201
|
Ospina-Rojas IC, Murakami AE, do Amaral Duarte CR, Pozza PC, Rossi RM, Gasparino E. Performance, diameter of muscle fibers, and gene expression of mechanistic target of rapamycin in pectoralis major muscle of broilers supplemented with leucine and valine. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two experiments were performed to study the interaction between the standardized ileal digestible (SID) leucine (Leu) and valine (Val) levels on the mRNA expression of genes involved in the mechanistic target of rapamycin (mTOR) pathway (experiment I) and determine the requirement of these amino acids in low-protein diets, and their effects on performance, serum parameters and muscle fiber diameters of broilers (experiment II) from day 1 to day 21 post hatch. Broiler chickens were distributed in a completely randomized design in a 3 × 3 and 5 × 5 factorial arrangement for a total of 9 and 25 treatments in experiments I and II, respectively. There was no (P > 0.05) interaction between the SID Leu and Val levels on mRNA expression of mTOR, S6 kinase 1 (S6K1), 4E-binding protein-1 (4EBP1), eukaryotic elongation factor 2 (eEF2), and insulin-like growth factor-1 (IGF-1) genes in pectoralis major muscle. Leucine supplementation increased (P < 0.05) mRNA expression of mTOR and S6K1 genes in muscle tissue, whereas Val supplementation did not affect (P > 0.05) mRNA expression of the genes investigated. Interaction was observed (P < 0.05) between dietary Leu and Val levels on feed intake and gain:feed. Leucine supplementation may stimulate mRNA expression of mTOR and S6K1 genes in pectoralis major muscle of broilers from day 1 to day 21 post hatch. The SID Leu and Val levels required for the optimization of feed intake, weight gain, and gain:feed in low-crude protein diets for broiler chickens from day 1 to 21 post hatch were estimated at 1.29% and 0.96%, 1.28% and 0.92%, and 1.27% and 0.91%, respectively; however, these requirements may be greater to maximize muscle fiber growth.
Collapse
Affiliation(s)
- Iván Camilo Ospina-Rojas
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Alice Eiko Murakami
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Cristiane Regina do Amaral Duarte
- Department of Biological Sciences, Universidade do Estado de Mato Grosso, Av. Brasil, nº 50W, Tangará da Serra, MT 78300-000, Brazil
| | - Paulo Cesar Pozza
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| | - Robson Marcelo Rossi
- Department of Statistics, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco E90, Maringá, PR 87020-900, Brazil
| | - Eliane Gasparino
- Department of Animal Science, Universidade Estadual de Maringá, Av. Colombo, 5790, Bloco J45, Maringá, PR 87020-900, Brazil
| |
Collapse
|
202
|
Atawia RT, Bunch KL, Toque HA, Caldwell RB, Caldwell RW. Mechanisms of obesity-induced metabolic and vascular dysfunctions. FRONT BIOSCI-LANDMRK 2019; 24:890-934. [PMID: 30844720 PMCID: PMC6689231 DOI: 10.2741/4758] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and its prevalence is climbing. Obesity is characterized by hypertrophied adipocytes with a dysregulated adipokine secretion profile, increased recruitment of inflammatory cells, and impaired metabolic homeostasis that eventually results in the development of systemic insulin resistance, a phenotype of type 2 diabetes. Nitric oxide synthase (NOS) is an enzyme that converts L-arginine to nitric oxide (NO), which functions to maintain vascular and adipocyte homeostasis. Arginase is a ureohydrolase enzyme that competes with NOS for L-arginine. Arginase activity/expression is upregulated in obesity, which results in diminished bioavailability of NO, impairing both adipocyte and vascular endothelial cell function. Given the emerging role of NO in the regulation of adipocyte physiology and metabolic capacity, this review explores the interplay between arginase and NO, and their effect on the development of metabolic disorders, cardiovascular diseases, and mitochondrial dysfunction in obesity. A comprehensive understanding of the mechanisms involved in the development of obesity-induced metabolic and vascular dysfunction is necessary for the identification of more effective and tailored therapeutic avenues for their prevention and treatment.
Collapse
Affiliation(s)
- Reem T Atawia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Katharine L Bunch
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Haroldo A Toque
- Department of Pharmacology and Toxicology,and Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Ruth B Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904, USA
| | - Robert W Caldwell
- Vascular Biology Center, Medical College of Georgia, Augusta University. Augusta, GA 30904,USA,
| |
Collapse
|
203
|
Zhang X, Shao H, Zheng X. Amino acids at the intersection of nutrition and insulin sensitivity. Drug Discov Today 2019; 24:1038-1043. [PMID: 30818029 DOI: 10.1016/j.drudis.2019.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023]
Abstract
A systems network that is coordinated in the sensing and management of nutrient signals is paramount to energy homeostasis, and its dysfunction induces metabolic stress and insulin resistance. Amino acids have recently emerged as a collection of signaling metabolites that underlie the metabolic impacts of different dietary patterns and life styles. This relationship is beginning to be understood from the close coupling of immune and metabolic systems, and serves to enrich our understanding of metabolic diseases, such as type 2 diabetes mellitus. In this review, we provide an overview of several amino acids or their metabolites that link nutrients with insulin sensitivity and discuss how they integrate into organ crosstalk pathways to influence physiological or pathological metabolic states.
Collapse
Affiliation(s)
- Xueli Zhang
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Hua Shao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiao Zheng
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
204
|
The ubiquitin ligase UBE3B, disrupted in intellectual disability and absent speech, regulates metabolic pathways by targeting BCKDK. Proc Natl Acad Sci U S A 2019; 116:3662-3667. [PMID: 30808755 DOI: 10.1073/pnas.1818751116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Kaufman oculocerebrofacial syndrome (KOS) is a recessive neurodevelopmental disorder characterized by intellectual disability and lack of speech. KOS is caused by inactivating mutations in UBE3B, but the underlying biological mechanisms are completely unknown. We found that loss of Ube3b in mice resulted in growth retardation, decreased grip strength, and loss of vocalization. The brains of Ube3b -/- mice had hypoplasia of the corpus callosum, enlarged ventricles, and decreased thickness of the somatosensory cortex. Ube3b -/- cortical neurons had abnormal dendritic morphology and synapses. We identified 22 UBE3B interactors and found that branched-chain α-ketoacid dehydrogenase kinase (BCKDK) is an in vivo UBE3B substrate. Since BCKDK targets several metabolic pathways, we profiled plasma and cortical metabolomes from Ube3b -/- mice. Nucleotide metabolism and the tricarboxylic acid cycle were among the pathways perturbed. Substrate-induced mitochondrial respiration was reduced in skeletal muscle but not in liver of Ube3b -/- mice. To assess the relevance of these findings to humans, we identified three KOS patients who had compound heterozygous UBE3B mutations. We discovered changes in metabolites from similar pathways in plasma from these patients. Collectively, our results implicate a disease mechanism in KOS, suggest that it is a metabolic encephalomyopathy, and provide an entry to targeted therapies.
Collapse
|
205
|
Abstract
Branched chain amino acids (BCAAs) are building blocks for all life-forms. We review here the fundamentals of BCAA metabolism in mammalian physiology. Decades of studies have elicited a deep understanding of biochemical reactions involved in BCAA catabolism. In addition, BCAAs and various catabolic products act as signaling molecules, activating programs ranging from protein synthesis to insulin secretion. How these processes are integrated at an organismal level is less clear. Inborn errors of metabolism highlight the importance of organismal regulation of BCAA physiology. More recently, subtle alterations of BCAA metabolism have been suggested to contribute to numerous prevalent diseases, including diabetes, cancer, and heart failure. Understanding the mechanisms underlying altered BCAA metabolism and how they contribute to disease pathophysiology will keep researchers busy for the foreseeable future.
Collapse
Affiliation(s)
- Michael Neinast
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Danielle Murashige
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
206
|
Liu H, Li T, Jiang Z, Wang W, Ming D, Chen Y, Wang F. Effect of different time intervals after feeding on plasma metabolites in growing pigs: an UPLC-MS-based metabolomics study. Anim Sci J 2019; 90:554-562. [PMID: 30714268 DOI: 10.1111/asj.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/27/2018] [Accepted: 12/11/2018] [Indexed: 11/28/2022]
Abstract
A diet consumed by pigs provides the nutrients for the production of a large number of metabolites that, after first-pass metabolism in the liver, circulate systemically where they may exert diverse physiologic influences on pigs. So far, little is known of how feeding elicits changes in metabolic profiles for growing pigs. This study investigated differences in plasma metabolites in growing pigs at several intervals after feeding using the technique of metabolomics. Ten barrows (22.5 ± 0.5 kg BW) were fed a corn-soybean meal basal diet and were kept in metabolism crates for a period of 11 days. An indwelling catheter was inserted into the jugular vein of each pig before the experimental period. Plasmas before and 1, 4, and 8 hr after feeding were collected at day 11 and differential metabolites were determined using a metabolomics approach. Direct comparison at several intervals after feeding revealed differences in 14 compounds. Identified signatures were enriched in metabolic pathways related to linoleic acid metabolism, arginine and proline metabolism, lysine degradation, glycine, serine and threonine metabolism, and lysine biosynthesis. These results suggest that plasma metabolites of growing pigs after feeding were modulated through changes in linoleic acid metabolism and amino acid metabolism.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhaoning Jiang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Dongxu Ming
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Yifan Chen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
207
|
Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG, Rabinowitz JD, Arany Z. Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids. Cell Metab 2019; 29:417-429.e4. [PMID: 30449684 PMCID: PMC6365191 DOI: 10.1016/j.cmet.2018.10.013] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/25/2018] [Accepted: 10/22/2018] [Indexed: 01/04/2023]
Abstract
Elevations in branched-chain amino acids (BCAAs) associate with numerous systemic diseases, including cancer, diabetes, and heart failure. However, an integrated understanding of whole-body BCAA metabolism remains lacking. Here, we employ in vivo isotopic tracing to systemically quantify BCAA oxidation in healthy and insulin-resistant mice. We find that most tissues rapidly oxidize BCAAs into the tricarboxylic acid (TCA) cycle, with the greatest quantity occurring in muscle, brown fat, liver, kidneys, and heart. Notably, pancreas supplies 20% of its TCA carbons from BCAAs. Genetic and pharmacologic suppression of branched-chain alpha-ketoacid dehydrogenase kinase, a clinically targeted regulatory kinase, induces BCAA oxidation primarily in skeletal muscle of healthy mice. While insulin acutely increases BCAA oxidation in cardiac and skeletal muscle, chronically insulin-resistant mice show blunted BCAA oxidation in adipose tissues and liver, shifting BCAA oxidation toward muscle. Together, this work provides a quantitative framework for understanding systemic BCAA oxidation in health and insulin resistance.
