201
|
Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, Wu XX, Weeda S, Li L, Ren S, Reiter RJ, Guo YD. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 2014; 56:39-50. [PMID: 24102657 DOI: 10.1111/jpi.12095] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
Abstract
Cucumber is a model cucurbitaceous plant with a known genome sequence which is important for studying molecular mechanisms of root development. In this study, RNA sequencing was employed to explore the mechanism of melatonin-induced lateral root formation in cucumber under salt stress. Three groups of seeds were examined, that is, seeds primed without melatonin (CK), seeds primed in a solution containing 10 or 500 μmol/L melatonin (M10 and M500, respectively). These seeds were then germinated in NaCl solution. The RNA-seq analysis generated 16,866,670 sequence reads aligned with 17,920 genes, which provided abundant data for the analysis of lateral root formation. A total of 17,552, 17,450, and 17,393 genes were identified from roots of the three treatments (CK, M10 and M500, respectively). The expression of 121 genes was significantly up-regulated, and 196 genes were significantly down-regulated in M500 which showed an obvious increase on the number of lateral roots. These genes were significantly enriched in 57 KEGG pathways and 16 GO terms (M500 versus CK). Based on their expression pattern, peroxidase-related genes were selected as the candidates to be involved in the melatonin response. Several transcription factor families might play important roles in lateral root formation processes. A number of genes related to cell wall formation, carbohydrate metabolic processes, oxidation/reduction processes, and catalytic activity also showed different expression patterns as a result of melatonin treatments. This RNA-sequencing study will enable the scientific community to better define the molecular processes that affect lateral root formation in response to melatonin treatment.
Collapse
Affiliation(s)
- Na Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Selinski J, Scheibe R. Pollen tube growth: where does the energy come from? PLANT SIGNALING & BEHAVIOR 2014; 9:e977200. [PMID: 25482752 PMCID: PMC4622831 DOI: 10.4161/15592324.2014.977200] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
This review focuses on the energy metabolism during pollen maturation and tube growth and updates current knowledge. Pollen tube growth is essential for male reproductive success and extremely fast. Therefore, pollen development and tube growth are high energy-demanding processes. During the last years, various publications (including research papers and reviews) emphasize the importance of mitochondrial respiration and fermentation during male gametogenesis and pollen tube elongation. These pathways obviously contribute to satisfy the high energy demand, and there are many studies which suggest that respiration and fermentation are the only pathways to generate the needed energy. Here, we review data which show for the first time that in addition plastidial glycolysis and the balancing of the ATP/NAD(P)H ratio (by malate valves and NAD(+) biosynthesis) contribute to satisfy the energy demand during pollen development. Although the importance of energy generation by plastids was discounted during the last years (possibly due to the controversial opinion about their existence in pollen grains and pollen tubes), the available data underline their prime role during pollen maturation and tube growth.
Collapse
Key Words
- 2-OG, 2-oxoglutarate
- 2-PGA, 2-phosphoglycerate
- 3-PGA, 3-phosphoglycerate
- ACS, acetyl-CoA synthase
- ADH, alcohol dehydrogenase
- ALDH, aldehyde dehydrogenase
- AOX, alternative oxidase
- BPGA, bisphosphoglyceric acid
- ENO, enolase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GOGAT, glutamate synthase
- GPT, G-6-P/phosphate translocators
- Gln, glutamine
- Glu, glutamate
- MDH, malate dehydrogenase
- NDP, nucleotide diphosphate kinase
- NMNAT, nicotinate/nicotinamide mononucleotide adenyltransferase
- NTT, ATP/ADP transporters
- OAA, oxaloacetate
- OPP, oxidative pentose-phosphate pathway
- PDC, pyruvate decarboxylase
- PDH, pyruvate dehydrogenase
- PEP, phosphoenolpyruvate
- PGAM, phosphoglycerate mutase
- PGDH, 3-phosphoglycerate dehydrogenase
- PK, pyruvate kinase
- PPSB, phosphorylated pathway of serine biosynthesis
- PPT, phosphoenolpyruvate/phosphate translocator
- PSP, phosphoserine phosphatase
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- RPOT, T3/T7 phage-type RNA polymerases
- T, malate/oxaloacetate translocator
- TP, triose phosphate.
- energy metabolism
- malate
- plastidial glycolysis
- pollen tube growth
- respiration
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Plant Physiology; University of Osnabrueck; Osnabrueck, Germany
| | - Renate Scheibe
- Department of Plant Physiology; University of Osnabrueck; Osnabrueck, Germany
- Correspondence to: Renate Scheibe;
| |
Collapse
|
203
|
Cheng C, Xu X, Singer SD, Li J, Zhang H, Gao M, Wang L, Song J, Wang X. Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS One 2013; 8:e80044. [PMID: 24224035 PMCID: PMC3818301 DOI: 10.1371/journal.pone.0080044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The phytohormone gibberellic acid (GA3) is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes. METHODOLOGY/PRINCIPAL FINDINGS In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe'), along with a seedless cultivar ('Thompson Seedless'), following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF), both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls. CONCLUSION Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.
Collapse
Affiliation(s)
- Chenxia Cheng
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaozhao Xu
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jun Li
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongjing Zhang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Min Gao
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Li Wang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Junyang Song
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiping Wang
- College of Horticulture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
204
|
Jiao Y, Sun L, Song Y, Wang L, Liu L, Zhang L, Liu B, Li N, Miao C, Hao F. AtrbohD and AtrbohF positively regulate abscisic acid-inhibited primary root growth by affecting Ca2+ signalling and auxin response of roots in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4183-92. [PMID: 23963673 DOI: 10.1093/jxb/ert228] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species (ROS) originating from the NADPH oxidases AtrbohD and AtrbohF play an important role in abscisic acid (ABA)-inhibited primary root growth in Arabidopsis. However, the mechanisms underlying this process remain elusive. In this study, the double mutant atrbohD1/F1 and atrbohD2/F2, in which both AtrbohD and AtrbohF were disrupted, were less sensitive to ABA suppression of root cell elongation than wild-type (WT) plants. Furthermore, the double mutants showed impaired ABA responses in roots, including ROS generation, cytosolic Ca(2+) increases, and activation of plasma membrane Ca(2+)-permeable channels compared with WT. Exogenous H2O2 can activate the Ca(2+) currents in roots of atrbohD1/F1. In addition, exogenous application of the auxin transport inhibitor naphthylphthalamic acid effectively promoted ABA inhibition of root growth of the mutants relative to that of WT. The ABA-induced decreases in auxin sensitivity of the root tips were more pronounced in WT than in atrbohD1/F1. These findings suggest that both AtrbohD and AtrbohF are essential for ABA-promoted ROS production in roots. ROS activate Ca(2+) signalling and reduce auxin sensitivity of roots, thus positively regulating ABA-inhibited primary root growth in Arabidopsis.
Collapse
Affiliation(s)
- Yiheng Jiao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Hu G, Koh J, Yoo MJ, Grupp K, Chen S, Wendel JF. Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. THE NEW PHYTOLOGIST 2013; 200:570-582. [PMID: 23795774 DOI: 10.1111/nph.12381] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/27/2013] [Indexed: 05/27/2023]
Abstract
Pima cotton (Gossypium barbadense) is widely cultivated because of its long, strong seed trichomes ('fibers') used for premium textiles. These agronomically advanced fibers were derived following domestication and thousands of years of human-mediated crop improvement. To gain an insight into fiber development and evolution, we conducted comparative proteomic and transcriptomic profiling of developing fiber from an elite cultivar and a wild accession. Analyses using isobaric tag for relative and absolute quantification (iTRAQ) LC-MS/MS technology identified 1317 proteins in fiber. Of these, 205 were differentially expressed across developmental stages, and 190 showed differential expression between wild and cultivated forms, 14.4% of the proteome sampled. Human selection may have shifted the timing of developmental modules, such that some occur earlier in domesticated than in wild cotton. A novel approach was used to detect possible biased expression of homoeologous copies of proteins. Results indicate a significant partitioning of duplicate gene expression at the protein level, but an approximately equal degree of bias for each of the two constituent genomes of allopolyploid cotton. Our results demonstrate the power of complementary transcriptomic and proteomic approaches for the study of the domestication process. They also provide a rich database for mining for functional analyses of cotton improvement or evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jin Koh
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
| | - Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Kara Grupp
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sixue Chen
- Department of Biology, University of Florida, Gainesville, FL, 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
206
|
Niu YF, Chai RS, Jin GL, Wang H, Tang CX, Zhang YS. Responses of root architecture development to low phosphorus availability: a review. ANNALS OF BOTANY 2013; 112:391-408. [PMID: 23267006 PMCID: PMC3698383 DOI: 10.1093/aob/mcs285] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/14/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential element for plant growth and development but it is often a limiting nutrient in soils. Hence, P acquisition from soil by plant roots is a subject of considerable interest in agriculture, ecology and plant root biology. Root architecture, with its shape and structured development, can be considered as an evolutionary response to scarcity of resources. SCOPE This review discusses the significance of root architecture development in response to low P availability and its beneficial effects on alleviation of P stress. It also focuses on recent progress in unravelling cellular, physiological and molecular mechanisms in root developmental adaptation to P starvation. The progress in a more detailed understanding of these mechanisms might be used for developing strategies that build upon the observed explorative behaviour of plant roots. CONCLUSIONS The role of root architecture in alleviation of P stress is well documented. However, this paper describes how plants adjust their root architecture to low-P conditions through inhibition of primary root growth, promotion of lateral root growth, enhancement of root hair development and cluster root formation, which all promote P acquisition by plants. The mechanisms for activating alterations in root architecture in response to P deprivation depend on changes in the localized P concentration, and transport of or sensitivity to growth regulators such as sugars, auxins, ethylene, cytokinins, nitric oxide (NO), reactive oxygen species (ROS) and abscisic acid (ABA). In the process, many genes are activated, which in turn trigger changes in molecular, physiological and cellular processes. As a result, root architecture is modified, allowing plants to adapt effectively to the low-P environment. This review provides a framework for understanding how P deficiency alters root architecture, with a focus on integrated physiological and molecular signalling.
