201
|
Schafhauser BH, Kristofco LA, de Oliveira CMR, Brooks BW. Global review and analysis of erythromycin in the environment: Occurrence, bioaccumulation and antibiotic resistance hazards. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:440-451. [PMID: 29587215 DOI: 10.1016/j.envpol.2018.03.052] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 05/21/2023]
Abstract
Environmental observations of antibiotics and other pharmaceuticals have received attention as indicators of an urbanizing global water cycle. When connections between environment and development of antibiotic resistance (ABR) are considered, it is increasingly important to understand the life cycle of antibiotics. Here we examined the global occurrence of erythromycin (ERY) in: 1. wastewater effluent, inland waters, drinking water, groundwater, and estuarine and coastal systems; 2. sewage sludge, biosolids and sediments; and 3. tissues of aquatic organisms. We then performed probabilistic environmental hazard assessments to identify probabilities of exceeding the predicted no-effect concentration (PNEC) of 1.0 μg L-1 for promoting ABR, based on previous modeling of minimum inhibitory concentrations and minimal selective concentrations of ERY, and measured levels from different geographic regions. Marked differences were observed among geographic regions and matrices. For example, more information was available for water matrices (312 publications) than solids (97 publications). ERY has primarily been studied in Asia, North America and Europe with the majority of studies performed in China, USA, Spain and the United Kingdom. In surface waters 72.4% of the Asian studies have been performed in China, while 85.4% of the observations from North America were from the USA; Spain represented 41.9% of the European surface water studies. Remarkably, results from PEHAs indicated that the likelihood of exceeding the ERY PNEC for ABR in effluents was markedly high in Asia (33.3%) followed by Europe (20%) and North America (17.8%). Unfortunately, ERY occurrence data is comparatively limited in coastal and marine systems across large geographic regions including Southwest Asia, Eastern Europe, Africa, and Central and South America. Future studies are needed to understand risks of ERY and other antibiotics to human health and the environment, particularly in developing regions where waste management systems and treatment infrastructure are being implemented slower than access to and consumption of pharmaceuticals is occurring.
Collapse
Affiliation(s)
- Bruno Henrique Schafhauser
- Graduate Program in Environmental Management, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza - Campo Comprido, Curitiba, Paraná, Brazil
| | - Lauren A Kristofco
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Cíntia Mara Ribas de Oliveira
- Graduate Program in Environmental Management, Universidade Positivo, R. Prof. Pedro Viriato Parigot de Souza - Campo Comprido, Curitiba, Paraná, Brazil.
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA.
| |
Collapse
|
202
|
Barreto A, Luis LG, Paíga P, Santos LHMLM, Delerue-Matos C, Soares AMVM, Hylland K, Loureiro S, Oliveira M. A multibiomarker approach highlights effects induced by the human pharmaceutical gemfibrozil to gilthead seabream Sparus aurata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:266-274. [PMID: 29807214 DOI: 10.1016/j.aquatox.2018.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Lipid regulators are among the most prescribed human pharmaceuticals worldwide. Gemfibrozil, which belongs to this class of pharmaceuticals, is one of the most frequently encountered in the aquatic environment. However, there is limited information concerning the mechanisms involved in gemfibrozil effects to aquatic organisms, particularly to marine organisms. Based on this knowledge gap, the current study aimed to assess biochemical and behavioral effects following a sublethal exposure to gemfibrozil (1.5, 15, 150, 1500 and 15,000 μg L-1) in the estuarine/marine fish Sparus aurata. After the exposure to 1.5 μg L-1 of gemfibrozil, fish had reduced ability to swim against a water flow and increased lipid peroxidation in the liver. At concentrations between 15-15,000 μg L-1, the activities of some enzymes involved in antioxidant defense were induced, appearing to be sufficient to prevent oxidative damage. Depending on the organ, different responses to gemfibrozil were displayed, with enzymes like catalase being more stimulated in gills, whereas glutathione peroxidase was more activated in liver. Although there were no obvious concentration-response relationships, the integrated biomarker response version 2 (IBRv2) analysis revealed that the highest concentrations of gemfibrozil (between 150-15,000 μg L-1) caused more alterations. All the tested concentrations of gemfibrozil induced effects in S. aurata, in terms of behavior and/or oxidative stress responses. Oxidative damage was found at a concentration that is considered environmentally relevant, suggesting a potential of this pharmaceutical to impact fish populations.
Collapse
Affiliation(s)
- A Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - L G Luis
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - P Paíga
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - L H M L M Santos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal; Present affiliation: Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003, Girona, Spain
| | - C Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072, Porto, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - K Hylland
- Department of Biosciences, University of Oslo, PO Box 1066, N-0316, Oslo, Norway
| | - S Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
203
|
Chung SS, Zheng JS, Burket SR, Brooks BW. Select antibiotics in leachate from closed and active landfills exceed thresholds for antibiotic resistance development. ENVIRONMENT INTERNATIONAL 2018; 115:89-96. [PMID: 29550713 DOI: 10.1016/j.envint.2018.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 05/23/2023]
Abstract
Though antibiotic resistance (ABR) represents a major global health threat, contributions of landfill leachate to the life cycle of antibiotics and ABR development are poorly understood in rapidly urbanizing regions of developing countries. We selected one of the largest active landfills in Asia and two landfills that have been closed for 20 years to examine antibiotic occurrences in leachates and associated hazards during wet and dry season sampling events. We focused on some of the most commonly used human antibiotics in Hong Kong, one of the most populous Asian cities and the fourth most densely populated cities in the world. Seven antibiotics (cephalexin [CLX], chloramphenicol [CAP], ciprofloxacin [CIP], erythromycin [ERY], roxithromycin [ROX], trimethoprim [TMP], sulfamethoxazole [SMX]) were quantitated using HPLC-MS/MS generally following previously reported methods. Whereas CLX, CAP, ROX and SMX in leachates did not exceed ABR predicted no effect concentrations (PNECs), exceedances were observed for CIP, ERY and TMP in some study locations and on some dates. In fact, an ABR PNEC for CIP was exceeded in leachates during both sampling periods from all study locations, including leachates that are directly discharged to coastal systems. These findings highlight the importance of developing an advanced understanding of pharmaceutical access, usage and disposal practices, effectiveness of intervention strategies (e.g., leachate treatment technologies, drug take-back schemes), and contributions of landfill leachates to the life cycle of antibiotics and ABR development, particularly in rapidly urbanizing coastal regions with less advanced waste management systems than Hong Kong.
Collapse
Affiliation(s)
- S S Chung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China.
| | - J S Zheng
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - S R Burket
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - B W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| |
Collapse
|
204
|
Bonnefille B, Gomez E, Courant F, Escande A, Fenet H. Diclofenac in the marine environment: A review of its occurrence and effects. MARINE POLLUTION BULLETIN 2018; 131:496-506. [PMID: 29886975 DOI: 10.1016/j.marpolbul.2018.04.053] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 05/14/2023]
Abstract
Interest in the presence and effects of diclofenac (DCF) and other pharmaceutical products (PPs) in the aquatic environment has been growing over the last 20 years. DCF has been included in the First Watch List of the EU Water Framework Directive in order to gather monitoring data in surface waters. Despite PP input in water bodies, few studies have been conducted to determine the extent of DCF occurrence and effects on marine ecosystems, which is usually the final recipient of surface waters. The present article reviews available published data on DCF occurrence in marine water, sediment and organisms, and its effects on marine organisms. The findings highlight the scarcity of available data on the occurrence and effects of DCF in marine ecosystems, and the need for further data acquisition to assess the risks associated with the presence of this compound in the environment.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Elena Gomez
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Frédérique Courant
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France.
| | - Aurélie Escande
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Hélène Fenet
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
205
|
Di Poi C, Costil K, Bouchart V, Halm-Lemeille MP. Toxicity assessment of five emerging pollutants, alone and in binary or ternary mixtures, towards three aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018. [PMID: 28620858 DOI: 10.1007/s11356-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Despite a growing scientific attention on ecological impact of emerging pollutants (EPs) such as pharmaceuticals, personal care products, and pesticides, knowledge gaps remain regarding mixture toxicity and effects on aquatic organisms. Several EPs were screened in seawater (Normandy, France), and the ecotoxicity of five compounds, chosen on their occurrence in ecosystems and use worldwide, was assessed and were the biocides methylparaben (MP) and triclosan (TCS), a pesticide degradation product (AMPA), and the pharmaceuticals venlafaxine (VEN) and carbamazepine (CBZ). The acute or sub-chronic toxicity, alone or in binary/ternary mixtures of three of them (CBZ, AMPA, and MP), was assessed on one marine and two freshwater organisms: Crassostrea gigas, Pseudokirchneriella subcapitata, and Daphnia magna. TCS and AMPA were, respectively, the most (EC50 < 1 mg L-1) and the least (EC50 > 50 mg L-1) toxic chemicals for the four endpoints (algal growth inhibition, daphnia immobilization, oyster embryotoxicity, and metamorphosis). The anxiolytic VEN (EC50 < 1 mg L-1) was particularly toxic to oyster larvae showing sensitivity difference between freshwater and marine organisms. If all the mixtures appeared to be in the same range of toxicity, the joint-toxic effects mainly led to synergistic or antagonistic interactions compared to single-compound toxicity. The data also highlighted species-dependent differing models of toxicity and underscored the need for an awareness of cocktail effects for better ecological risk assessment.
Collapse
Affiliation(s)
- Carole Di Poi
- UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, SFR ICORE, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex, France.
- Ifremer, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Centre de Bretagne, ZI de la Pointe du Diable, CS 10070, Plouzané, 29280, France.
| | - Katherine Costil
- UMR BOREA, MNHN, UPMC, UCBN, CNRS-7208, IRD-207, SFR ICORE, Université de Caen Normandie, Esplanade de la Paix, CS 14032, 14032, Caen Cedex, France
| | - Valérie Bouchart
- Laboratoire LABÉO Frank Duncombe, 1 route de Rosel, Saint-Contest, 14053, Caen, Cedex 4, France
| | - Marie-Pierre Halm-Lemeille
- CERMN, UNICAEN EA 4258. FR CNRS 3038 INC3M SF 4206 ICORE, Université de Caen Normandie, Boulevard Becquerel, 14032, Caen Cedex, France
- Ifremer, LER, Station de Port en Bessin, Avenue du Général de Gaulle BP 32, 14520, Port en Bessin, France
| |
Collapse
|
206
|
Courant F, Arpin-Pont L, Bonnefille B, Vacher S, Picot-Groz M, Gomez E, Fenet H. Exposure of marine mussels to diclofenac: modulation of prostaglandin biosynthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6087-6094. [PMID: 28528506 DOI: 10.1007/s11356-017-9228-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Human pharmaceuticals, such as nonsteroidal anti-inflammatory drugs (NSAIDs), are an emerging threat to marine organisms. NSAIDs act through inhibition of cyclooxygenase (COX) conversion of arachidonic acid into prostaglandins. One experiment was carried out whereby marine mussels were exposed for 72 h to 1 and 100 μg/L diclofenac (DCF). A specific and sensitive method using liquid chromatography high-resolution tandem mass spectrometry was developed to quantify DCF in mussel tissues. The developed method could also clearly identify and quantify COX products, i.e., prostaglandin levels, and be used to assess their modulation following DCF exposure. Prostaglandin-D2 (PGD2) was always found below the detection limit (20 μg/kg dry weight (dw)). Basal prostaglandin-E2 (PGE2) concentrations ranged from below the detection limit to 202 μg/kg dw. Exposure of 100 μg/L resulted in a significant reduction in PGE2 levels, whereas a downward trend was observed at 1 μg/L exposure. No difference was observed for prostaglandin-F2α (PGF2α) levels between controls and exposed organisms.
