201
|
Chandler AM, Center SA, Randolph JF, Davignon DL, McDonough SP, Warner KL. Reference limits for hepatic bile duct-to-arteriole and bile duct-to-portal tract ratios in healthy cats. Am J Vet Res 2019; 80:15-23. [PMID: 30605040 DOI: 10.2460/ajvr.80.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To establish reference limits for hepatic bile duct-to-arteriole ratio (BD:A) and bile duct-to-portal tract ratio (BD:PT) in healthy cats and assess whether these parameters could be used to support a diagnosis of biliary ductopenia in cats. SAMPLE Hepatic biopsy samples from healthy cats (n = 20) and cats with ductopenia (2). PROCEDURES Hepatic biopsy samples from healthy cats were used to count the number of bile ducts and hepatic arterioles in 20 portal tracts for each cat. Mean BD:A and mean BD:PT for each cat were calculated, and these values were used to determine reference limits for mean BD:A and mean BD:PT. Results of histologic evaluation, including immunohistochemical staining in some instances, were compared for healthy cats versus cats with ductopenia. RESULTS Of the 400 portal tracts from healthy cats, 382 (95.5%) and 396 (99.0%) had BD:A and BD:PT, respectively, ≥ 1.0, with less variability in BD:A. Mean BD:A and BD:PT were markedly lower in both cats with ductopenia, compared with values for healthy cats. However, only mean BD:A for cats with ductopenia was below the reference limit of 0.59. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that systematic evaluation of BD:A, with a lower reference limit of 0.59 to define biliary ductopenia in cats, may be a discrete and easily applied morphometric tool to enhance detection of ductopenia in cats. However, application of this ratio required evaluation of ≥ 20 portal tracts with cross-sectioned portal elements to determine a mean BD:A value.
Collapse
|
202
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
203
|
Kounakis K, Tavernarakis N. The Cytoskeleton as a Modulator of Aging and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:227-245. [PMID: 31493230 DOI: 10.1007/978-3-030-25650-0_12] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytoskeleton consists of filamentous protein polymers that form organized structures, contributing to a multitude of cell life aspects. It includes three types of polymers: the actin microfilaments, the microtubules and the intermediate filaments. Decades of research have implicated the cytoskeleton in processes that regulate cellular and organismal aging, as well as neurodegeneration associated with injury or neurodegenerative disease, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, or Charcot Marie Tooth disease. Here, we provide a brief overview of cytoskeletal structure and function, and discuss experimental evidence linking cytoskeletal function and dynamics with aging and neurodegeneration.
Collapse
Affiliation(s)
- Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. .,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.
| |
Collapse
|
204
|
Etienne-Manneville S, Lammerding J. Connecting the plasma membrane to the nucleus by intermediate filaments. Mol Biol Cell 2018; 28:695-696. [PMID: 28292909 PMCID: PMC5349771 DOI: 10.1091/mbc.e16-11-0794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
205
|
Yang L, Zhang S, Wang G. Keratin 17 in disease pathogenesis: from cancer to dermatoses. J Pathol 2018; 247:158-165. [PMID: 30306595 DOI: 10.1002/path.5178] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022]
Abstract
Keratin 17 (K17) is a type I intermediate filament mainly expressed in the basal cells of epithelia. As a multifaceted cytoskeletal protein, K17 regulates a myriad of biological processes, including cell proliferation and growth, skin inflammation and hair follicle cycling. Aberrant overexpression of K17 is found in various diseases ranging from psoriasis to malignancies such as breast, cervical, oral squamous and gastric carcinomas. Moreover, genetic mutation in KRT17 is related to tissue-specific diseases, represented by steatocystoma multiplex and pachyonychia congenita. In this review, we summarize our findings concerning the regulatory mechanisms of K17 overexpression in psoriasis and compare them to the literature relating to other diseases. We discuss data that proinflammatory cytokines, including interleukin-17 (IL-17), IL-22, interferon-gamma (IFN-γ), transforming growth factor-beta (TGF-β) and transcription factors glioma-associated oncogene homolog 1/2 (Gli1/2), Nrf2 and p53 can regulate K17 by transcriptional and translational control. Moreover, post-translational modification, including phosphorylation and ubiquitination, is involved in the regulation of K17 stability and biological functions. We therefore review the current understanding of the K17 regulatory mechanism and its pathogenic role in diseases from dermatoses to cancer. Prospects for anti-K17 therapy in diagnosis, prognosis and disease treatment are also discussed. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Luting Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR, China
| | - Shaolong Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR, China
| |
Collapse
|
206
|
Lü D, Sun S, Zhang F, Luo C, Zheng L, Wu Y, Li N, Zhang C, Wang C, Chen Q, Long M. Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite. FASEB J 2018; 33:4273-4286. [PMID: 30521385 DOI: 10.1096/fj.201802075r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are able to differentiate into functional hepatocytelike cells, which are expected to serve as a potential cell source in regenerative medicine, tissue engineering, and clinical treatment of liver injury. Little is known about whether and how space microgravity is able to direct the hepatogenic differentiation of BMSCs in the actual space microenvironment. In this study, we examined the effects of space microgravity on BMSC hepatogenic differentiation on board the SJ-10 Recoverable Scientific Satellite. Rat BMSCs were cultured and induced in hepatogenic induction medium for 3 and 10 d in custom-made space cell culture hardware. Cell growth was monitored periodically in orbit, and the fixed cells and collected supernatants were retrieved back to the Earth for further analyses. Data indicated that space microgravity improves the differentiating capability of the cells by up-regulating hepatocyte-specific albumin and cytokeratin 18. The resulting cells tended to be maturated, with an in-orbit period of up to 10 d. In space, mechanosensitive molecules of β1-integrin, β-actin, α-tubulin, and Ras homolog gene family member A presented enhanced expression, whereas those of cell-surface glycoprotein CD44, intercellular adhesion molecule 1, vascular cell adhesion molecule 1, vinculin, cell division control protein 42 homolog, and Rho-associated coiled-coil kinase yielded reduced expression. Also observed in space were the depolymerization of actin filaments and the accumulation of microtubules and vimentin through the altered expression and location of focal adhesion complexes, Rho guanosine 5'-triphosphatases, as well as the enhanced exosome-mediated mRNA transfer. This work furthers the understanding of the underlying mechanisms of space microgravity in directing hepatogenic differentiation of BMSCs.-Lü, D., Sun, S., Zhang, F., Luo, C., Zheng, L., Wu, Y., Li, N., Zhang, C., Wang, C., Chen, Q., Long, M. Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite.