Collapse
Affiliation(s)
- Yao Fang Niu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ru Shan Chai
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gu Lei Jin
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huan Wang
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai Xian Tang
- Centre for AgriBioscience/Department of Agricultural Sciences, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
| | - Yong Song Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
207
|
Peer WA, Cheng Y, Murphy AS. Evidence of oxidative attenuation of auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2629-39. [PMID: 23709674 DOI: 10.1093/jxb/ert152] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Indole-3-acetic acid (IAA) is the principle auxin in Arabidopsis and is synthesized primarily in meristems and nodes. Auxin is transported to distal parts of the plant in response to developmental programming or environmental stimuli to activate cell-specific responses. As with any signalling event, the signal must be attenuated to allow the system to reset. Local auxin accumulations are thus reduced by conjugation or catabolism when downstream responses have reached their optima. In most cell types, localized auxin accumulation increases both reactive oxygen species (ROS) and an irreversible catabolic product 2-oxindole-3-acid acid (oxIAA). oxIAA is inactive and does not induce expression of the auxin-responsive reporters DR5 or 2XD0. Here it is shown that oxIAA is not transported from cell to cell, although it appears to be a substrate for the ATP-binding cassette subfamily G (ABCG) transporters that are positioned primarily on the outer lateral surface of the root epidermis. However, oxIAA and oxIAA-Glc levels are higher in ABCB mutants that accumulate auxin due to defective cellular export. Auxin-induced ROS production appears to be at least partially mediated by the NAD(P)H oxidase RbohD. oxIAA levels are higher in mutants that lack ROS-scavenging flavonoids (tt4) and are lower in mutants that accumulate excess flavonols (tt3). These data suggest a model where IAA signalling is attenuated by IAA catabolism to oxIAA. Flavonoids appear to buffer ROS accumulations that occur with localized increases in IAA. This buffering of IAA oxidation would explain some growth responses observed in flavonoid-deficient mutants that cannot be explained by their established role in partially inhibiting auxin transport.
Collapse
Affiliation(s)
- Wendy Ann Peer
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | | | | |
Collapse
|
208
|
|
209
|
Maksimović JJD, Zivanović BD. Quantification of the antioxidant activity in salt-stressed tissues. Methods Mol Biol 2013; 913:237-50. [PMID: 22895764 DOI: 10.1007/978-1-61779-986-0_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Biochemical methods available for the measurement of antioxidant activity in salt-stressed tissues are reviewed, outlining the most important advantages and shortcomings of the methods. Here we consider commonly used methods for measuring total antioxidant capacity and phenolic content, ABTS and Folin-Ciocalteu's procedure, respectively. Moreover, we presented assays for determination of antioxidant enzymes activities: superoxide dismutase, catalase, and ascorbate peroxidase. This choice of methods enables us to elucidate a full profile of antioxidant activities, evaluating their effectiveness against various reactive oxygen species produced during salt stress.
Collapse
|
210
|
Hilbert M, Nostadt R, Zuccaro A. Exogenous auxin affects the oxidative burst in barley roots colonized by Piriformospora indica. PLANT SIGNALING & BEHAVIOR 2013; 8:e23572. [PMID: 23333979 PMCID: PMC3829933 DOI: 10.4161/psb.23572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 05/19/2023]
Abstract
Beside a cardinal role in coordination of many developmental processes in the plant, the phytohormone auxin has been recognized as a regulator of plant defense. The molecular mechanisms involved are still largely unknown. Using a sensitive chemiluminescence assay, which measures the oxidation of luminol in the presence of H₂O₂ by horseradish peroxidase (HRP), we report here on the ability of exogenously added indole-3-acetic acid (IAA) to enhance the suppressive effect of the root endophyte Piriformospora indica on the chitin-elicited oxidative burst in barley roots. Thus, the potential of P. indica to produce free IAA during the early colonization phase in barley might provide the symbiont with a means to interfere with the microbe-associated molecular patterns (MAMP)-triggered immunity.
Collapse
|
211
|
Naoumkina M, Hinchliffe DJ, Turley RB, Bland JM, Fang DD. Integrated metabolomics and genomics analysis provides new insights into the fiber elongation process in Ligon lintless-2 mutant cotton (Gossypium hirsutum L.). BMC Genomics 2013; 14:155. [PMID: 23497242 PMCID: PMC3605188 DOI: 10.1186/1471-2164-14-155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 03/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The length of cotton fiber is an important agronomic trait characteristic that directly affects the quality of yarn and fabric. The cotton (Gossypium hirsutum L.) fiber mutation, Ligon lintless-2, is controlled by a single dominant gene (Li(2)) and results in extremely shortened lint fibers on mature seeds with no visible pleiotropic effects on vegetative growth and development. The Li(2) mutant phenotype provides an ideal model system to study fiber elongation. To understand metabolic processes involved in cotton fiber elongation, changes in metabolites and transcripts in the Li(2) mutant fibers were compared to wild-type fibers during development. RESULTS Principal component analysis of metabolites from GC-MS data separated Li(2) mutant fiber samples from WT fiber samples at the WT elongation stage, indicating that the Li(2) mutation altered the metabolome of the mutant fibers. The observed alterations in the Li(2) metabolome included significant reductions in the levels of detected free sugars, sugar alcohols, sugar acids, and sugar phosphates. Biological processes associated with carbohydrate biosynthesis, cell wall loosening, and cytoskeleton were also down-regulated in Li(2) fibers. Gamma-aminobutyric acid, known as a signaling factor in many organisms, was significantly elevated in mutant fibers. Higher accumulation of 2-ketoglutarate, succinate, and malate suggested higher nitrate assimilation in the Li(2) line. Transcriptional activation of genes involved in nitrogen compound metabolism along with changes in the levels of nitrogen transport amino acids suggested re-direction of carbon flow into nitrogen metabolism in Li(2) mutant fibers. CONCLUSIONS This report provides the first comprehensive analysis of metabolite and transcript changes in response to the Li(2) mutation in elongating fibers. A number of factors associated with cell elongation found in this study will facilitate further research in understanding metabolic processes of cotton fiber elongation.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA.
| | | | | | | | | |
Collapse
|
212
|
Zhang Z, Voothuluru P, Yamaguchi M, Sharp RE, Peck SC. Developmental distribution of the plasma membrane-enriched proteome in the maize primary root growth zone. FRONTIERS IN PLANT SCIENCE 2013; 4:33. [PMID: 23508561 PMCID: PMC3589600 DOI: 10.3389/fpls.2013.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/10/2013] [Indexed: 05/29/2023]
Abstract
Within the growth zone of the maize primary root, there are well-defined patterns of spatial and temporal organization of cell division and elongation. However, the processes underlying this organization remain poorly understood. To gain additional insights into the differences amongst the defined regions, we performed a proteomic analysis focusing on fractions enriched for plasma membrane (PM) proteins. The PM is the interface between the plant cell and the apoplast and/or extracellular space. As such, it is a key structure involved in the exchange of nutrients and other molecules as well as in the integration of signals that regulate growth and development. Despite the important functions of PM-localized proteins in mediating these processes, a full understanding of dynamic changes in PM proteomes is often impeded by low relative concentrations relative to total proteins. Using a relatively simple strategy of treating microsomal fractions with Brij-58 detergent to enrich for PM proteins, we compared the developmental distribution of proteins within the root growth zone which revealed a number of previously known as well as novel proteins with interesting patterns of abundance. For instance, the quantitative proteomic analysis detected a gradient of PM aquaporin proteins similar to that previously reported using immunoblot analyses, confirming the veracity of this strategy. Cellulose synthases increased in abundance with increasing distance from the root apex, consistent with expected locations of cell wall deposition. The similar distribution pattern for Brittle-stalk-2-like protein implicates that this protein may also have cell wall related functions. These results show that the simplified PM enrichment method previously demonstrated in Arabidopsis can be successfully applied to completely unrelated plant tissues and provide insights into differences in the PM proteome throughout growth and development zones of the maize primary root.