Collapse
Affiliation(s)
| | - Lauren Arpin-Pont
- UMR 5569 Hydrosciences, Université de Montpellier, Montpellier, France
| | | | - Sébastien Vacher
- UMR 5569 Hydrosciences, Université de Montpellier, Montpellier, France
| | - Marina Picot-Groz
- UMR 5569 Hydrosciences, Université de Montpellier, Montpellier, France
| | - Elena Gomez
- UMR 5569 Hydrosciences, Université de Montpellier, Montpellier, France
| | - Hélène Fenet
- UMR 5569 Hydrosciences, Université de Montpellier, Montpellier, France
| |
Collapse
|
207
|
Bonnefille B, Gomez E, Alali M, Rosain D, Fenet H, Courant F. Metabolomics assessment of the effects of diclofenac exposure on Mytilus galloprovincialis: Potential effects on osmoregulation and reproduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:611-618. [PMID: 28930695 DOI: 10.1016/j.scitotenv.2017.09.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The presence of pharmaceutically active compounds in aquatic environments has become a major concern over the past 20years. Elucidation of their mode of action and effects in non-target organisms is thus now a major ecotoxicological challenge. Diclofenac (DCF) is among the pharmaceutical compounds of interest based on its inclusion in the European Union Water Framework Directive Watch List. In this study, our goal was to investigate the potential of a metabolomic approach to acquire information without any a priori hypothesis about diclofenac effects on marine mussels. For this purpose, mussel's profiles were generated by liquid chromatography combined with high resolution mass spectrometry. Two main metabolic pathways were found to be impacted by diclofenac exposure. The tyrosine metabolism was mostly down-modulated and the tryptophan metabolism was mostly up-modulated following exposure. To our knowledge, such DCF effects on mussels have never been described despite being of concern for these organisms: catecholamines and serotonin may be involved in osmoregulation, and in gamete release in mollusks. Our results suggest potential impairment of mussel osmoregulation and reproduction following a DCF exposure.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - Elena Gomez
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - Mellis Alali
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - David Rosain
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - Hélène Fenet
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - Frédérique Courant
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France.
| |
Collapse
|
208
|
Reguera P, Couceiro L, Fernández N. A review of the empirical literature on the use of limpets Patella spp. (Mollusca: Gastropoda) as bioindicators of environmental quality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:593-600. [PMID: 29127822 DOI: 10.1016/j.ecoenv.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
The need to carry out monitoring programs for environmental pollution of coastal ecosystems makes it necessary to increase the number of indicator species in order to have a wide range of suitable organisms for most of the possible toxic substances and ways of exposure. With the purpose of analyzing the suitability of limpets (Patella spp.) for their use in biomonitoring programs, a literature review was performed on 88 cases found in the Web of Science online platform. The capacity of limpets to accumulate metals and hydrocarbons has been examined in several field studies. In most cases there is a clear relationship between body content of a pollutant in soft tissues of limpets and the corresponding environmental level. Likewise, different responses to pollutants have been reported in limpets, including induction of DNA damage, induction of metallothioneins, oxidative stress, decrease of Neutral Red retention or variations in heart rate. Regarding the study of changes in community structure, an uneven response to disturbances (e.g. oil spills, wastewater discharge) by species of the genus Patella has been documented. Moreover, generally limpets respond to pollutants similarly to, or even more effectively than, mussels; therefore, their inclusion as sentinel organisms in regional monitoring plans seems appropriate.
Collapse
Affiliation(s)
- Pablo Reguera
- Universidade da Coruña, Facultade de Ciencias, Campus de A Coruña, 15071 A Coruña, Spain
| | - Lucía Couceiro
- Universidade da Coruña, Facultade de Ciencias, Campus de A Coruña, 15071 A Coruña, Spain
| | - Nuria Fernández
- Universidade da Coruña, Facultade de Ciencias, Campus de A Coruña, 15071 A Coruña, Spain.
| |
Collapse
|
209
|
González-Mira A, Torreblanca A, Hontoria F, Navarro JC, Mañanós E, Varó I. Effects of ibuprofen and carbamazepine on the ion transport system and fatty acid metabolism of temperature conditioned juveniles of Solea senegalensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:693-701. [PMID: 29172150 DOI: 10.1016/j.ecoenv.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
The increasing presence of pharmaceuticals in aquatic environments in the last decades, derived from human and veterinary use, has become an important environmental problem. Previous studies have shown that ibuprofen (IB) and carbamazepine (CBZ) modify physiological and biochemical processes in Senegalese sole (Solea senegalensis) in a temperature-dependent manner. In other vertebrates, there is evidence that both of these pharmaceuticals interfere with the 'arachidonic acid (AA) cascade', which is responsible for the biosynthesis of numerous enzymes that are involved in the osmoregulatory process. The present work aims to study the temperature-dependent effects of these two pharmaceuticals on several biochemical and molecular parameters in Senegalese sole. Regarding osmoregulation, Na+, K+ -ATPase enzyme activity was determined in the gills, kidney and intestine, and the expressions of both Na+, K+ -ATPase 1α-subunit isoforms (ATP1A1a and ATP1A1b) were quantified in gills. Gill prostaglandin-endoperoxide synthase-2 (PTGS2) gene expression and fatty acid composition were selected to determine the interference of both pharmaceuticals with the AA cascade. Senegalese sole juveniles, acclimatised at 15°C or 20°C, were exposed through intraperitoneal injection to IB (10mg/kg) and CBZ (1mg/kg) for 48h. Non-injected fish (Control) and those injected with the carrier (sunflower oil; S.O.), acclimated at each of the two temperatures, were used for comparison. The results show that IB directly affected the osmoregulatory mechanisms that alter gill and intestine Na+, K+ -ATPase activities. In addition, the copy number of ATP1A1a was higher at 20°C than at 15°C, which could be a direct response to the temperature variation. The gene expression of PTGS2 was affected by neither drug administration nor acclimation temperature. Nevertheless, detailed analysis of AA and eicosapentaenoic acid (EPA) percentages revealed a CBZ-derived effect in the fatty acid composition of the gills.
Collapse
Affiliation(s)
- A González-Mira
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - A Torreblanca
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain.
| | - F Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - J C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - E Mañanós
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - I Varó
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| |
Collapse
|
210
|
Politakis N, Belavgeni A, Efthimiou I, Charalampous N, Kourkouta C, Dailianis S. The impact of expired commercial drugs on non-target marine species: A case study with the use of a battery of biomarkers in hemocytes of mussels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:160-168. [PMID: 29045922 DOI: 10.1016/j.ecoenv.2017.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/18/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effects of two expired commercial medicines, like Buscopan Plus and Mesulid, commonly classified as household medical wastes, on hemocytes of mussel Mytilus galloprovincialis. Mussel hemocytes' lysosomal membrane stability (in terms of neutral red retention assay), superoxide anions (O2·-) and nitric oxides (NO, in terms of nitrites) production, lipid peroxidation (in terms of malondialdehyde/MDA content) and the formation of nuclear abnormalities (using the micronucleus/MN assay) were assessed in hemocytes of mussels treated for 7 days with appropriate amounts of each drug (the concentrations of active substances were considered in each case, due to the absence of data related with the excipients) as well as in hemocytes of post-treated/recovered mussels (7 days post-treatment/recovery period). According to the results, treated mussels showed significantly decreased NRRT values, enhanced O2·-, NO and MDA levels, as well as high frequencies of nuclear abnormalities in both cases. Thοse effects showed a drastic reduction in almost all cases, after the post-treatment/recovery period. Moreover, the "stress on stress" method, commonly performed for estimating mussels' ability to survive in air, showed significantly reduced LT50 values in challenged mussels, compared to values observed in control mussels. The current findings revealed for the first time that both expired commercial drugs could affect mussels, probably via the formation of active substances bioactivated metabolites, as well as excipients, such as TiO2 and SiO2, at least in case of Buscopan plus. Although further research is needed, the current findings indicate the environmental impact of expired commercial drugs, thus revealing the need for the proper disposal of household medical wastes.
Collapse
Affiliation(s)
- Nektarios Politakis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Alexia Belavgeni
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Ioanna Efthimiou
- Department of Environmental and Natural Resources Management, University of Patras, GR-30100 Agrinio, Greece
| | - Nikolina Charalampous
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Chara Kourkouta
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Rio, GR-26500 Patra, Greece.
| |
Collapse
|
211
|
Pusceddu FH, Choueri RB, Pereira CDS, Cortez FS, Santos DRA, Moreno BB, Santos AR, Rogero JR, Cesar A. Environmental risk assessment of triclosan and ibuprofen in marine sediments using individual and sub-individual endpoints. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:274-283. [PMID: 28958726 DOI: 10.1016/j.envpol.2017.09.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/17/2017] [Accepted: 09/15/2017] [Indexed: 05/21/2023]
Abstract
The guidelines for the Environmental Risk Assessment (ERA) of pharmaceuticals and personal care products (PPCP) recommend the use of standard ecotoxicity assays and the assessment of endpoints at the individual level to evaluate potential effects of PPCP on biota. However, effects at the sub-individual level can also affect the ecological fitness of marine organisms chronically exposed to PPCP. The aim of the current study was to evaluate the environmental risk of two PPCP in marine sediments: triclosan (TCS) and ibuprofen (IBU), using sub-individual and developmental endpoints. The environmental levels of TCS and IBU were quantified in marine sediments from the vicinities of the Santos submarine sewage outfall (Santos Bay, São Paulo, Brazil) at 15.14 and 49.0 ng g-1, respectively. A battery (n = 3) of chronic bioassays (embryo-larval development) with a sea urchin (Lytechinus variegatus) and a bivalve (Perna perna) were performed using two exposure conditions: sediment-water interface and elutriates. Moreover, physiological stress through the Neutral Red Retention Time Assay (NRRT) was assessed in the estuarine bivalve Mytella charruana exposed to TCS and IBU spiked sediments. These compounds affected the development of L. variegatus and P. perna (75 ng g-1 for TCS and 15 ng g-1 for IBU), and caused a significant decrease in M. charruana lysosomal membrane stability at environmentally relevant concentrations (0.08 ng g-1 for TCS and 0.15 ng g-1 for IBU). Chemical and ecotoxicological data were integrated and the risk quotient estimated for TCS and IBU were higher than 1.0, indicating a high environmental risk of these compounds in sediments. These are the first data of sediment risk assessment of pharmaceuticals and personal care products of Latin America. In addition, the results suggest that the ERA based only on individual-level and standard toxicity tests may overlook other biological effects that can affect the health of marine organisms exposed to PPCP.
Collapse
Affiliation(s)
- F H Pusceddu
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil; Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil.
| | - R B Choueri
- Departamento de Ciências do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - C D S Pereira
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil; Departamento de Ciências do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - F S Cortez
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil
| | - D R A Santos
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil
| | - B B Moreno
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil
| | - A R Santos
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil
| | - J R Rogero
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo, São Paulo, SP, Brazil
| | - A Cesar
- Laboratório de Ecotoxicologia, Universidade Santa Cecília, Santos, SP, Brazil; Departamento de Ciências do Mar, Campus Baixada Santista, Universidade Federal de São Paulo, Santos, SP, Brazil
| |
Collapse
|
212
|
Bean TG, Rattner BA, Lazarus RS, Day DD, Burket SR, Brooks BW, Haddad SP, Bowerman WW. Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:533-545. [PMID: 29032907 DOI: 10.1016/j.envpol.2017.09.083] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Exposure of wildlife to Active Pharmaceutical Ingredients (APIs) is likely to occur but studies of risk are limited. One exposure pathway that has received attention is trophic transfer of APIs in a water-fish-osprey food chain. Samples of water, fish plasma and osprey plasma were collected from Delaware River and Bay, and analyzed for 21 APIs. Only 2 of 21 analytes exceeded method detection limits in osprey plasma (acetaminophen and diclofenac) with plasma levels typically 2-3 orders of magnitude below human therapeutic concentrations (HTC). We built upon a screening level model used to predict osprey exposure to APIs in Chesapeake Bay and evaluated whether exposure levels could have been predicted in Delaware Bay had we just measured concentrations in water or fish. Use of surface water and BCFs did not predict API concentrations in fish well, likely due to fish movement patterns, and partitioning and bioaccumulation uncertainties associated with these ionizable chemicals. Input of highest measured API concentration in fish plasma combined with pharmacokinetic data accurately predicted that diclofenac and acetaminophen would be the APIs most likely detected in osprey plasma. For the majority of APIs modeled, levels were not predicted to exceed 1 ng/mL or method detection limits in osprey plasma. Based on the target analytes examined, there is little evidence that APIs represent a significant risk to ospreys nesting in Delaware Bay. If an API is present in fish orders of magnitude below HTC, sampling of fish-eating birds is unlikely to be necessary. However, several human pharmaceuticals accumulated in fish plasma within a recommended safety factor for HTC. It is now important to expand the scope of diet-based API exposure modeling to include alternative exposure pathways (e.g., uptake from landfills, dumps and wastewater treatment plants) and geographic locations (developing countries) where API contamination of the environment may represent greater risk.