Collapse
Affiliation(s)
- Dongyuan Lü
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shujin Sun
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Luo
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and
| | - Lu Zheng
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ning Li
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhang
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and
| | - Chengzhi Wang
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chen
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and
| | - Mian Long
- Key Laboratory of Microgravity, Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China; and.,School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
207
|
Söderholm N, Javadi A, Flores IS, Flärdh K, Sandblad L. Affinity to cellulose is a shared property among coiled-coil domains of intermediate filaments and prokaryotic intermediate filament-like proteins. Sci Rep 2018; 8:16524. [PMID: 30410115 PMCID: PMC6224456 DOI: 10.1038/s41598-018-34886-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/25/2018] [Indexed: 01/14/2023] Open
Abstract
Coiled-coil domains of intermediate filaments (IF) and prokaryotic IF-like proteins enable oligomerisation and filamentation, and no additional function is ascribed to these coiled-coil domains. However, an IF-like protein from Streptomyces reticuli was reported to display cellulose affinity. We demonstrate that cellulose affinity is an intrinsic property of the IF-like proteins FilP and Scy and the coiled-coil protein DivIVA from the genus Streptomyces. Furthermore, IF-like proteins and DivIVA from other prokaryotic species and metazoan IF display cellulose affinity despite having little sequence homology. Cellulose affinity-based purification is utilised to isolate native FilP protein from the whole cell lysate of S. coelicolor. Moreover, cellulose affinity allowed for the isolation of IF and IF-like protein from the whole cell lysate of C. crescentus and a mouse macrophage cell line. The binding to cellulose is mediated by certain combinations of coiled-coil domains, as demornstrated for FilP and lamin. Fusions of target proteins to cellulose-binding coiled-coil domains allowed for cellulose-based protein purification. The data presented show that cellulose affinity is a novel function of certain coiled-coil domains of IF and IF-like proteins from evolutionary diverse species.
Collapse
Affiliation(s)
- Niklas Söderholm
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Ala Javadi
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | | | - Klas Flärdh
- Department of Biology, Lund University, 22362, Lund, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
208
|
G Lopez C, Saldanha O, Aufderhorst-Roberts A, Martinez-Torres C, Kuijs M, Koenderink GH, Köster S, Huber K. Effect of ionic strength on the structure and elongational kinetics of vimentin filaments. SOFT MATTER 2018; 14:8445-8454. [PMID: 30191240 DOI: 10.1039/c8sm01007b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intermediate filaments are a major structural element in the cytoskeleton of animal cells that mechanically integrate other cytoskeletal components and absorb externally applied stress. Their role is likely to be linked to their complex molecular architecture which is the product of a multi-step assembly pathway. Intermediate filaments form tetrameric subunits which assemble in the presence of monovalent salts to form unit length filaments that subsequently elongate by end-to-end annealing. The present work characterizes this complex assembly process using reconstituted vimentin intermediate filaments with monovalent salts as an assembly trigger. A multi-scale approach is used, comprising static light scattering, dynamic light scattering and quantitative scanning transmission electron microscopy (STEM) mass measurements. Light scattering reveals the radius of gyration (Rg), molecular weight (Mw) and diffusion coefficient (D) of the assembling filaments as a function of time and salt concentration (cS) for the given protein concentration of 0.07 g L-1. At low cS (10 mM KCl) no lateral or elongational growth is observed, whereas at cS = 50-200 mM, the hydrodynamic cross-sectional radius and the elongation rate increases with cS. Rgversus Mw plots suggest that the mass per unit length increases with increasing salt content, which is confirmed by STEM mass measurements. A kinetic model based on rate equations for a two step process is able to accurately describe the variation of mass, length and diffusion coefficient of the filaments with time and provides a consistent description of the elongation accelerated by increasing cS.
Collapse
Affiliation(s)
- Carlos G Lopez
- Chemistry Department, University of Paderborn, 33098 Paderborn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
210
|
Janin A, Gache V. Nesprins and Lamins in Health and Diseases of Cardiac and Skeletal Muscles. Front Physiol 2018; 9:1277. [PMID: 30245638 PMCID: PMC6137955 DOI: 10.3389/fphys.2018.01277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the inner nuclear transmembrane protein emerin in the early 1990s, nuclear envelope (NE) components and related involvement in nuclei integrity and functionality have been highly investigated. The NE is composed of two distinct lipid bilayers described as the inner (INM) and outer (ONM) nuclear membrane. NE proteins can be specifically “integrated” in the INM (such as emerin and SUN proteins) or in the ONM such as nesprins. Additionally, flanked to the INM, the nuclear lamina, a proteinaceous meshwork mainly composed of lamins A and C completes NE composition. This network of proteins physically interplays to guarantee NE integrity and most importantly, shape the bridge between cytoplasmic cytoskeletons networks (such as microtubules and actin) and the genome, through the anchorage to the heterochromatin. The essential network driving the connection of nucleoskeleton with cytoskeleton takes place in the perinuclear space (the space between ONM and INM) with the contribution of the LINC complex (for Linker of Nucleoskeleton to Cytoskeleton), hosting KASH and SUN proteins interactions. This close interplay between compartments has been related to diverse functions from nuclear integrity, activity and positioning through mechanotransduction pathways. At the same time, mutations in NE components genes coding for proteins such as lamins or nesprins, had been associated with a wide range of congenital diseases including cardiac and muscular diseases. Although most of these NE associated proteins are ubiquitously expressed, a large number of tissue-specific disorders have been associated with diverse pathogenic mutations. Thus, diagnosis and molecular explanation of this group of diseases, commonly called “nuclear envelopathies,” is currently challenging. This review aims, first, to give a better understanding of diverse functions of the LINC complex components, from the point of view of lamins and nesprins. Second, to summarize human congenital diseases with a special focus on muscle and heart abnormalities, caused by mutations in genes coding for these two types of NE associated proteins.
Collapse
Affiliation(s)
- Alexandre Janin
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.,Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Bron, France
| | - Vincent Gache
- CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
211
|
Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, Petzold A, Blennow K, Zetterberg H, Kuhle J. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 2018; 14:577-589. [DOI: 10.1038/s41582-018-0058-z] [Citation(s) in RCA: 767] [Impact Index Per Article: 127.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
212
|
Sequeira I, Neves JF, Carrero D, Peng Q, Palasz N, Liakath-Ali K, Lord GM, Morgan PR, Lombardi G, Watt FM. Immunomodulatory role of Keratin 76 in oral and gastric cancer. Nat Commun 2018; 9:3437. [PMID: 30143634 PMCID: PMC6109110 DOI: 10.1038/s41467-018-05872-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Keratin 76 (Krt76) is expressed in the differentiated epithelial layers of skin, oral cavity and squamous stomach. Krt76 downregulation in human oral squamous cell carcinomas (OSCC) correlates with poor prognosis. We show that genetic ablation of Krt76 in mice leads to spleen and lymph node enlargement, an increase in regulatory T cells (Tregs) and high levels of pro-inflammatory cytokines. Krt76-/- Tregs have increased suppressive ability correlated with increased CD39 and CD73 expression, while their effector T cells are less proliferative than controls. Loss of Krt76 increases carcinogen-induced tumours in tongue and squamous stomach. Carcinogenesis is further increased when Treg levels are elevated experimentally. The carcinogenesis response includes upregulation of pro-inflammatory cytokines and enhanced accumulation of Tregs in the tumour microenvironment. Tregs also accumulate in human OSCC exhibiting Krt76 loss. Our study highlights the role of epithelial cells in modulating carcinogenesis via communication with cells of the immune system.