Collapse
Affiliation(s)
- Zhe Zhang
- Division of Biochemistry, University of MissouriColumbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
| | - Priyamvada Voothuluru
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Mineo Yamaguchi
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Robert E. Sharp
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
- Division of Plant Sciences, University of MissouriColumbia, MO, USA
| | - Scott C. Peck
- Division of Biochemistry, University of MissouriColumbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of MissouriColumbia, MO, USA
- Interdisciplinary Plant Group, University of MissouriColumbia, MO, USA
| |
Collapse
|
213
|
Voothuluru P, Thompson HJ, Flint-Garcia SA, Sharp RE. Genetic variability of oxalate oxidase activity and elongation in water-stressed primary roots of diverse maize and rice lines. PLANT SIGNALING & BEHAVIOR 2013; 8:e23454. [PMID: 23333961 PMCID: PMC3676514 DOI: 10.4161/psb.23454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A previous study of maize primary roots under water stress showed pronounced increases in oxalate oxidase activity and apoplastic hydrogen peroxide in the apical region of the growth zone where cell elongation is maintained. We examined whether increased oxalate oxidase activity in water-stressed roots is conserved across diverse lines of maize and rice. The maize lines exhibited varied patterns of activity, with some lines lacking activity in the apical region. Moreover, none of the rice lines showed activity in the apical region. Also, although the genotypic response of root elongation to water stress was variable in both maize and rice, this was not correlated with the pattern of oxalate oxidase activity. Implications of these findings for root growth regulation under water stress are discussed.
Collapse
Affiliation(s)
- Priyamvada Voothuluru
- Division of Plant Sciences and Interdisciplinary Plant Group; University of Missouri; Columbia, MO USA
| | - Hallie J. Thompson
- Division of Plant Sciences and Interdisciplinary Plant Group; University of Missouri; Columbia, MO USA
| | - Sherry A. Flint-Garcia
- Division of Plant Sciences and Interdisciplinary Plant Group; University of Missouri; Columbia, MO USA
- US Department of Agriculture; Agricultural Research Service; Columbia, MO USA
| | - Robert E. Sharp
- Division of Plant Sciences and Interdisciplinary Plant Group; University of Missouri; Columbia, MO USA
- Correspondence to: Robert E. Sharp,
| |
Collapse
|
214
|
Voothuluru P, Sharp RE. Apoplastic hydrogen peroxide in the growth zone of the maize primary root under water stress. I. Increased levels are specific to the apical region of growth maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1223-33. [PMID: 23071257 DOI: 10.1093/jxb/ers277] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous work on the adaptation of maize (Zea mays L.) primary root growth to water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. Cell wall proteomic analysis suggested that levels of apoplastic reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2), may be modified in a region-specific manner within the growth zone of water-stressed roots. Apoplastic ROS may have wall loosening or tightening effects and may also have other growth regulatory functions. To gain an understanding of how apoplastic ROS levels change under water stress, cerium chloride staining was used in conjunction with transmission electron microscopy to examine the spatial distribution of apoplastic H2O2. The results revealed that apoplastic H2O2 levels increased specifically in the apical region of the growth zone under water stress, correlating spatially with the maintenance of cell elongation. The basal regions of the growth zone of water-stressed roots and the entire growth zone of well-watered roots exhibited relatively low levels of apoplastic H2O2. The increase in apoplastic H2O2 in the apical region under water stress probably resulted, at least in part, from a pronounced increase in oxalate oxidase activity in this region. By contrast, well-watered roots showed negligible oxalate oxidase activity throughout the growth zone. The results show that changes in apoplastic ROS levels in the root growth zone under water-deficit conditions are regulated in a spatially-specific manner, suggesting that this response may play an important role in maize root adaptation to water stress.
Collapse
Affiliation(s)
- Priyamvada Voothuluru
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
215
|
Moyano-Cañete E, Bellido ML, García-Caparrós N, Medina-Puche L, Amil-Ruiz F, González-Reyes JA, Caballero JL, Muñoz-Blanco J, Blanco-Portales R. FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle. PLANT & CELL PHYSIOLOGY 2013; 54:218-36. [PMID: 23231876 DOI: 10.1093/pcp/pcs167] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous GAST-like genes have been reported in higher plants, but only one GAST-like gene (FaGAST1) has been described in strawberry so far. Herein, we have identified a novel strawberry FaGAST gene (FaGAST2) whose expression showed an increase throughout fruit receptacle development and ripening, coinciding with those stages where a decrease in fruit expansion processes (G3-W and R-OR stages) occurs. FaGAST2 only shares 31% and 15.7% amino acid and nucleotide sequence homology, respectively, with the previously reported FaGAST1 gene, but both genes contain a signal peptide and a highly conserved GASA domain (cysteine-rich domain) in the C-terminal region. FaGAST2 expression is mainly confined to the fruit receptacle and is not regulated by auxins, GA(3) or ABA, but is regulated by ethephon, an intracellular generator of ethylene. In addition, the expression of the FaGAST2 gene also increased under oxidative stress conditions (H(2)O(2) or Colletotrichum acutatum infection), suggesting a direct role for FaGAST2 protein in reactive oxygen species scavenging during fruit growth and ripening and during fungal infection. On the other hand, the overexpression of the FaGAST2 gene in different transgenic lines analyzed caused a delay in the growth of strawberry plants and a reduction in the size of the transgenic fruits. The histological studies performed in these fruits showed that their parenchymal cells were smaller than those of the controls, supporting a relationship between FaGAST2 gene expression, strawberry fruit cell elongation and fruit size. However, transitory silencing of FaGAST2 gene expression through RNA interference approaches revealed an increase in FaGAST1 expression, but no changes in fruit cell size were observed. These results support the hypothesis that both genes must act synergistically to determine fruit cell size during fruit development and ripening.
Collapse
Affiliation(s)
- Enriqueta Moyano-Cañete
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa C-6, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Kwasniewski M, Chwialkowska K, Kwasniewska J, Kusak J, Siwinski K, Szarejko I. Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:185-95. [PMID: 23218546 DOI: 10.1016/j.jplph.2012.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 08/20/2012] [Accepted: 09/11/2012] [Indexed: 05/08/2023]
Abstract
Root hairs are an important model in studies of cell differentiation and development in higher plants. The function of NADPH oxidase-related reactive oxygen species (ROS) in root hair development has been reported extensively in studies on Arabidopsis. In this study, we investigated the mechanism of the initiation of root hair formation, mediated by the peroxidase-dependent production of the highly reactive hydroxyl radical in barley (Hordeum vulgare L.). The distribution of ROS, including the hydroxyl radical (OH) and superoxide (O(2)(-)) was assessed using hydroxyphenyl fluorescein and nitroblue tetrazolium chloride, respectively, in the roots of wild-type plants and two root-hair mutants: root-hairless (rhl1.a) and with root hair growth blocked at the primordium stage (rhp1.b). Peroxidase-dependent OH accumulation was linked to root hair initiation and growth in plants where root hair formation was at least initiated, whereas OH was not detectable in the epidermis of the root-hairless mutant rhl1.a. O(2)(-) distribution in the roots of rhl1.a and rhp1.b mutants was not impaired and did not influence the root hair phenotype. Peroxidase inhibitor treatments of wild-type roots dramatically reduced the ability of growing roots to form root hairs and thus phenocopied the root-hairless phenotype. Expression of two candidate peroxidase genes, HvPRX45 and HvPRX2, was analyzed and their possible role in root hair-specific production of hydroxyl radicals was discussed. We propose a model of a two-step, coordinated ROS formation process in root hair cells that involves root hair-specific peroxidase(s) and root hair-specific NADPH oxidase necessary for a proper root hair formation in barley.
Collapse
Affiliation(s)
- Miroslaw Kwasniewski
- Department of Genetics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | | | | | | | | | | |
Collapse
|
217
|
Hashida SN, Takahashi H, Takahara K, Kawai-Yamada M, Kitazaki K, Shoji K, Goto F, Yoshihara T, Uchimiya H. NAD+ accumulation during pollen maturation in Arabidopsis regulating onset of germination. MOLECULAR PLANT 2013; 6:216-25. [PMID: 22907882 DOI: 10.1093/mp/sss071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Although the nicotinamide nucleotides NAD(H) and NADP(H) are essential for various metabolic reactions that play major roles in maintenance of cellular homeostasis, the significance of NAD biosynthesis is not well understood. Here, we investigated the dynamics of pollen nicotinamide nucleotides in response to imbibition, a representative germination cue. Metabolic analysis with capillary electrophoresis electrospray ionization mass spectrometry revealed that excess amount of NAD+ is accumulated in freshly harvested dry pollen, whereas it dramatically decreased immediately after contact with water. Importantly, excess of NAD+ impaired pollen tube growth. Moreover, NAD+ accumulation was retained after pollen was imbibed in the presence of NAD+-consuming reaction inhibitors and pollen germination was greatly retarded. Pollen deficient in the nicotinate/nicotinamide mononucleotide adenyltransferase (NMNAT) gene, encoding a key enzyme in NAD biosynthesis, and a lack of NAD+ accumulation in the gametophyte, showed precocious pollen tube germination inside the anther locule and vigorous tube growth under high-humidity conditions. Hence, the accumulation of excess NAD+ is not essential for pollen germination, but instead participates in regulating the timing of germination onset. These results indicate that NAD+ accumulation acts to negatively regulate germination and a decrease in NAD+ plays an important role in metabolic state transition.