Collapse
Affiliation(s)
- Michael D Neinast
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Cholsoon Jang
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA; Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Hui
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Danielle S Murashige
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Qingwei Chu
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Raphael J Morscher
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Xiaoxuan Li
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Le Zhan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
208
|
Verhagen FH, Stigter ECA, Pras-Raves ML, Burgering BMT, Imhof SM, Radstake TRDJ, de Boer JH, Kuiper JJW. Aqueous Humor Analysis Identifies Higher Branched Chain Amino Acid Metabolism as a Marker for Human Leukocyte Antigen-B27 Acute Anterior Uveitis and Disease Activity. Am J Ophthalmol 2019; 198:97-110. [PMID: 30312576 DOI: 10.1016/j.ajo.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Human leukocyte antigen-B27 (HLA-B27)-positive acute anterior uveitis (AAU) has a higher recurrence rate and shows more anterior chamber cell infiltration compared with HLA-B27-negative patients, suggesting distinct etiologies of these clinically overlapping conditions. To advance our understanding of the biology of AAU, we characterized the metabolic profile of aqueous humor (AqH) of patients with HLA-B27-associated AAU (B27-AAU) and noninfectious idiopathic AAU (idiopathic AAU). DESIGN Experimental laboratory study. METHODS AqH samples from 2 independent cohorts totaling 30 patients with B27-AAU, 16 patients with idiopathic AAU, and 20 patients with cataracts underwent 2 individual rounds of direct infusion mass spectrometry. Features predicted by direct infusion mass spectrometry that facilitated maximum separation between the disease groups in regression models were validated by liquid chromatography/tandem mass spectrometry-based quantification with appropriate standards. RESULTS Partial least square-discriminant analysis revealed metabolite profiles that were able to separate patients with B27-AAU from those with iodiopathic AAU. Pathway enrichment analysis, based on metabolites on which separation of the groups in the partial least square-discriminant analysis model was based, demonstrated the involvement of branched-chain amino acid biosynthesis, ascorbate and aldarate metabolism, the tricarboxylic acid cycle, and glycolysis-diverting pathways (eg, serine biosynthesis) across all investigated cohorts. Notably, the metabolite ketoleucine was elevated in B27-AAU across all 3 runs and moderately-but robustly-correlated with anterior chamber cell count (correlation coefficient range 0.41-0.81). CONCLUSIONS These results illustrate metabolic heterogeneity between HLA-B27-positive and HLA-B27-negative AAU, including an increase of branched-chain amino acid biosynthesis, that reflects disease activity in AAU.
Collapse
Affiliation(s)
- Fleurieke H Verhagen
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Edwin C A Stigter
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mia L Pras-Raves
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Boudewijn M T Burgering
- Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Saskia M Imhof
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Timothy R D J Radstake
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht, the Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands; Section of Metabolic Diseases, and the Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joke H de Boer
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jonas J W Kuiper
- Ophthalmo-Immunology Unit, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
209
|
Rousseau M, Guénard F, Garneau V, Allam-Ndoul B, Lemieux S, Pérusse L, Vohl MC. Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients 2019; 11:nu11010173. [PMID: 30650556 PMCID: PMC6356602 DOI: 10.3390/nu11010173] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/11/2023] Open
Abstract
Elevated plasma branched-chain amino acids (BCAA) and C3 and C5 acylcarnitines (AC) levels observed in individuals with insulin resistance (IR) might be influenced by dietary protein intakes. This study explores the associations between dietary protein sources, plasma BCAA levels and C3 and C5 ACs in normal weight (NW) or overweight (OW) individuals with or without metabolic syndrome (MS). Data from 199 men and women aged 18⁻55 years with complete metabolite profile were analyzed. Associations between metabolic parameters, protein sources, plasma BCAA and AC levels were tested. OW/MS+ consumed significantly more animal protein (p = 0.0388) and had higher plasma BCAA levels (p < 0.0001) than OW/MS- or NW/MS- individuals. Plasma BCAA levels were not associated with BCAA intakes in the whole cohort, while there was a trend for an association between plasma BCAA levels and red meat or with animal protein in OW/MS+. These associations were of weak magnitude. In NW/MS- individuals, the protein sources associated with BCAA levels varied greatly with adjustment for confounders. Plasma C3 and C5 ACs were associated with plasma BCAA levels in the whole cohort (p < 0.0001) and in subgroups based on OW and MS status. These results suggest a modest association of meat or animal protein intakes and an association of C3 and C5 ACs with plasma BCAA levels, obesity and MS.
Collapse
Affiliation(s)
- Michèle Rousseau
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Véronique Garneau
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Bénédicte Allam-Ndoul
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Simone Lemieux
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Louis Pérusse
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- Department of Kinesiology, Laval University, Quebec City, QC G1V 0A6, Canada.
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods (INAF), Laval University, Quebec City, QC G1V 0A6, Canada.
- School of Nutrition, Laval University, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
210
|
Melnik BC, Schmitz G. Exosomes of pasteurized milk: potential pathogens of Western diseases. J Transl Med 2019; 17:3. [PMID: 30602375 PMCID: PMC6317263 DOI: 10.1186/s12967-018-1760-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022] Open
Abstract
Milk consumption is a hallmark of western diet. According to common believes, milk consumption has beneficial effects for human health. Pasteurization of cow's milk protects thermolabile vitamins and other organic compounds including bioactive and bioavailable exosomes and extracellular vesicles in the range of 40-120 nm, which are pivotal mediators of cell communication via systemic transfer of specific micro-ribonucleic acids, mRNAs and regulatory proteins such as transforming growth factor-β. There is compelling evidence that human and bovine milk exosomes play a crucial role for adequate metabolic and immunological programming of the newborn infant at the beginning of extrauterine life. Milk exosomes assist in executing an anabolic, growth-promoting and immunological program confined to the postnatal period in all mammals. However, epidemiological and translational evidence presented in this review indicates that continuous exposure of humans to exosomes of pasteurized milk may confer a substantial risk for the development of chronic diseases of civilization including obesity, type 2 diabetes mellitus, osteoporosis, common cancers (prostate, breast, liver, B-cells) as well as Parkinson's disease. Exosomes of pasteurized milk may represent new pathogens that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7A, 49076 Osnabrück, Germany
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
211
|
Polymorphisms of ACMSD- TMEM163, MCCC1, and BCKDK- STX1B Are Not Associated with Parkinson's Disease in Taiwan. PARKINSONS DISEASE 2019; 2019:3489638. [PMID: 30719275 PMCID: PMC6334313 DOI: 10.1155/2019/3489638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 11/17/2022]
Abstract
Previous genome-wide association studies in Caucasian populations suggest that genetic loci in amino acid catabolism may be associated with Parkinson's disease (PD). However, these genetic disease associations were limitedly reported in Asian populations. Herein, we investigated the effect of top three PD-associated genetic variants related to amino acid catabolism in Caucasians listed on the top risk loci identified by meta-analysis of genome-wide association studies in PDGene database, including aminocarboxymuconate-semialdehyde decarboxylase- (ACMSD-) transmembrane protein 163 (TMEM163) rs6430538, methylcrotonyl-CoA carboxylase 1 (MCCC1) rs12637471, and branched-chain ketoacid dehydrogenase kinase- (BCKDK-) syntaxin 1B (STX1B) rs14235, by genotyping 599 Taiwanese patients with PD and 598 age-matched control subjects. PD patients demonstrate similar allelic and genotypic frequencies in all tested genetic variants. These ethnic discrepancies of genetic variants suggest a distinct genetic background of amino acid catabolism between Taiwanese and Caucasian PD patients.
Collapse
|
212
|
Elizondo-Vega RJ, Recabal A, Oyarce K. Nutrient Sensing by Hypothalamic Tanycytes. Front Endocrinol (Lausanne) 2019; 10:244. [PMID: 31040827 PMCID: PMC6476911 DOI: 10.3389/fendo.2019.00244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/27/2019] [Indexed: 01/28/2023] Open
Abstract
Nutritional signals have long been implicated in the control of cellular processes that take place in the hypothalamus. This includes food intake regulation and energy balance, inflammation, and most recently, neurogenesis. One of the main glial cells residing in the hypothalamus are tanycytes, radial glial-like cells, whose bodies are located in the lining of the third ventricle, with processes extending to the parenchyma and reaching neuronal nuclei. Their unique anatomical location makes them directly exposed to nutrients in the cerebrospinal fluid. Several research groups have shown that tanycytes can respond to nutritional signals by different mechanisms, such as calcium signaling, metabolic shift, and changes in proliferation/differentiation potential. Despite cumulative evidence showing tanycytes have the molecular components to participate in nutrient detection and response, there are no enough functional studies connecting tanycyte nutrient sensing with hypothalamic functions, nor that highlight the relevance of this process in physiological and pathological context. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes in the hypothalamus, highlighting the need for more detailed analysis on the actual implications of tanycyte-nutrient sensing and how this process can be modulated, which might allow the discovery of new metabolic and signaling pathways as therapeutic targets, for the treatment of hypothalamic related diseases.
Collapse
Affiliation(s)
- Roberto Javier Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Antonia Recabal
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina Oyarce
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- *Correspondence: Karina Oyarce
| |
Collapse
|
213
|
Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan Metabolic Crosstalk in Human Insulin Resistance. Physiol Rev 2018; 98:1371-1415. [PMID: 29767564 DOI: 10.1152/physrev.00015.2017] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Excessive energy intake and reduced energy expenditure drive the development of insulin resistance and metabolic diseases such as obesity and type 2 diabetes mellitus. Metabolic signals derived from dietary intake or secreted from adipose tissue, gut, and liver contribute to energy homeostasis. Recent metabolomic studies identified novel metabolites and enlarged our knowledge on classic metabolites. This review summarizes the evidence of their roles as mediators of interorgan crosstalk and regulators of insulin sensitivity and energy metabolism. Circulating lipids such as free fatty acids, acetate, and palmitoleate from adipose tissue and short-chain fatty acids from the gut effectively act on liver and skeletal muscle. Intracellular lipids such as diacylglycerols and sphingolipids can serve as lipotoxins by directly inhibiting insulin action in muscle and liver. In contrast, fatty acid esters of hydroxy fatty acids have been recently shown to exert a series of beneficial effects. Also, ketoacids are gaining interest as potent modulators of insulin action and mitochondrial function. Finally, branched-chain amino acids not only predict metabolic diseases, but also inhibit insulin signaling. Here, we focus on the metabolic crosstalk in humans, which regulates insulin sensitivity and energy homeostasis in the main insulin-sensitive tissues, skeletal muscle, liver, and adipose tissue.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Tomas Jelenik
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Elisa Álvarez-Hernández
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| | - Michael Roden
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University , Düsseldorf , Germany ; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University , Düsseldorf , Germany ; and German Center of Diabetes Research (DZD e.V.), Munich- Neuherberg , Germany
| |
Collapse
|
214
|
Yildiran H, Macit MS, Özata Uyar G. New approach to peripheral nerve injury: nutritional therapy. Nutr Neurosci 2018; 23:744-755. [PMID: 30526417 DOI: 10.1080/1028415x.2018.1554322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose of review: There is no review in the literature on the effect of nutrition-related factors on peripheral nerve injuries. Therefore, it is aimed to evaluate the effect of nutritional factors on nerve injuries in this compilation. Recent findings: Although there are several fundamental mechanisms by which nutrients and nutritional factors influence individuals, their exact impacts on neurogenesis have not been clearly identified. Recently, some studies showed that some nutrients have an important role in nerve injuries due to their neuroprotective properties. In addition to surgical treatment, in peripheral nerve injuries, these nutrients also may play a role in preserving nerve function and health, as well as in the recovery of an injured nerve tissue. Omega 3 and omega 6 fatty acids, group B vitamins, antioxidants, several minerals, phenolic compounds, and alpha lipoic acid are thought to have impacts on the nervous system. In addition to all of these, gut microbiota has effects on the nervous system, and some nutrient-related factors can also affect neurogenesis via gut microbiota. Summary: Peripheral nerve injury is a condition in which the nerves in the peripheral nervous system become damaged. After the trauma, the peripheral nerve is hardly repaired due to the following reasons; the disability of the regeneration of motor neurons, the lack of a survival environment for Schwann cells, and the poor ability of the nerves to regenerate. Nutrition-related factors, the effects of which were described in recent years, should be more taken into account more.