Collapse
Affiliation(s)
- Thomas G Bean
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| | - Barnett A Rattner
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA.
| | - Rebecca S Lazarus
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - Daniel D Day
- U.S. Geological Survey, Patuxent Wildlife Research Center, Laurel, MD, USA
| | - S Rebekah Burket
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Samuel P Haddad
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - William W Bowerman
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, USA
| |
Collapse
|
213
|
Kelly KR, Brooks BW. Global Aquatic Hazard Assessment of Ciprofloxacin: Exceedances of Antibiotic Resistance Development and Ecotoxicological Thresholds. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:59-77. [DOI: 10.1016/bs.pmbts.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
214
|
Hawkins SJ, Evans AJ, Mieszkowska N, Adams LC, Bray S, Burrows MT, Firth LB, Genner MJ, Leung KMY, Moore PJ, Pack K, Schuster H, Sims DW, Whittington M, Southward EC. Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution. MARINE POLLUTION BULLETIN 2017; 124:573-586. [PMID: 28314615 DOI: 10.1016/j.marpolbul.2017.01.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/27/2017] [Indexed: 06/06/2023]
Abstract
Marine ecosystems are subject to anthropogenic change at global, regional and local scales. Global drivers interact with regional- and local-scale impacts of both a chronic and acute nature. Natural fluctuations and those driven by climate change need to be understood to diagnose local- and regional-scale impacts, and to inform assessments of recovery. Three case studies are used to illustrate the need for long-term studies: (i) separation of the influence of fishing pressure from climate change on bottom fish in the English Channel; (ii) recovery of rocky shore assemblages from the Torrey Canyon oil spill in the southwest of England; (iii) interaction of climate change and chronic Tributyltin pollution affecting recovery of rocky shore populations following the Torrey Canyon oil spill. We emphasize that "baselines" or "reference states" are better viewed as envelopes that are dependent on the time window of observation. Recommendations are made for adaptive management in a rapidly changing world.
Collapse
Affiliation(s)
- S J Hawkins
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO17 3ZH, UK; The Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - A J Evans
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO17 3ZH, UK; The Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| | - N Mieszkowska
- The Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | - L C Adams
- The Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - S Bray
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; AHTI Ltd. Unit 16, Highcroft Industrial Estate, Enterprise Road, Waterlooville, Hampshire PO8 0BT, UK
| | - M T Burrows
- Department of Ecology, Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, UK
| | - L B Firth
- School of Biological and Marine Sciences, Plymouth University, Plymouth PL4 8AA, UK
| | - M J Genner
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - K M Y Leung
- School of Biological Sciences, University of Hong Kong, Pokfulan Road, Hong Kong
| | - P J Moore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3FG, UK
| | - K Pack
- The Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - H Schuster
- Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton SO17 3ZH, UK
| | - D W Sims
- The Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - M Whittington
- International Tanker Owners Pollution Federation Ltd., 1 Oliver's Yard, 55 City Road, London EC1Y 1HQ, UK
| | - E C Southward
- The Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
215
|
Peters JR, Granek EF, de Rivera CE, Rollins M. Prozac in the water: Chronic fluoxetine exposure and predation risk interact to shape behaviors in an estuarine crab. Ecol Evol 2017; 7:9151-9161. [PMID: 29152204 PMCID: PMC5677497 DOI: 10.1002/ece3.3453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/02/2023] Open
Abstract
Predators exert considerable top-down pressure on ecosystems by directly consuming prey or indirectly influencing their foraging behaviors and habitat use. Prey is, therefore, forced to balance predation risk with resource reward. A growing list of anthropogenic stressors such as rising temperatures and ocean acidification has been shown to influence prey risk behaviors and subsequently alter important ecosystem processes. Yet, limited attention has been paid to the effects of chronic pharmaceutical exposure on risk behavior or as an ecological stressor, despite widespread detection and persistence of these contaminants in aquatic environments. In the laboratory, we simulated estuarine conditions of the shore crab, Hemigrapsus oregonensis, and investigated whether chronic exposure (60 days) to field-detected concentrations (0, 3, and 30 ng/L) of the antidepressant fluoxetine affected diurnal and nocturnal risk behaviors in the presence of a predator, Cancer productus. We found that exposure to fluoxetine influenced both diurnal and nocturnal prey risk behaviors by increasing foraging and locomotor activity in the presence of predators, particularly during the day when these crabs normally stay hidden. Crabs exposed to fluoxetine were also more aggressive, with a higher frequency of agonistic interactions and increased mortality due to conflicts with conspecifics. These results suggest that exposure to field-detected concentrations of fluoxetine may alter the trade-off between resource acquisition and predation risk among crabs in estuaries. This fills an important data gap, highlighting how intra- and interspecific behaviors are altered by exposure to field concentrations of pharmaceuticals; such data more explicitly identify potential ecological impacts of emerging contaminants on aquatic ecosystems and can aid water quality management.
Collapse
Affiliation(s)
- Joseph R. Peters
- Ecology, Evolution, & Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
- Environmental Science & ManagementPortland State UniversityPortlandORUSA
| | - Elise F. Granek
- Ecology, Evolution, & Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Catherine E. de Rivera
- Ecology, Evolution, & Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| | - Matthew Rollins
- Ecology, Evolution, & Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
216
|
Kim W, Lee Y, Kim SD. Developing and applying a site-specific multimedia fate model to address ecological risk of oxytetracycline discharged with aquaculture effluent in coastal waters off Jangheung, Korea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:221-226. [PMID: 28738205 DOI: 10.1016/j.ecoenv.2017.07.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The overuse of oxytetracycline (OTC) in aquaculture has become a problem because of its chronic toxic effects on marine ecosystems. The present study assessed the ecological risk of OTC in the coastal waters near the Jangheung Flatfish Farm using a site-specific multimedia fate model to analyze exposure. Before the model was applied, its performance was validated by comparing it with field data. The coastal waters in the testbed were sampled and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by solid-phase extraction (SPE). The concentrations of OTC measured varied from 7.05 to 95.39ng/L. The results of validating the models showed that the site-specific multimedia fate model performed better (root mean square error (RMSE): 24.217, index of agreement (IOA): 0.739) than conventional fugacity approaches. This result demonstrated the utility of this model in supporting effective future management of aquaculture effluent. The results of probabilistic risk assessment indicated that OTC from aquaculture effluent did not cause adverse effects, even in a maximum-use scenario.
Collapse
Affiliation(s)
- Woojung Kim
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu Gwangju 500-712, South Korea
| | - Yunho Lee
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu Gwangju 500-712, South Korea
| | - Sang Don Kim
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu Gwangju 500-712, South Korea; Center for Chemicals Risk Assessment, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu Gwangju 500-712, South Korea.
| |
Collapse
|
217
|
Almeida HFD, Freire MG, Marrucho IM. Improved Monitoring of Aqueous Samples by the Concentration of Active Pharmaceutical Ingredients using Ionic-Liquid-based Systems. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2017; 19:4651-4659. [PMID: 30271271 PMCID: PMC6157720 DOI: 10.1039/c7gc01954h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fluoroquinolones (FQs) and Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are two classes of Active Pharmaceutical Ingredients (APIs), widespreadly used in human healthcare and as veterinary drugs, and that have been found throughout the water cycle in the past years. These two classes of APIs are commonly present in aqueous streams in concentrations ranging from ng.L-1 to µg.L-1. Despite such low concentrations, these contaminants tend to bioaccumulate, leading to serious environmental and health issues after chronic exposure. The low concentrations of FQs and NSAIDs in aqueous media also render their difficult identification and quantification, wich may result in an unefficient evaluation of their environmental impact and persistence. Therefore, the development of alternative pre-treatment techniques for their extraction and concentration from aqueous samples is a crucial requirement. In this work, liquid-liquid systems, namely ionic-liquid-based aqueous biphasic systems (IL-based ABS), were tested as simultaneous extraction and concentration platforms of FQs and NSAIDs. ABS composed of imidazolium-, ammonium- and phosphonium-based ILs and a citrate-based salt (C6H5K3O7) were evaluated for the single-step extraction and concentration of three FQs (ciprofloxacin, enrofloxacin and norfloxacin) and three NSAIDs (diclofenac, naproxen and ketoprofen) from aqueous samples. Outstanding one-step extraction efficiencies of APIs close to 100% were obtained. Furthermore, concentration factors of both FQs and NSAIDs were optimized by an appropriate manipulation of the phase-forming components compositions to tailor the volumes of the coexisting phases. Concentration factors of 1000-fold of both FQS and NSAIDs were obtained in a single-step, without reaching the saturation of the IL-rich phase. The concentration of APIs up to the mg.L-1 allowed their easy and straightforward identification and quantification by High-Performance Liquid Chromatography (HPLC) coupled to an UV detector, as shown either with model aqueous samples or real wastewater effluent samples.
Collapse
Affiliation(s)
- Hugo F. D. Almeida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO – Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel M. Marrucho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
218
|
Brumovský M, Bečanová J, Kohoutek J, Borghini M, Nizzetto L. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:976-983. [PMID: 28781184 DOI: 10.1016/j.envpol.2017.07.082] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Pollution by chemical substances is of concern for the maintenance of healthy and sustainable aquatic environments. While the occurrence and fate of numerous emerging contaminants, especially pharmaceuticals, is well documented in freshwater, their occurrence and behavior in coastal and marine waters is much less studied and understood. This study investigates the occurrence of 58 chemicals in the open surface water of the Western Mediterranean Sea for the first time. 70 samples in total were collected in 10 different sampling areas. 3 pesticides, 11 pharmaceuticals and personal care products and 2 artificial sweeteners were detected at sub-ng to ng/L levels. Among them, the herbicide terbuthylazine, the pharmaceuticals caffeine, carbamazepine, naproxen and paracetamol, the antibiotic sulfamethoxazole, the antibacterial triclocarban and the two artificial sweeteners acesulfame and saccharin were detected in all samples. The compound detected at the highest concentration was saccharin (up to 5.23 ng/L). Generally small spatial differences among individual sampling areas point to a diffuse character of sources which are likely dominated by WWTP effluents and runoffs from agricultural areas or even, at least for pharmaceuticals and artificial food additives, from offshore sources such as ferries and cruising ships. The implications of the ubiquitous presence in the open sea of chemicals that are bio-active or toxic at low doses on photosynthetic organisms and/or bacteria (i.e., terbuthylazine, sulfamethoxazole or triclocarban) deserve scientific attention, especially concerning possible subtle impacts from chronic exposure of pelagic microorganisms.
Collapse
Affiliation(s)
- Miroslav Brumovský
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Jitka Bečanová
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Kohoutek
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Mireno Borghini
- Istituto di Scienze Marine - ISMAR, Consiglio Nazionale delle Ricerche (CNR), Forte Santa Teresa, 19032 Lerici (SP), Italy
| | - Luca Nizzetto
- RECETOX - Research Centre for Toxic Compounds in the Environment, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; NIVA - Norwegian Institute for Water Research, Gaustadalléen 21, 0349 Oslo, Norway
| |
Collapse
|
219
|
Suresh G, Das RK, Kaur Brar S, Rouissi T, Avalos Ramirez A, Chorfi Y, Godbout S. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 2017; 44:318-335. [DOI: 10.1080/1040841x.2017.1373062] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, Québec, QC, Canada
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon, India
| | | | | | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologie Environnementales Inc, Shawinigan, Canada
| | - Younes Chorfi
- Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Stephane Godbout
- Institut de recherche et de développement en agroenvironnement, Québec, Canada
| |
Collapse
|
220
|
Corinaldesi C, Damiani E, Marcellini F, Falugi C, Tiano L, Brugè F, Danovaro R. Sunscreen products impair the early developmental stages of the sea urchin Paracentrotus lividus. Sci Rep 2017; 7:7815. [PMID: 28798318 PMCID: PMC5552690 DOI: 10.1038/s41598-017-08013-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/06/2017] [Indexed: 12/03/2022] Open
Abstract
Marine ecosystems are increasingly threatened by the release of personal care products. Among them, sunscreens are causing concern either for the effects on skin protection from UV radiation and for the potential impacts on marine life. Here, we assessed the UVA protective efficacy of three sunscreens on human dermal fibroblasts, including two common products in Europe and USA, and an eco-friendly product. The sunscreens' effects were also tested on Paracentrotus lividus, a marine species possibly threatened by these contaminants. We found that all tested sunscreens had similar efficacy in protecting human fibroblasts from UVA radiation. Conversely, the sunscreens' effects on embryo-larval development of P. lividus were dependent on the product tested. In particular, the USA sunscreen, containing benzophenone-3, homosalate and preservatives, caused the strongest impact on the sea urchin development, whereas the eco-friendly sunscreen determined the weakest effects. These results suggest that although the tested products protected human skin cells from UVA-induced damage, they might severely affect the success of recruitment and survival of the sea urchin. Our findings underline the importance of developing eco-friendly sunscreens for minimising or avoiding the impact on marine life while protecting human skin from UV damage.
Collapse
Affiliation(s)
- Cinzia Corinaldesi
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy.