Collapse
Affiliation(s)
- Shin-nosuke Hashida
- Institute of Molecular and Cellular Biosciences-IMCB, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Pinedo M, Lechner L, Creus C, Simontacchi M, Aguirrezabal L. Endogenous ascorbate restrains apoplastic peroxidase activity during sunflower leaf development. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:60-66. [PMID: 23043732 DOI: 10.1111/j.1438-8677.2012.00620.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Several apoplastic enzymes have been implicated in the control of elongation growth of plant cells. Among them, peroxidases contribute to both loosening and stiffening of the cell wall. They appear to be regulated by various mechanisms, including the action of extracellular inhibitors. To obtain evidence of the role of the enzyme-inhibitor interaction during leaf development, the intercellular washing fluids from Helianthus annuus leaves of different ages were isolated using standard methods of vacuum infiltration and centrifugation. Peroxidase activities, assessed using tetramethylbenzidine as substrate, increased during leaf development, reaching a maximum value after the leaves were fully expanded. An inhibitor, chemically characterised as ascorbate, co-localised with the enzyme in the apoplast. Moreover, there was a strong negative correlation between the action of peroxidase and the micromolar concentration of ascorbate in the apoplastic fluid. The results show that in growing leaves, the in planta ascorbate concentration is able to restrain peroxidase enzyme activity. Then, at the time of growth cessation, the loss of extracellular ascorbate relieves the inhibition on this enzyme that contributes to wall fixation.
Collapse
Affiliation(s)
- M Pinedo
- Instituto de Investigaciones Biológicas-FCEyN, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
219
|
Steffens B, Steffen-Heins A, Sauter M. Reactive oxygen species mediate growth and death in submerged plants. FRONTIERS IN PLANT SCIENCE 2013; 4:179. [PMID: 23761805 PMCID: PMC3671184 DOI: 10.3389/fpls.2013.00179] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/17/2013] [Indexed: 05/07/2023]
Abstract
Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS.
Collapse
Affiliation(s)
- Bianka Steffens
- Plant Developmental Biology and Plant Physiology, Kiel UniversityKiel, Germany
- *Correspondence: Bianka Steffens, Plant Developmental Biology and Plant Physiology, Kiel University, Am Botanischen Garten 5, 24118 Kiel, Germany e-mail:
| | | | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, Kiel UniversityKiel, Germany
| |
Collapse
|
220
|
Zhifang L, Nan L. Research Progress in the Control and Regulation of Plant Growth and Development by Reactive Oxygen Species. ACTA ACUST UNITED AC 2012. [DOI: 10.3724/sp.j.1259.2012.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
221
|
Liptáková L, Bočová B, Huttová J, Mistrík I, Tamás L. Superoxide production induced by short-term exposure of barley roots to cadmium, auxin, alloxan and sodium dodecyl sulfate. PLANT CELL REPORTS 2012; 31:2189-2197. [PMID: 22890373 DOI: 10.1007/s00299-012-1329-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 05/28/2023]
Abstract
Abiotic stress-induced superoxide generation depending on its localization, level, duration and presumably also on the action of other signals may lead to different stress responses. The purpose of this study was to analyze the alterations in superoxide generation and morphogenesis following short-term Cd, IAA and alloxan treatments, during stress and recovery period in barley root tips. At low Cd concentration the transient accumulation of superoxide in the epidermal cells was accompanied by root growth inhibition and radial expansion of cortical cells in the elongation zone of root tips. These morphological changes were very similar to the externally applied IAA-induced responses. However, the role of superoxide generated in the epidermal cells by low concentration of Cd and IAA is probably alone not sufficient for the induction of these processes. SDS as an activator of NOX activity caused a strong accumulation of superoxide in the epidermal cells along the whole root apex but without any changes in root morphology and growth. On the other hand, higher Cd concentrations as well as alloxan stimulated the generation of superoxide in the cortical tissue of the elongation zone of root tip, which was accompanied by the induction of cell death. Our results suggest that enhanced superoxide generation, depending on its localization, level, duration and presumably also on the action of other signals, may lead to altered root morphology (15 μM Cd or IAA), root growth inhibition (alloxan), transient root growth cessation (30 μM Cd) or to the death of cells/root at higher (60 μM) Cd concentrations.
Collapse
Affiliation(s)
- L'ubica Liptáková
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, 84523 Bratislava, Slovak Republic
| | | | | | | | | |
Collapse
|
222
|
Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I. Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K(+) efflux by polyamines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:18-23. [PMID: 23031843 DOI: 10.1016/j.plaphy.2012.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/03/2012] [Indexed: 05/21/2023]
Abstract
Generation of high levels of polyamines and reactive oxygen species (ROS) is common under stress conditions. Our recent study on a salt-sensitive pea species revealed an interaction between natural polyamines and hydroxyl radicals in inducing non-selective conductance and stimulating Ca(2+)-ATPase pumps at the root plasma membrane (I. Zepeda-Jazo, A.M. Velarde-Buendía, R. Enríquez-Figueroa, B. Jayakumar, S. Shabala, J. Muñiz, I. Pottosin, Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes, Plant Phys. 157 (2011) 1-14). In this work, we extended that study to see if interaction between polyamines and ROS may determine the extent of genotypic variation in salinity tolerance. This work was conducted using barley genotypes contrasting in salinity tolerance. Similar to our findings in pea, application of hydroxyl radicals-generating Cu(2+)/ascorbate mixture induced transient Ca(2+) and K(+) fluxes in barley roots. Putrescine and spermine alone induced only transient Ca(2+) efflux and negligible K(+) flux. However, both putrescine and spermine strongly potentiated hydroxyl radicals-induced K(+) efflux and respective non-selective current. This synergistic effect was much more pronounced in a salt-sensitive cultivar Franklin as compared to a salt-tolerant TX9425. As retention of K(+) under salt stress is a key determinant of salinity tolerance in barley, we suggest that the alteration of cytosolic K(+) homeostasis, caused by interaction between polyamines and ROS, may have a substantial contribution to genetic variability in salt sensitivity in this species.
Collapse
Affiliation(s)
- Ana María Velarde-Buendía
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de julio 965, 28045 Colima, Mexico
| | | | | | | | | |
Collapse
|
223
|
Müller K, Linkies A, Leubner-Metzger G, Kermode AR. Role of a respiratory burst oxidase of Lepidium sativum (cress) seedlings in root development and auxin signalling. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6325-34. [PMID: 23095998 PMCID: PMC3504488 DOI: 10.1093/jxb/ers284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species are increasingly perceived as players in plant development and plant hormone signalling pathways. One of these species, superoxide, is produced in the apoplast by respiratory burst oxidase homologues (rbohs), a family of proteins that is conserved throughout the plant kingdom. Because of the availability of mutants, the focus of research into plant rbohs has been on Arabidopsis thaliana, mainly on AtrbohD and AtrbohF. This study investigates: (i) a different member of the Atrboh family, AtrbohB, and (ii) several rbohs from the close relative of A. thaliana, Lepidium sativum ('cress'). Five cress rbohs (Lesarbohs) were sequenced and it was found that their expression patterns were similar to their Arabidopsis orthologues throughout the life cycle. Cress plants in which LesarbohB expression was knocked down showed a strong seedling root phenotype that resembles phenotypes associated with defective auxin-related genes. These transgenic plants further displayed altered expression of auxin marker genes including those encoding the auxin responsive proteins 14 and 5 (IAA14 and IAA5), and LBD16 (LATERAL ORGAN BOUNDARIES DOMAIN16), an auxin-responsive protein implicated in lateral root initiation. It is speculated that ROS produced by rbohs play a role in root development via auxin signalling.
Collapse
Affiliation(s)
- Kerstin Müller
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby BC, V5A 1S6, Canada
| | - Ada Linkies
- Albert-Ludwigs-University, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Gerhard Leubner-Metzger
- Albert-Ludwigs-University, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
- Royal Holloway, University of London, School of Biological Sciences, Egham, Surrey TW20 0ZX, UK
| | - Allison R. Kermode
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby BC, V5A 1S6, Canada
| |
Collapse
|
224
|
Lee KJ, Dekkers BJ, Steinbrecher T, Walsh CT, Bacic A, Bentsink L, Leubner-Metzger G, Knox JP. Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae. PLANT PHYSIOLOGY 2012; 160:1551-66. [PMID: 22961130 PMCID: PMC3490593 DOI: 10.1104/pp.112.203661] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/04/2012] [Indexed: 05/04/2023]
Abstract
In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics.
