Robinson D, Segal M, Nevo Z. Giant cell tumor of bone. The role of fibroblast growth factor 3 positive mesenchymal stem cells in its pathogenesis. Pathobiology 2004; 70:333-42. [PMID: 12865629 DOI: 10.1159/000071273] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2002] [Accepted: 01/08/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Giant cell tumor of bone is typified by massive infiltration of a bland neoplastic stroma by osteoclasts and monocyte progenitors. The current study aimed at evaluating the nature of the neoplastic cells and the mechanisms underlying the massive giant cell recruitment. METHODS Five different giant cell tumors were evaluated by immunohistochemistry, and explant cell cultures were established from the same tumors. Antigen expression profiles of both the tumors and the derived cultures were assessed. In order to determine if the mesenchymal cells are capable of differentiating into mature osteoblasts, retinoic acid was added to cell cultures and osteocalcin and alkaline phosphatase levels were measured. The proliferative effects of the mesenchymal cells on histiocyte-like cells were evaluated using the U-937 cell line. RESULTS A large stromal subpopulation expresses fibroblast growth factor receptor 3 (FGF-R3), indicating a mesenchymal origin of these cells. Few cells express bone- or cartilage-specific markers. Cell cultures are predominated by mesenchymal cells, as indicated by a strong staining by FGF R3. Retinoic acid induces osteoblastic differentiation, i.e. osteocalcin expression and alkaline phosphatase production. Conditioned medium of giant-cell-tumor-derived stromal cell cultures induces proliferation of U-937 cells, derived from histiocytic lymphoma. Papain digestion and dialysis of the conditioned media indicates the effector molecule to be a protein over 40 kD in size. The giant cell tumors as well as stromal cell cultures derived from giant cell tumors express osteoprotegerin ligand, the osteoclast activator. CONCLUSIONS The neoplastic stromal spindle-shaped subpopulation of cells in giant cell tumors are mesenchymal stem cells capable of inducing histiocyte proliferation. Retinoid acid is capable of inducing differentiation of the cells into mature osteoblasts. This should be further investigated in an in vivo model to ascertain whether induction of differentiation will prevent bone loss and retard tumor progression.
Collapse
Affiliation(s)
- Dror Robinson
- Department of Orthopedics A Assaf Harofeh Medical Center, Zerifin, Israel.
| | | | | |
Collapse
|
240
|
Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Chondrogenic Potential of Multipotential Cells from Human Adipose Tissue. Plast Reconstr Surg 2004; 113:585-94. [PMID: 14758221 DOI: 10.1097/01.prs.0000101063.27008.e1] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of stem cells for cell-based tissue-engineering strategies represents a promising alternative for the repair of cartilaginous defects. The multilineage potential of a population of putative mesodermal stem cells obtained from human lipoaspirates, termed processed lipoaspirate cells, was previously characterized. The chondrogenic potential of those cells was confirmed with a combination of histological and molecular approaches. Processed lipoaspirate cells under high-density micromass culture conditions, supplemented with transforming growth factor-beta1, insulin, transferrin, and ascorbic acid, formed well-defined nodules within 48 hours of induction and expressed the cartilaginous markers collagen type II, chondroitin-4-sulfate, and keratan sulfate. Reverse transcription polymerase chain reaction analysis confirmed the expression of collagen type II and the cartilage-specific proteoglycan aggrecan. In summary, human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis in vitro.