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Francesca Marcellini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
- Ecoreach Ltd., Corso Stamira 61, 60121, Ancona, Italy
| | - Carla Falugi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Francesca Brugè
- Department of Clinical, Specialistic and Odontostomatological Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
221
|
Burgos-Aceves MA, Faggio C. An approach to the study of the immunity functions of bivalve haemocytes: Physiology and molecular aspects. FISH & SHELLFISH IMMUNOLOGY 2017; 67:513-517. [PMID: 28625873 DOI: 10.1016/j.fsi.2017.06.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically important species. It has been used in programs of monitoring of pollution, since it is sessile organism that is capable of accumulating pollutants in tissues through filter feeding. Due to an increase of pollutants in the environment, marine mussels present physiological alterations that compromise their innate immune system, which can latter lead to opportunistic diseases. The haemocytes are the cells in charge of the immune response in the Mediterranean mussel and in other mollusks. In this review, we summarize the physiological and genetic response capacity of these immune cells to the presence of xenobiotics, pathogens and the interplay. The identification of the basic mechanisms of immunity and their modulation in mussels can give important information for the possible utilization of this species as an invertebrate model for studies on innate immunity, future immunotoxicological studies, and predict changes in the community for the future.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Centro de Investigaciones Biológicas de Noroeste, S.C., Mar Bermejo 195, Col. Playa Palo de Sta. Rita, La Paz, BCS 23090, Mexico
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
222
|
Zhang M, Shi Y, Lu Y, Johnson AC, Sarvajayakesavalu S, Liu Z, Su C, Zhang Y, Juergens MD, Jin X. The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:633-642. [PMID: 28284648 DOI: 10.1016/j.scitotenv.2017.03.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
In this study, the risks to aquatic organisms posed by 12 commonly detected pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) that are extensively used in Bohai coastal region of China were examined. These were linear alkylbenzene sulfonate (LAS), nonylphenol (NP), diethylhexyl phthalate (DEHP), norfloxacin (NOR), sulfamethoxazole (SMX), erythromycin (ERY), bisphenol A (BPA), ofloxacin (OFL), carbamazepine (CBZ), naproxen (NPX), atenolol (ATL) and metoprolol (MET). Their relative risk was ranked based on the proximity between the medians of the reported effect concentrations and measured river or lake water concentrations. The surfactants (LAS) and endocrine disrupting chemicals NP (a breakdown product of the surfactant nonylphenol polyethoxylate) and DEHP (a plasticizer) were identified as posing the greatest risk from this range of chemicals. LAS had a hundred-fold higher risk than any of the pharmaceuticals. The highest risk ranked pharmaceuticals were all antibiotics. Zinc (Zn) and mercury (Hg) were added to the comparison as representative heavy metals. Zn posed a risk higher than all the organics. The risk posed by Hg was less than the surfactants but greater than the selected pharmaceuticals. Whereas LAS and DEHP could cause harmful effects to all the wildlife groups, NP and BPA posed the greatest risk to fish. Antibiotics showed the highest risk to algae. Spatial and temporal distributions of PPCPs and EDCs were conducted for risk identification, source analysis and seasonal change exploration. Municipal sewage effluent linked to urban areas was considered to be the major source of pharmaceuticals. With regard to seasonal influence the risk posed by LAS to the aquatic organisms was significantly affected by wet and dry seasonal change. The dilution effects were the common feature of LAS and ERY risks. The difference in LAS and ERY risk patterns along the rivers was mainly affected by the elimination process.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Andrew C Johnson
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxon OX 10 8BB, UK
| | - Suriyanarayanan Sarvajayakesavalu
- SCOPE (Scientific Committee on Problems of the Environment) Beijng Office, P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Zhaoyang Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueqing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Monika D Juergens
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxon OX 10 8BB, UK
| | - Xiaowei Jin
- China National Environmental Monitoring Center, Beijing 100012, China
| |
Collapse
|
223
|
Schaider LA, Rodgers KM, Rudel RA. Review of Organic Wastewater Compound Concentrations and Removal in Onsite Wastewater Treatment Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7304-7317. [PMID: 28617596 DOI: 10.1021/acs.est.6b04778] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Onsite wastewater treatment systems, such as septic systems, serve 20% of U.S. households and are common in areas not served by wastewater treatment plants (WWTPs) globally. They can be sources of nutrients and pathogen pollution and have been linked to health effects in communities where they contaminate drinking water. However, few studies have evaluated their ability to remove organic wastewater compounds (OWCs) such as pharmaceuticals, hormones, and detergents. We synthesized results from 20 studies of 45 OWCs in conventional drainfield-based and alternative onsite wastewater treatment systems to characterize concentrations and removal. For comparison, we synthesized 31 studies of these same OWCs in activated sludge WWTPs. OWC concentrations and removal in drainfields varied widely and depended on wastewater sources and compound-specific removal processes, primarily sorption and biotransformation. Compared to drainfields, alternative systems had similar median and higher maximum concentrations, reflecting a wider range of system designs and redox conditions. OWC concentrations and removal in drainfields were generally similar to those in conventional WWTPs. Persistent OWCs in groundwater and surface water can indicate the overall extent of septic system impact, while the presence of well-removed OWCs, such as caffeine and acetaminophen, may indicate discharges of poorly treated wastewater from failing or outdated septic systems.
Collapse
Affiliation(s)
- Laurel A Schaider
- Silent Spring Institute , 320 Nevada Street, Suite 302, Newton, Massachusetts 02460 United States
| | - Kathryn M Rodgers
- Silent Spring Institute , 320 Nevada Street, Suite 302, Newton, Massachusetts 02460 United States
| | - Ruthann A Rudel
- Silent Spring Institute , 320 Nevada Street, Suite 302, Newton, Massachusetts 02460 United States
| |
Collapse
|
224
|
Cantwell MG, Katz DR, Sullivan JC, Ho K, Burgess RM. Temporal and spatial behavior of pharmaceuticals in Narragansett Bay, Rhode Island, United States. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1846-1855. [PMID: 27943442 PMCID: PMC6089368 DOI: 10.1002/etc.3710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/24/2016] [Accepted: 12/03/2016] [Indexed: 05/09/2023]
Abstract
The behavior and fate of pharmaceutical ingredients in coastal marine ecosystems are not well understood. To address this, the spatial and temporal distribution of 15 high-volume pharmaceuticals were measured over a 1-yr period in Narragansett Bay (RI, USA) to elucidate factors and processes regulating their concentration and distribution. Dissolved concentrations ranged from below detection to 313 ng/L, with 4 pharmaceuticals present at all sites and sampling periods. Eight pharmaceuticals were present in suspended particulate material, ranging in concentration from below detection to 44 ng/g. Partitioning coefficients were determined for some pharmaceuticals, with their range and variability remaining relatively constant throughout the study. Normalization to organic carbon content provided no benefit, indicating other factors played a greater role in regulating partitioning behavior. Within the upper bay, the continuous influx of wastewater treatment plant effluents resulted in sustained, elevated levels of pharmaceuticals. A pharmaceutical concentration gradient was apparent from this zone to the mouth of the bay. For most of the pharmaceuticals, there was a strong relationship with salinity, indicating conservative behavior within the estuary. Short flushing times in Narragansett Bay coupled with pharmaceuticals' presence overwhelmingly in the dissolved phase indicate that most pharmaceuticals will be diluted and transported out of the estuary, with only trace amounts of several compounds sequestered in sediments. The present study identifies factors controlling the temporal and spatial dynamics of dissolved and particulate pharmaceuticals; their partitioning behavior provides an increased understanding of their fate, including bioavailability in an urban estuary. Environ Toxicol Chem 2017;36:1846-1855. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Mark G. Cantwell
- U.S. Environmental Protection Agency, Office of Research and Development, Narragansett, RI 02882 USA
- Address correspondence to:
| | - David R. Katz
- U.S. Environmental Protection Agency, Office of Research and Development, Narragansett, RI 02882 USA
| | - Julia C. Sullivan
- Oak Ridge Institute for Science and Education, Narragansett, RI 02882 USA
| | - Kay Ho
- U.S. Environmental Protection Agency, Office of Research and Development, Narragansett, RI 02882 USA
| | - Robert M. Burgess
- U.S. Environmental Protection Agency, Office of Research and Development, Narragansett, RI 02882 USA
| |
Collapse
|
225
|
Estévez-Calvar N, Canesi L, Montagna M, Faimali M, Piazza V, Garaventa F. Adverse effects of the SSRI antidepressant sertraline on early life stages of marine invertebrates. MARINE ENVIRONMENTAL RESEARCH 2017; 128:88-97. [PMID: 27255123 DOI: 10.1016/j.marenvres.2016.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
Widespread contamination of coastal environments by emerging compounds includes low concentrations of pharmaceuticals. These pollutants are not currently incorporated in monitoring programs despite their effects on non-target organisms are very little documented. Among the selective serotonin reuptake inhibitor (SSRI) antidepressants, sertraline (SRT) is one of the most prescribed globally. In this work, earlier life stages of Amphibalanus amphitrite, Brachionus plicatilis and Mytilus galloprovincialis were exposed to environmental concentrations of SRT in order to study both sub-lethal and lethal responses in 24/48 h-tests. Low concentrations of SRT altered significantly swimming behavior in A. amphitrite and B. plicatilis giving 48 h-EC50 (μg/L) of 113.88 and 282.23, respectively whereas higher values were observed for mortality and immobilization. EC50 embryotoxicity with M. galloprovincialis was 206.80 μg/L. This work add new data about SRT ecotoxicity on marine invertebrates and confirms the applicability of behavioral endpoints to evaluate the environmental impact of antidepressants in marine organisms.
Collapse
Affiliation(s)
- Noelia Estévez-Calvar
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR), Via De Marini 6, 16149, Genova, Italy.
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genova, Italy
| | - Michele Montagna
- Department of Earth, Environment and Life Sciences (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132, Genova, Italy
| | - Marco Faimali
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR), Via De Marini 6, 16149, Genova, Italy
| | - Veronica Piazza
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR), Via De Marini 6, 16149, Genova, Italy
| | - Francesca Garaventa
- Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche (ISMAR-CNR), Arsenale Tesa 104, Castello 2737/F, 30122, Venezia, Italy
| |
Collapse
|
226
|
Mohd Zanuri NB, Bentley MG, Caldwell GS. Assessing the impact of diclofenac, ibuprofen and sildenafil citrate (Viagra ®) on the fertilisation biology of broadcast spawning marine invertebrates. MARINE ENVIRONMENTAL RESEARCH 2017; 127:126-136. [PMID: 28410750 DOI: 10.1016/j.marenvres.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 05/22/2023]
Abstract
Exposure to synthetic chemicals is a key environmental challenge faced by aquatic organisms. The time and dose effects of the pharmaceuticals diclofenac, ibuprofen, and sildenafil citrate on sperm motility and successful fertilisation are studied using the echinoderms, Asterias rubens and Psammechinus miliaris, and the polychaete worm Arenicola marina, all important components of the marine benthos. Motility was reduced for all species when exposed to diclofenac concentrations ≥0.1 μg/L. Exposure to ≥1.0 μg/L of ibuprofen affected only P. miliaris gametes and fertilisation success of A. marina. A. rubens and P. miliaris sperm increased in both percentage motility and swimming velocity when exposed to sildenafil citrate at concentrations ≥18 and ≥ 50 ng/L, respectively. Pre-incubation of sperm with sildenafil citrate significantly increased fertilisation success in A. rubens and P. miliaris but not in A. marina. Pre-incubated A. rubens oocytes fertilised successfully in ibuprofen. According to EU Directive 93/67/EEC, diclofenac is classified as a very toxic substance to gametes of A. rubens, P. miliaris, and A. marina (EC50 = 100-1000 μg/L) while ibuprofen is classified as very toxic to gametes of P. miliaris but non-toxic to gametes of A. marina (EC50 > 10,000 μg/L). The present study indicates that diclofenac exposure may have negative impacts on invertebrate reproductive success, whereas ibuprofen potentially may compromise P. miliaris reproduction. This study provides a valuable insight into the mechanisms that allow marine invertebrates to survive and reproduce in contaminated and changing habitats.