Collapse
Affiliation(s)
- Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Joana F Neves
- Department of Experimental Immunobiology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Dido Carrero
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Qi Peng
- Immunoregulation Laboratory, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Natalia Palasz
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Kifayathullah Liakath-Ali
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, 265 Campus Drive, CA, 94305-5453, USA
| | - Graham M Lord
- Department of Experimental Immunobiology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Peter R Morgan
- Department of Mucosal and Salivary Biology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Giovanna Lombardi
- Immunoregulation Laboratory, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
213
|
Kapphahn RJ, Richards MJ, Ferrington DA, Fliesler SJ. Lipid-derived and other oxidative modifications of retinal proteins in a rat model of Smith-Lemli-Opitz syndrome. Exp Eye Res 2018; 178:247-254. [PMID: 30114413 DOI: 10.1016/j.exer.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022]
Abstract
Oxidative modification of proteins can perturb their structure and function, often compromising cellular viability. Such modifications include lipid-derived adducts (e.g., 4-hydroxynonenal (HNE) and carboxyethylpyrrole (CEP)) as well as nitrotyrosine (NTyr). We compared the retinal proteome and levels of such modifications in the AY9944-treated rat model of Smith-Lemli-Opitz syndrome (SLOS), in comparison to age-matched controls. Retinas harvested at 3 months of age were either subjected to proteomic analysis or to immuno-slot blot analysis, the latter probing blots with antibodies raised against HNE, CEP, and NTyr, followed by quantitative densitometry. HNE modification of retinal proteins was markedly (>9-fold) higher in AY9944-treated rats compared to controls, whereas CEP modification was only modestly (≤2-fold) greater, and NTyr modification was minimal and exhibited no difference as a function of AY9944 treatment. Anti-HNE immunoreactivity was greatest in the plexiform and ganglion cell layers, but also present in the RPE, choroid, and photoreceptor outer segment layer in AY9944-treated rats; control retinas showed minimal HNE labeling. 1D-PAGE/Western blot analysis of rod outer segment (ROS) membranes revealed HNE modification of both opsin and β-transducin. Proteomic analysis revealed the differential expression of several retinal proteins as a consequence of AY9944 treatment. Upregulated proteins included those involved in chaperone/protein folding, oxidative and cellular stress responses, transcriptional regulation, and energy production. βA3/A1 Crystallin, which has a role in regulation of lysosomal acidification, was down-regulated. Hence, oxidative modification of retinal proteins occurs in the SLOS rat model, in addition to the previously described oxidation of lipids. The results are discussed in the context of the histological and physiological changes that occur in the retina in the SLOS rat model.
Collapse
Affiliation(s)
- Rebecca J Kapphahn
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Michael J Richards
- Department of Ophthalmology, Saint Louis University, School of Medicine, St. Louis, MO, USA
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Steven J Fliesler
- Department of Ophthalmology, Saint Louis University, School of Medicine, St. Louis, MO, USA; Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, The State University of New York (SUNY)- University at Buffalo, Buffalo, NY, USA; Research Service, Veterans Administration Western New York Healthcare System (VAWNYHS), Buffalo, NY, USA.
| |
Collapse
|
214
|
Abstract
Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type-specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- Institut Pasteur Paris, CNRS UMR 3691, Cell Polarity, Migration and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Paris Cedex 15, France;
| |
Collapse
|
215
|
Pollard TD, Goldman RD. Overview of the Cytoskeleton from an Evolutionary Perspective. Cold Spring Harb Perspect Biol 2018; 10:10/7/a030288. [PMID: 29967009 DOI: 10.1101/cshperspect.a030288] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organisms in the three domains of life depend on protein polymers to form a cytoskeleton that helps to establish their shapes, maintain their mechanical integrity, divide, and, in many cases, move. Eukaryotes have the most complex cytoskeletons, comprising three cytoskeletal polymers-actin filaments, intermediate filaments, and microtubules-acted on by three families of motor proteins (myosin, kinesin, and dynein). Prokaryotes have polymers of proteins homologous to actin and tubulin but no motors, and a few bacteria have a protein related to intermediate filament proteins.
Collapse
Affiliation(s)
- Thomas D Pollard
- Departments of Molecular Cellular and Developmental Biology, Molecular Biophysics and Biochemistry, and Cell Biology, Yale University, New Haven, Connecticut 06520-8103
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
216
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
217
|
Abstract
Microtubules act as "railways" for motor-driven intracellular transport, interact with accessory proteins to assemble into larger structures such as the mitotic spindle, and provide an organizational framework to the rest of the cell. Key to these functions is the fact that microtubules are "dynamic." As with actin, the polymer dynamics are driven by nucleotide hydrolysis and influenced by a host of specialized regulatory proteins, including microtubule-associated proteins. However, microtubule turnover involves a surprising behavior-termed dynamic instability-in which individual polymers switch stochastically between growth and depolymerization. Dynamic instability allows microtubules to explore intracellular space and remodel in response to intracellular and extracellular cues. Here, we review how such instability is central to the assembly of many microtubule-based structures and to the robust functioning of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
218
|
Walker JL, Bleaken BM, Romisher AR, Alnwibit AA, Menko AS. In wound repair vimentin mediates the transition of mesenchymal leader cells to a myofibroblast phenotype. Mol Biol Cell 2018; 29:1555-1570. [PMID: 29718762 PMCID: PMC6080657 DOI: 10.1091/mbc.e17-06-0364] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Following injury, mesenchymal repair cells are activated to function as leader cells that modulate wound healing. These cells have the potential to differentiate to myofibroblasts, resulting in fibrosis and scarring. The signals underlying these differing pathways are complex and incompletely understood. The ex vivo mock cataract surgery cultures are an attractive model with which to address this question. With this model we study, concurrently, the mechanisms that control mesenchymal leader cell function in injury repair within their native microenvironment and the signals that induce this same cell population to acquire a myofibroblast phenotype when these cells encounter the environment of the adjacent tissue culture platform. Here we show that on injury, the cytoskeletal protein vimentin is released into the extracellular space, binds to the cell surface of the mesenchymal leader cells located at the wound edge in the native matrix environment, and supports wound closure. In profibrotic environments, the extracellular vimentin pool also links specifically to the mesenchymal leader cells and has an essential role in signaling their fate change to a myofibroblast. These findings suggest a novel role for extracellular, cell-surface–associated vimentin in mediating repair-cell function in wound repair and in transitioning these cells to a myofibroblast phenotype.
Collapse
Affiliation(s)
- J L Walker
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - B M Bleaken
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A R Romisher
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A A Alnwibit
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A S Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
219
|
Abstract
Myosin motors power movements on actin filaments, whereas dynein and kinesin motors power movements on microtubules. The mechanisms of these motor proteins differ, but, in all cases, ATP hydrolysis and subsequent release of the hydrolysis products drives a cycle of interactions with the track (either an actin filament or a microtubule), resulting in force generation and directed movement.