Collapse
Affiliation(s)
- Kieran J.D. Lee
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Bas J.W. Dekkers
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | | | - Cherie T. Walsh
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Antony Bacic
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | - Leónie Bentsink
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| | | | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom (K.J.D.L., J.P.K.); Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands (B.J.W.D., L.B.); Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands (B.J.W.D., L.B.); University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D–79104 Freiburg, Germany (T.S., G.L.-M.); and ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Parkville, Victoria 3010, Australia (C.T.W., A.B.)
| |
Collapse
|
225
|
Díaz-Tielas C, Graña E, Reigosa MJ, Sánchez-Moreiras AM. The role of peroxidases on the mode of action of chalcone in Arabidopsis roots. PLANT SIGNALING & BEHAVIOR 2012; 7:1274-1276. [PMID: 22895105 PMCID: PMC3493412 DOI: 10.4161/psb.21594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chalcone is a secondary metabolite belonging to the group of flavonoids. It has shown strong phytotoxic activity on Arabidopsis roots, as inductor of programmed cell death, and inhibitor of root growth and root hair formation. Peroxidases are particularly abundant in root meristems and are involved in the formation and interconversion of reactive oxygen species (ROS), which play a critical role on root and root hair development. Therefore, we report here the role of peroxidases in Arabidopsis root development during chalcone treatment. A strong inhibition of peroxidase activity was detected in the apical root meristems after chalcone treatment, which reflects the important role of these enzymes on the mode of action of this secondary metabolite.
Collapse
|
226
|
Krasylenko YA, Yemets AI, Sheremet YA, Blume YB. Nitric oxide as a critical factor for perception of UV-B irradiation by microtubules in Arabidopsis. PHYSIOLOGIA PLANTARUM 2012; 145:505-15. [PMID: 21973209 DOI: 10.1111/j.1399-3054.2011.01530.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Influence of ultraviolet-B (UV-B) as an abiotic stress factor on plant microtubules (MTs) and involvement of nitric oxide (NO) as a secondary messenger mediating plant cell response to environmental stimuli were investigated in this study. Taking into account that endogenous NO content in plant cells has been shown to be increased under a broad range of abiotic stress factors, the effects of UV-B irradiation and also the combined action of UV-B and NO donor sodium nitroprusside (SNP) or NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) on the MTs organization in different root cells of Arabidopsis thaliana were tested. Subsequently, realization of the MT-mediated processes such as root growth and development was studied under these conditions. Arabidopsis thaliana seedlings expressing the chimeric gene gfp-map4 were exposed to the enhanced UV-B with or without SNP or c-PTIO pretreatment. The UV-B irradiation alone led to a dose-dependent root growth inhibition and to morphological alterations of the primary root manifested in their swelling and excessive root hair formation. Moreover, dose-dependent randomization and depolymerization of MTs in both epidermal and cortical cells under the enhanced UV-B were found. However, SNP pretreatment of the UV-B irradiated A. thaliana seedlings recovered the UV-B inhibited root growth as compared to c-PTIO pretreatment. It has been shown that in 24 h after UV-B irradiation the organization of MTs in root epidermal cells of SNP-pretreated A. thaliana seedlings was partially recovered, whereas in c-PTIO-pretreated ones the organization of MTs has not been distinctly improved. Therefore, we suppose that the enhanced NO levels in plant cells can protect MTs organization as well as MT-related processes of root growth and development against disrupting effects of UV-B.
Collapse
Affiliation(s)
- Yuliya A Krasylenko
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kiev 04123, Ukraine
| | | | | | | |
Collapse
|
227
|
Achary VMM, Parinandi NL, Panda BB. Aluminum induces oxidative burst, cell wall NADH peroxidase activity, and DNA damage in root cells of Allium cepa L. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:550-60. [PMID: 22865669 DOI: 10.1002/em.21719] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 05/11/2023]
Abstract
Plants under stress incur an oxidative burst that involves a rapid and transient overproduction of reactive oxygen species (ROS: O(2) (•-) , H(2) O(2) , (•) OH). We hypothesized that aluminum (Al), an established soil pollutant that causes plant stress, would induce an oxidative burst through the activation of cell wall-NADH peroxidase (NADH-PX) and/or plasma membrane-associated NADPH oxidase (NADPH-OX), leading to DNA damage in the root cells of Allium cepa L. Growing roots of A. cepa were treated with Al(3+) (800 μM of AlCl(3) ) for 3 or 6 hr without or with the pretreatment of inhibitors specific to NADH-PX and NADPH-OX for 2 hr. At the end of the treatment, the extent of ROS generation, cell death, and DNA damage were determined. The cell wall-bound protein (CWP) fractions extracted from the untreated control and the Al-treated roots under the aforementioned experimental conditions were also subjected to in vitro studies, which measured the extent of activation of peroxidase/oxidase, generation of (•) OH, and DNA damage. Overall, the present study demonstrates that the cell wall-bound NADH-PX contributes to the Al-induced oxidative burst through the generation of ROS that lead to cell death and DNA damage in the root cells of A. cepa. Furthermore, the in vitro studies revealed that the CWP fraction by itself caused DNA damage in the presence of NADH, supporting a role for NADH-PX in the stress response. Altogether, this study underscores the crucial function of the cell wall-bound NADH-PX in the oxidative burst-mediated cell death and DNA damage in plants under Al stress.
Collapse
Affiliation(s)
- V Mohan M Achary
- Department of Botany, Molecular Biology and Genomics Laboratory, Berhampur University, Berhampur, India
| | | | | |
Collapse
|
228
|
Shine MB, Guruprasad KN, Anand A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics 2012; 33:428-37. [PMID: 22253132 DOI: 10.1002/bem.21702] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 12/04/2011] [Indexed: 11/07/2022]
Abstract
Our previous investigation reported the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. In this study, soybean seeds treated with static magnetic fields of 150 and 200 mT for 1 h were evaluated for reactive oxygen species (ROS) and activity of antioxidant enzymes. Superoxide and hydroxyl radicals were measured in embryos and hypocotyls of germinating seeds by electron paramagnetic resonance spectroscopy and kinetics of superoxide production; hydrogen peroxide and antioxidant activities were estimated spectrophotometrically. Magnetic field treatment resulted in enhanced production of ROS mediated by cell wall peroxidase while ascorbic acid content, superoxide dismutase and ascorbate peroxidase activity decreased in the hypocotyl of germinating seeds. An increase in the cytosolic peroxidase activity indicated that this antioxidant enzyme had a vital role in scavenging the increased H(2)O(2) produced in seedlings from the magnetically treated seeds. Hence, these studies contribute to our first report on the biochemical basis of enhanced germination and seedling growth in magnetically treated seeds of soybean in relation to increased production of ROS.
Collapse
Affiliation(s)
- M B Shine
- School of Life Sciences, Devi Ahilya University, Indore, Madhya Pradesh, India.
| | | | | |
Collapse
|
229
|
Roqueiro G, Maldonado S, Ríos MDC, Maroder H. Fluctuation of oxidative stress indicators in Salix nigra seeds during priming. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3631-3642. [PMID: 22419741 DOI: 10.1093/jxb/ers030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Salix nigra seeds subjected to increased humidification show a decrease in normal germination (NG) during early imbibition followed by a recovery in that parameter at increasing imbibition times. Since photo-oxidized seeds contain high levels of reactive oxygen species (ROS), it is possible to infer that the atypical decrease in NG is a consequence of a higher ROS mobilization at early imbibition and the subsequent recovery from an increase in antioxidant activity. In this study, several oxidative stress indicators were evaluated in photo-oxidized seeds subjected to priming. ROS production was studied using electronic spin resonance spectroscopy, spontaneous chemiluminescence (SCL), spectrophotometry (with XTT), and histochemical (with DAB and NBT) and cytochemical (with CeCl(3)) techniques. Four indicators of molecular damage were monitored: lipid peroxidation, pigment destruction, protein oxidation, and membrane integrity. Antioxidant activity was evaluated by changes in the enzymes SOD, CAT, APX, and POX. The results revealed that the decrease in NG at the beginning of priming occurs by an oxidative burst, as determined by increases in both SCL and superoxide anion radical (O2(·-)) Such oxidative burst generates lipid peroxidation, protein oxidation, and a decrease in both pigment content and enzyme activities. With increasing hydration, damages are progressively reversed and NG restored, which coincides with the increased activity of antioxidant defences. It is proposed that these novel observations regarding the occurrence of an oxidative burst are related to the high basal ROS levels and the high membrane content retained in the mature embryo tissues.
Collapse
Affiliation(s)
- Gonzalo Roqueiro
- Instituto de Recursos Biológicos, INTA-Castelar, Hurlingham, Argentina
| | | | | | | |
Collapse
|
230
|
Matsumoto H, Motoda H. Aluminum toxicity recovery processes in root apices. Possible association with oxidative stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:1-8. [PMID: 22325861 DOI: 10.1016/j.plantsci.2011.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 05/31/2023]
Abstract
Al inhibits root apex elongation with concomitant morphological injuries such as ruptures punctuated by the regions stained with Evans blue. The recovery can be investigated by transfer of Al-injured roots to a solution lacking Al. In the Al-injured root apex, superoxide anion, H(2)O(2), Al, and lignin accumulate. During the recovery process, the central cylinder elongates leaving the region stained with Evans blue without marked disappearance. The obvious function of the region is not clear but may trigger the elongation of central cylinder during the recovery process. Thus the function of the region stained with Evans blue might be derived from the programmed cell-like idea. Oxidative stress concerns events induced under Al toxicity and the recovery process. The superoxide anion is primarily formed by plasma membrane-associated NADPH oxidase and is dismuted to H(2)O(2) and O(2) by superoxide dismutase. H(2)O(2) provides the electrons for the polymerization of phenolics to lignin, which causes the stiffening of the cell wall. The distortion of the cell wall caused by lignin may induce the breaking and tearing of cells, which results in the formation of ruptures at the rhizodermis and outer cortex layers. The production of superoxide anion, H(2)O(2), and lignin was reduced during the recovery process and thereby the elongation of the central cylinder may be induced.