Collapse
Affiliation(s)
- Hilal Yildiran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Melahat Sedanur Macit
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ondokuz Mayıs University, Samsun, Turkey
| | - Gizem Özata Uyar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| |
Collapse
|
215
|
Manoli I, Sysol JR, Epping MW, Li L, Wang C, Sloan JL, Pass A, Gagné J, Ktena YP, Li L, Trivedi NS, Ouattara B, Zerfas PM, Hoffmann V, Abu-Asab M, Tsokos MG, Kleiner DE, Garone C, Cusmano-Ozog K, Enns GM, Vernon HJ, Andersson HC, Grunewald S, Elkahloun AG, Girard CL, Schnermann J, DiMauro S, Andres-Mateos E, Vandenberghe LH, Chandler RJ, Venditti CP. FGF21 underlies a hormetic response to metabolic stress in methylmalonic acidemia. JCI Insight 2018; 3:124351. [PMID: 30518688 DOI: 10.1172/jci.insight.124351] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Methylmalonic acidemia (MMA), an organic acidemia characterized by metabolic instability and multiorgan complications, is most frequently caused by mutations in methylmalonyl-CoA mutase (MUT). To define the metabolic adaptations in MMA in acute and chronic settings, we studied a mouse model generated by transgenic expression of Mut in the muscle. Mut-/-;TgINS-MCK-Mut mice accurately replicate the hepatorenal mitochondriopathy and growth failure seen in severely affected patients and were used to characterize the response to fasting. The hepatic transcriptome in MMA mice was characterized by the chronic activation of stress-related pathways and an aberrant fasting response when compared with controls. A key metabolic regulator, Fgf21, emerged as a significantly dysregulated transcript in mice and was subsequently studied in a large patient cohort. The concentration of plasma FGF21 in MMA patients correlated with disease subtype, growth indices, and markers of mitochondrial dysfunction but was not affected by renal disease. Restoration of liver Mut activity, by transgenesis and liver-directed gene therapy in mice or liver transplantation in patients, drastically reduced plasma FGF21 and was associated with improved outcomes. Our studies identify mitocellular hormesis as a hepatic adaptation to metabolic stress in MMA and define FGF21 as a highly predictive disease biomarker.
Collapse
Affiliation(s)
- Irini Manoli
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Justin R Sysol
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Madeline W Epping
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lina Li
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Cindy Wang
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jennifer L Sloan
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Alexandra Pass
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Jack Gagné
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Yiouli P Ktena
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Lingli Li
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Niraj S Trivedi
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Bazoumana Ouattara
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada.,Péléforo Gbon Coulibaly University, Korhogo, Ivory Coast
| | | | | | - Mones Abu-Asab
- Ultrastructural Pathology Section, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - Maria G Tsokos
- Ultrastructural Pathology Section, Center for Cancer Research, NIH, Bethesda, Maryland, USA
| | - David E Kleiner
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Caterina Garone
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | | | - Gregory M Enns
- Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans C Andersson
- Hayward Genetics Center, Tulane University Medical School, New Orleans, Louisiana, USA
| | - Stephanie Grunewald
- Department of Pediatric Metabolic Medicine, Great Ormond Street Hospital for Children Foundation Trust, Institute of Child Health, UCL, London, United Kingdom
| | - Abdel G Elkahloun
- Genome Technology Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Christiane L Girard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Jurgen Schnermann
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA.,Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
216
|
Sollie O, Jeppesen PB, Tangen DS, Jernerén F, Nellemann B, Valsdottir D, Madsen K, Turner C, Refsum H, Skålhegg BS, Ivy JL, Jensen J. Protein intake in the early recovery period after exhaustive exercise improves performance the following day. J Appl Physiol (1985) 2018; 125:1731-1742. [DOI: 10.1152/japplphysiol.01132.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate the effect of protein and carbohydrate ingestion during early recovery from exhaustive exercise on performance after 18-h recovery. Eight elite cyclists (V̇o2max: 74.0 ± 1.6 ml·kg−1·min−1) completed two exercise and diet interventions in a double-blinded, randomized, crossover design. Participants cycled first at 73% of V̇o2max (W73%) followed by 1-min intervals at 90% of V̇o2max until exhaustion. During the first 2 h of recovery, participants ingested either 1.2 g carbohydrate·kg−1·h−1 (CHO) or 0.8 g carbohydrate + 0.4 g protein·kg−1·h−1 (CHO + PROT). The diet during the remaining recovery period was similar for both interventions and adjusted to body weight. After an 18-h recovery, cycling performance was assessed with a 10-s sprint test, 30 min of cycling at W73%, and a cycling time trial (TT). The TT was 8.5% faster (41:53 ± 1:51 vs. 45:26 ± 1:32 min; P < 0.03) after CHO + PROT compared with CHO. Mean power output during the sprints was 3.7% higher in CHO + PROT compared with CHO (1,063 ± 54 vs. 1,026 ± 53 W; P = 0.01). Nitrogen balance in the recovery period was negative in CHO and neutral in CHO + PROT (−82.4 ± 11.5 vs. 7.0 ± 15.4 mg/kg; P < 0.01). In conclusion, TT and sprint performances were improved 18 h after exhaustive cycling by CHO + PROT supplementation during the first 2 h of recovery compared with isoenergetic CHO supplementation. Our results indicate that intake of carbohydrate plus protein after exhaustive endurance exercise more rapidly converts the body from a catabolic to an anabolic state than carbohydrate alone, thus speeding recovery and improving subsequent cycling performance. NEW & NOTEWORTHY Prolonged high intensity endurance exercise depends on glycogen utilization and high oxidative capacity. Still, exhaustion develops and effective recovery strategies are required to compete in multiday stage races. We show that coingestion of protein and carbohydrate during the first 2 h of recovery is superior to isoenergetic intake of carbohydrate to stimulate recovery, and improves both endurance time-trial and 10-s sprint performance the following day in elite cyclists.
Collapse
Affiliation(s)
- Ove Sollie
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Per B. Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Daniel S. Tangen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Fredrik Jernerén
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| | - Ditta Valsdottir
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Medical Sciences, Atlantis Medical University College, Oslo, Norway
| | - Klavs Madsen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
- Department of Public Health–Sport Science, Aarhus University, Aarhus, Norway
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- Department of Nutrition, Section for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Bjørn S. Skålhegg
- Department of Nutrition, Section for Molecular Nutrition, University of Oslo, Oslo, Norway
| | - John L. Ivy
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
217
|
Blanchard PG, Moreira RJ, Castro É, Caron A, Côté M, Andrade ML, Oliveira TE, Ortiz-Silva M, Peixoto AS, Dias FA, Gélinas Y, Guerra-Sá R, Deshaies Y, Festuccia WT. PPARγ is a major regulator of branched-chain amino acid blood levels and catabolism in white and brown adipose tissues. Metabolism 2018; 89:27-38. [PMID: 30316815 DOI: 10.1016/j.metabol.2018.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVE We investigated whether PPARγ modulates adipose tissue BCAA metabolism, and whether this mediates the attenuation of obesity-associated insulin resistance induced by pharmacological PPARγ activation. METHODS Mice with adipocyte deletion of one or two PPARγ copies fed a chow diet and rats fed either chow, or high fat (HF) or HF supplemented with BCAA (HF/BCAA) diets treated with rosiglitazone (30 or 15 mg/kg/day, 14 days) were evaluated for glucose and BCAA homeostasis. RESULTS Adipocyte deletion of one PPARγ copy increased mice serum BCAA and reduced inguinal white (iWAT) and brown (BAT) adipose tissue BCAA incorporation into triacylglycerol, as well as mRNA levels of branched-chain aminotransferase (BCAT)2 and branched-chain α-ketoacid dehydrogenase (BCKDH) complex subunits. Adipocyte deletion of two PPARγ copies induced lipodystrophy, severe glucose intolerance and markedly increased serum BCAA. Rosiglitazone abolished the increase in serum BCAA induced by adipocyte PPARγ deletion. In rats, HF increased serum BCAA, such levels being further increased by BCAA supplementation. Rosiglitazone, independently of diet, lowered serum BCAA and upregulated iWAT and BAT BCAT and BCKDH activities. This was associated with a reduction in mTORC1-dependent inhibitory serine phosphorylation of IRS1 in skeletal muscle and whole-body insulin resistance evaluated by HOMA-IR. CONCLUSIONS PPARγ, through the regulation of both BAT and iWAT BCAA catabolism in lipoeutrophic mice and muscle insulin responsiveness and proteolysis in lipodystrophic mice, is a major determinant of circulating BCAA levels. PPARγ agonism, therefore, may improve whole-body and muscle insulin sensitivity by reducing blood BCAA, alleviating mTORC1-mediated inhibitory IRS1 phosphorylation.
Collapse
Affiliation(s)
- Pierre-Gilles Blanchard
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Rafael J Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Érique Castro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre Caron
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Marie Côté
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Maynara L Andrade
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago E Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Albert S Peixoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - France Anne Dias
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Gélinas
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - Renata Guerra-Sá
- Department of Biological Sciences, ICEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Yves Deshaies
- Department of Medicine, Faculty of Medicine, Quebec Heart & Lung Institute, Laval University, Quebec, Canada
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
218
|
Glinski DA, Purucker ST, Van Meter RJ, Black MC, Henderson WM. Endogenous and exogenous biomarker analysis in terrestrial phase amphibians ( Lithobates sphenocephala) following dermal exposure to pesticide mixtures. ENVIRONMENTAL CHEMISTRY (COLLINGWOOD, VIC.) 2018; 16:55-67. [PMID: 34316289 PMCID: PMC8312641 DOI: 10.1071/en18163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pesticide mixtures are frequently co-applied throughout an agricultural growing season to maximize crop yield. Therefore, non-target ecological species (e.g., amphibians) may be exposed to several pesticides at any given time on these agricultural landscapes. The objectives of this study were to quantify body burdens in terrestrial phase amphibians and translate perturbed metabolites to their corresponding biochemical pathways affected by exposure to pesticides as both singlets and in combination. Southern leopard frogs (Lithobates sphenocephala) were exposed either at maximum or 1/10th maximum application rate to single, double, or triple pesticide mixtures of bifenthrin (insecticide), metolachlor (herbicide), and triadimefon (fungicide). Tissue concentrations demonstrate both facilitated and competitive uptake of pesticides when in mixtures. Metabolomic profiling of amphibian livers identified metabolites of interest for both application rates, however; magnitude of changes varied for the two exposure rates. Exposure to lower concentrations demonstrated down regulation in amino acids, potentially due to their being utilized for glutathione metabolism and/or increased energy demands. Amphibians exposed to the maximum application rate resulted in up regulation of amino acids and other key metabolites likely due to depleted energy resources. Coupling endogenous and exogenous biomarkers of pesticide exposure can be utilized to form vital links in an ecological risk assessment by relating internal dose to pathophysiological outcomes in non-target species.