Collapse
Affiliation(s)
- H Lee Sweeney
- Department of Pharmacology and Therapeutics and the Myology Institute, University of Florida, College of Medicine, Gainesville, Florida 32610-0267
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
220
|
Jacob JT, Coulombe PA, Kwan R, Omary MB. Types I and II Keratin Intermediate Filaments. Cold Spring Harb Perspect Biol 2018; 10:10/4/a018275. [PMID: 29610398 DOI: 10.1101/cshperspect.a018275] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Keratins-types I and II-are the intermediate-filament-forming proteins expressed in epithelial cells. They are encoded by 54 evolutionarily conserved genes (28 type I, 26 type II) and regulated in a pairwise and tissue type-, differentiation-, and context-dependent manner. Here, we review how keratins serve multiple homeostatic and stress-triggered mechanical and nonmechanical functions, including maintenance of cellular integrity, regulation of cell growth and migration, and protection from apoptosis. These functions are tightly regulated by posttranslational modifications and keratin-associated proteins. Genetically determined alterations in keratin-coding sequences underlie highly penetrant and rare disorders whose pathophysiology reflects cell fragility or altered tissue homeostasis. Furthermore, keratin mutation or misregulation represents risk factors or genetic modifiers for several additional acute and chronic diseases.
Collapse
Affiliation(s)
- Justin T Jacob
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205.,Departments of Biological Chemistry, Dermatology, and Oncology, School of Medicine, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21205
| | - Raymond Kwan
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - M Bishr Omary
- Departments of Molecular & Integrative Physiology and Medicine, University of Michigan, Ann Arbor, Michigan 48109.,VA Ann Arbor Health Care System, Ann Arbor, Michigan 48105
| |
Collapse
|
221
|
Tarbet HJ, Dolat L, Smith TJ, Condon BM, O'Brien ET, Valdivia RH, Boyce M. Site-specific glycosylation regulates the form and function of the intermediate filament cytoskeleton. eLife 2018. [PMID: 29513221 PMCID: PMC5841932 DOI: 10.7554/elife.31807] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intermediate filaments (IF) are a major component of the metazoan cytoskeleton and are essential for normal cell morphology, motility, and signal transduction. Dysregulation of IFs causes a wide range of human diseases, including skin disorders, cardiomyopathies, lipodystrophy, and neuropathy. Despite this pathophysiological significance, how cells regulate IF structure, dynamics, and function remains poorly understood. Here, we show that site-specific modification of the prototypical IF protein vimentin with O-linked β-N-acetylglucosamine (O-GlcNAc) mediates its homotypic protein-protein interactions and is required in human cells for IF morphology and cell migration. In addition, we show that the intracellular pathogen Chlamydia trachomatis, which remodels the host IF cytoskeleton during infection, requires specific vimentin glycosylation sites and O-GlcNAc transferase activity to maintain its replicative niche. Our results provide new insight into the biochemical and cell biological functions of vimentin O-GlcNAcylation, and may have broad implications for our understanding of the regulation of IF proteins in general. Like the body's skeleton, the cytoskeleton gives shape and structure to the inside of a cell. Yet, unlike a skeleton, the cytoskeleton is ever changing. The cytoskeleton consists of many fibers each made from chains of protein molecules. One of these proteins is called vimentin and it forms intermediate filaments in the cytoskeleton. Many different types of cells contain vimentin and a lot of it is found in cancer cells that have spread beyond their original location to other sites in the body. Cells use chemical modifications to regulate cytoskeleton proteins. For example, through a process called glycosylation, cells can reversibly attach a sugar modification called O-GlcNAc to vimentin. O-GlcNAc can be attached to several different parts of vimentin and each location may have a different effect. It is not currently clear how cells control their vimentin filaments or what role O-GlcNAc plays in this process. Using genetic engineering, Tarbet et al. produced human cells in the laboratory with modified vimentin proteins. These altered proteins lacked some of the sites for O-GlcNAc attachment. The goal was to see whether the loss of O-GlcNAc at a specific location would affect fiber formation and cell behavior. The results showed one site where vimentin needs O-GlcNAc to form fibers. Without O-GlcNAc at this site, cells could not migrate towards chemical signals. In addition, in normal human cells, Chlamydia bacteria hijack vimentin and rearrange the filaments to form a cage around themselves for protection. However, the cells lacking O-GlcNAc on vimentin were resistant to infection by Chlamydia bacteria. These findings highlight the importance of O-GlcNAc on vimentin in healthy cells and during infection. Vimentin’s contribution to cell migration may also help to explain its role in the spread of cancer. The importance of O-GlcNAc suggests it could be a new target for therapies. Yet, it also highlights the need for caution due to the delicate balance between the activity of vimentin in healthy and diseased cells. In addition, human cells produce about 70 other vimentin-like proteins and further work will examine if they are also affected by O-GlcNAc.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Timothy J Smith
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, United States
| | - E Timothy O'Brien
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Department of Physics and Astronomy, University of North Carolina, Chapel Hill, United States
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, United States.,Center for Host-Microbial Interactions, Duke University School of Medicine, Durham, United States
| |
Collapse
|
222
|
Leduc C, Salles A, Shorte SL, Etienne-Manneville S. Imaging Intermediate Filaments and Microtubules with 2-dimensional Direct Stochastic Optical Reconstruction Microscopy. J Vis Exp 2018. [PMID: 29578510 DOI: 10.3791/57087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The cytoskeleton, composed of actin microfilaments, microtubules, and intermediate filaments (IF), plays a key role in the control of cell shape, polarity, and motility. The organization of the actin and microtubule networks has been extensively studied but that of IFs is not yet fully characterized. IFs have an average diameter of 10 nm and form a network extending throughout the cell cytoplasm. They are physically associated with actin and microtubules through molecular motors and cytoskeletal linkers. This tight association is at the heart of the regulatory mechanisms that ensure the coordinated regulation of the three cytoskeletal networks required for most cell functions. It is therefore crucial to visualize IFs alone and also together with each of the other cytoskeletal networks. However, IF networks are extremely dense in most cell types, especially in glial cells, which makes its resolution very difficult to achieve with standard fluorescence microscopy (lateral resolution of ~250 nm). Direct STochastic Optical Reconstruction Microscopy (dSTORM) is a technique allowing a gain in lateral resolution of one order of magnitude. Here, we show that lateral dSTORM resolution is sufficient to resolve the dense organization of the IF networks and, in particular, of IF bundles surrounding microtubules. Such tight association is likely to participate in the coordinated regulation of these two networks and may, explain how vimentin IFs template and stabilize microtubule organization as well as could influence microtubule dependent vesicular trafficking. More generally, we show how the observation of two cytoskeletal components with dual-color dSTORM technique brings new insight into their mutual interaction.