Collapse
Affiliation(s)
- Jerry I Huang
- Department of Surgery, University of California, Los Angeles School of Medicine, 90095-6902, USA
| | | | | | | | | | | | | |
Collapse
|
241
|
Matsushita T, Matsui N, Fujioka H, Kubo S, Kuroda R, Kurosaka M, Yoshiya S. Expression of transcription factor Sox9 in rat L6 myoblastic cells. Connect Tissue Res 2004; 45:164-73. [PMID: 15512770 DOI: 10.1080/03008200490514130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Muscle-derived cells can differentiate into chondrogenic cells. In our present study, we investigated the pattern of expression of Sox9, a transcription factor known to play a key role in chondrogenesis, in a rat myoblastic cell line, L6. In addition, we evaluated expression of type II collagen and myogenic regulatory markers by reverse-transcript polymerase chain reaction. We also investigated the effect of transforming growth factor (TGF)-beta3, which is known to induce chondrogenesis, on Sox9 mRNA expression. On the first day of culture, we observed a high expression of Sox9. However, on the seventh day of culture, there was a decline in the level of Sox9 and type II collagen mRNAs and an increased expression of Myf5 and myogenin mRNAs. Sox9 mRNA expression was increased after stimulation of TGF-beta3 at 2, 6, and 24 hr. Cartilage nodules were observed in L6 cells treated with TGF-beta3 and dexamethasone. These results indicated that L6 myoblasts originally possess the capacity to differentiate into chondrogenic cells, but that capacity is lost as the cells differentiate toward the myogenic lineage. In addition, TGF-beta3 may modulate Sox9 mRNA expression in L6 cells and retain the capacity to differentiate into chondrogenic lineage.
Collapse
Affiliation(s)
- Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Chuo-ku Kobe, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
242
|
Sasao N, Hirayama E, Kim J. Formation and characterization of spontaneously formed heterokaryons between quail myoblasts and 3T3-L1 preadipocytes: correlation between differential plasticity and degree of differentiation. Eur J Cell Biol 2004; 83:35-45. [PMID: 15085954 DOI: 10.1078/0171-9335-00357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.
Collapse
Affiliation(s)
- Nagako Sasao
- Institute of Molecular and Cellular Biology for Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | |
Collapse
|
243
|
Locker M, Kellermann O, Boucquey M, Khun H, Huerre M, Poliard A. Paracrine and autocrine signals promoting full chondrogenic differentiation of a mesoblastic cell line. J Bone Miner Res 2004; 19:100-10. [PMID: 14753742 DOI: 10.1359/jbmr.0301206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UNLABELLED The pluripotent mesoblastic C1 cell line was used under serum-free culture conditions to investigate how paracrine and autocrine signals cooperate to drive chondrogenesis. Sequential addition of two systemic hormones, dexamethasone and triiodothyronine, permits full chondrogenic differentiation. The cell intrinsic activation of the BMP signaling pathway and Sox9 expression occurring on mesoblastic condensation is insufficient for recruitment of the progenitors. Dexamethasone-dependent Sox9 upregulation is essential for chondrogenesis. INTRODUCTION Differentiation of lineage stem cells relies on cell autonomous regulations modulated by external signals. We used the pluripotent mesoblastic C1 cell line under serum-free culture conditions to investigate how paracrine and autocrine signals cooperate to induce differentiation of a precursor clone along the chondrogenic lineage. MATERIALS AND METHODS C1 cells, cultured as aggregates, were induced toward chondrogenesis by addition of 10(-7) M dexamethasone in serum-free medium. After 30 days, dexamethasone was replaced by 10 nM triiodothyronine to promote final hypertrophic conversion. Mature and hypertrophic phenotypes were characterized by immunocytochemistry using specific antibodies against types II and X collagens, respectively. Type II collagen, bone morphogenetic proteins (BMPs), BMP receptors, Smads, and Sox9 expression were monitored by reverse transcriptase-polymerase chain reaction (RT-PCR), Northern blot, and/or Western blot analysis. RESULTS AND CONCLUSIONS Once C1 cells have formed nodules, sequential addition of two systemic hormones is sufficient to promote full chondrogenic differentiation. In response to dexamethasone, nearly 100% of the C1 precursors engage in chondrogenesis and convert within 30 days into mature chondrocytes, which triggers a typical cartilage matrix. On day 25, a switch in type II procollagen mRNA splicing acted as a limiting step in the acquisition of the mature chondrocyte phenotype. On day 30, substitution of dexamethasone with triiodothyronine triggers the final differentiation into hypertrophic chondrocytes within a further 15 days. The chondrogenic process is supported by intrinsic expression of Sox9 and BMP family genes. Similarly to the in vivo situation, activation of Sox9 expression and the BMP signaling pathway occurred on mesoblastic condensation. After induction, BMP-activated Smad nuclear translocation persisted throughout the process until the onset of hypertrophy. After dexamethasone addition, Sox9 expression was upregulated. Dexamethasone withdrawal reversed the increase in Sox9 expression and stopped differentiation. Thus, Sox9 seems to be a downstream mediator of dexamethasone action.