Collapse
Affiliation(s)
- Donna A. Glinski
- Grantee to U.S. Environmental Protection Agency via Oak Ridge Institute of Science and Education, Athens, GA, USA 30605
- Department of Environmental Health Science, Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA 30602
- Corresponding Author: Donna A. Glinski,
| | - S. Thomas Purucker
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Athens, GA, USA 30605
| | - Robin J. Van Meter
- Departments of Biology and Environmental Science/Studies, Washington College, Chestertown, MD, USA 21620
| | - Marsha C. Black
- Department of Environmental Health Science, Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA 30602
| | - W. Matthew Henderson
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Athens, GA, USA 30605
| |
Collapse
|
219
|
Zhang ZY, Monleon D, Verhamme P, Staessen JA. Branched-Chain Amino Acids as Critical Switches in Health and Disease. Hypertension 2018; 72:1012-1022. [DOI: 10.1161/hypertensionaha.118.10919] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhen-Yu Zhang
- From the KU Leuven Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology (Z.-Y.Z., J.A.S.), University of Leuven, Belgium
- Department of Cardiovascular Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China (Z.-Y.Z.)
| | - Daniel Monleon
- Metabolomic and Molecular Image Laboratory, Fundación Investigatión Clínico de Valencia, Spain (D.M.)
| | - Peter Verhamme
- KU Leuven Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (P.V.), University of Leuven, Belgium
| | - Jan A. Staessen
- From the KU Leuven Department of Cardiovascular Sciences, Research Unit Hypertension and Cardiovascular Epidemiology (Z.-Y.Z., J.A.S.), University of Leuven, Belgium
- Cardiovascular Research Institute, Maastricht University, the Netherlands (J.A.S.)
| |
Collapse
|
220
|
Bonvini A, Coqueiro AY, Tirapegui J, Calder PC, Rogero MM. Immunomodulatory role of branched-chain amino acids. Nutr Rev 2018; 76:840-856. [PMID: 30124936 DOI: 10.1093/nutrit/nuy037] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Branched-chain amino acids (BCAAs) have been associated with immunomodulation since the mid-1970s and 1980s and have been used in the nutritional therapy of critically ill patients. Evidence shows that BCAAs can directly contribute to immune cell function, aiding recovery of an impaired immune system, as well as improving the nutritional status in cancer and liver diseases. Branched-chain amino acids may also play a role in treatment of patients with sepsis or trauma, contributing to improved clinical outcomes and survival. Branched-chain amino acids, especially leucine, are activators of the mammalian target of rapamycin (mTOR), which, in turn, interacts with several signaling pathways involved in biological mechanisms of insulin action, protein synthesis, mitochondrial biogenesis, inflammation, and lipid metabolism. Although many in vitro and human and animal model studies have provided evidence for the biological activity of BCAAs, findings have been conflicting, and the mechanisms of action of these amino acids are still poorly understood. This review addresses several aspects related to BCAAs, including their transport, oxidation, and mechanisms of action, as well as their role in nutritional therapy and immunomodulation.
Collapse
Affiliation(s)
- Andrea Bonvini
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Audrey Y Coqueiro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Julio Tirapegui
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Marcelo M Rogero
- Department of Nutrition, Faculty of Public Health, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
221
|
Ananieva EA, Bostic JN, Torres AA, Glanz HR, McNitt SM, Brenner MK, Boyer MP, Addington AK, Hutson SM. Mice deficient in the mitochondrial branched-chain aminotransferase (BCATm) respond with delayed tumour growth to a challenge with EL-4 lymphoma. Br J Cancer 2018; 119:1009-1017. [PMID: 30318512 PMCID: PMC6203766 DOI: 10.1038/s41416-018-0283-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022] Open
Abstract
Background The mitochondrial branched-chain aminotransferase (BCATm) is a recently discovered cancer marker with a poorly defined role in tumour progression. Methods To understand how a loss of function of BCATm affects cancer, the global knockout mouse BCATmKO was challenged with EL-4 lymphoma under different diet compositions with varying amounts of branched-chain amino acids (BCAAs). Next, the growth and metabolism of EL-4 cells were studied in the presence of different leucine concentrations in the growth medium. Results BCATmKO mice experienced delayed tumour growth when fed standard rodent chow or a normal BCAA diet. Tumour suppression correlated with 37.6- and 18.9-fold increases in plasma and tumour BCAAs, 37.5% and 30.4% decreases in tumour glutamine and alanine, and a 3.5-fold increase in the phosphorylation of tumour AMPK in BCATmKO mice on standard rodent chow. Similar results were obtained with a normal but not with a choice BCAA diet. Conclusions Global deletion of BCATm caused a dramatic build-up of BCAAs, which could not be utilised for energy or amino acid synthesis, ultimately delaying the growth of lymphoma tumours. Furthermore, physiological, but not high, leucine concentrations promoted the growth of EL-4 cells. BCATm and BCAA metabolism were identified as attractive targets for anti-lymphoma therapy.
Collapse
Affiliation(s)
- Elitsa A Ananieva
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA.
| | - Joshua N Bostic
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Integrated Life Sciences Building 0913, 1981 Kraft Drive Blacksburg, Blacksburg, VA, 24060, USA.,Centre for Earth Evolution and Dynamics, University of Oslo, N-0315, Oslo, Norway
| | - Ashley A Torres
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Hannah R Glanz
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Sean M McNitt
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Michelle K Brenner
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Michael P Boyer
- Department of Biochemistry and Nutrition, Des Moines University, 3200 Grand Avenue, Des Moines, IA, 50312, USA
| | - Adele K Addington
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Integrated Life Sciences Building 0913, 1981 Kraft Drive Blacksburg, Blacksburg, VA, 24060, USA
| | - Susan M Hutson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Integrated Life Sciences Building 0913, 1981 Kraft Drive Blacksburg, Blacksburg, VA, 24060, USA
| |
Collapse
|
222
|
Ingestion of Insect Protein Isolate Enhances Blood Amino Acid Concentrations Similar to Soy Protein in A Human Trial. Nutrients 2018; 10:nu10101357. [PMID: 30248987 PMCID: PMC6212924 DOI: 10.3390/nu10101357] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Increased amino acid availability stimulates muscle protein synthesis (MPS), which is critical for maintaining or increasing muscle mass when combined with training. Previous research suggests that whey protein is superior to soy protein in regard to stimulating MPS and muscle mass. Nevertheless, with respect to a future lack of dietary protein and an increasing need for using eco-friendly protein sources it is of great interest to investigate the quality of alternative protein sources, like insect protein. Objective: Our aim was to compare the postprandial amino acid (AA) availability and AA profile in the blood after ingestion of protein isolate from the lesser mealworm, whey isolate, and soy isolate. Design: Six healthy young men participated in a randomized cross-over study and received three different protein supplementations (25 g of crude protein from whey, soy, insect or placebo (water)) on four separate days. Blood samples were collected at pre, 0 min, 20 min, 40 min, 60 min, 90 min, and 120 min. Physical activity and dietary intake were standardized before each trial, and participants were instructed to be fasting from the night before. AA concentrations in blood samples were determined using 1H NMR spectroscopy. Results: A significant rise in blood concentration of essential amino acids (EAA), branched-chain amino acids (BCAA) and leucine was detected over the 120 min period for all protein supplements. Nevertheless, the change in AA profile was significantly greater after ingestion of whey than soy and insect protein (p < 0.05). Area under the curve (AUC) analysis and AA profile revealed comparable AA concentrations for soy and insect protein, whereas whey promoted a ~97% and ~140% greater AUC value than soy and insect protein, respectively. A tendency towards higher AA concentrations beyond the 120 min period was observed for insect protein. Conclusion: We report that ingestion of whey, soy, and insect protein isolate increases blood concentrations of EAA, BCAA, and leucine over a 120 min period (whey > insect = soy). Insect protein induced blood AA concentrations similar to soy protein. However, a tendency towards higher blood AA concentrations at the end of the 120 min period post ingestion was observed for insect protein, which indicates that it can be considered a “slow” digestible protein source.
Collapse
|
223
|
Fulghum K, Hill BG. Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Front Cardiovasc Med 2018; 5:127. [PMID: 30255026 PMCID: PMC6141631 DOI: 10.3389/fcvm.2018.00127] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Exercise has a myriad of physiological benefits that derive in part from its ability to improve cardiometabolic health. The periodic metabolic stress imposed by regular exercise appears fundamental in driving cardiovascular tissue adaptation. However, different types, intensities, or durations of exercise elicit different levels of metabolic stress and may promote distinct types of tissue remodeling. In this review, we discuss how exercise affects cardiac structure and function and how exercise-induced changes in metabolism regulate cardiac adaptation. Current evidence suggests that exercise typically elicits an adaptive, beneficial form of cardiac remodeling that involves cardiomyocyte growth and proliferation; however, chronic levels of extreme exercise may increase the risk for pathological cardiac remodeling or sudden cardiac death. An emerging theme underpinning acute as well as chronic cardiac adaptations to exercise is metabolic periodicity, which appears important for regulating mitochondrial quality and function, for stimulating metabolism-mediated exercise gene programs and hypertrophic kinase activity, and for coordinating biosynthetic pathway activity. In addition, circulating metabolites liberated during exercise trigger physiological cardiac growth. Further understanding of how exercise-mediated changes in metabolism orchestrate cell signaling and gene expression could facilitate therapeutic strategies to maximize the benefits of exercise and improve cardiac health.
Collapse
Affiliation(s)
- Kyle Fulghum
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
- Department of Physiology, University of Louisville, Louisville, KY, United States
| | - Bradford G. Hill
- Department of Medicine, Envirome Institute, Institute of Molecular Cardiology, Diabetes and Obesity Center, Louisville, KY, United States
| |
Collapse
|
224
|
Fujimoto Y, Hashimoto O, Shindo D, Sugiyama M, Tomonaga S, Murakami M, Matsui T, Funaba M. Metabolic changes in adipose tissues in response to β 3 -adrenergic receptor activation in mice. J Cell Biochem 2018; 120:821-835. [PMID: 30191605 DOI: 10.1002/jcb.27443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022]
Abstract
Brown and beige adipocytes dissipate energy as heat. Thus, the activation of brown adipocytes and the emergence of beige adipocytes in white adipose tissue (WAT) are suggested to be useful for preventing and treating obesity. Although β3 -adrenergic receptor activation is known to stimulate lipolysis and activation of brown and beige adipocytes, fat depot-dependent changes in metabolite concentrations are not fully elucidated. The current study examined the effect of treatment with CL-316,243, a β3 -adrenergic receptor agonist, on the relative abundance of metabolites in interscapular brown adipose tissue (iBAT), inguinal WAT (ingWAT), and epididymal WAT (epiWAT). Intraperitoneal injection of CL-316,243 (1 mg/kg) for 3 consecutive days increased the relative abundance of several glycolysis-related metabolites in all examined fat depots. The cellular concentrations of metabolites involved in the citric acid cycle and of free amino acids were also increased in epiWAT by CL-316,243. CL-316,243 increased the expression levels of several enzymes and transporters related to glucose metabolism and amino acid catabolism in ingWAT and iBAT but not in epiWAT. CL-316,243 also induced the emergence of more beige adipocytes in ingWAT than in epiWAT. Furthermore, adipocytes surrounded by macrophages were detected in the epiWAT of mice given CL-316,243. The current study reveals the fat depot-dependent modulation of cellular metabolites in CL-316,243-treated mice, presumably resulting from differential regulation of cell metabolism in different cell populations.