Collapse
Affiliation(s)
- Norlaila Binti Mohd Zanuri
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Matthew G Bentley
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Gary S Caldwell
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
227
|
Haddad SP, Du B, Scott WC, Saari GN, Breed C, Kelly M, Broach L, Chambliss CK, Brooks BW. Ontogenetic dietary shifts and bioaccumulation of diphenhydramine in Mugil cephalus from an urban estuary. MARINE ENVIRONMENTAL RESEARCH 2017; 127:155-162. [PMID: 28365158 DOI: 10.1016/j.marenvres.2017.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Though bioaccumulation of pharmaceuticals has received attention in inland waters, studies of pharmaceutical bioaccumulation in estuarine and marine systems are limited. Further, an understanding of pharmaceutical bioaccumulation across size classes of organisms displaying ontogenetic feeding shifts is lacking. We selected the striped mullet, Mugil cephalus, a euryhaline and eurythermal species that experiences dietary shifts with age, to identify whether a model base, diphenhydramine, accumulated in a tidally influenced urban bayou. We further determined whether diphenhydramine accumulation differed among size classes of striped mullet over a two year study period. Stable isotope analysis identified that ontogenetic feeding shifts of M. cephalus occurred from juveniles to adults. However, bioaccumulation of diphenhydramine did not significantly increase across age classes of M. cephalus but corresponded to surface water levels of the pharmaceutical, which suggests inhalational uptake to diphenhydramine was more important for bioaccumulation than dietary exposure in this urban estuary.
Collapse
Affiliation(s)
- Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bowen Du
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, TX, USA
| | - W Casan Scott
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Gavin N Saari
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Christopher Breed
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Martin Kelly
- Texas Commission on Environmental Quality, Houston, TX, USA; Texas Parks and Wildlife Department, Austin, TX, USA
| | - Linda Broach
- Texas Commission on Environmental Quality, Houston, TX, USA
| | - C Kevin Chambliss
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, TX, USA; Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA; The Institute of Ecological, Earth, and Environmental Science, Baylor University, Waco, TX, USA.
| |
Collapse
|
228
|
Bonnefille B, Arpin-Pont L, Gomez E, Fenet H, Courant F. Metabolic profiling identification of metabolites formed in Mediterranean mussels (Mytilus galloprovincialis) after diclofenac exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:257-268. [PMID: 28108094 DOI: 10.1016/j.scitotenv.2017.01.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Despite the growing concern on the presence of pharmaceutically active compounds in the environment, few studies have been conducted on their metabolism in marine organisms. In this study, a non-targeted strategy based on the generation of chemical profiles generated by liquid chromatography combined with high resolution mass spectrometry was used to highlight metabolite production by the Mediterranean mussel (Mytilus galloprovincialis) after diclofenac exposure. This method allowed revealing the production of 13 metabolites in mussel tissues. Three of them were phase I metabolites, including 4'-hydroxy-diclofenac and 5-hydroxy-diclofenac. The remaining 10 were phase II metabolites, including sulfate and amino acids conjugates. Among all of the metabolites highlighted, 5 were reported for the first time in an aquatic organism exposed to diclofenac.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- UMR 5569 Hydrosciences Montpellier, Université Montpellier, Montpellier, France
| | - Lauren Arpin-Pont
- UMR 5569 Hydrosciences Montpellier, Université Montpellier, Montpellier, France
| | - Elena Gomez
- UMR 5569 Hydrosciences Montpellier, Université Montpellier, Montpellier, France
| | - Hélène Fenet
- UMR 5569 Hydrosciences Montpellier, Université Montpellier, Montpellier, France
| | - Frédérique Courant
- UMR 5569 Hydrosciences Montpellier, Université Montpellier, Montpellier, France.
| |
Collapse
|
229
|
Mulabagal V, Wilson C, Hayworth JS. An ultrahigh-performance chromatography/tandem mass spectrometry quantitative method for trace analysis of potential endocrine disrupting steroid hormones in estuarine sediments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:419-429. [PMID: 27957780 DOI: 10.1002/rcm.7807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Estuaries are dynamic ecosystems, providing vital habitat for unique organisms of great ecological and commercial importance. The influx of natural and synthetic steroid hormones into estuaries poses risks to these organisms and to broader ecosystem health. However, detecting these trace level pollutants in estuarine water and sediment requires improved analytical techniques. METHODS We describe an optimized ultrahigh-performance chromatography/tandem mass spectrometry (UHPLC/MS/MS) method for simultaneous quantitation of four classes of steroid hormones (estrogens, glucocorticoids, androgens and progestins) in sediment samples collected from an Alabama estuary. Sediment samples were homogenized using Hydromatrix (HM) sorbent and extracted with methanol and water (70%, v/v). Centrifuged extracts were purified using an Agilent Bond Elut QuEChERS dispersive-SPE kit to eliminate interfering substances that could negatively influence the ionization process. Chromatographic separation was achieved on a Poroshell 120 Phenyl-Hexyl column using an Agilent 1290 Infinity II UHPLC pump. Quantitation was carried out using an Agilent triple quadrupole mass spectrometer equipped with a JetStream/ESI source in dual mode. RESULTS Chromatographic separation and better peak resolution were accomplished on an Agilent Poroshell 120 Phenyl-Hexyl column using a binary gradient method with a mobile phase consisting of 1 mM ammonium fluoride in water and a mixture of methanol/acetonitrile. A dynamic multiple reaction monitoring (MRM) method was developed by optimizing various MS parameters. The method was used to analyze target steroid hormones in estuarine sediments. A total of ten steroid hormones were detected at trace amounts in estuarine sediments. CONCLUSIONS The optimized analytical method described here involves reasonably simple sample preparation and simultaneous trace level quantitation of four classes (estrogens, glucocorticoids, androgens and progestins) of steroid hormones in a single experimental run. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Vanisree Mulabagal
- Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Caleb Wilson
- Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Joel S Hayworth
- Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
230
|
Teixeira JR, Granek EF. Effects of environmentally-relevant antibiotic mixtures on marine microalgal growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:43-49. [PMID: 27939996 DOI: 10.1016/j.scitotenv.2016.11.207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
As of 2008, approximately 48% of Americans use prescription drugs within any given 30-day period. Many pharmaceutical compounds are not fully metabolized by the human body, nor fully removed by wastewater treatment systems, before release into the environment. As a result, a vast array of pharmaceuticals has been detected in marine and freshwater organisms, sediments, and waters, with unintended effects on non-target organisms, and limited studies of environmental effects. The antibiotics sulfamethoxazole (SMX), and trimethoprim (TRI), often prescribed together to treat bacterial infections, have been detected worldwide in marine and estuarine environments at concentrations up to 765-870ng/L each. Little research has examined sub-lethal effects of antibiotic mixtures at environmentally-relevant concentrations on marine organisms. We examined the effects of mixtures of these two antibiotics on three marine microalgal species with wide geographic ranges: Isochrysis galbana, Chaetoceros neogracile, and Nannochloropsis oculata. In separate simulations using a temperature/light-controlled set-up, we measured the growth response for each species to environmentally-relevant levels of SMX and TRI. N. oculata growth was significantly reduced by mixture treatments of both drugs (p<0.05), by TRI (p<0.001), and by SMX (p<0.001), whereas only aggregated SMX levels significantly reduced growth for the other two species (p<0.005). The exposure time at which growth rates were affected varied across species, with significant reduction in growth focused in the latter half of the experimental period for C. neogracile and N. oculata (Days 15 and 6 respectively), and midway through the experimental period for I. galbana (by Day 3). This study finds that important marine primary producers respond to the presence of SMX and TRI in the water, offering an understanding of environmental consequences of anthropogenic pharmaceuticals contaminants, and specifically the suite of antibiotics, that are released into marine ecosystems at an ever-growing rate, and highlighting potential cascading effects through trophic levels.
Collapse
Affiliation(s)
- Jaclyn R Teixeira
- Department of Environmental Science and Management, Portland State University, SRTC, 1719 SW 10th Ave, Portland, OR 97201, United States.
| | - Elise F Granek
- Department of Environmental Science and Management, Portland State University, SRTC, 1719 SW 10th Ave, Portland, OR 97201, United States.
| |
Collapse
|
231
|
Yilmaz G, Kaya Y, Vergili I, Beril Gönder Z, Özhan G, Ozbek Celik B, Altinkum SM, Bagdatli Y, Boergers A, Tuerk J. Characterization and toxicity of hospital wastewaters in Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:55. [PMID: 28083795 DOI: 10.1007/s10661-016-5732-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/30/2016] [Indexed: 05/17/2023]
Abstract
The aim of the study was to present first preliminary characterization of Turkish hospital wastewaters, their environmental risk, and a method for toxicity assessment. The hospital wastewater samples were collected from two of the largest medical faculty hospitals and a training and research hospital in Istanbul, Turkey. The samples from the selected hospitals were taken as grab samples on March 2014. Overall, 55 substances including pharmaceuticals and their metabolites, pesticides, and corrosion inhibitors were analyzed in all hospital wastewaters. Analysis of toxicity and the antibiotic resistance bacteria were investigated in addition to the chemical analysis in the wastewater of one hospital. Hazard quotients (HQs) and toxic units (TUs) were calculated as basis of the environmental risk assessment. Fourteen pharmaceuticals in hospital wastewater (HWW) were classified as "high risk" with HQ > 10. HQHWW values higher than 100 were determined for five antibiotics and one analgesic, namely, ofloxacin, clarithromycin, ciprofloxacin, sulfapyridine, trimethoprim, and diclofenac. Ofloxacin with an HQHWW of 9090 was observed to be the most hazardous compound. HQ and TU values of the wastewater treatment plant (WWTP) effluent dropped significantly due to dilution in the sewer. Further elimination by biological degradation or adsorption was observed only in some cases. However, the decreased HQWWTPeffluent values do not the change environmental load significantly. Therefore, advanced treatment processes should be applied to remove the persistent compounds. In combination with the results on antibiotic resistance, we would prefer on-site treatment of hospital wastewater. Toxicological assessment was performed using cytotoxic and mutagenic screening tests. The results of the Ames assay showed that the native hospital wastewaters had strongly mutagenic activity with a ≤10-fold increase relative to negative controls. The mutagenic potentials of the samples were generally concentration and metabolic activation dependent. Multiple antibiotic resistances were demonstrated with the tested isolates to ciprofloxacin, trimethoprim, and ceftazidime. This study demonstrates that the hospital wastewaters in Istanbul exhibit strong environmental and toxicological risks, as well as high multiple drug resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- Gulsum Yilmaz
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University, 34320, Istanbul, Turkey.
- Environmental Management Unit, Cerrahpasa Medical Faculty, Istanbul University, 34000, Istanbul, Turkey.
| | - Yasemin Kaya
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University, 34320, Istanbul, Turkey
| | - Ilda Vergili
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University, 34320, Istanbul, Turkey
| | - Z Beril Gönder
- Department of Environmental Engineering, Faculty of Engineering, Istanbul University, 34320, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Berna Ozbek Celik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey
| | - Serdar M Altinkum
- Environmental Management Unit, Cerrahpasa Medical Faculty, Istanbul University, 34000, Istanbul, Turkey
| | - Yasar Bagdatli
- Environmental Management Unit, Cerrahpasa Medical Faculty, Istanbul University, 34000, Istanbul, Turkey
| | - Andrea Boergers
- Institut für Energie- und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Jochen Tuerk
- Institut für Energie- und Umwelttechnik e.V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| |
Collapse
|
232
|
Quadra GR, Oliveira de Souza H, Costa RDS, Fernandez MADS. Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1200-1218. [PMID: 27734317 DOI: 10.1007/s11356-016-7789-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/27/2016] [Indexed: 05/25/2023]
Abstract
Pharmaceutical residues are not completely removed in wastewater treatment plants (WWTPs) becoming contaminants in aquatic ecosystems. Thereby, it is important to investigate their concentrations in the environment and the possible consequences of their occurrence, including for human health. Here, we briefly reviewed the paths of pharmaceuticals to reach the environment, their behavior and fate in the environment, and the possible consequences of their occurrence. Moreover, we synthetized all the studies about the detection of pharmaceuticals in Brazilian water bodies and the available ecotoxicological knowledge on their effects. In this study, when we compare the data found on these compounds worldwide, we observed that Brazilian surface waters present considerable concentrations of 17α-ethinylestradiol, 17β-estradiol, and caffeine. In general, concentrations found in aquatic systems worldwide seems to be low; however, ecotoxicological tests showed that even these low concentrations can cause sublethal effects in biota. The knowledge about the effects of continuous exposure and mixtures is sparse. In summary, new research is urgently required about the effects of these compounds in biota-including long-term exposition and mixture tests-and on specific technologies to remove these compounds in water bodies and WWTPs, besides the introduction of new policies for pharmaceutical use.