Collapse
Affiliation(s)
- Cécile Leduc
- Cell Polarity, Migration and Cancer Unit, UMR 3691, CNRS, Institut Pasteur;
| | - Audrey Salles
- UTechS Photonic BioImaging (Imagopole) Citech, Institut Pasteur
| | | | | |
Collapse
|
223
|
Rajagopal V, Holmes WR, Lee PVS. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:e1407. [PMID: 29195023 PMCID: PMC5836888 DOI: 10.1002/wsbm.1407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/19/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Cellular cytoskeletal mechanics plays a major role in many aspects of human health from organ development to wound healing, tissue homeostasis and cancer metastasis. We summarize the state-of-the-art techniques for mathematically modeling cellular stiffness and mechanics and the cytoskeletal components and factors that regulate them. We highlight key experiments that have assisted model parameterization and compare the advantages of different models that have been used to recapitulate these experiments. An overview of feed-forward mechanisms from signaling to cytoskeleton remodeling is provided, followed by a discussion of the rapidly growing niche of encapsulating feedback mechanisms from cytoskeletal and cell mechanics to signaling. We discuss broad areas of advancement that could accelerate research and understanding of cellular mechanobiology. A precise understanding of the molecular mechanisms that affect cell and tissue mechanics and function will underpin innovations in medical device technologies of the future. WIREs Syst Biol Med 2018, 10:e1407. doi: 10.1002/wsbm.1407 This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Vijay Rajagopal
- Cell Structure and Mechanobiology Group, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| | - William R. Holmes
- Department of Physics and AstronomyVanderbilt UniversityNashvilleTNUSA
| | - Peter Vee Sin Lee
- Cell and Tissue Biomechanics Laboratory, Department of Biomedical EngineeringUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
224
|
Invasion of the Brain by Listeria monocytogenes Is Mediated by InlF and Host Cell Vimentin. mBio 2018; 9:mBio.00160-18. [PMID: 29487235 PMCID: PMC5829824 DOI: 10.1128/mbio.00160-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes is a facultative intracellular bacterial pathogen that is frequently associated with food-borne infection. Of particular concern is the ability of L. monocytogenes to breach the blood-brain barrier, leading to life-threatening meningitis and encephalitis. The mechanisms used by bacterial pathogens to infect the brain are not fully understood. Here we show that L. monocytogenes is able to utilize vimentin for invasion of host cells. Vimentin is a type III intermediate filament protein within the cytosol but is also expressed on the host cell surface. We found that L. monocytogenes interaction with surface-localized vimentin promoted bacterial uptake. Furthermore, in the absence of vimentin, L. monocytogenes colonization of the brain was severely compromised in mice. The L. monocytogenes virulence factor InlF was found to bind vimentin and was necessary for optimal bacterial colonization of the brain. These studies reveal a novel receptor-ligand interaction that enhances infection of the brain by L. monocytogenes and highlights the importance of surface vimentin in host-pathogen interactions.IMPORTANCEListeria monocytogenes is an intracellular bacterial pathogen that is capable of invading numerous host cells during infection. L. monocytogenes can cross the blood-brain barrier, leading to life-threatening meningitis. Here we show that an L. monocytogenes surface protein, InlF, is necessary for optimal colonization of the brain in mice. Furthermore, in the absence of vimentin, a cytosolic intermediate filament protein that is also present on the surface of brain endothelial cells, colonization of the brain was significantly impaired. We further show that InlF binds vimentin to mediate invasion of host cells. This work identifies InlF as a bacterial surface protein with specific relevance for infection of the brain and underscores the significance of host cell surface vimentin interactions in microbial pathogenesis.
Collapse
|
225
|
The MTM1-UBQLN2-HSP complex mediates degradation of misfolded intermediate filaments in skeletal muscle. Nat Cell Biol 2018; 20:198-210. [PMID: 29358706 DOI: 10.1038/s41556-017-0024-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/06/2017] [Indexed: 12/14/2022]
Abstract
The ubiquitin proteasome system and autophagy are major protein turnover mechanisms in muscle cells, which ensure stemness and muscle fibre maintenance. Muscle cells contain a high proportion of cytoskeletal proteins, which are prone to misfolding and aggregation; pathological processes that are observed in several neuromuscular diseases called proteinopathies. Despite advances in deciphering the mechanisms underlying misfolding and aggregation, little is known about how muscle cells manage cytoskeletal degradation. Here, we describe a process by which muscle cells degrade the misfolded intermediate filament proteins desmin and vimentin by the proteasome. This relies on the MTM1-UBQLN2 complex to recognize and guide these misfolded proteins to the proteasome and occurs prior to aggregate formation. Thus, our data highlight a safeguarding function of the MTM1-UBQLN2 complex that ensures cytoskeletal integrity to avoid proteotoxic aggregate formation.
Collapse
|
226
|
Wagstaff J, Löwe J. Prokaryotic cytoskeletons: protein filaments organizing small cells. Nat Rev Microbiol 2018; 16:187-201. [PMID: 29355854 DOI: 10.1038/nrmicro.2017.153] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most, if not all, bacterial and archaeal cells contain at least one protein filament system. Although these filament systems in some cases form structures that are very similar to eukaryotic cytoskeletons, the term 'prokaryotic cytoskeletons' is used to refer to many different kinds of protein filaments. Cytoskeletons achieve their functions through polymerization of protein monomers and the resulting ability to access length scales larger than the size of the monomer. Prokaryotic cytoskeletons are involved in many fundamental aspects of prokaryotic cell biology and have important roles in cell shape determination, cell division and nonchromosomal DNA segregation. Some of the filament-forming proteins have been classified into a small number of conserved protein families, for example, the almost ubiquitous tubulin and actin superfamilies. To understand what makes filaments special and how the cytoskeletons they form enable cells to perform essential functions, the structure and function of cytoskeletal molecules and their filaments have been investigated in diverse bacteria and archaea. In this Review, we bring these data together to highlight the diverse ways that linear protein polymers can be used to organize other molecules and structures in bacteria and archaea.