Collapse
Affiliation(s)
- Yusuke Fujimoto
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Osamu Hashimoto
- Laboratory of Experimental Animal Science, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Daichi Shindo
- Laboratory of Experimental Animal Science, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Towada, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
225
|
Deng Y, Zhang Y, Qiao R, Bonilla MM, Yang X, Ren H, Lemos B. Evidence that microplastics aggravate the toxicity of organophosphorus flame retardants in mice (Mus musculus). JOURNAL OF HAZARDOUS MATERIALS 2018; 357:348-354. [PMID: 29908513 DOI: 10.1016/j.jhazmat.2018.06.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 05/24/2023]
Abstract
This study was performed to reveal the health risks of co-exposure to organophosphorus flame retardants (OPFRs) and microplastics (MPs). We exposed mice to polyethylene (PE) and polystyrene (PS) MPs and OPFRs [tris (2-chloroethy) phosphate (TCEP) and tris (1,3-dichloro-2-propyl) phosphate (TDCPP)] for 90 days. Biochemical markers and metabolomics were used to determine whether MPs could enhance the toxicity of OPFRs. Superoxide dismutase (SOD) and catalase (CAT) increased (p < 0.05) by 21% and 26% respectively in 10 μg/L TDCPP + PE group compared to TDCPP group. Lactate dehydrogenase (LDH) in TDCPP + MPs groups were higher (18%-30%) than that in TDCPP groups (p < 0.05). Acetylcholinesterase (AChE) in TCEP + PE groups were lower (10%-19%) than those in TCEP groups (p < 0.05). These results suggested that OPFR co-exposure with MPs induced more toxicity than OPFR exposure alone. Finally, in comparison to controls we observed that 29, 41, 41, 26, 40 and 37 metabolites changed significantly (p < 0.05; fold-change > 1.2) in TCEP, TCEP + PS, TCEP + PE, TDCPP, TDCPP + PS and TDCPP + PE groups, respectively. Most of these metabolites are related to pathways of amino acid and energy metabolism. Our results indicate that MPs aggravate the toxicity of OPFRs and highlight the health risks of MP co-exposure with other pollutants.
Collapse
Affiliation(s)
- Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Ruxia Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Melvin M Bonilla
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
226
|
Wang T, Yao W, He Q, Shao Y, Zheng R, Huang F. L-leucine stimulates glutamate dehydrogenase activity and glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:329-337. [PMID: 30175263 PMCID: PMC6116330 DOI: 10.1016/j.aninu.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/15/2017] [Indexed: 01/09/2023]
Abstract
The liver is the most essential organ for the metabolism of ammonia, in where most of ammonia is removed by urea and glutamine synthesis. Regulated by leucine, glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to ammonia. To determine the mechanism of leucine regulating GDH, pigs weighing 20 ± 1 kg were infused for 80 min with ammonium chloride or alanine in the presence or absence of leucine. Primary pig hepatocytes were incubated with or without leucine. In the in vivo experiments with either ammonium or alanine as the nitrogen source, addition of leucine significantly inhibited ureagenesis and promoted the production of glutamate and glutamine in the perfused pig liver (P < 0.05). Similarly, leucine stimulated GDH activity and inhibited sirtuin4 (SIRT4) gene expression (P < 0.01). Leucine could also activate mammalian target of rapamycin complex 1 (mTORC1) signaling (P < 0.05), as evidenced by the increased phosphorylation levels of ribosomal protein S6 kinase 1 (S6K1) and ribosomal protein S6 (S6). Interestingly, the leucine-induced mTORC1 pathway activation suitably correlated with increased GDH activity and decreased expression of SIRT4. Similar results were observed in primary cultured hepatocytes. Notably, leucine exerted no significant change in GDH activity in SIRT4-deficient hepatocytes (P > 0.05), while mTORC1 signaling was activated. Leucine exerted no significant changes in both GDH activity and SIRT4 gene expression in rapamycin treated hepatocytes (P > 0.05). In conclusion, L-leucine increases GDH activity and stimulates glutamate synthesis from different nitrogen sources by regulating mTORC1/SIRT4 pathway in the liver of pigs.
Collapse
Affiliation(s)
| | | | | | | | | | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
227
|
Abstract
PURPOSE OF REVIEW Elevations in circulating branched chain amino acids (BCAAs) have gained attention as potential contributors to the development of insulin resistance and diabetes. RECENT FINDINGS Epidemiological evidence strongly supports this conclusion. Suppression of BCAA catabolism in adipose and hepatic tissues appears to be the primary drivers of plasma BCAA elevations. BCAA catabolism may be shunted to skeletal muscle, where it indirectly leads to FA accumulation and insulin resistance, via a number of proposed mechanisms. BCAAs have an important role in the development of IR, but our understanding of how plasma BCAA elevations occur, and how these elevations lead to insulin resistance, is still limited.
Collapse
Affiliation(s)
- Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, TRC 11-106 3400 Civic Blvd, Philadelphia, PA, 19104, USA.
| | - Michael Neinast
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, TRC 11-106 3400 Civic Blvd, Philadelphia, PA, 19104, USA
| |
Collapse
|
228
|
Suzuki M, Yoshioka M, Ohno Y, Akune Y. Plasma metabolomic analysis in mature female common bottlenose dolphins: profiling the characteristics of metabolites after overnight fasting by comparison with data in beagle dogs. Sci Rep 2018; 8:12030. [PMID: 30104643 PMCID: PMC6089887 DOI: 10.1038/s41598-018-30563-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
The present study was aimed at determining the characteristics of plasma metabolites in bottlenose dolphins to provide a greater understanding of their metabolism and to obtain information for the health management of cetaceans. Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) and liquid chromatograph-time-of-flight mass spectrometry (LC-TOFMS) were conducted on plasma samples after overnight fasting from three common bottlenose dolphins as well as three beagle dogs (representative terrestrial carnivores) for comparison. In total, 257 and 227 plasma metabolites were identified in the dolphins and the dogs, respectively. Although a small number of animals were used for each species, the heatmap patterns, a principal component analysis and a cluster analysis confirmed that the composition of metabolites could be segregated from each other. Of 257 compounds detected in dolphin plasma, 24 compounds including branched amino acids, creatinine, urea, and methylhistidine were more abundant than in dogs; 26 compounds including long-chained acyl-carnitines and fatty acids, astaxanthin, and pantothenic acid were detected only in dolphins. In contrast, 25 compounds containing lactic acid and glycerol 3-phosphate were lower in dolphins compared to dogs. These data imply active protein metabolism, differences in usage of lipids, a unique urea cycle, and a low activity of the glycolytic pathway in dolphins.
Collapse
Affiliation(s)
- Miwa Suzuki
- Department of Marine Resources and Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Motoi Yoshioka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yoshito Ohno
- Port of Nagoya Public Aquarium, Minato, Nagoya, Aichi, 455-0033, Japan
| | - Yuichiro Akune
- Port of Nagoya Public Aquarium, Minato, Nagoya, Aichi, 455-0033, Japan
| |
Collapse
|
229
|
Servillo L, D'Onofrio N, Neglia G, Casale R, Cautela D, Marrelli M, Limone A, Campanile G, Balestrieri ML. Carnitine Precursors and Short-Chain Acylcarnitines in Water Buffalo Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8142-8149. [PMID: 30011990 DOI: 10.1021/acs.jafc.8b02963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ruminants' milk contains δ-valerobetaine originating from rumen through the transformation of dietary Nε-trimethyllysine. Among ruminant's milk, the occurrence of δ-valerobetaine, along with carnitine precursors and metabolites, has not been investigated in buffalo milk, the second most worldwide consumed milk, well-known for its nutritional value. HPLC-ESI-MS/MS analyses of bulk milk revealed that the Italian Mediterranean buffalo milk contains δ-valerobetaine at levels higher than those in bovine milk. Importantly, we detected also γ-butyrobetaine, the l-carnitine precursor, never described so far in any milk. Of interest, buffalo milk shows higher levels of acetylcarnitine, propionylcarnitine, butyrylcarnitine, isobutyrylcarnitine, and 3-methylbutyrylcarnitine (isovalerylcarnitine) than cow milk. Moreover, buffalo milk shows isobutyrylcarnitine and butyrylcarnitine at a 1-to-1 molar ratio, while in cow's milk this ratio is 5 to 1. Results indicate a peculiar short-chain acylcarnitine profile characterizing buffalo milk, widening the current knowledge about its composition and nutritional value.
Collapse
Affiliation(s)
- Luigi Servillo
- Department of Precision Medicine , University of Campania "L. Vanvitelli" , 80138 Naples , Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine , University of Campania "L. Vanvitelli" , 80138 Naples , Italy
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production , Federico II University , 80137 Naples , Italy
| | - Rosario Casale
- Department of Precision Medicine , University of Campania "L. Vanvitelli" , 80138 Naples , Italy
| | - Domenico Cautela
- Stazione Sperimentale per le Industrie delle Essenze e dei derivati dagli Agrumi , Azienda Speciale della Camera di Commercio di Reggio Calabria , 89125 Reggio Calabria , Italy
| | - Massimo Marrelli
- Maxillofacial Surgery Section , Marrelli Health , 88900 Crotone , Italy
| | - Antonio Limone
- Istituto Zooprofilattico Sperimentale del Mezzogiorno , 80055 Naples , Italy
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production , Federico II University , 80137 Naples , Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine , University of Campania "L. Vanvitelli" , 80138 Naples , Italy
| |
Collapse
|
230
|
Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr Rev 2018; 39:489-517. [PMID: 29697773 PMCID: PMC6093334 DOI: 10.1210/er.2017-00211] [Citation(s) in RCA: 383] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
The ability to efficiently adapt metabolism by substrate sensing, trafficking, storage, and utilization, dependent on availability and requirement, is known as metabolic flexibility. In this review, we discuss the breadth and depth of metabolic flexibility and its impact on health and disease. Metabolic flexibility is essential to maintain energy homeostasis in times of either caloric excess or caloric restriction, and in times of either low or high energy demand, such as during exercise. The liver, adipose tissue, and muscle govern systemic metabolic flexibility and manage nutrient sensing, uptake, transport, storage, and expenditure by communication via endocrine cues. At a molecular level, metabolic flexibility relies on the configuration of metabolic pathways, which are regulated by key metabolic enzymes and transcription factors, many of which interact closely with the mitochondria. Disrupted metabolic flexibility, or metabolic inflexibility, however, is associated with many pathological conditions including metabolic syndrome, type 2 diabetes mellitus, and cancer. Multiple factors such as dietary composition and feeding frequency, exercise training, and use of pharmacological compounds, influence metabolic flexibility and will be discussed here. Last, we outline important advances in metabolic flexibility research and discuss medical horizons and translational aspects.
Collapse
Affiliation(s)
- Reuben L Smith
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Maarten R Soeters
- Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Department of Endocrinology and Metabolism, Internal Medicine, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Rob C I Wüst
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Movement Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Gastroenterology and Metabolism, Academic Medical Center, AZ Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Academic Medical Center, AZ Amsterdam, Netherlands
| |
Collapse
|
231
|
Garratt M, Lagerborg KA, Tsai YM, Galecki A, Jain M, Miller RA. Male lifespan extension with 17-α estradiol is linked to a sex-specific metabolomic response modulated by gonadal hormones in mice. Aging Cell 2018; 17:e12786. [PMID: 29806096 PMCID: PMC6052402 DOI: 10.1111/acel.12786] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2018] [Indexed: 12/22/2022] Open
Abstract
Longevity in mammals is influenced by sex, and lifespan extension in response to anti‐aging interventions is often sex‐specific, although the mechanisms underlying these sexual dimorphisms are largely unknown. Treatment of mice with 17‐α estradiol (17aE2) results in sex‐specific lifespan extension, with an increase in median survival in males of 19% and no survival effect in females. Given the links between lifespan extension and metabolism, we performed untargeted metabolomics analysis of liver, skeletal muscle and plasma from male and female mice treated with 17aE2 for eight months. We find that 17aE2 generates distinct sex‐specific changes in the metabolomic profile of liver and plasma. In males, 17aE2 treatment raised the abundance of several amino acids in the liver, and this was further associated with elevations in metabolites involved in urea cycling, suggesting altered amino acid metabolism. In females, amino acids and urea cycling metabolites were unaffected by 17aE2. 17aE2 also results in male‐specific elevations in a second estrogenic steroid—estriol‐3‐sulfate—suggesting different metabolism of this drug in males and females. To understand the underlying endocrine causes for these sexual dimorphisms, we castrated males and ovariectomized females prior to 17aE2 treatment, and found that virtually all the male‐specific metabolite responses to 17aE2 are inhibited or reduced by male castration. These results suggest novel metabolic pathways linked to male‐specific lifespan extension and show that the male‐specific metabolomic response to 17aE2 depends on the production of testicular hormones in adult life.