Collapse
Affiliation(s)
- Gabrielle Rabelo Quadra
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n-Martelos, Juiz de Fora, MG, 36036-330, Brazil.
| | - Helena Oliveira de Souza
- Universidade Federal do Rio de Janeiro, Campus Macaé, Av. Aluizio da Silva Gomes, 50-Novo Cavaleiros, Macaé, RJ, 27930-560, Brazil
| | - Rafaela Dos Santos Costa
- Universidade Federal Fluminense, Av. Gen. Tavares de Souza s/n°, Campus da Praia Vermelha, Niteroi, RJ, 24210-346, Brazil
| | - Marcos Antonio Dos Santos Fernandez
- Laboratório de Ecotoxicologia Marinha, Faculdade de Oceanografia, Universidade Estadual do Rio de Janeiro, Rua São Francisco Xavier, 524-Maracanã, Rio de Janeiro, RJ, 20550-900, Brazil
| |
Collapse
|
233
|
Baalbaki A, Ayoub GM, Al-Hindi M, Ghauch A. The fate of selected pharmaceuticals in solar stills: Transfer, thermal degradation or photolysis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:583-593. [PMID: 27648535 DOI: 10.1016/j.scitotenv.2016.09.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/10/2016] [Indexed: 06/06/2023]
Abstract
The increase in demand for, and disposal of, pharmaceuticals, positively correlated with the growing human population, has led to the emergence of contaminants with high environmental and health impacts. Several developing countries that endure problems related to water sufficiency and/or quality resort to the use solar stills as an affordable water treatment method. This research is aimed at investigating the fate of five chemically distinct pharmaceuticals that might pervade solar stills; ibuprofen (IBU), diclofenac (DCF), carbamazepine (CBZ), ampicillin (AMP) and naproxen (NPX). The experiments were conducted under three conditions. The first condition studied the combined effect of temperature and light in simulated field-test-scale solar stills. The effect of temperature as a sole variable was investigated in the second while the third condition studied the effect of light only via concentrated solar power (CSP). Results show that distillates from solar stills did not contain the parent compounds for four out of the five pharmaceuticals. IBU was the only pharmaceutical that showed a transfer via vapor into the distillate with the highest recorded transfer percentage of 2.1% at 50°C when subjected to temperature alone and 0.6% under the combined effect of temperature and light. In the case of NPX and DCF, the parent compounds did not undergo transfer into the distillate phase; however their degradation by-products did. In addition, the results also showed that in the case of NPX, IBU and CBZ both high temperatures and sunlight combined were required to attain noticeable degradation. CSP accelerated the degradation of DCF, NPX and IBU with a three-minutes-degradation percentage of 44%, 13% and 2% respectively.
Collapse
Affiliation(s)
- Abbas Baalbaki
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236 2020, Beirut, Lebanon
| | - George M Ayoub
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236 2020, Beirut, Lebanon.
| | - Mahmoud Al-Hindi
- Department of Chemical and Petroleum Engineering, American University of Beirut, P.O. Box 11-0236 2020, Beirut, Lebanon
| | - Antoine Ghauch
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236 2020, Beirut, Lebanon
| |
Collapse
|
234
|
Moreira LB, Maranho LA, Baena-Nogueras RM, Lara-Martín PA, Martín-Díaz ML. Effects of novobiocin and methotrexate on the benthic amphipod Ampelisca brevicornis exposed to spiked sediments. MARINE ENVIRONMENTAL RESEARCH 2016; 122:169-177. [PMID: 27829510 DOI: 10.1016/j.marenvres.2016.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
The marine amphipod Ampelisca brevicornis was used as model organism of benthic macrofauna to assess the possible adverse effects of pharmaceuticals bound to sediments. Organisms were exposed to sediment spiked with novobiocin (NOV) and methotrexate (MTX) for 10 days in order to estimate the acute toxicity (lethal effects) produced by the two compounds. The surviving organisms were pooled and analyzed to determine their sublethal responses associated with different phases of metabolism (enzyme activities in phases I and II), oxidative stress (antioxidant enzyme activities and lipid peroxidation), and genotoxicity (DNA damage in the form of strand breaks). No lethal or sublethal effects were observed in the amphipods exposed to NOV. For organisms exposed to sediments spiked with MTX the results were found to calculate the concentration that was lethal to 50% of the organisms exposed in the toxicity tests (LC50 of 30.36 ng/g). MTX also induced the metabolism of enzyme detoxification activities in phases I and II. Oxidative stress and DNA damage in particular were also observed, indicating responses associated with MTX's mechanism of action. Both mortality and the set of applied biomarkers allowed for the assessment of bioavailability, oxidative stress, and genotoxicity of NOV and MTX. The information obtained in this investigation can assist in ecological risk assessment of marine sediments contaminated by pharmaceuticals.
Collapse
Affiliation(s)
- Lucas Buruaem Moreira
- São Paulo State University "Júlio de Mesquita Filho", Bioscience Institute. Pça. Infante D. Henrique, 11330-900, São Vicente, Brazil; Marine Sciences Institute, Federal University of Ceará, Fortaleza, 60165-081, Brazil.
| | - Luciane Alves Maranho
- São Paulo State University "Júlio de Mesquita Filho", Bioscience Institute. Pça. Infante D. Henrique, 11330-900, São Vicente, Brazil; Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - Rosa María Baena-Nogueras
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - Pablo Antonio Lara-Martín
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - Maria Laura Martín-Díaz
- Physical Chemistry Department, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
235
|
Amato DW, Bishop JM, Glenn CR, Dulai H, Smith CM. Impact of Submarine Groundwater Discharge on Marine Water Quality and Reef Biota of Maui. PLoS One 2016; 11:e0165825. [PMID: 27812171 PMCID: PMC5094668 DOI: 10.1371/journal.pone.0165825] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/18/2016] [Indexed: 11/24/2022] Open
Abstract
Generally unseen and infrequently measured, submarine groundwater discharge (SGD) can transport potentially large loads of nutrients and other land-based contaminants to coastal ecosystems. To examine this linkage we employed algal bioassays, benthic community analysis, and geochemical methods to examine water quality and community parameters of nearshore reefs adjacent to a variety of potential, land-based nutrient sources on Maui. Three common reef algae, Acanthophora spicifera, Hypnea musciformis, and Ulva spp. were collected and/or deployed at six locations with SGD. Algal tissue nitrogen (N) parameters (δ15N, N %, and C:N) were compared with nutrient and δ15N-nitrate values of coastal groundwater and nearshore surface water at all locations. Benthic community composition was estimated for ten 10-m transects per location. Reefs adjacent to sugarcane farms had the greatest abundance of macroalgae, low species diversity, and the highest concentrations of N in algal tissues, coastal groundwater, and marine surface waters compared to locations with low anthropogenic impact. Based on δ15N values of algal tissues, we estimate ca. 0.31 km2 of Kahului Bay is impacted by effluent injected underground at the Kahului Wastewater Reclamation Facility (WRF); this region is barren of corals and almost entirely dominated by colonial zoanthids. Significant correlations among parameters of algal tissue N with adjacent surface and coastal groundwater N indicate that these bioassays provided a useful measure of nutrient source and loading. A conceptual model that uses Ulva spp. tissue δ15N and N % to identify potential N source(s) and relative N loading is proposed for Hawaiʻi. These results indicate that SGD can be a significant transport pathway for land-based nutrients with important biogeochemical and ecological implications in tropical, oceanic islands.
Collapse
Affiliation(s)
- Daniel W. Amato
- Department of Botany, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, United States of America
- * E-mail:
| | - James M. Bishop
- Department of Geology and Geophysics, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, United States of America
- US Geological Survey, Menlo Park, California, United States of America
| | - Craig R. Glenn
- Department of Geology and Geophysics, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Henrietta Dulai
- Department of Geology and Geophysics, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, United States of America
| | - Celia M. Smith
- Department of Botany, University of Hawaiʻi at Mānoa, Honolulu, Hawaiʻi, United States of America
| |
Collapse
|
236
|
Prichard E, Granek EF. Effects of pharmaceuticals and personal care products on marine organisms: from single-species studies to an ecosystem-based approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22365-22384. [PMID: 27617334 DOI: 10.1007/s11356-016-7282-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that are increasing in use and have demonstrated negative effects on aquatic organisms. There is a growing body of literature reporting the effects of PPCPs on freshwater organisms, but studies on the effects of PPCPs to marine and estuarine organisms are limited. Among effect studies, the vast majority examines subcellular or cellular effects, with far fewer studies examining organismal- and community-level effects. We reviewed the current published literature on marine and estuarine algae, invertebrates, fish, and mammals exposed to PPCPs, in order to expand upon current reviews. This paper builds on previous reviews of PPCP contamination in marine environments, filling prior literature gaps and adding consideration of ecosystem function and level of knowledge across marine habitat types. Finally, we reviewed and compiled data gaps suggested by current researchers and reviewers and propose a multi-level model to expand the focus of current PPCP research beyond laboratory studies. This model includes examination of direct ecological effects including food web and disease dynamics, biodiversity, community composition, and other ecosystem-level indicators of contaminant-driven change.
Collapse
Affiliation(s)
- Emma Prichard
- Environmental Science & Management, Portland State University, Portland, OR, 97201, USA
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR, 97201, USA.
| |
Collapse
|
237
|
Mezzelani M, Gorbi S, Da Ros Z, Fattorini D, d'Errico G, Milan M, Bargelloni L, Regoli F. Ecotoxicological potential of non-steroidal anti-inflammatory drugs (NSAIDs) in marine organisms: Bioavailability, biomarkers and natural occurrence in Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2016; 121:31-39. [PMID: 27036085 DOI: 10.1016/j.marenvres.2016.03.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Pharmaceuticals represent a major environmental concern since the knowledge on their occurrence, distribution and ecotoxicological potential is still limited particularly in coastal areas. In this study, bioaccumulation and cellular effects of various non steroidal anti-inflammatory drugs (NSAIDs) were investigated in mussels Mytilus galloprovincialis to reveal whether common molecules belonging to the same therapeutic class might cause different effects on non target organisms. Organisms exposed to environmental concentrations of acetaminophen (AMP), diclofenac (DIC), ibuprofen (IBU), ketoprofen (KET) and nimesulide (NIM) revealed a significant accumulation of DIC, IBU and NIM, while AMP and KET were always below detection limit. Nonetheless, for all tested NSAIDs, measurement of a large panel of ecotoxicological biomarkers highlighted impairment of immunological parameters, onset of genotoxicity and modulation of lipid metabolism, oxidative and neurotoxic effects. Laboratory results were integrated with a field study which provided the first evidence on the occurrence of DIC, IBU and NIM in tissues of wild mussels sampled during summer months from an unpolluted, touristic area of Central Adriatic Sea. Overall results demonstrated M. galloprovincialis as a good sentinel species for monitoring presence and ecotoxicological hazard of pharmaceuticals in the Mediterranean.
Collapse
Affiliation(s)
- M Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - S Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Z Da Ros
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - D Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - G d'Errico
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - M Milan
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Universita di Padova, Italy
| | - L Bargelloni
- Dipartimento di Biomedicina Comparata e Alimentazione (BCA), Universita di Padova, Italy
| | - F Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
238
|
Munari M, Chemello G, Finos L, Ingrosso G, Giani M, Marin MG. Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum. CHEMOSPHERE 2016; 160:293-302. [PMID: 27391052 DOI: 10.1016/j.chemosphere.2016.06.095] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/10/2016] [Accepted: 06/25/2016] [Indexed: 06/06/2023]
Abstract
Seawater acidification could alter the susceptibility of marine organisms to emerging contaminants, such as pharmaceuticals. In this study, the combined effects of seawater acidification and the non-steroidal anti-inflammatory drug diclofenac on survival, growth and oxidative stress-related parameters (catalase activity and lipid peroxidation) in the larvae of the Manila clam Ruditapes philippinarum were investigated for the first time. An experimental flow-through system was set up to carry out a 96-h exposure of clam larvae. Two pH levels (pH 8.0, the control, and pH 7.8, the predicted pH by the end of this century) were tested with and without diclofenac (0.5 μg/L). After 4 days, mortality was dramatically higher under reduced pH, particularly in the presence of diclofenac (62% of the larvae dead). Shell morphology was negatively affected by both acidification and diclofenac from the first day of exposure. The percentage of abnormal larvae was always higher at pH 7.8 than in controls, peaking at 98% in the presence of diclofenac after 96 h. Instead, shell length, shell height or the ratio of these values were only negatively influenced by reduced pH throughout the whole experiment. After 96 h, catalase activity was significantly increased in all larvae kept at pH 7.8, whereas no significant difference in lipid peroxidation was found among the treatments. This study demonstrates a high susceptibility of R. philippinarum larvae to a slight reduction in seawater pH. Furthermore, the results obtained highlight that acidification enhances the sensitivity of clam larvae to environmentally relevant concentrations of diclofenac.