Collapse
Affiliation(s)
- James Wagstaff
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
227
|
Trogden KP, Battaglia RA, Kabiraj P, Madden VJ, Herrmann H, Snider NT. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. FASEB J 2018; 32:2841-2854. [PMID: 29401610 DOI: 10.1096/fj.201700663r] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vimentin is a cytoskeletal intermediate filament protein that is expressed in mesenchymal cells and cancer cells during the epithelial-mesenchymal transition. The goal of this study was to identify vimentin-targeting small molecules by using the Tocriscreen library of 1120 biochemically active compounds. We monitored vimentin filament reorganization and bundling in adrenal carcinoma SW13 vimentin-positive (SW13-vim+) cells via indirect immunofluorescence. The screen identified 18 pharmacologically diverse hits that included 2 statins-simvastatin and mevastatin. Simvastatin induced vimentin reorganization within 15-30 min and significant perinuclear bundling within 60 min (IC50 = 6.7 nM). Early filament reorganization coincided with increased vimentin solubility. Mevastatin produced similar effects at >1 µM, whereas the structurally related pravastatin and lovastatin did not affect vimentin. In vitro vimentin filament assembly assays revealed a direct targeting mechanism, as determined biochemically and by electron microscopy. In SW13-vim+ cells, simvastatin, but not pravastatin, reduced total cell numbers (IC50 = 48.1 nM) and promoted apoptosis after 24 h. In contrast, SW13-vim- cell viability was unaffected by simvastatin, unless vimentin was ectopically expressed. Simvastatin similarly targeted vimentin filaments and induced cell death in MDA-MB-231 (vim+), but lacked effect in MCF7 (vim-) breast cancer cells. In conclusion, this study identified vimentin as a direct molecular target that mediates simvastatin-induced cell death in 2 different cancer cell lines.-Trogden, K. P., Battaglia, R. A., Kabiraj, P., Madden, V. J., Herrmann, H., Snider, N. T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Parijat Kabiraj
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria J Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.,Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
228
|
Differential proteomics of lesional vs. non-lesional biopsies revealed non-immune mechanisms of alopecia areata. Sci Rep 2018; 8:521. [PMID: 29323127 PMCID: PMC5765109 DOI: 10.1038/s41598-017-18282-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Alopecia areata (AA) is one of the common hair disorders for which treatment is frequently ineffective and associated with relapsing episodes. Better understanding of disease mechanisms and novel therapeutic targets are thus required. From 10 AA patients, quantitative proteomics using LTQ-Orbitrap-XL mass spectrometer revealed 104 down-regulated, 4 absent, 3 up-regulated and 11 newly present proteins in lesional vs. non-lesional biopsies. Among these, the decreased levels of α-tubulin, vimentin, heat shock protein 70 (HSP70), HSP90, annexin A2 and α-enolase were successfully confirmed by Western blotting. Protein-protein interactions network analysis using STRING tool revealed that the most frequent biological processes/networks of the down-regulated proteins included tissue development, cell differentiation, response to wounding and catabolic process, whereas those for the up-regulated proteins included biological process, metabolic process, cellular transport, cellular component organization and response to stimulus. Interestingly, only 5 increased/newly present proteins were associated with the regulation of immune system, which may not be the predominant pathway in AA pathogenic mechanisms as previously assumed. In summary, we report herein the first proteome dataset of AA demonstrating a number of novel pathways, which can be linked to the disease mechanisms and may lead to discovery of new therapeutic targets for AA.
Collapse
|
229
|
Goldmann WH. Intermediate filaments and cellular mechanics. Cell Biol Int 2018; 42:132-138. [PMID: 28980752 DOI: 10.1002/cbin.10879] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
Intermediate filaments (IFs) are one of the three types of cytoskeletal polymers that resist tensile and compressive forces in cells. They crosslink each other as well as with actin filaments and microtubules by proteins, which include desmin, filamin C, plectin, and lamin (A/C). Mutations in these proteins can lead to a wide range of pathologies, some of which exhibit mechanical failure of the skin, skeletal, or heart muscle.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Physics, Biophysics Group, Friedrich-Alexander-University Erlangen-Nuremberg, D-91052 Erlangen, Germany
| |
Collapse
|
230
|
Gerace L, Tapia O. Messages from the voices within: regulation of signaling by proteins of the nuclear lamina. Curr Opin Cell Biol 2018; 52:14-21. [PMID: 29306725 DOI: 10.1016/j.ceb.2017.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
The nuclear lamina (NL) is a protein scaffold lining the nuclear envelope that consists of nuclear lamins and associated transmembrane proteins. It helps to organize the nuclear envelope, chromosomes, and the cytoplasmic cytoskeleton. The NL also has an important role in regulation of signaling, as highlighted by the wide range of human diseases caused by mutations in the genes for NL proteins with associated signaling defects. This review will consider diverse mechanisms for signaling regulation by the NL that have been uncovered recently, including interaction with signaling effectors, modulation of actin assembly and compositional alteration of the NL. Cells with discrete NL mutations often show disruption of multiple signaling pathways, however, and for the most part the mechanistic basis for these complex phenotypes remains to be elucidated.
Collapse
Affiliation(s)
- Larry Gerace
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States.
| | - Olga Tapia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, United States; Department of Anatomy and Cell Biology and CIBERNED, University of Cantabria-IDIVAL, Cardenal H Oria s/n, 39011 Santander, Spain
| |
Collapse
|
231
|
Sawant M, Schwarz N, Windoffer R, Magin TM, Krieger J, Mücke N, Obara B, Jankowski V, Jankowski J, Wally V, Lettner T, Leube RE. Threonine 150 Phosphorylation of Keratin 5 Is Linked to Epidermolysis Bullosa Simplex and Regulates Filament Assembly and Cell Viability. J Invest Dermatol 2017; 138:627-636. [PMID: 29080682 DOI: 10.1016/j.jid.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
A characteristic feature of the skin blistering disease epidermolysis bullosa simplex is keratin filament (KF) network collapse caused by aggregation of the basal epidermal keratin type II (KtyII) K5 and its type I partner keratin 14 (K14). Here, we examine the role of keratin phosphorylation in KF network rearrangement and cellular functions. We detect phosphorylation of the K5 head domain residue T150 in cytoplasmic epidermolysis bullosa simplex granules containing R125C K14 mutants. Expression of phosphomimetic T150D K5 mutants results in impaired KF formation in keratinocytes. The phenotype is enhanced upon combination with other phosphomimetic K5 head domain mutations. Remarkably, introduction of T150D K5 mutants into KtyII-lacking (KtyII-/-) keratinocytes prevents keratin network formation altogether. In contrast, phosphorylation-deficient T150A K5 leads to KFs with reduced branching and turnover. Assembly of T150D K5 is arrested at the heterotetramer stage coinciding with increased heat shock protein association. Finally, reduced cell viability and elevated response to stressors is noted in T150 mutant cells. Taken together, our findings identify T150 K5 phosphorylation as an important determinant of KF network formation and function with a possible role in epidermolysis bullosa simplex pathogenesis.
Collapse
Affiliation(s)
- Mugdha Sawant
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Thomas M Magin
- Institute of Biology and Translational Center for Regenerative Medicine, University of Leipzig, Leipzig, Germany
| | - Jan Krieger
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Boguslaw Obara
- School of Engineering and Computing Sciences, Durham University, Durham, UK
| | - Vera Jankowski
- Institut für Molekulare Herz-Kreislaufforschung, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institut für Molekulare Herz-Kreislaufforschung, RWTH Aachen University, Aachen, Germany; School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Lettner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
232
|
Hol EM, Capetanaki Y. Type III Intermediate Filaments Desmin, Glial Fibrillary Acidic Protein (GFAP), Vimentin, and Peripherin. Cold Spring Harb Perspect Biol 2017; 9:9/12/a021642. [PMID: 29196434 DOI: 10.1101/cshperspect.a021642] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SummaryType III intermediate filament (IF) proteins assemble into cytoplasmic homopolymeric and heteropolymeric filaments with other type III and some type IV IFs. These highly dynamic structures form an integral component of the cytoskeleton of muscle, brain, and mesenchymal cells. Here, we review the current ideas on the role of type III IFs in health and disease. It turns out that they not only offer resilience to mechanical strains, but, most importantly, they facilitate very efficiently the integration of cell structure and function, thus providing the necessary scaffolds for optimal cellular responses upon biochemical stresses and protecting against cell death, disease, and aging.