Collapse
Affiliation(s)
- Michael Garratt
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
| | - Kim A. Lagerborg
- Departments of Medicine & Pharmacology; University of California San Diego; San Diego California
| | - Yi-Miau Tsai
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
- University of Michigan Geriatrics Center; Ann Arbor Michigan
| | - Andrzej Galecki
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
- University of Michigan Geriatrics Center; Ann Arbor Michigan
| | - Mohit Jain
- Departments of Medicine & Pharmacology; University of California San Diego; San Diego California
| | - Richard A. Miller
- Department of Pathology; University of Michigan Medical School; Ann Arbor Michigan
- University of Michigan Geriatrics Center; Ann Arbor Michigan
| |
Collapse
|
232
|
Xing G, Ren M, Verma A. Divergent Induction of Branched-Chain Aminotransferases and Phosphorylation of Branched Chain Keto-Acid Dehydrogenase Is a Potential Mechanism Coupling Branched-Chain Keto-Acid-Mediated-Astrocyte Activation to Branched-Chain Amino Acid Depletion-Mediated Cognitive Deficit after Traumatic Brain Injury. J Neurotrauma 2018; 35:2482-2494. [PMID: 29764289 DOI: 10.1089/neu.2017.5496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deficient branched-chain amino acids (BCAAs) are implicated in cognitive dysfunction after traumatic brain injury (TBI). The mechanism remains unknown. BCAAs are catabolized by neuron-specific cytosolic and astrocyte-specific mitochondrial branched-chain aminotransferases (BCATc, BCATm) to generate glutamate and branched-chain keto-acids (BCKAs) that are metabolized by the mitochondrial branched-chain keto-acid dehydrogenase (BCKD) whose activity is regulated by its phosphorylation state. BCKD phosphorylation by BCKD kinase (BCKDK) inactivates BCKD and cause neurocognitive dysfunction, whereas dephosphorylation by specific phosphatase restores BCKD activity. Real-time polymerase chain reaction showed rapidly and significantly decreased BCATc messenger RNA (mRNA) levels, but significantly increased BCATm mRNA level post-CCI (controlled cortical impact). BCKD and BCKDK mRNA decreased significantly immediately after CCI-induced TBI (CCI) in the rat. Phosphorylated BCKD proteins (pBCKD) increased significantly in the ipsilateral-CCI hemisphere. Immunohistochemistry revealed significantly increased pBCKD proteins in ipsilateral astrocytes post-CCI. BCKD protein expression is higher in primarily cultured cortical neurons than in astrocytes, whereas pBCKD protein level is higher in astrocytes than in cortical neurons. Transforming growth factor beta treatment (10 μg/mL for 48 h) significantly increased pBCKD protein expression in astrocytes, whereas glutamate treatment (25 μM for 24 h) significantly decreased pBCKD protein in neurons. Because increased pBCKD would lead to increased BCKA accumulation, BCKA-mediated astrocyte activation, cell death, and cognitive dysfunction as found in maple syrup urine disease; thus, TBI may potentially induce cognitive deficit through diverting BCAA from glutamate production in neurons to BCKA production in astrocytes through the pBCKD-dependent mechanism.
Collapse
Affiliation(s)
- Guoqiang Xing
- 1 Department of Radiology and Imaging, Institute of Rehabilitation and Development of Brain Function , The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Ming Ren
- 2 Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | | |
Collapse
|
233
|
Safai N, Suvitaival T, Ali A, Spégel P, Al-Majdoub M, Carstensen B, Vestergaard H, Ridderstråle M. Effect of metformin on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (CIMT) trial. Diabet Med 2018; 35:944-953. [PMID: 29633349 DOI: 10.1111/dme.13636] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
AIM Metformin is the first-line treatment for Type 2 diabetes. However, not all people benefit from this drug. Our aim was to investigate the effects of metformin on the plasma metabolome and whether the pretreatment metabolite profile can predict HbA1c outcome. METHODS Post hoc analysis of the Copenhagen Insulin and Metformin Therapy (CIMT) trial, a multicentre study from May 2008 to December 2012, was carried out. We used a non-target method to analyse 87 plasma metabolites in participants with Type 2 diabetes (n = 370) who were randomized in a 1 : 1 ratio to 18 months of metformin or placebo treatment. Metabolites were measured by liquid chromatography-mass spectrometry at baseline and at 18-month follow-up and the data were analysed using a linear mixed-effect model. RESULTS At baseline, participants who were on metformin before the trial (n = 312) had higher levels of leucine/isoleucine and five lysophosphatidylethanolamines (LPEs), and lower levels of carnitine and valine compared with metformin-naïve participants (n = 58). At follow-up, participants randomized to metformin (n = 188) had elevated levels of leucine/isoleucine and reduced carnitine, tyrosine and valine compared with placebo (n = 182). At baseline, participants on metformin treatment with the highest levels of carnitine C10:1 and leucine/isoleucine had the lowest HbA1c (P-interaction = 0.02 and 0.03, respectively). This association was not significant with HbA1c at follow-up. CONCLUSIONS Metformin treatment is associated with decreased levels of valine, tyrosine and carnitine, and increased levels of leucine/isoleucine. None of the identified metabolites can predict the HbA1c -lowering effect of metformin. Further studies of the association between metformin, carnitine and leucine/isoleucine are warranted.
Collapse
Affiliation(s)
- N Safai
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - T Suvitaival
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - A Ali
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - P Spégel
- Unit of Molecular Metabolism, Department of Clinical Sciences Malmö, Lund University, Malmö
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - M Al-Majdoub
- Unit of Molecular Metabolism, Department of Clinical Sciences Malmö, Lund University, Malmö
| | - B Carstensen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - H Vestergaard
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Novo Nordisk Foundation of Basic Metabolic Research, University of Copenhagen, Copenhagen
| | - M Ridderstråle
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Unit of Molecular Metabolism, Department of Clinical Sciences Malmö, Lund University, Malmö
- Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
234
|
Elshorbagy AK, Samocha-Bonet D, Jernerén F, Turner C, Refsum H, Heilbronn LK. Food Overconsumption in Healthy Adults Triggers Early and Sustained Increases in Serum Branched-Chain Amino Acids and Changes in Cysteine Linked to Fat Gain. J Nutr 2018; 148:1073-1080. [PMID: 29901727 DOI: 10.1093/jn/nxy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 01/03/2023] Open
Abstract
Background Plasma concentrations of branched-chain amino acids (BCAAs) and the sulfur-containing amino acid cysteine are associated with obesity and insulin resistance. BCAAs predict future diabetes. Objective We investigated amino acid changes during food overconsumption. Methods Forty healthy men and women with a body mass index (mean ± SEM) of 25.6 ± 0.6 were overfed by 1250 kcal/d for 28 d, increasing consumption of all macronutrients. Insulin sensitivity and body composition were assessed at baseline (day 0) and day 28. Fasting serum amino acids were measured at days 0, 3, and 28. Linear mixed-effects models evaluated the effect of time in the total group and separately in those with low and high body fat gain (below compared with at or above median fat gain, 1.95 kg). At days 0 and 28, insulin-induced suppression of serum amino acids during a hyperinsulinemic-euglycemic clamp test and, in a subset (n = 20), adipose tissue mRNA expression of selected amino acid metabolizing enzymes were assessed. Results Weight increased by 2.8 kg. High fat gainers gained 2.6 kg fat mass compared with 1.1 kg in low fat gainers. Valine and isoleucine increased at day 3 (+17% and +22%, respectively; P ≤ 0.002) and remained elevated at day 28, despite a decline in valine (P = 0.019) from day 3 values. Methionine, cystathionine, and taurine were unaffected. Serum total cysteine (tCys) transiently increased at day 3 (+11%; P = 0.022) only in high fat gainers (P-interaction = 0.043), in whom the cysteine catabolic enzyme cysteine dioxygenase (CDO1) was induced (+26%; P = 0.025) in adipose tissue (P-interaction = 0.045). Overconsumption did not alter adipose tissue mRNA expression of the BCAA-metabolizing enzymes branched-chain keto acid dehydrogenase E1α polypeptide (BCKDHA) or branched-chain amino transferase 1 (BCAT1). In the total population at day 0, insulin infusion decreased all serum amino acids (-11% to -47%; P < 0.01), except for homocysteine and tCys, which were unchanged, and glutathione, which was increased by 54%. At day 28, insulin increased tCys (+8%), and the insulin-induced suppression of taurine and phenylalanine observed at day 0, but not that of BCAAs, was significantly impaired. Conclusions These findings highlight the role of nutrient oversupply in increasing fasting BCAA concentrations in healthy adults. The link between cysteine availability, CDO1 expression, and fat gain deserves investigation. This trial was registered at www.clinicaltrials.gov as NCT00562393.
Collapse
Affiliation(s)
- Amany K Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Dorit Samocha-Bonet
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Fredrik Jernerén
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, Oslo, Norway
| | - Leonie K Heilbronn
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
235
|
Wilkinson AC, Morita M, Nakauchi H, Yamazaki S. Branched-chain amino acid depletion conditions bone marrow for hematopoietic stem cell transplantation avoiding amino acid imbalance-associated toxicity. Exp Hematol 2018; 63:12-16.e1. [PMID: 29705267 PMCID: PMC6052250 DOI: 10.1016/j.exphem.2018.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 01/28/2023]
Abstract
Hematopoietic stem cells (HSCs) are used clinically in bone marrow (BM) transplantation due to their unique ability to reform the entire hematopoietic system. Recently, we reported that HSCs are highly sensitive to valine, one of the three branched-chain amino acids (BCAAs) in addition to isoleucine and leucine. Dietary depletion of valine could even be used as a conditioning regimen for HSC transplantation. Here, we report that HSCs are highly sensitive to the balance of BCAAs, with both proliferation and survival reduced by BCAA imbalance. However, low but balanced BCAA levels failed to rescue HSC maintenance. Importantly, in vivo depletion of all three BCAAs was significantly less toxic than depletion of valine only. We demonstrate that BCAA depletion can replace valine depletion as a safer alternative to BM conditioning. In summary, by determining HSC metabolic requirements, we can improve metabolic approaches to BM conditioning.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Maiko Morita
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Satoshi Yamazaki
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regeneration Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
236
|
Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018; 20:745-754. [PMID: 29950572 PMCID: PMC6541229 DOI: 10.1038/s41556-018-0124-1] [Citation(s) in RCA: 1069] [Impact Index Per Article: 152.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Although classically appreciated for their role as the powerhouse of the cell, the metabolic functions of mitochondria reach far beyond bioenergetics. In this Review, we discuss how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management. We address the importance of these roles in both normal physiology and in disease.