Collapse
Affiliation(s)
- Marco Munari
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Giulia Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Livio Finos
- Department of Developmental Psychology and Socialisation, University of Padova, Via Venezia, 8, 35131 Padova, Italy
| | - Gianmarco Ingrosso
- Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Sezione di Oceanografia, Via A. Piccard 54, 34151 S. Croce (TS), Italy
| | - Michele Giani
- Istituto Nazionale di Oceanografia e Geofisica Sperimentale, Sezione di Oceanografia, Via A. Piccard 54, 34151 S. Croce (TS), Italy
| | - Maria G Marin
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
239
|
González-Mira A, Varó I, Solé M, Torreblanca A. Drugs of environmental concern modify Solea senegalensis physiology and biochemistry in a temperature-dependent manner. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20937-20951. [PMID: 27488709 DOI: 10.1007/s11356-016-7293-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
The alerted presence in recent decades of pharmaceuticals has become an issue of environmental concern, and most of the mechanisms of biotransformation and biochemical and physiological responses to them in fish are still unknown, as well as the influence of water temperature in their ability to cope with them. This study aims to detect the main effects of two of the most widespread drugs on a set of physiological and biochemical markers in Solea senegalensis. Sole juveniles acclimatized at 15 and 20 °C were administered an intraperitoneal injection of the non-steroidal anti-inflammatory drug ibuprofen (IB; 10 mg/kg) and the anti-convulsant drug carbamazepine (CBZ; 1 mg/kg). Two days after the injection, liver, muscle and plasma were sampled. Liver enzymatic activities of 15 °C acclimated fish were more responsive to pharmaceuticals than those acclimated at 20 °C, especially for CYP450-related activities (7-ethoxyresorufin (EROD), 7-methoxyresorufin (MROD), 3-cyano-7-ethoxycoumarin (CECOD) and 7-benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD)) and uridine diphosphate glucuronosyltransferase (UDPGT). Cytosolic anti-oxidant enzyme activities and glutathione S-transferase (GST) did not show a clear effect of temperature. Glucose and transferase activities in plasma were not affected by the treatments, while ammonium, osmolality and lactate were affected by both pharmaceuticals. Plasma triglycerides were affected in a temperature-dependent manner, and creatinine was only responsive to CBZ injection. HSP70 levels in muscle were only affected by CBZ injection. Some of the physiological identified responses to IB and CBZ are proposed as endpoints in further chronic studies.
Collapse
Affiliation(s)
- A González-Mira
- Departamento Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - I Varó
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), 12595, Ribera de Cabanes, Castellón, Spain
| | - M Solé
- Institut de Ciencies del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - A Torreblanca
- Departamento Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
240
|
Zivna D, Blahova J, Siroka Z, Plhalova L, Marsalek P, Doubkova V, Zelinska G, Vecerek V, Tichy F, Sehonova P, Svobodova Z. The Effects of Salicylic Acid on Juvenile Zebrafish Danio rerio Under Flow-Through Conditions. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 97:323-330. [PMID: 27385367 DOI: 10.1007/s00128-016-1877-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
The aquatic environment is becoming increasingly contaminated with pharmaceuticals. Salicylic acid (SA), which can be used individually or appear as a degradation product of the widely used acetylsalicylic acid was chosen for testing. Juvenile zebrafish Danio rerio were subjected to OECD test No. 215 (fish, juvenile growth test) with salicylic acid concentrations of 0.004; 0.04; 0.4; 4 and 40 mg/L. Specific growth rate (SGR), histological changes, and parameters of oxidative stress were evaluated. SA had no effects on histological changes, SGR, glutathione reductase, and lipid peroxidation. Increased catalytic activity of GPx was found at 0.04 mg/L compared to control, increased catalytic activity of catalase was found at 0.04 and 4 mg/L compared to control, and increased catalytic activity of glutathione-S-transferase was found at 0.004 and 0.04 mg/L compared to control (P < 0.05). Juvenile zebrafish turned out to be relatively insensitive to both environmentally relevant (0.004 mg/L) and higher concentrations of salicylic acid.
Collapse
Affiliation(s)
- Dana Zivna
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Zuzana Siroka
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic.
| | - Lucie Plhalova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Petr Marsalek
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Veronika Doubkova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Gabriela Zelinska
- Department of Veterinary Public Health and Forensic Medicine, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Vladimir Vecerek
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Frantisek Tichy
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Pavla Sehonova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection, Welfare and Behaviour, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
241
|
Bayen S, Estrada ES, Juhel G, Kit LW, Kelly BC. Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore. MARINE POLLUTION BULLETIN 2016; 109:716-722. [PMID: 27393211 DOI: 10.1016/j.marpolbul.2016.06.105] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/25/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the occurrence of bisphenol A (BPA), atrazine and selected pharmaceutically active compounds (PhACs) in mangrove habitats in Singapore in 2012-2013, using multiple tools (sediment sampling, POCIS and filter feeder molluscs). Using POCIS, the same suite of contaminants (atrazine, BPA and eleven PhACs) was detected in mangrove waters in 28-days deployments in both 2012 and 2013. POCIS concentrations ranged from pg/L to μg/L. Caffeine, BPA, carbamazepine, E1, triclosan, sulfamerazine, sulfamethazine, and lincomycin were also detected in mangrove sediments from the low pg/g dw (e.g. carbamazepine) to ng/g dw (e.g. BPA). The detection of caffeine, carbamazepine, BPA, sulfamethoxazole or lincomycin in bivalve tissues also showed that these chemicals are bioavailable in the mangrove habitat. Since there are some indications that some pharmaceutically active substances may be biologically active in the low ppb range in marine species, further assessment should be completed based on ecotoxicological data specific to mangrove species.
Collapse
Affiliation(s)
- Stéphane Bayen
- Singapore-Delft Water Alliance, National University of Singapore, Singapore; Department of Food Science and Agricultural Chemistry, McGill University, Quebec, Canada.
| | - Elvagris Segovia Estrada
- Singapore-Delft Water Alliance, National University of Singapore, Singapore; Department of Geography, National University of Singapore, Singapore
| | - Guillaume Juhel
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Lee Wei Kit
- Singapore-Delft Water Alliance, National University of Singapore, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| | - Barry C Kelly
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore
| |
Collapse
|
242
|
Trombini C, Garcia da Fonseca T, Morais M, Rocha TL, Blasco J, Bebianno MJ. Toxic effects of cisplatin cytostatic drug in mussel Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2016; 119:12-21. [PMID: 27183200 DOI: 10.1016/j.marenvres.2016.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
Antineoplastic drugs used in chemotherapy were detected in aquatic environment: despite the very low concentrations (ng L(-1) to ug L(-1)), due to their potent mechanism of action they could have adverse effects on non-target aquatic organisms particularly under chronic exposure. Cisplatin (CDDP) is one of the most effective anticancer drug currently in use but information on its ecotoxicological effects is very limited. In this study, Mytilus galloprovincialis was used to investigate the toxic effects related to CDDP exposure. Mussels were exposed to cisplatin (100 ng L(-1)) for 14 days: antioxidant (superoxide dismutase, catalase, total and selenium-dependent glutathione peroxidase) and phase II (glutathione-S-transferase) enzymes activities, oxidative damage (lipid peroxidation), genotoxicity (DNA damage) and neurotoxicity (acetylcholinesterase) was evaluated. Results indicate that CDDP at tested concentration induce changes in the antioxidant capacity, oxidative stress in target organs (digestive gland and gills) as well as DNA damage in mussel hemocytes and neurotoxicity representing a risk for non-target organisms.
Collapse
Affiliation(s)
- Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain; CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Taina Garcia da Fonseca
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Matilde Morais
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Thiago Lopes Rocha
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - Maria João Bebianno
- CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, Campus de Gambelas, 8005-397, Faro, Portugal.
| |
Collapse
|
243
|
Maria VL, Amorim MJB, Bebianno MJ, Dondero F. Transcriptomic effects of the non-steroidal anti-inflammatory drug Ibuprofen in the marine bivalve Mytilus galloprovincialis Lam. MARINE ENVIRONMENTAL RESEARCH 2016; 119:31-39. [PMID: 27209120 DOI: 10.1016/j.marenvres.2016.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
The transcriptomic effects of Ibuprofen (IBU) in the digestive gland tissue of Mytilus galloprovincialis Lam. specimens exposed at low environmental concentrations (250 ng L(-1)) are presented. Using a 1.7 K feature cDNA microarray along with linear models and empirical Bayes statistical methods 225 differentially expressed genes were identified in mussels treated with IBU across a 15-day period. Transcriptional dynamics were typical of an adaptive response with a peak of gene expression change at day-7 (177 features, representing about 11% of sequences available for analysis) and an almost full recovery at the end of the exposure period. Functional genomics by means of Gene Ontology term analysis unraveled typical mussel stress responses i.e. aminoglycan (chitin) metabolic processes but also more specific effects such as the regulation of NF-κB transcription factor activity.
Collapse
Affiliation(s)
- Vera L Maria
- CIMA, Faculty of Science and Technology, University of Algarve, 8005-139 Faro, Portugal; CESAM, Department of Biology, University of Aveiro, 3830-169 Aveiro, Portugal
| | - Mónica J B Amorim
- CESAM, Department of Biology, University of Aveiro, 3830-169 Aveiro, Portugal
| | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, 8005-139 Faro, Portugal
| | - Francesco Dondero
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale Amedeo Avogadro, 15121 Alessandria, Italy.
| |
Collapse
|
244
|
Granek EF, Conn KE, Nilsen EB, Pillsbury L, Strecker AL, Rumrill SS, Fish W. Spatial and temporal variability of contaminants within estuarine sediments and native Olympia oysters: A contrast between a developed and an undeveloped estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 557-558:869-879. [PMID: 27084996 DOI: 10.1016/j.scitotenv.2016.03.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
Chemical contaminants can be introduced into estuarine and marine ecosystems from a variety of sources including wastewater, agriculture and forestry practices, point and non-point discharges, runoff from industrial, municipal, and urban lands, accidental spills, and atmospheric deposition. The diversity of potential sources contributes to the likelihood of contaminated marine waters and sediments and increases the probability of uptake by marine organisms. Despite widespread recognition of direct and indirect pathways for contaminant deposition and organismal exposure in coastal systems, spatial and temporal variability in contaminant composition, deposition, and uptake patterns are still poorly known. We investigated these patterns for a suite of persistent legacy contaminants including polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) and chemicals of emerging concern including pharmaceuticals within two Oregon coastal estuaries (Coos and Netarts Bays). In the more urbanized Coos Bay, native Olympia oyster (Ostrea lurida) tissue had approximately twice the number of PCB congeners at over seven times the total concentration, yet fewer PBDEs at one-tenth the concentration as compared to the more rural Netarts Bay. Different pharmaceutical suites were detected during each sampling season. Variability in contaminant types and concentrations across seasons and between species and media (organisms versus sediment) indicates the limitation of using indicator species and/or sampling annually to determine contaminant loads at a site or for specific species. The results indicate the prevalence of legacy contaminants and CECs in relatively undeveloped coastal environments highlighting the need to improve policy and management actions to reduce contaminant releases into estuarine and marine waters and to deal with legacy compounds that remain long after prohibition of use. Our results point to the need for better understanding of the ecological and human health risks of exposure to the diverse cocktail of pollutants and harmful compounds that will continue to leach from estuarine sediments over time.