Collapse
Affiliation(s)
- Hideaki Matsumoto
- Research Institute of Health and Welfare, Kibi International University, Iga, Takahashi 716-8508, Japan.
| | | |
Collapse
|
231
|
Martínez-Cortés T, Pomar F, Espiñeira JM, Merino F, Novo-Uzal E. Purification and kinetic characterization of two peroxidases of Selaginella martensii Spring. involved in lignification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 52:130-9. [PMID: 22305076 DOI: 10.1016/j.plaphy.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 12/20/2011] [Indexed: 05/23/2023]
Abstract
Two cationic peroxidases from Selaginella martensii Spring. (SmaPrx2 and SmaPrx3) were purified using a three-step protocol which includes ammonium sulfate precipitation, adsorption chromatography on phenyl sepharose and cationic exchange chromatography on SP sepharose. The molecular mass for SmaPrx2 and SmaPrx3 was calculated to be 36.3 kDa and 45.6 kDa, respectively, according to MALDI-TOF/TOF. The isoelectric points were estimated in 9.2 and 9.5 for SmaPrx2 and SmaPrx3, respectively, according to isoelectrofocusing. Both enzymes show a typical peroxidase UV-visible spectrum with a Soret peak at 403 nm for SmaPrx2 and 404 nm for SmaPrx3. The specific activities showed against several substrates and the kinetic parameters suggest SmaPrx2 and SmaPrx3 have specific roles in cell wall formation and especially in lignin biosynthesis. Several peptides from tryptic digestion of both peroxidases were identified through MALDI-TOF MS/MS. The presence in these peptides of structural determinants typical of syringyl peroxidases indicates these proteins show no structural restrictions to oxidize syringyl moieties. These data, along with the in vitro capacity of using sinapyl alcohol as substrate and the low K(m) in the μM range suggest these two peroxidases may be responsible for the oxidation of syringyl monolignols that leads to syringyl lignins biosynthesis.
Collapse
Affiliation(s)
- Teresa Martínez-Cortés
- Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| | | | | | | | | |
Collapse
|
232
|
Causin HF, Roqueiro G, Petrillo E, Láinez V, Pena LB, Marchetti CF, Gallego SM, Maldonado SI. The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 183:197-205. [PMID: 22195594 DOI: 10.1016/j.plantsci.2011.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 05/10/2023]
Abstract
The production of reactive oxygen species (ROS) in specific regions of Salix seedlings roots seems essential for the normal growth of this organ. We examined the role of different ROS in the control of root development in Salix nigra seedlings, and explored possible mechanisms involved in the regulation of ROS generation and action. Root growth was not significantly affected by OH quenchers, while it was either partially or completely inhibited in the presence of H₂O₂ or O₂·⁻ scavengers, respectively. O₂·⁻ production was elevated in the root apex, particularly in the subapical meristem and protodermal zones. Apical O₂·⁻ generation activity was correlated to a high level of either Cu/Zn superoxide dismutase protein as well as carbonylated proteins. While NADPH-oxidase (NOX) was probably the main source of O₂·⁻ generation, the existence of other sources should not be discarded. O₂·⁻ production was also high in root hairs during budding, but it markedly decreased when the hair began to actively elongate. Root hair formation increased in the presence of H₂O₂ scavengers, and was suppressed when H₂O₂ or peroxidase inhibitors were supplied. The negative effect of H₂O₂ was partially counteracted by a MAPKK inhibitor. Possible mechanisms of action of the different ROS in comparison with other plant model systems are discussed.
Collapse
Affiliation(s)
- Humberto F Causin
- D.B.B.E., Facultad de Ciencias Exactas y Naturales, Universidad of Buenos Aires, Ciudad Universitaria, 1428 C.A.B.A., Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Speranza A, Crinelli R, Scoccianti V, Geitmann A. Reactive oxygen species are involved in pollen tube initiation in kiwifruit. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:64-76. [PMID: 21973108 DOI: 10.1111/j.1438-8677.2011.00479.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The role of reactive oxygen species (ROS) during pollen tube growth has been well established, but its involvement in the early germination stage is poorly understood. ROS production has been reported in germinating tobacco pollen, but evidence for a clear correlation between ROS and germination success remains elusive. Here, we show that ROS are involved in germination and pollen tube formation in kiwifruit. Using labelling with dihydrofluorescein diacetate (H(2) FDA) and nitroblue tetrazolium (NBT), endogenous ROS were detected immediately following pollen rehydration and during the lag phase preceding pollen tube emergence. Furthermore, extracellular H(2) O(2) was found to accumulate, beginning a few minutes after pollen suspension in liquid medium. ROS production was essential for kiwifruit pollen performance, since in the presence of compounds acting as superoxide dismutase/catalase mimic (Mn-5,10,15,20-tetrakis(1-methyl-4-pyridyl)21H,23H-porphin, Mn-TMPP) or as NADPH oxidase inhibitor (diphenyleneiodonium chloride, DPI), ROS levels were reduced and pollen tube emergence was severely or completely inhibited. Moreover, ROS production was substantially decreased in the absence of calcium, and by chromium and bisphenol A, which inhibit germination in kiwifruit. Peroxidase activity was cytochemically revealed after rehydration and during germination. In parallel, superoxide dismutase enzymes, particularly the Cu/Zn-dependent subtype - which function as superoxide radical scavengers - were detected by immunoblotting and by an in-gel activity assay in kiwifruit pollen, suggesting that ROS levels may be tightly regulated. Timing of ROS appearance, early localisation at the germination aperture and strict requirement for germination clearly suggest an important role for ROS in pollen grain activation and pollen tube initiation.
Collapse
Affiliation(s)
- A Speranza
- Dipartimento di Biologia, Università di Bologna, Bologna, Italy.
| | | | | | | |
Collapse
|
234
|
Leymarie J, Vitkauskaité G, Hoang HH, Gendreau E, Chazoule V, Meimoun P, Corbineau F, El-Maarouf-Bouteau H, Bailly C. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. PLANT & CELL PHYSIOLOGY 2012; 53:96-106. [PMID: 21937678 DOI: 10.1093/pcp/pcr129] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Freshly harvested seeds of Arabidopsis thaliana, Columbia (Col) accession were dormant when imbibed at 25°C in the dark. Their dormancy was alleviated by continuous light during imbibition or by 5 weeks of storage at 20°C (after-ripening). We investigated the possible role of reactive oxygen species (ROS) in the regulation of Col seed dormancy. After 24 h of imbibition at 25°C, non-dormant seeds produced more ROS than dormant seeds, and their catalase activity was lower. In situ ROS localization revealed that germination was associated with an accumulation of superoxide and hydrogen peroxide in the radicle. ROS production was temporally and spatially regulated: ROS were first localized within the cytoplasm upon imbibition of non-dormant seeds, then in the nucleus and finally in the cell wall, which suggests that ROS play different roles during germination. Imbibition of dormant and non-dormant seeds in the presence of ROS scavengers or donors, which inhibited or stimulated germination, respectively, confirmed the role of ROS in germination. Freshly harvested seeds of the mutants defective in catalase (cat2-1) and vitamin E (vte1-1) did not display dormancy; however, seeds of the NADPH oxidase mutants (rbohD) were deeply dormant. Expression of a set of genes related to dormancy upon imbibition in the cat2-1 and vet1-1 seeds revealed that their non-dormant phenotype was probably not related to ABA or gibberellin metabolism, but suggested that ROS could trigger germination through gibberellin signaling activation.
Collapse
Affiliation(s)
- Juliette Leymarie
- UR5 EAC7180 CNRS, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S. Calcium efflux systems in stress signaling and adaptation in plants. FRONTIERS IN PLANT SCIENCE 2011; 2:85. [PMID: 22639615 PMCID: PMC3355617 DOI: 10.3389/fpls.2011.00085] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/04/2011] [Indexed: 05/18/2023]
Abstract
Transient cytosolic calcium ([Ca(2+)](cyt)) elevation is an ubiquitous denominator of the signaling network when plants are exposed to literally every known abiotic and biotic stress. These stress-induced [Ca(2+)](cyt) elevations vary in magnitude, frequency, and shape, depending on the severity of the stress as well the type of stress experienced. This creates a unique stress-specific calcium "signature" that is then decoded by signal transduction networks. While most published papers have been focused predominantly on the role of Ca(2+) influx mechanisms to shaping [Ca(2+)](cyt) signatures, restoration of the basal [Ca(2+)](cyt) levels is impossible without both cytosolic Ca(2+) buffering and efficient Ca(2+) efflux mechanisms removing excess Ca(2+) from cytosol, to reload Ca(2+) stores and to terminate Ca(2+) signaling. This is the topic of the current review. The molecular identity of two major types of Ca(2+) efflux systems, Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers, is described, and their regulatory modes are analyzed in detail. The spatial and temporal organization of calcium signaling networks is described, and the importance of existence of intracellular calcium microdomains is discussed. Experimental evidence for the role of Ca(2+) efflux systems in plant responses to a range of abiotic and biotic factors is summarized. Contribution of Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers in shaping [Ca(2+)](cyt) signatures is then modeled by using a four-component model (plasma- and endo-membrane-based Ca(2+)-permeable channels and efflux systems) taking into account the cytosolic Ca(2+) buffering. It is concluded that physiologically relevant variations in the activity of Ca(2+)-ATPase pumps and Ca(2+)/H(+) exchangers are sufficient to fully describe all the reported experimental evidence and determine the shape of [Ca(2+)](cyt) signatures in response to environmental stimuli, emphasizing the crucial role these active efflux systems play in plant adaptive responses to environment.