Collapse
Affiliation(s)
- Jessica B Spinelli
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
237
|
Reduced plasma concentration of branched-chain amino acids in sarcopenic older subjects: a cross-sectional study. Br J Nutr 2018; 120:445-453. [PMID: 29909813 DOI: 10.1017/s0007114518001307] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Branched-chain amino acids (BCAA) are essential amino acids that are necessary for muscle mass maintenance. Little is known about the plasma concentrations of BCAA and the protein intake in relation to sarcopenia. We aimed to compare the non-fasting plasma concentrations of the BCAA and the dietary protein intake between sarcopenic and non-sarcopenic older adults. Norwegian older home-dwelling adults (≥70 years) were invited to a cross-sectional study with no other exclusion criteria than age. Sarcopenic subjects were defined by the diagnostic criteria by the European Working Group on Sarcopenia in Older People. Non-fasting plasma concentrations of eight amino acids were quantified using NMR spectroscopy. Protein intake was assessed using 2×24-h dietary recalls. In this study, ninety out of 417 subjects (22 %) were sarcopenic, and more women (32 %) than men (11 %) were sarcopenic (P<0·0001). Sex-adjusted non-fasting plasma concentrations of leucine and isoleucine, and the absolute intake of protein (g/d), were significantly lower among the sarcopenic subjects, when compared with non-sarcopenic subjects (P=0·003, P=0·026 and P=0·003, respectively). A similar protein intake was observed in the two groups when adjusted for body weight (BW) and sex (1·1 g protein/kg BW per d; P=0·50). We show that sarcopenia is associated with reduced non-fasting plasma concentration of the BCAA leucine and isoleucine, and lower absolute intake of protein. More studies are needed to clarify the clinical relevance of these findings, related to maintenance of muscle mass and prevention of sarcopenia.
Collapse
|
238
|
Chytridiomycosis causes catastrophic organism-wide metabolic dysregulation including profound failure of cellular energy pathways. Sci Rep 2018; 8:8188. [PMID: 29844538 PMCID: PMC5974026 DOI: 10.1038/s41598-018-26427-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Chytridiomycosis is among several recently emerged fungal diseases of wildlife that have caused decline or extinction of naïve populations. Despite recent advances in understanding pathogenesis, host response to infection remains poorly understood. Here we modelled a total of 162 metabolites across skin and liver tissues of 61 frogs from four populations (three long-exposed and one naïve to the fungus) of the Australian alpine tree frog (Litoria verreauxii alpina) throughout a longitudinal exposure experiment involving both infected and negative control individuals. We found that chytridiomycosis dramatically altered the organism-wide metabolism of clinically diseased frogs. Chytridiomycosis caused catastrophic failure of normal homeostatic mechanisms (interruption of biosynthetic and degradation metabolic pathways), and pronounced dysregulation of cellular energy metabolism. Key intermediates of the tricarboxylic acid cycle were markedly depleted, including in particular α-ketoglutarate and glutamate that together constitute a key nutrient pathway for immune processes. This study was the first to apply a non-targeted metabolomics approach to a fungal wildlife disease and specifically to dissect the host-pathogen interface of Bd-infected frogs. The patterns of metabolite accumulation we have identified reveal whole-body metabolic dysfunction induced by a fungal skin infection, and these findings have broad relevance for other fungal diseases.
Collapse
|
239
|
Doxorubicin chemotherapy affects the intracellular and interstitial free amino acid pools in skeletal muscle. PLoS One 2018; 13:e0195330. [PMID: 29617462 PMCID: PMC5884546 DOI: 10.1371/journal.pone.0195330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle (SM) health and integrity is dependent on the dynamic balance between protein synthesis and degradation, and central to this process is the availability of amino acids (AA) in the amino pool. While Doxorubicin (DOX) remains one of the most widely used chemotherapeutic agents for the treatment of solid and hematological malignancies, little is known of the effect of the drug on SM, particularly its effect on the availability of amino acids in the tissue. The purpose of this study was to examine the effect of DOX administration on vascular, interstitial and intracellular concentrations of AA in SM of the rat up to 8 days after the administration of a 1.5 or 4.5 mg/kg i.p. dose of DOX. In the plasma, total amino acids (TAA) were significantly increased compared to control where greater (P<0.05) concentrations were observed following the 1.5 mg/kg dose compared to the 4.5 mg/kg dose. Compared to control, the 1.5 mg/kg dose resulted in an increase (P<0.05) in interstitial TAA whereas the 4.5 mg/kg resulted in a sustained decrease (P<0.05). Intracellular TAA, essential amino acids (EAA) and branched-chain amino acids (BCAA) where significantly increased in each muscle group analyzed, following the 1.5 and 4.5 mg/kg doses compared to control. This study provides important insight into the amino acid response following DOX chemotherapy and presents a substantial foundation for future studies focused on reducing SM damage and recovery by targeting amino acid metabolism.
Collapse
|
240
|
The Uptake and Metabolism of Amino Acids, and Their Unique Role in the Biology of Pathogenic Trypanosomatids. Pathogens 2018; 7:pathogens7020036. [PMID: 29614775 PMCID: PMC6027508 DOI: 10.3390/pathogens7020036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/24/2023] Open
Abstract
Trypanosoma brucei, as well as Trypanosoma cruzi and more than 20 species of the genus Leishmania, form a group of flagellated protists that threaten human health. These organisms are transmitted by insects that, together with mammals, are their natural hosts. This implies that during their life cycles each of them faces environments with different physical, chemical, biochemical, and biological characteristics. In this work we review how amino acids are obtained from such environments, how they are metabolized, and how they and some of their intermediate metabolites are used as a survival toolbox to cope with the different conditions in which these parasites should establish the infections in the insects and mammalian hosts.
Collapse
|
241
|
Li MH, Ruan LY, Chen C, Xing YX, Hong W, Du RH, Wang JS. Protective effects of Polygonum multiflorum on ischemic stroke rat model analysed by 1H NMR metabolic profiling. J Pharm Biomed Anal 2018; 155:91-103. [PMID: 29625260 DOI: 10.1016/j.jpba.2018.03.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 01/27/2023]
Abstract
Stroke is the third most common cause of death in most industrialized countries. Polygonum multiflorum (He-Shou-Wu, HSW) is one of the traditional Chinese medicines with multiple pharmacological activities which is widely used in Chinese recipe. This study aims to explore the protective effect of HSW on ischemic stroke rat model and to elucidate the underlying mechanisms. The mortality rate, neurological deficit, cerebral infarct size, histopathology, immunohistochemistry, biochemical parameters, quantitative real-time polymerase chain reaction and western blotting were used to access the treatment effects of HSW on ischemic stroke. Proton nuclear magnetic resonance (1H NMR) based metabolomics analysis disclosed that HSW could relieve stroke rats suffering from the ischemia/reperfusion injury by ameliorating the disturbed energy and amino acids metabolisms, alleviating the oxidative stress from reactive oxygen species and reducing the inflammation. HSW treatment increased levels of cellular antioxidants that scavenged reactive oxygen species during ischemia-reperfusion via the nuclear erythroid 2-related factor 2 signaling pathway, and exert anti-inflammatory effect by decreasing the levels of inflammatory factors such as cyclooxygenase-2, interleukin-1β, interleukin-6 and tumor necrosis factor-α. The integrated metabolomics approach showed its potential in understanding mechanisms of HSW in relieving ischemic stroke. Further study to develop HSW as an effective therapeutic agent to treat ischemic stroke is warranted.
Collapse
Affiliation(s)
- Ming-Hui Li
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Ling-Yu Ruan
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Cheng Chen
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yue-Xiao Xing
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Wei Hong
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Rong-Hui Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Jun-Song Wang
- Center of Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| |
Collapse
|
242
|
Abstract
ABSTRACT
The Odontocetes (toothed whales) possess two types of specialized fat and, therefore, represent an interesting group when considering the evolution and function of adipose tissue. All whales have a layer of superficial blubber, which insulates and streamlines, provides buoyancy and acts as an energy reserve. Some toothed whales deposit large amounts of wax esters, rather than triacylglycerols, in blubber, which is unusual. Waxes have very different physical and physiological properties, which may impact blubber function. The cranial acoustic fat depots serve to focus sound during echolocation and hearing. The acoustic fats have unique morphologies; however, they are even more specialized biochemically because they are composed of a mix of endogenous waxes and triacylglycerols with unusual branched elements (derived from amino acids) that are not present in other mammals. Both waxes and branched elements alter how sound travels through a fat body; they are arranged in a 3D topographical pattern to focus sound. Furthermore, the specific branched-chain acid/alcohol synthesis mechanisms and products vary phylogenetically (e.g. dolphins synthesize lipids from leucine whereas beaked whales use valine). I propose that these specialized lipids evolved first in the head: wax synthesis first emerged to serve an acoustic function in toothed whales, with branched-chain synthesis adding additional acoustic focusing power, and some species secondarily retained wax synthesis pathways for blubber. Further research is necessary to elucidate specific molecular mechanisms controlling the synthesis and deposition of wax esters and branched-chain fatty acids, as well as their spatial deposition within tissues and within adipocytes.
Collapse
Affiliation(s)
- Heather N. Koopman
- Biology & Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28401, USA
| |
Collapse
|
243
|
Gannon NP, Schnuck JK, Vaughan RA. BCAA Metabolism and Insulin Sensitivity - Dysregulated by Metabolic Status? Mol Nutr Food Res 2018; 62:e1700756. [PMID: 29377510 DOI: 10.1002/mnfr.201700756] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Branched-chain amino acids (BCAAs) appear to influence several synthetic and catabolic cellular signaling cascades leading to altered phenotypes in mammals. BCAAs are most notably known to increase protein synthesis through modulating protein translation, explaining their appeal to resistance and endurance athletes for muscle hypertrophy, expedited recovery, and preservation of lean body mass. In addition to anabolic effects, BCAAs may increase mitochondrial content in skeletal muscle and adipocytes, possibly enhancing oxidative capacity. However, elevated circulating BCAA levels have been correlated with severity of insulin resistance. It is hypothesized that elevated circulating BCAAs observed in insulin resistance may result from dysregulated BCAA degradation. This review summarizes original reports that investigated the ability of BCAAs to alter glucose uptake in consequential cell types and experimental models. The review also discusses the interplay of BCAAs with other metabolic factors, and the role of excess lipid (and possibly energy excess) in the dysregulation of BCAA catabolism. Lastly, this article provides a working hypothesis of the mechanism(s) by which lipids may contribute to altered BCAA catabolism, which often accompanies metabolic disease.
Collapse
Affiliation(s)
| | - Jamie K Schnuck
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, NC
| |
Collapse
|
244
|
Ahmed V, Verma MK, Gupta S, Mandhan V, Chauhan NS. Metagenomic Profiling of Soil Microbes to Mine Salt Stress Tolerance Genes. Front Microbiol 2018; 9:159. [PMID: 29472909 PMCID: PMC5809485 DOI: 10.3389/fmicb.2018.00159] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Abstract
Osmotolerance is one of the critical factors for successful survival and colonization of microbes in saline environments. Nonetheless, information about these osmotolerance mechanisms is still inadequate. Exploration of the saline soil microbiome for its community structure and novel genetic elements is likely to provide information on the mechanisms involved in osmoadaptation. The present study explores the saline soil microbiome for its native structure and novel genetic elements involved in osmoadaptation. 16S rRNA gene sequence analysis has indicated the dominance of halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. A functional metagenomics approach led to the identification of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp, GSDH, STK_Pknb, and duf3445 genes. Furthermore, transposon mutagenesis, genetic, physiological and functional studies in close association has confirmed the role of these genes in osmotolerance. Enhancement in host osmotolerance possibly though the cytosolic accumulation of amino acids, reducing equivalents and osmolytes involving BCAA-ABCtp, GSDH, and STKc_PknB. Decoding of the genetic elements prevalent within these microbes can be exploited either as such for ameliorating soils or their genetically modified forms can assist crops to resist and survive in saline environment.