Collapse
Affiliation(s)
- Elise F Granek
- Environmental Science & Management, Portland State University, PO Box 751, Portland, OR 97207, United States.
| | - Kathleen E Conn
- Washington Water Science Center, U.S. Geological Survey, 934 Broadway, Suite 300, Tacoma, WA 98402, United States.
| | - Elena B Nilsen
- Oregon Water Science Center, U.S. Geological Survey, 2130 SW 5th Ave, Portland, OR 97207, United States.
| | - Lori Pillsbury
- Oregon Department of Environmental Quality, Laboratory & Environmental Assessment Program, 3150 NW 229th Ave, Suite 150, Hillsboro, OR 97124, United States.
| | - Angela L Strecker
- Environmental Science & Management, Portland State University, PO Box 751, Portland, OR 97207, United States
| | - Steve S Rumrill
- Oregon Department of Fish and Wildlife, Marine Resources Program Oregon Department of Fish and Wildlife, 2040 SE Marine Science Drive, Newport, OR 97365, United States.
| | - William Fish
- Environmental Science & Management, Portland State University, PO Box 751, Portland, OR 97207, United States
| |
Collapse
|
245
|
Meador JP, Yeh A, Young G, Gallagher EP. Contaminants of emerging concern in a large temperate estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:254-267. [PMID: 26907702 PMCID: PMC5509463 DOI: 10.1016/j.envpol.2016.01.088] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
This study was designed to assess the occurrence and concentrations of a broad range of contaminants of emerging concern (CECs) from three local estuaries within a large estuarine ecosystem. In addition to effluent from two wastewater treatment plants (WWTP), we sampled water and whole-body juvenile Chinook salmon (Oncorhynchus tshawytscha) and Pacific staghorn sculpin (Leptocottus armatus) in estuaries receiving effluent. We analyzed these matrices for 150 compounds, which included pharmaceuticals, personal care products (PPCPs), and several industrial compounds. Collectively, we detected 81 analytes in effluent, 25 analytes in estuary water, and 42 analytes in fish tissue. A number of compounds, including sertraline, triclosan, estrone, fluoxetine, metformin, and nonylphenol were detected in water and tissue at concentrations that may cause adverse effects in fish. Interestingly, 29 CEC analytes were detected in effluent and fish tissue, but not in estuarine waters, indicating a high potential for bioaccumulation for these compounds. Although concentrations of most detected analytes were present at relatively low concentrations, our analysis revealed that overall CEC inputs to each estuary amount to several kilograms of these compounds per day. This study is unique because we report on CEC concentrations in estuarine waters and whole-body fish, which are both uncommon in the literature. A noteworthy finding was the preferential bioaccumulation of CECs in free-ranging juvenile Chinook salmon relative to staghorn sculpin, a benthic species with relatively high site fidelity.
Collapse
Affiliation(s)
- James P Meador
- Ecotoxicology and Environmental Fish Health Program, Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA, 98112, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Andrew Yeh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Graham Young
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
246
|
Toufexi E, Dailianis S, Vlastos D, Manariotis ID. Mediated effect of ultrasound treated Diclofenac on mussel hemocytes: First evidence for the involvement of respiratory burst enzymes in the induction of DCF-mediated unspecific mode of action. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:144-153. [PMID: 27046060 DOI: 10.1016/j.aquatox.2016.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/16/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
The present study investigates the toxic behavior of diclofenac (DCF) before and after its ultrasound (US) treatment, as well as the involvement of intracellular target molecules, such as NADPH oxidase and NO synthase, in the DCF-induced adverse effects on hemocytes of mussel Mytilus galloprovincialis. In this context, appropriate volumes (350 and 500mL) of DCF solutions (at concentrations of 2, 2.5, 5 and 10mgL(-1)) were treated under different ultrasound operating conditions (frequency at 582 and 862kHz, electric power density at 133 and 167W) for assessing US method efficiency. In parallel, DCF and US DCF-mediated cytotoxic (in terms of cell viability measured with the use of neutral red uptake/NRU method), oxidative (in terms of superoxide anions/(.)O2(-), nitric oxides such as NO2(-) and lipid peroxidation products, such as malondialdehyde/MDA content) and genotoxic (DNA damage measured by the use of Comet assay method) effects were investigated in hemocytes exposed for 1h to 5, 10 and 100ngL(-1) and 1, 10 and 20μgL(-1) of DCF. The involvement of NADPH oxidase and NO synthase to the DCF-induced toxicity was further investigated by the use of 10μΜ L-NAME, a NO synthase inhibitor and 10μΜ DPI, a NADPH oxidase inhibitor. According to the results, 350mL of 2mgL(-1) DCF showed higher degradation (>50%) under 167W electric power density and frequency at 862kHz for 120min, compared to degradation in all other cases, followed by a significant elimination of its toxicity. Specifically, US DCF-treated hemocytes showed a significant attenuation of DCF-mediated cytotoxic, oxidative and genotoxic effects, which appeared to be caused by NADPH oxidase and NO synthase activation, since their inhibition was followed by a significant elimination of (.)O2(-) and NO2(-) generation and the concomitant oxidative damage within cells. The results of the present study showed for the first time that unspecific mode of action of DCF, associated with the induction of NADPH oxidase and NO synthase in mussel hemocytes, could be significantly diminished after partial US degradation of DCF, at least under optimized operating conditions currently tested.
Collapse
Affiliation(s)
- Eirini Toufexi
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26500, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, 26500, Greece.
| | - Dimitris Vlastos
- Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi Str., GR 30100 Agrinio, Greece
| | - Ioannis D Manariotis
- Environmental Engineering Laboratory, Department of Civil Engineering, University of Patras, 26504, Greece
| |
Collapse
|
247
|
Massoud MA, Chami G, Al-Hindi M, Alameddine I. Assessment of Household Disposal of Pharmaceuticals in Lebanon: Management Options to Protect Water Quality and Public Health. ENVIRONMENTAL MANAGEMENT 2016; 57:1125-37. [PMID: 26847599 DOI: 10.1007/s00267-016-0666-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/22/2016] [Indexed: 05/06/2023]
Abstract
Pharmaceuticals comprise an extensive group of compounds whose release into the environment has potential adverse impacts on human health and aquatic ecosystems. In many developing countries the extent of the problem and the occurrence of pharmaceuticals in water bodies are generally unknown. While thousands of tons of pharmaceutical substances are used annually, little information is known about their final fate after their intended use. This paper focuses on better understanding the management of human-use pharmaceutical wastes generated at the residential level within the Administrative Beirut Area. A survey encompassing 300 households was conducted. Results revealed that the majority of respondents were found to dispose of their unwanted medications, mainly through the domestic solid waste stream. Willingness to participate in a future collection program was found to be a function of age, medical expenditure, and the respondents' views towards awareness and the importance of establishing a collection system for pharmaceutical wastes. Respondents who stated a willingness to participate in a collection program and/or those who believed in the need for awareness programs on the dangers of improper medical waste disposal tended to favor more collection programs managed by the government as compared to a program run by pharmacies or to the act of re-gifting medication to people in need. Ultimately, collaboration and coordination between concerned stakeholders are essential for developing a successful national collection plan.
Collapse
Affiliation(s)
- May A Massoud
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, P.O. Box 11-0236, Riad el Solh, Beirut, 1107 2020, Lebanon.
| | - Ghida Chami
- Department of Environmental Health, Faculty of Health Sciences, American University of Beirut, P.O. Box 11-0236, Riad el Solh, Beirut, 1107 2020, Lebanon
| | - Mahmoud Al-Hindi
- Chemical Engineering Program, American University of Beirut, Beirut, Lebanon
| | - Ibrahim Alameddine
- Department of Civil and Environmental Engineering, Faculty of Engineering and Architecture, American University of Beirut, P.O. Box 11-0236, Riad el Solh, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
248
|
Fabbri E, Franzellitti S. Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:799-812. [PMID: 26111460 DOI: 10.1002/etc.3131] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 05/17/2023]
Abstract
Marine waters have been poorly investigated for the occurrence of pharmaceutical contamination. Recent data confirm that pharmaceuticals occur widely in marine and coastal environments; therefore, assessment of potential risk to marine species needs further efforts. The present study represents the first extensive review of pharmaceutical contamination in marine environments addressing the effects on the marine biota analyzed at the molecular, cellular, and individual levels. Because pharmaceuticals differ from conventional pollutants, being designed to interact with specific physiological pathways at low doses, the most recent evidence on modes of action and physiological alterations on marine animal species are discussed. Data on spatial distributions of pharmaceuticals in waters and sediments, as well as bioaccumulation rates, are also presented. The present review also seeks to expand knowledge of how the quality of coastal and marine environments could be efficiently monitored to anticipate possible health and environmental risks.
Collapse
Affiliation(s)
- Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, Ravenna, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Ravenna, Italy
- Interdepartment Centre for Environmental Sciences Research, University of Bologna, Ravenna, Italy
| |
Collapse
|
249
|
Du B, Haddad SP, Luek A, Scott WC, Saari GN, Burket SR, Breed CS, Kelly M, Broach L, Rasmussen JB, Chambliss CK, Brooks BW. Bioaccumulation of human pharmaceuticals in fish across habitats of a tidally influenced urban bayou. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:966-74. [PMID: 26587912 DOI: 10.1002/etc.3221] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/30/2015] [Accepted: 08/24/2015] [Indexed: 05/24/2023]
Abstract
Though pharmaceuticals and other contaminants of emerging concern are increasingly observed in inland water bodies, the occurrence and bioaccumulation of pharmaceuticals in estuaries and coastal ecosystems are poorly understood. In the present study, bioaccumulation of select pharmaceuticals and other contaminants of emerging concern was examined in fish from Buffalo Bayou, a tidally influenced urban ecosystem that receives effluent from a major (∼200 million gallons per day) municipal wastewater treatment plant in Houston, Texas, USA. Using isotope dilution liquid chromatography-tandem mass spectrometry, various target analytes were observed in effluent, surface water, and multiple fish species. The trophic position of each species was determined using stable isotope analysis. Fish tissue levels of diphenhydramine, which represented the only pharmaceutical detected in all fish species, did not significantly differ between freshwater and marine fish predominantly inhabiting benthic habitats; however, saltwater fish with pelagic habitat preferences significantly accumulated diphenhydramine to the highest levels observed in the present study. Consistent with previous observations from an effluent-dependent freshwater river, diphenhydramine did not display trophic magnification, which suggests site-specific, pH-influenced inhalational uptake to a greater extent than dietary exposure in this tidally influenced urban ecosystem. The findings highlight the importance of understanding differential bioaccumulation and risks of ionizable contaminants of emerging concern in habitats of urbanizing coastal systems.
Collapse
Affiliation(s)
- Bowen Du
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- The Institute of Ecological, Earth, and Environmental Sciences, Baylor University, Waco, Texas, USA
| | - Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Andreas Luek
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - W Casan Scott
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Gavin N Saari
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - S Rebekah Burket
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Christopher S Breed
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Martin Kelly
- Texas Commission on Environmental Quality, Houston, Texas, USA
| | - Linda Broach
- Texas Commission on Environmental Quality, Houston, Texas, USA
| | - Joseph B Rasmussen
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - C Kevin Chambliss
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- The Institute of Ecological, Earth, and Environmental Sciences, Baylor University, Waco, Texas, USA
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- The Institute of Ecological, Earth, and Environmental Sciences, Baylor University, Waco, Texas, USA
| |
Collapse
|
250
|
Scott WC, Du B, Haddad SP, Breed CS, Saari GN, Kelly M, Broach L, Chambliss CK, Brooks BW. Predicted and observed therapeutic dose exceedances of ionizable pharmaceuticals in fish plasma from urban coastal systems. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:983-95. [PMID: 27003720 DOI: 10.1002/etc.3236] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/20/2015] [Accepted: 09/06/2015] [Indexed: 05/18/2023]
Abstract
Instream flows of the rapidly urbanizing watersheds and estuaries of the Gulf of Mexico in Texas (USA) are increasingly dominated by reclaimed waters. Though ionizable pharmaceuticals have received increasing attention in freshwaters, many research questions remain unanswered, particularly in tidally influenced urban coastal systems, which experience significant spatiotemporal variability in pH that influences bioavailability and bioaccumulation. The authors coupled fish plasma modeling of therapeutic hazard values with field monitoring of water chemistry variability and pharmaceutical occurrence to examine whether therapeutic hazards to fish existed within these urban coastal ecosystems and whether therapeutic hazards differed within and among coastal locations and seasons. Spatial and temporal fluctuations in pH within study sites altered the probability of encountering pharmaceutical hazards to fish. Significant water quality differences were consistently observed among traditional parameters and pharmaceuticals collected from surface and bottom waters, which are rarely sampled during routine surface water quality assessments. The authors then compared modeling predictions of fish plasma concentrations of pharmaceuticals to measured plasma levels from various field-collected fish species. Diphenhydramine and diltiazem were observed in plasma of multiple species, and diltiazem exceeded human therapeutic doses in largemouth bass, catfish, and mullet inhabiting these urban estuaries. Though the present study only examined a small number of target analytes, which represent a microcosm of the exposome of these fish, coastal systems are anticipated to be more strongly influenced by continued urbanization, altered instream flows, and population growth in the future. Unfortunately, aquatic toxicology information for diltiazem and many other pharmaceuticals is not available for marine and estuarine organisms, but such field observations suggest that potential adverse outcomes should be examined.
Collapse
Affiliation(s)
- W Casan Scott
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Bowen Du
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Samuel P Haddad
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Christopher S Breed
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Gavin N Saari
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Martin Kelly
- Texas Commission on Environmental Quality, Houston, Texas, USA
| | - Linda Broach
- Texas Commission on Environmental Quality, Houston, Texas, USA
| | - C Kevin Chambliss
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| |
Collapse
|