Collapse
Affiliation(s)
- Jayakumar Bose
- School of Agricultural Science, University of TasmaniaHobart, TAS, Australia
| | - Igor I. Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de ColimaColima, México
| | | | | | - Sergey Shabala
- School of Agricultural Science, University of TasmaniaHobart, TAS, Australia
| |
Collapse
|
236
|
Wang Z, Zhao F, Zhao X, Ge H, Chai L, Chen S, Perl A, Ma H. Proteomic analysis of berry-sizing effect of GA3
on seedless Vitis vinifera
L. Proteomics 2011; 12:86-94. [DOI: 10.1002/pmic.201000668] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 10/18/2011] [Accepted: 10/25/2011] [Indexed: 11/08/2022]
|
237
|
Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II. Polyamines interact with hydroxyl radicals in activating Ca(2+) and K(+) transport across the root epidermal plasma membranes. PLANT PHYSIOLOGY 2011; 157:2167-80. [PMID: 21980172 PMCID: PMC3327209 DOI: 10.1104/pp.111.179671] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/03/2011] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca(2+) dynamics by activating a range of nonselective Ca(2+)-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K(+) and Ca(2+) fluxes induced by hydroxyl radicals (OH(•)) in pea (Pisum sativum) roots. OH(•), but not hydrogen peroxide, activated a rapid Ca(2+) efflux and a more slowly developing net Ca(2+) influx concurrent with a net K(+) efflux. In isolated protoplasts, OH(•) evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K(+) efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca(2+). Active OH(•)-induced Ca(2+) efflux in roots was suppressed by the PM Ca(2+) pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH(•)-induced ionic currents in root protoplasts and K(+) efflux and Ca(2+) influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH(•)-induced cation fluxes. The net OH(•)-induced Ca(2+) efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH(•)-induced net K(+) efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca(2+) homeostasis by modulating both Ca(2+) influx and efflux transport systems at the root cell PM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Igor I. Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Mexico (I.Z.-J., A.M.V.-B., R.E.-F., J.M.-M., I.I.P.); School of Agricultural Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.B., S.S.)
| |
Collapse
|
238
|
Abstract
Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress.
Collapse
Affiliation(s)
- Rup Kumar Kar
- Department of Botany, Visva-Bharati, Santiniketan, India.
| |
Collapse
|
239
|
Livanos P, Galatis B, Quader H, Apostolakos P. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton (Hoboken) 2011; 69:1-21. [PMID: 21976360 DOI: 10.1002/cm.20538] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 09/26/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022]
Abstract
In this study, the effects of disturbance of the reactive oxygen species (ROS) homeostasis on the organization of tubulin cytoskeleton in interphase and mitotic root-tip cells of Triticum turgidum and Arabidopsis thaliana were investigated. Reduced ROS levels were obtained by treatment with diphenylene iodonium (DPI) and N-acetyl-cysteine, whereas menadione was applied to achieve ROS overproduction. Both increased and low ROS levels induced: (a) Macrotubule formation in cells with low ROS levels and tubulin paracrystals under oxidative stress. The protein MAP65-1 was detected in treated cells, exhibiting a conformation comparable to that of the atypical tubulin polymers. (b) Disappearance of microtubules (MTs). (c) Inhibition of preprophase band formation. (d) Delay of the nuclear envelope breakdown at prometaphase. (e) Prevention of perinuclear tubulin polymer assembly in prophase cells. (f) Loss of bipolarity of prophase, metaphase and anaphase spindles. Interestingly, examination of the A. thaliana rhd2/At respiratory burst oxidase homolog C (rbohc) NADPH oxidase mutant, lacking RHD2/AtRBOHC, gave comparable results. Similarly to DPI, the decreased ROS levels in rhd2 root-tip cells, interfered with MT organization and induced macrotubule assembly. These data indicate, for first time in plants, that ROS are definitely implicated in: (a) mechanisms controlling the assembly/disassembly of interphase, preprophase and mitotic MT systems and (b) mitotic spindle function. The probable mechanisms, by which ROS affect these processes, are discussed.
Collapse
Affiliation(s)
- Pantelis Livanos
- Department of Botany, Faculty of Biology, University of Athens, Athens, Greece
| | | | | | | |
Collapse
|
240
|
Roach T, Kranner I. Extracellular superoxide production associated with secondary root growth following desiccation of Pisum sativum seedlings. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1870-3. [PMID: 21752488 DOI: 10.1016/j.jplph.2011.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 05/08/2023]
Abstract
The seedling stage is arguably the most vulnerable phase in the plant life cycle, where the young establishing plant is extremely sensitive to environmental stresses such as drought. Here, the production of superoxide (O(2)(-)), a molecule involved in stress signaling, was measured in response to desiccation of Pisum sativum L. seedlings. Following desiccation that was sufficient to kill the radicle meristem, viability could be retained by seedlings that grew secondary roots. Upon rehydration, secondary roots formed in a region that had displayed intense extracellular O(2)(-)production on desiccation. Treating partially desiccated seedlings with hydrogen peroxide (H(2)O(2)) prevented viability loss. In summary, reactive oxygen species (ROS) appear to participate in the signaling required for secondary root formation following desiccation stress of P. sativum seedlings.
Collapse
Affiliation(s)
- Thomas Roach
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, West Sussex RH17 6TN, UK.
| | | |
Collapse
|
241
|
Warwar N, Mor A, Fluhr R, Pandian RP, Kuppusamy P, Blank A. Detection and imaging of superoxide in roots by an electron spin resonance spin-probe method. Biophys J 2011; 101:1529-38. [PMID: 21943435 DOI: 10.1016/j.bpj.2011.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 11/17/2022] Open
Abstract
The detection, quantification, and imaging of short-lived reactive oxygen species, such as superoxide, in live biological specimens have always been challenging and controversial. Fluorescence-based methods are nonspecific, and electron spin resonance (ESR) spin-trapping methods require high probe concentrations and lack the capability for sufficient image resolution. In this work, a novel (to our knowledge), sensitive, small ESR imaging resonator was used together with a stable spin probe that specifically reacts with superoxide with a high reaction rate constant. This ESR spin-probe-based methodology was used to examine superoxide generated in a plant root as a result of an apical leaf injury. The results show that the spin probe rapidly permeated the plant's extracellular space. Upon injury of the plant tissue, superoxide was produced and the ESR signal decreased rapidly in the injured parts as well as in the distal part of the root. This is attributed to superoxide production and thus provides a means of quantifying the level of superoxide in the plant. The spin probe's narrow single-line ESR spectrum, together with the sensitive imaging resonator, facilitates the quantitative measurement of superoxide in small biological samples, such as the plant's root, as well as one-dimensional imaging along the length of the root. This type of methodology can be used to resolve many questions involving the production of apoplastic superoxide in plant biology.
Collapse
Affiliation(s)
- Nasim Warwar
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
242
|
Shoresh M, Spivak M, Bernstein N. Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radic Biol Med 2011; 51:1221-34. [PMID: 21466848 DOI: 10.1016/j.freeradbiomed.2011.03.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/19/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Salinity reduces Ca(2+) availability, transport, and mobility to growing regions of the plant and supplemental Ca(2+) is known to reduce salinity damages. This study was undertaken to unravel some of the ameliorative mechanisms of Ca(2+) on salt stress at the cellular and tissue levels. Zea mays L. plants were grown in nutrient solution containing 1 or 80 mM NaCl with various Ca(2+) levels. Measurements of growth and physiological parameters, such as ion imbalance, indicated that the Ca(2+)-induced alleviation mechanisms differed between plant organs. Under salinity, H(2)O(2) levels increased in the leaf-growing tissue with increasing levels of supplemental Ca(2+) and reached the levels of control plants, whereas superoxide levels remained low at all Ca(2+) levels, indicating that Ca(2+) affected growth by increasing H(2)O(2) but not superoxide levels. Salinity completely abolished apoplastic peroxidase activity. Supplemental Ca(2+) increased its activity only slightly. However, under salinity, polyamine oxidase (PAO) activity was shifted toward the leaf base probably as an adaptive mechanism aimed at restoring normal levels of reactive oxygen species (ROS) at the expansion zone where NADPH oxidase could no longer provide the required ROS for growth. Interestingly, addition of Ca(2+) shifted the PAO-activity peak back to its original location in addition to its enhancement. The increase in PAO activity in conjunction with low levels of apoplastic peroxidase is supportive of cellular growth via nonenzymatic wall loosening derived by the increase in H(2)O(2) and less supportive of the peroxidase-mediated cross-linking of wall material. Thus extracellular Ca(2+) can modulate ROS levels at specific tissue localization and developmental stages thereby affecting cellular extension.