Collapse
Affiliation(s)
- Vasim Ahmed
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Manoj K Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Shashank Gupta
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Vibha Mandhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Nar S Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
245
|
Comesaña S, Velasco C, Ceinos RM, López-Patiño MA, Míguez JM, Morais S, Soengas JL. Evidence for the presence in rainbow trout brain of amino acid-sensing systems involved in the control of food intake. Am J Physiol Regul Integr Comp Physiol 2018; 314:R201-R215. [DOI: 10.1152/ajpregu.00283.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To assess the hypothesis of central amino acid-sensing systems involved in the control of food intake in fish, we carried out two experiments in rainbow trout. In the first one, we injected intracerebroventricularly two different branched-chain amino acids (BCAAs), leucine and valine, and assessed food intake up to 48 h later. Leucine decreased and valine increased food intake. In a second experiment, 6 h after similar intracerebroventricular treatment we determined changes in parameters related to putative amino acid-sensing systems. Different areas of rainbow trout brain present amino acid-sensing systems responding to leucine (hypothalamus and telencephalon) and valine (telencephalon), while other areas (midbrain and hindbrain) do not respond to these treatments. The decreased food intake observed in fish treated intracerebroventricularly with leucine could relate to changes in mRNA abundance of hypothalamic neuropeptides [proopiomelanocortin (POMC), cocaine- and amphetamine-related transcript (CART), neuropeptide Y (NPY), and agouti-related peptide (AgRP)]. These in turn could relate to amino acid-sensing systems present in the same area, related to BCAA and glutamine metabolism, as well as mechanistic target of rapamycin (mTOR), taste receptors, and general control nonderepressible 2 (GCN2) kinase signaling. The treatment with valine did not affect amino acid-sensing parameters in the hypothalamus. These responses are comparable to those characterized in mammals. However, clear differences arise when comparing rainbow trout and mammals, in particular with respect to the clear orexigenic effect of valine, which could relate to the finding that valine partially stimulated two amino acid-sensing systems in the telencephalon. Another novel result is the clear effect of leucine on telencephalon, in which amino acid-sensing systems, but not neuropeptides, were activated as in the hypothalamus.
Collapse
Affiliation(s)
- Sara Comesaña
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Cristina Velasco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Rosa M. Ceinos
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Marcos A. López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| | - Sofia Morais
- Lucta, Innovation Division, Autonomous University of Barcelona Research Park, Bellaterra, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro Singular de Investigación Mariña-ECIMAT, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
246
|
Xiao W, Li D, Zhu J, Zou Z, Yue Y, Yang H. Dietary valine requirement of juvenile Nile tilapia, Oreochromis niloticus. AQUACULTURE NUTRITION 2018; 24:315-323. [DOI: 10.1111/anu.12562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- W. Xiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization; Chinese Ministry of Agriculture; Freshwater Fisheries Research Center; Chinese Academy of Fishery Sciences; Wuxi China
| | - D.Y. Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization; Chinese Ministry of Agriculture; Freshwater Fisheries Research Center; Chinese Academy of Fishery Sciences; Wuxi China
| | - J.L. Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization; Chinese Ministry of Agriculture; Freshwater Fisheries Research Center; Chinese Academy of Fishery Sciences; Wuxi China
| | - Z.Y. Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization; Chinese Ministry of Agriculture; Freshwater Fisheries Research Center; Chinese Academy of Fishery Sciences; Wuxi China
| | - Y.R. Yue
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization; Chinese Ministry of Agriculture; Freshwater Fisheries Research Center; Chinese Academy of Fishery Sciences; Wuxi China
| | - H. Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization; Chinese Ministry of Agriculture; Freshwater Fisheries Research Center; Chinese Academy of Fishery Sciences; Wuxi China
| |
Collapse
|
247
|
Jiménez-Prada P, Hachero-Cruzado I, Giráldez I, Fernández-Diaz C, Vilas C, Cañavate JP, Guerra-García JM. Crustacean amphipods from marsh ponds: a nutritious feed resource with potential for application in Integrated Multi-Trophic Aquaculture. PeerJ 2018; 6:e4194. [PMID: 29340233 PMCID: PMC5768175 DOI: 10.7717/peerj.4194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023] Open
Abstract
Coastal protection, nutrient cycling, erosion control, water purification, and carbon sequestration are ecosystem services provided by salt marshes. Additionally, salt ponds offer coastal breeding and a nursery habitat for fishes and they provide abundant invertebrates, such as amphipods, which are potentially useful as a resource in aquaculture. Fishmeal and fish oil are necessary food resources to support aquaculture of carnivorous species due to their omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). Currently, aquaculture depends on limited fisheries and feed with elevated n-3 LC-PUFA levels, but the development of more sustainable food sources is necessary. Amphipods appear to be a potential high quality alternative feed resource for aquaculture. Hence, a nutritional study was carried out for several main amphipod species—Microdeutopus gryllotalpa, Monocorophium acherusicum, Gammarus insensibilis, Melita palmata and Cymadusa filosa—in terrestrial ponds in the South of Spain. These species showed high protein content (up to 40%), high n-3 PUFA and phospholipid levels, and high levels of phophatidylcholine (PC), phosphatidylethanolamine (PE) and triacylglycerols (TAG), the latter being significantly high for M. acherusicum. M. gryllotalpa and M. acherusicum showed the highest proportion of lipids (19.15% and 18.35%, respectively). Isoleucine, glycine and alanine were the dominant amino acids in all species. In addition, amphipods collected from ponds showed low levels of heavy metals. Furthermore, the biochemical profiles of the five species of amphipods have been compared with other studied alternative prey. Therefore, pond amphipods are good candidates to be used as feed, and are proposed as a new sustainable economic resource to be used in aquaculture. G. insensibilis may be the best for intensive culture as an alternative feed resource because it shows: (1) adequate n-3 PUFA and PL composition; (2) high levels of glycine, alanine, tyrosine, isoleucine and lysine; (3) high natural densities; (4) large body size (≥1 cm), and (5) high concentration of calcium. Moreover, a combined culture of amphipods and fishes in these marsh ponds seems a promising and environmentally sustainable way to develop Integrate Multi-Trophic Aquaculture (IMTA) in these ecosystems.
Collapse
Affiliation(s)
- Pablo Jiménez-Prada
- Laboratorio de Biologia Marina, Departamento de Zoología, Universidad de Sevilla, Sevilla, Spain.,Instituto de investigacion y Formacion Agraria y Pesquera, El Toruño, Puerto de Santa María, Spain
| | - Ismael Hachero-Cruzado
- Instituto de investigacion y Formacion Agraria y Pesquera, El Toruño, Puerto de Santa María, Spain
| | - Inmaculada Giráldez
- Departament de Química "Prof. J.C. Víchez Martín", Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain
| | - Catalina Fernández-Diaz
- Instituto de investigacion y Formacion Agraria y Pesquera, El Toruño, Puerto de Santa María, Spain
| | - César Vilas
- Departament de Química "Prof. J.C. Víchez Martín", Facultad de Ciencias Experimentales, Universidad de Huelva, Huelva, Spain
| | - José Pedro Cañavate
- Instituto de investigacion y Formacion Agraria y Pesquera, El Toruño, Puerto de Santa María, Spain
| | | |
Collapse
|
248
|
Thiamine and selected thiamine antivitamins - biological activity and methods of synthesis. Biosci Rep 2018; 38:BSR20171148. [PMID: 29208764 PMCID: PMC6435462 DOI: 10.1042/bsr20171148] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
Thiamine plays a very important coenzymatic and non-coenzymatic role in the regulation of basic metabolism. Thiamine diphosphate is a coenzyme of many enzymes, most of which occur in prokaryotes. Pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes as well as transketolase are the examples of thiamine-dependent enzymes present in eukaryotes, including human. Therefore, thiamine is considered as drug or diet supplement which can support the treatment of many pathologies including neurodegenerative and vascular system diseases. On the other hand, thiamine antivitamins, which can interact with thiamine-dependent enzymes impeding their native functions, thiamine transport into the cells or a thiamine diphosphate synthesis, are good propose to drug design. The development of organic chemistry in the last century allowed the synthesis of various thiamine antimetabolites such as amprolium, pyrithiamine, oxythiamine, or 3-deazathiamine. Results of biochemical and theoretical chemistry research show that affinity to thiamine diphosphate-dependent enzymes of these synthetic molecules exceeds the affinity of native coenzyme. Therefore, some of them have already been used in the treatment of coccidiosis (amprolium), other are extensively studied as cytostatics in the treatment of cancer or fungal infections (oxythiamine and pyrithiamine). This review summarizes the current knowledge concerning the synthesis and mechanisms of action of selected thiamine antivitamins and indicates the potential of their practical use.
Collapse
|
249
|
Zhang H, Cui L, Liu W, Wang Z, Ye Y, Li X, Wang H. 1H NMR metabolic profiling of gastric cancer patients with lymph node metastasis. Metabolomics 2018; 14:47. [PMID: 29541009 PMCID: PMC5840249 DOI: 10.1007/s11306-018-1344-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gastric cancer (GC) is a malignant tumor worldwide. As primary pathway for metastasis, the lymphatic system is an important prognostic factor for GC patients. Although the metabolic changes of gastric cancer have been investigated in extensive studies, little effort focused on the metabolic profiling of lymph node metastasis (LNM)-positive or negative GC patients. OBJECTIVES We performed 1H NMR spectrum of GC tissue samples with and without LNM to identify novel potential metabolic biomarkers in the process of LNM of GC. METHODS 1H NMR-based untargeted metabolomics approach combined with multivariate statistical analyses were used to study the metabolic profiling of tissue samples from LNM-positive GC patients (n = 40), LNM-negative GC patients (n = 40) and normal controls (n = 40). RESULTS There was a clear separation between GC patients and normal controls, and 33 differential metabolites were identified in the study. Moreover, GC patients were also well-classified according to LNM-positive or negative. Totally eight distinguishing metabolites were selected in the metabolic profiling of GC patients with LNM-positive or negative, suggesting the metabolic dysfunction in the process of LNM. According to further validation and analysis, especially BCAAs metabolism (leucine, isoleucine, valine), GSH and betaine may be as potential factors of diagnose and prognosis of GC patients with or without LNM. CONCLUSION To our knowledge, this is the first metabolomics study focusing on LNM of GC. The identified distinguishing metabolites showed a promising application on clinical diagnose and therapy prediction, and understanding the mechanism underlying the carcinogenesis, invasion and metastasis of GC.
Collapse
Affiliation(s)
- Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Henan Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, 475004, Henan, China
- School of Basic Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Longzhen Cui
- School of Basic Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Wen Liu
- School of Basic Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Zhenfeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, 475004, Henan, China
| | - Yang Ye
- Joint National Laboratory for Antibody Drug Engineering, Henan Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, 475004, Henan, China
| | - Xue Li
- School of Basic Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Huijuan Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan Key Laboratory of Cellular and Molecular Immunology, Henan University, Kaifeng, 475004, Henan, China.
- School of Basic Medicine, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
250
|
Amorim Franco TM, Blanchard JS. Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017; 56:5849-5865. [PMID: 28977745 DOI: 10.1021/acs.biochem.7b00849] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eight enzymes responsible for the biosynthesis of the three branched-chain amino acids (l-isoleucine, l-leucine, and l-valine) were identified decades ago using classical genetic approaches based on amino acid auxotrophy. This review will highlight the recent progress in the determination of the three-dimensional structures of these enzymes, their chemical mechanisms, and insights into their suitability as targets for the development of antibacterial agents. Given the enormous rise in bacterial drug resistance to every major class of antibacterial compound, there is a clear and present need for the identification of new antibacterial compounds with nonoverlapping targets to currently used antibacterials that target cell wall, protein, mRNA, and DNA synthesis.
Collapse
Affiliation(s)
- Tathyana M Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10805, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10805, United States
| |
Collapse
|