Collapse
Affiliation(s)
- Morgane Locker
- ONRS UPR 1983, Laboratoire de Différenciation cellulaire et Prions, Villejuif, France
| | | | | | | | | | | |
Collapse
|
244
|
Abstract
Long before their existence was proven, work with blood islands pointed to the existence of hemangioblasts in the embryo, and it was widely accepted that such cells existed. In contrast, though evidence for adult hemangioblasts appeared at least as early as 1932, until quite recently, it was commonly assumed that there were no adult hemangioblasts. Over the past decade, these views have changed, and it is now generally accepted that a subset of bone marrow cells or their progeny can and do function as adult hemangioblasts. This chapter will examine the basic biology of bone marrow-derived hemangioblasts and endothelial cell progenitors (angioblasts) and the relationship of these adult cells to their embryonic counterparts. Efforts to define the endothelial cell progenitor phenotype will also be discussed, though to date, there is no consensus on the definitive adult phenotype, probably because there are multiple phenotypes and because the cells are plastic. Also examined are the putative roles of bone marrow-derived cells in vascular homeostasis and repair, including both their ability to differentiate and contribute directly to vascular repair, as well as to promote vascular growth by secreting pro-angiogenic factors. Finally, the use of bone marrow cells as therapeutic tools will be addressed.
Collapse
Affiliation(s)
- Gina C Schatteman
- Department of Exercise Science, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
245
|
Abstract
Satellite cells are myogenic stem cells responsible for the post-natal growth, repair and maintenance of skeletal muscle. This review focuses on the basic biology of the satellite cell with emphasis on its role in muscle repair and parallels between embryonic myogenesis and muscle regeneration. Recent advances have altered the long-standing view of the satellite cell as a committed myogenic stem cell derived directly from the fetal myoblast. The experimental basis for this evolving perspective will be highlighted as will the relationship between the satellite cell and other newly discovered muscle stem cell populations. Finally, advances and prospects for cell-based therapies for muscular dystrophies will be addressed.
Collapse
Affiliation(s)
- Jennifer CJ Chen
- Department of Molecular and Cell Biology, Center for Regenerative Biology, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, CT 06269-4243, USA
| | - David J Goldhamer
- Department of Molecular and Cell Biology, Center for Regenerative Biology, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, CT 06269-4243, USA
| |
Collapse
|
246
|
Abstract
PURPOSE OF REVIEW Cell therapies for inherited myopathies are based on the implantation of normal or genetically corrected myogenic cells into the body. This review summarizes the recent progress in this field, systematized according to the factors important for success. RECENT FINDINGS In the choice of donor cells, myoblasts derived from satellite cells remain the best choice. Some studies on the population of muscle-derived stem cells in mice suggested that these cells may have some advantages over myoblasts; however, no results supporting this advantage have been presented in a primate model. Recent studies on bone marrow transplantation as a systemic source of myogenic precursors for the treatment of myopathies were disappointing. Concerning donor cell delivery, intramuscular myoblast injection remains the only way that can significantly introduce exogenous myogenic cells into the muscles. A recent study in primates showed some parameters of myoblast injection that could be useful in the human. Progress was made in mice to understand the factors that could favor the migration of the donor myoblasts in the host muscles. Concerning donor cell survival, analysis of immune cell infiltration dynamics allowed a better understanding of the factors implicated in early donor cell death. Progress was made on the control of acute rejection for myoblast transplantation in primates. So far, few mouse experiments have advanced the field of tolerance induction toward myogenic cells. SUMMARY Myoblast transplantation (intramuscular injection of satellite cell-derived myoblasts) currently remains the only cell-based therapy that has produced promising results in the context of a preclinical model such as the nonhuman primate.