Collapse
Affiliation(s)
- Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.,Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| |
Collapse
|
233
|
Li Y, Zhou G, Zhang R, Guo J, Li C, Martin G, Chen Y, Wang X. Comparative proteomic analyses using iTRAQ-labeling provides insights into fiber diversity in sheep and goats. J Proteomics 2017; 172:82-88. [PMID: 29051081 DOI: 10.1016/j.jprot.2017.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023]
Abstract
The structural component of wool and hair fibers, such as keratin-associated proteins (KAPs), has been well described, but the genetic determinants of fiber diameter are largely unknown. Here, we have used an iTRAQ-based proteomic approach to investigate differences in protein abundance among 18 samples from sheep and goats across a diverse range of fibers. We identified proteins with different abundance and are associated with variation in fiber features. Proteins with different abundance are mainly keratin or keratin-associated proteins (KRTAP11-1, KRT6A, KRT38), or are related to hair growth (DSC2, DSG3, EEF2, CALML5, TCHH, SELENBP1) and fatty acid synthesis (FABP4, FABP5). RNA-seq further confirmed the functional importance of the DSC2 gene in the determination of woolly phenotype in goat fibers. This comprehensive analysis of fibers from major fiber-producing animals is the first to provide a list of candidate proteins that are involved in fiber formation. This list will be valuable asset for future studies into the molecular mechanisms that underlie fiber diversity. BIOLOGICAL SIGNIFICANCE Proteins are the basis for animal-derived hair fibers, yet proteins conferring fiber structure and characteristics in sheep and goats are largely elusive. By examining 27 fibers samples representing 9 fiber types from sheep and goats through the iTRAQ approach, we show a list of differentially abundant proteins that are important to hair structural component, or genes related to hair growth and fatty acid synthesis. RNA-seq further validated the DSC2 gene is key to the woolly/straight hair phenotype in goats.
Collapse
Affiliation(s)
- Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Graeme Martin
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
234
|
Fraser RB, Parry DA. Intermediate filament structure in fully differentiated (oxidised) trichocyte keratin. J Struct Biol 2017; 200:45-53. [DOI: 10.1016/j.jsb.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 01/05/2023]
|
235
|
de Leeuw R, Gruenbaum Y, Medalia O. Nuclear Lamins: Thin Filaments with Major Functions. Trends Cell Biol 2017; 28:34-45. [PMID: 28893461 DOI: 10.1016/j.tcb.2017.08.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/08/2017] [Accepted: 08/14/2017] [Indexed: 10/18/2022]
Abstract
The nuclear lamina is a nuclear peripheral meshwork that is mainly composed of nuclear lamins, although a small fraction of lamins also localizes throughout the nucleoplasm. Lamins are classified as type V intermediate filament (IF) proteins. Mutations in lamin genes cause at least 15 distinct human diseases, collectively termed laminopathies, including muscle, metabolic, and neuronal diseases, and can cause accelerated aging. Most of these mutations are in the LMNA gene encoding A-type lamins. A growing number of nuclear proteins are known to bind lamins and are implicated in both nuclear and cytoskeletal organization, mechanical stability, chromatin organization, signaling, gene regulation, genome stability, and cell differentiation. Recent studies reveal the organization of the lamin filament meshwork in somatic cells where they assemble as tetramers in cross-section of the filaments.
Collapse
Affiliation(s)
- Rebecca de Leeuw
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yosef Gruenbaum
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
236
|
Parker RN, Roth KL, Kim C, McCord JP, Van Dyke ME, Grove TZ. Homo- and heteropolymer self-assembly of recombinant trichocytic keratins. Biopolymers 2017; 107. [PMID: 28741310 DOI: 10.1002/bip.23037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by-products. Additionally, natural keratins suffer from limited sequence tunability. Recombinant keratin proteins can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Herein, we present the bacterial expression, purification, and solution characterization of human hair keratins K31 and K81. The obligate heterodimerization of the K31/K81 pair that results in formation of intermediate filaments is maintained in the recombinant proteins. Surprisingly, we have for the first time observed new zero- and one-dimensional nanostructures from homooligomerization of K81 and K31, respectively. Further analysis of the self-assembly mechanism highlights the importance of disulfide crosslinking in keratin self-assembly.
Collapse
Affiliation(s)
- Rachael N Parker
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Kristina L Roth
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Christina Kim
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Jennifer P McCord
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| | - Mark E Van Dyke
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, 24060
| | - Tijana Z Grove
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia, 24060
| |
Collapse
|
237
|
Sharma S, Conover GM, Elliott JL, Der Perng M, Herrmann H, Quinlan RA. αB-crystallin is a sensor for assembly intermediates and for the subunit topology of desmin intermediate filaments. Cell Stress Chaperones 2017; 22:613-626. [PMID: 28470624 PMCID: PMC5465037 DOI: 10.1007/s12192-017-0788-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/07/2017] [Accepted: 03/16/2017] [Indexed: 12/04/2022] Open
Abstract
Mutations in the small heat shock protein chaperone CRYAB (αB-crystallin/HSPB5) and the intermediate filament protein desmin, phenocopy each other causing cardiomyopathies. Whilst the binding sites for desmin on CRYAB have been determined, desmin epitopes responsible for CRYAB binding and also the parameters that determine CRYAB binding to desmin filaments are unknown. Using a combination of co-sedimentation centrifugation, viscometric assays and electron microscopy of negatively stained filaments to analyse the in vitro assembly of desmin filaments, we show that the binding of CRYAB to desmin is subject to its assembly status, to the subunit organization within filaments formed and to the integrity of the C-terminal tail domain of desmin. Our in vitro studies using a rapid assembly protocol, C-terminally truncated desmin and two disease-causing mutants (I451M and R454W) suggest that CRYAB is a sensor for the surface topology of the desmin filament. Our data also suggest that CRYAB performs an assembly chaperone role because the assembling filaments have different CRYAB-binding properties during the maturation process. We suggest that the capability of CRYAB to distinguish between filaments with different surface topologies due either to mutation (R454W) or assembly protocol is important to understanding the pathomechanism(s) of desmin-CRYAB myopathies.