Collapse
Affiliation(s)
- Daniel Skuk
- Unité de recherche en Génétique humaine, Centre de Recherche du Centre Hospitalier de l'Université Laval, Québec, Canada
| | | |
Collapse
|
247
|
Abstract
BACKGROUND In diabetes or atherosclerosis, ectopic bone, fat, cartilage, and marrow often develop in arteries. However the mechanism is unknown. We have previously identified a subpopulation of vascular cells (calcifying vascular cells, CVC), derived by dilutional cloning of bovine aortic medial cells, and showed that they undergo osteoblastic differentiation and mineralization. We now show that CVC have the potential to differentiate along other mesenchymal lineages. METHODS AND RESULTS To determine the multilineage potential of CVC, molecular and functional markers of multiple mesenchymal lineages were assessed. Chondrogenic potential of CVC was evidenced by expression of types II and IX collagen and cytochemical staining for Alcian blue. Leiomyogenic potential of CVC was evidenced by the expression of smooth muscle-alpha actin, calponin, caldesmon, and myosin heavy chain. Stromogenic potential of CVC was evidenced by the ability to support growth of colony-forming units of hematopoietic progenitor cells from human CD34+ umbilical cord blood cells for a period of 5 weeks. Adipogenic potential was not observed. CVC were immunopositive to antigens to CD29 and CD44 but not to CD14 or CD45, consistent with other mesenchymal stem cells. CVC retained multipotentiality despite passaging and expansion through more than 20 to 25 population triplings, indicating a capacity for self-renewal. CONCLUSIONS These results suggest that the artery wall contains cells that have the potential for multiple lineages similar to mesenchymal stem cells but with a unique differentiation repertoire.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, David Geffen School of Medicine, UCLA, 10833 LeConte Ave, Los Angeles, Calif 90095-1679, USA.
| | | | | | | | | | | | | |
Collapse
|
248
|
Muschler GF, Midura RJ, Nakamoto C. Practical Modeling Concepts for Connective Tissue Stem Cell and Progenitor Compartment Kinetics. J Biomed Biotechnol 2003; 2003:170-193. [PMID: 12975533 PMCID: PMC400211 DOI: 10.1155/s1110724303209165] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stem cell activation and development is central to skeletal development, maintenance, and repair, as it is for all tissues. However, an integrated model of stem cell proliferation, differentiation, and transit between functional compartments has yet to evolve. In this paper, the authors review current concepts in stem cell biology and progenitor cell growth and differentiation kinetics in the context of bone formation. A cell-based modeling strategy is developed and offered as a tool for conceptual and quantitative exploration of the key kinetic variables and possible organizational hierarchies in bone tissue development and remodeling, as well as in tissue engineering strategies for bone repair.
Collapse
Affiliation(s)
- George F. Muschler
- Department of Orthopeadic Surgery (A-41), The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Department of Biomedical Engineering (ND-20) and The Orthopeadic Research Centre, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Ronald J. Midura
- Department of Biomedical Engineering (ND-20) and The Orthopeadic Research Centre, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Chizu Nakamoto
- Department of Biomedical Engineering (ND-20) and The Orthopeadic Research Centre, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
249
|
Nakashima K, de Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet 2003; 19:458-66. [PMID: 12902164 DOI: 10.1016/s0168-9525(03)00176-8] [Citation(s) in RCA: 321] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoblasts, the cells responsible for bone formation, differentiate from mesenchymal cells. Here, we discuss transcription factors that are involved in regulating the multistep molecular pathway of osteoblast differentiation. Runx2 and Osx, a newly identified zinc-finger-containing protein, are transcription factors that are expressed selectively and at high levels in osteoblasts. Null mutations of either leads to a complete absence of bone in mice. Runx2 plus its companion subunit Cbf beta are needed for an early step in this pathway, whereas Osx is required for a subsequent step, namely the differentiation of preosteoblasts into fully functioning osteoblasts. The finding that Osx-null cells acquire a chondrocyte phenotype implies that Osx is a negative regulator of Sox9 and of the chondrocyte phenotype. This leads to the hypothesis that Osx might have a role in the segregation of osteoblasts from osteochondroprogenitors. We also discuss recent progress in studies of other transcription factors that affect skeletal patterning and development.
Collapse
Affiliation(s)
- Kazuhisa Nakashima
- Department of Molecular Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
250
|
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2003. [PMID: 12475952 DOI: 10.1091/mbc.e02/02/0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.
Collapse
Affiliation(s)
- Patricia A Zuk
- Department of Surgery and Orthopedics, Regenerative Bioengineering and Repair Laboratory, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|