Collapse
Affiliation(s)
- Sarika Sharma
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Gloria M Conover
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Jayne L Elliott
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK
| | - Ming Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Roy A Quinlan
- Department of Biosciences and the Biophysical Sciences Institute, University of Durham, Durham, UK.
| |
Collapse
|
238
|
Carver JA, Grosas AB, Ecroyd H, Quinlan RA. The functional roles of the unstructured N- and C-terminal regions in αB-crystallin and other mammalian small heat-shock proteins. Cell Stress Chaperones 2017; 22:627-638. [PMID: 28391594 PMCID: PMC5465038 DOI: 10.1007/s12192-017-0789-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023] Open
Abstract
Small heat-shock proteins (sHsps), such as αB-crystallin, are one of the major classes of molecular chaperone proteins. In vivo, under conditions of cellular stress, sHsps are the principal defence proteins that prevent large-scale protein aggregation. Progress in determining the structure of sHsps has been significant recently, particularly in relation to the conserved, central and β-sheet structured α-crystallin domain (ACD). However, an understanding of the structure and functional roles of the N- and C-terminal flanking regions has proved elusive mainly because of their unstructured and dynamic nature. In this paper, we propose functional roles for both flanking regions, based around three properties: (i) they act in a localised crowding manner to regulate interactions with target proteins during chaperone action, (ii) they protect the ACD from deleterious amyloid fibril formation and (iii) the flexibility of these regions, particularly at the extreme C-terminus in mammalian sHsps, provides solubility for sHsps under chaperone and non-chaperone conditions. In the eye lens, these properties are highly relevant as the crystallin proteins, in particular the two sHsps αA- and αB-crystallin, are present at very high concentrations.
Collapse
Affiliation(s)
- John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| | - Aidan B Grosas
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia
| | - Heath Ecroyd
- School of Biological Sciences and the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Roy A Quinlan
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
239
|
Florwick A, Dharmaraj T, Jurgens J, Valle D, Wilson KL. LMNA Sequences of 60,706 Unrelated Individuals Reveal 132 Novel Missense Variants in A-Type Lamins and Suggest a Link between Variant p.G602S and Type 2 Diabetes. Front Genet 2017; 8:79. [PMID: 28663758 PMCID: PMC5471320 DOI: 10.3389/fgene.2017.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Mutations in LMNA, encoding nuclear intermediate filament proteins lamins A and C, cause multiple diseases ('laminopathies') including muscular dystrophy, dilated cardiomyopathy, familial partial lipodystrophy (FPLD2), insulin resistance syndrome and progeria. To assess the prevalence of LMNA missense mutations ('variants') in a broad, ethnically diverse population, we compared missense alleles found among 60,706 unrelated individuals in the ExAC cohort to those identified in 1,404 individuals in the laminopathy database (UMD-LMNA). We identified 169 variants in the ExAC cohort, of which 37 (∼22%) are disease-associated including p.I299V (allele frequency 0.0402%), p.G602S (allele frequency 0.0262%) and p.R644C (allele frequency 0.124%), suggesting certain LMNA mutations are more common than previously recognized. Independent analysis of LMNA variants via the type 2 diabetes (T2D) Knowledge Portal showed that variant p.G602S associated significantly with type 2 diabetes (p = 0.02; odds ratio = 4.58), and was more frequent in African Americans (allele frequency 0.297%). The FPLD2-associated variant I299V was most prevalent in Latinos (allele frequency 0.347%). The ExAC cohort also revealed 132 novel LMNA missense variants including p.K108E (limited to individuals with psychiatric disease; predicted to perturb coil-1B), p.R397C and p.R427C (predicted to perturb filament biogenesis), p.G638R and p.N660D (predicted to perturb prelamin A processing), and numerous Ig-fold variants predicted to perturb phenotypically characteristic protein-protein interactions. Overall, this two-pronged strategy- mining a large database for missense variants in a single gene (LMNA), coupled to knowledge about the structure, biogenesis and functions of A-type lamins- revealed an unexpected number of LMNA variants, including novel variants predicted to perturb lamin assembly or function. Interestingly, this study also correlated novel variant p.K108E with psychiatric disease, identified known variant p.I299V as a potential risk factor for metabolic disease in Latinos, linked variant p.G602 with type 2 diabetes, and identified p.G602S as a predictor of diabetes risk in African Americans.
Collapse
Affiliation(s)
- Alyssa Florwick
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Julie Jurgens
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| | - Katherine L. Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, BaltimoreMD, United States
| |
Collapse
|
240
|
Omary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G628-G634. [PMID: 28360031 PMCID: PMC5495917 DOI: 10.1152/ajpgi.00455.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023]
Abstract
Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
241
|
Hatzfeld M, Keil R, Magin TM. Desmosomes and Intermediate Filaments: Their Consequences for Tissue Mechanics. Cold Spring Harb Perspect Biol 2017; 9:a029157. [PMID: 28096266 PMCID: PMC5453391 DOI: 10.1101/cshperspect.a029157] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adherens junctions (AJs) and desmosomes connect the actin and keratin filament networks of adjacent cells into a mechanical unit. Whereas AJs function in mechanosensing and in transducing mechanical forces between the plasma membrane and the actomyosin cytoskeleton, desmosomes and intermediate filaments (IFs) provide mechanical stability required to maintain tissue architecture and integrity when the tissues are exposed to mechanical stress. Desmosomes are essential for stable intercellular cohesion, whereas keratins determine cell mechanics but are not involved in generating tension. Here, we summarize the current knowledge of the role of IFs and desmosomes in tissue mechanics and discuss whether the desmosome-keratin scaffold might be actively involved in mechanosensing and in the conversion of chemical signals into mechanical strength.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - René Keil
- Institute of Molecular Medicine, Division of Pathobiochemistry, Martin-Luther-University Halle-Wittenberg, 06114 Halle, Germany
| | - Thomas M Magin
- Institute of Biology, Division of Cell and Developmental Biology and Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
242
|
Leube RE, Moch M, Windoffer R. Intracellular Motility of Intermediate Filaments. Cold Spring Harb Perspect Biol 2017; 9:9/6/a021980. [PMID: 28572456 DOI: 10.1101/cshperspect.a021980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARYThe establishment and continuous cell type-specific adaptation of cytoplasmic intermediate filament (IF) networks are linked to various types of IF motility. Motor protein-driven active transport, linkage to other cellular structures, diffusion of small soluble subunits, and intrinsic network elasticity all contribute to the motile behavior of IFs. These processes are subject to regulation by multiple signaling pathways. IF motility is thereby connected to and involved in many basic cellular processes guarding the maintenance of cell and tissue integrity. Disturbances of IF motility are linked to diseases that are characterized by cytoplasmic aggregates containing IF proteins together with other cellular components.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
243
|
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:9/4/a018309. [PMID: 28373358 DOI: 10.1101/cshperspect.a018309] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Veeranna
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016.,Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
244
|
Abstract
SUMMARYThe nucleoskeleton is an important structural feature of the metazoan nucleus and is involved in the regulation of genome expression and maintenance. The nuclear lamins are intermediate filament proteins that form a peripheral nucleoskeleton in concert with other lamin-associated proteins. Several other proteins normally found in the cytoskeleton have also been identified in the nucleus, but, as will be discussed here, their roles in forming a nucleoskeleton have not been elucidated. Nevertheless, mutations in lamins and lamin-associated proteins cause a spectrum of diseases, making them interesting targets for future research.
Collapse
Affiliation(s)
- Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|