Collapse
Affiliation(s)
- Michal Shoresh
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization, The Volcani Center, Bet-Dagan 50–250, Israel
| | | | | |
Collapse
|
243
|
Das MK, Sharma RS, Mishra V. A novel cationic peroxidase (VanPrx) from a hemi-parasitic plant (Viscum angulatum) of Western Ghats (India): Purification, characterization and kinetic properties. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
244
|
Jia L. Is Reactive Oxygen Species (ROS) the underlying factor for inhibited root growth in Osspr1? PLANT SIGNALING & BEHAVIOR 2011; 6:1024-5. [PMID: 22020626 PMCID: PMC3257785 DOI: 10.4161/psb.6.7.15577] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 03/22/2011] [Indexed: 05/17/2023]
Abstract
Reactive oxygen species (ROS), like hydrogen peroxide (H2O2) and superoxide anion (O2(·-)), are important plant cell signaling molecules involved in diverse physiological processes, such as programmed cell death, development, cell elongation and hormonal signaling. Recently, much attention has been paid to the role of ROS in regulating plant root development. Two ROS, superoxide and hydrogen peroxide, were shown to exhibit a typical accumulation pattern in the Arabidopsis root apex and play distinct roles in root development. The latest study showed that UPBEAT1 (UPB1), a bHLH transcription factor, modulates the ROS balance by directly regulating the expression of a set of peroxidases, therefore, regulates the root cell proliferation and differentiation. In this addendum, we proposed a possible hypothesis that OsSPR1 maintained the mitochondria function to restrict H2O2 production in root apex for normal root development.
Collapse
Affiliation(s)
- LiQiang Jia
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
245
|
Heyno E, Mary V, Schopfer P, Krieger-Liszkay A. Oxygen activation at the plasma membrane: relation between superoxide and hydroxyl radical production by isolated membranes. PLANTA 2011; 234:35-45. [PMID: 21359959 DOI: 10.1007/s00425-011-1379-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 02/06/2011] [Indexed: 05/25/2023]
Abstract
Production of reactive oxygen species (hydroxyl radicals, superoxide radicals and hydrogen peroxide) was studied using EPR spin-trapping techniques and specific dyes in isolated plasma membranes from the growing and the non-growing zones of hypocotyls and roots of etiolated soybean seedlings as well as coleoptiles and roots of etiolated maize seedlings. NAD(P)H mediated the production of superoxide in all plasma membrane samples. Hydroxyl radicals were only produced by the membranes of the hypocotyl growing zone when a Fenton catalyst (FeEDTA) was present. By contrast, in membranes from other parts of the seedlings a low rate of spontaneous hydroxyl radical formation was observed due to the presence of small amounts of tightly bound peroxidase. It is concluded that apoplastic hydroxyl radical generation depends fully, or for the most part, on peroxidase localized in the cell wall. In soybean plasma membranes from the growing zone of the hypocotyl pharmacological tests showed that the superoxide production could potentially be attributed to the action of at least two enzymes, an NADPH oxidase and, in the presence of menadione, a quinone reductase.
Collapse
Affiliation(s)
- Eiri Heyno
- Commissariat à l'Energie Atomique (CEA Saclay), iBiTec-S, CNRS URA 2096, Service de Bioénergétique Biologie Structurale et Mécanisme, Bât. 532, 91191 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
246
|
Camejo D, Martí MC, Jiménez A, Cabrera JC, Olmos E, Sevilla F. Effect of oligogalacturonides on root length, extracellular alkalinization and O₂⁻-accumulation in alfalfa. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:566-575. [PMID: 21074893 DOI: 10.1016/j.jplph.2010.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/13/2010] [Accepted: 09/07/2010] [Indexed: 05/30/2023]
Abstract
The effects of an oligogalacturonic acid (OGA) pool on root length of intact alfalfa seedlings (Medicago sativa L.), on extracellular pH and on both extracellular and intracellular O₂⁻ dynamics were examined in this study. Lower OGA concentrations (25, 50 and 75 μg mL⁻¹)promoted root length, but 50 μg mL⁻¹ had a stronger effect in promoting growth, while the higher OGA concentration (100 μg mL⁻¹)had no significant effect. Extracellular alkalinization was tested only at concentrations higher than 50 μg mL⁻¹ OGA, showing that the response is determined not only by the specific size of OGA, but also by the concentration of OGA. The promoting effect of OGA on root growth at 25, 50 and 75 μg mL⁻¹ OGA concentrations in alfalfa root appeared to be unrelated to extracellular alkalinization. A possible explanation could be the induction of an O₂⁻ burst at non-toxic levels, which could drive directly or indirectly several processes associated with root elongation in 25, 50 and 75 μg mL⁻¹ OGA-treated seedlings. Analyses using confocal microscopy showed that the increase in the O₂⁻ generation, mainly in the epidermal cells, induced by 50 μg mL⁻¹ OGA could be related to the promoting effect on root growth. The combination of OGA with DPI allowed us to demonstrate that there are different O₂⁻-generating sources in the epidermal cells of the meristematic zone, likely NADPH oxidase and oxidases or oxido-reductase enzymes, insensitive to DPI, that maintain detectable O₂⁻ accumulation at 60 and 120 min of treatment. These results suggest that OGA induce an oxidative burst by several O₂⁻-generating sources in the active growth zones.
Collapse
Affiliation(s)
- Daymi Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
247
|
Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F. Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:306-17. [PMID: 21241387 DOI: 10.1111/j.1365-313x.2011.04496.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Major intrinsic proteins (MIPs) transport water and uncharged solutes across membranes in all kingdoms of life. Recently, an uncharacterized MIP subfamily was identified in the genomes of plants and fungi and named X Intrinsic Proteins (XIPs). Here, we describe the genetic features, localization, expression, and functions of a group of Solanaceae XIPs. XIP cDNA and gDNA were cloned from tobacco, potato, tomato, and morning glory. A conserved sequence motif in the first intron of Solanaceae XIPs initiates an RNA-processing mechanism that results in two splice variants (α and β). When transiently or stably expressed in tobacco plants, yellow fluorescent protein-tagged NtXIP1;1α and NtXIP1;1β were both localized in the plasma membrane. Transgenic tobacco lines expressing NtXIP1;1-promoter-GUS constructs and RT-PCR studies showed that NtXIP1;1 was expressed in all organs. The NtXIP1;1 promoter was mainly active in cell layers facing the environment in all above-ground tissues. Heterologous expression of Solanaceae XIPs in Xenopus laevis oocytes and various Saccharomyces cerevisiae mutants demonstrated that these isoforms facilitate the transport of bulky solutes, such as glycerol, urea, and boric acid. In contrast, permeability for water was undetectable. These data suggest that XIPs function in the transport of uncharged solutes across the cell plasma membrane in specific plant tissues, including at the interface between the environment and external cell layers.
Collapse
Affiliation(s)
- Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 4-15, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
248
|
Shin LJ, Huang HE, Chang H, Lin YH, Feng TY, Ger MJ. Ectopic ferredoxin I protein promotes root hair growth through induction of reactive oxygen species in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:434-440. [PMID: 20828872 DOI: 10.1016/j.jplph.2010.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
Ferredoxin I (Fd-1) is a protein existing in green tissues as an electron carrier for photosynthesis. Reactive oxygen species (ROS) are generated from an over-accumulation of electrons in photosynthetic electron chains. In previous studies, plant ferredoxin-like protein (PFLP) transgenic plants could be made resistant to virulent pathogens, by inducing the generation of ROS. The generation of ROS is closely associated with root hair development, increasing with the elongation of root hairs. We propose that an ectopic expression of pflp may alter root hair development through the enhanced generation of ROS. In this report, Arabidopsis transformed with pflp was generated to determine the potential role of PFLP in root development. Transgenic Arabidopsis exhibited longer root hairs with a significant increase in endogenous H(2)O(2) compared with wild type. The growth of transgenic lines in root hairs was inhibited when treated with NADPH oxidase inhibitor. Results suggest that an over-expression of pflp had enhanced the accumulation of H(2)O(2) in the roots and further promoted the growth of root hairs. Transcriptional activities of root hair development-related and redox-regulated genes were mediated through increased levels of ROS, to alter the growth of transgenic lines in root hairs. In summary, we propose that an ectopic expression of pflp promotes root hair growth, resulting from an enhancement of ROS production.
Collapse
Affiliation(s)
- Lung-Jiun Shin
- Institute of Biotechnology, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | | | | | | | | | | |
Collapse
|
249
|
Van Norman JM, Breakfield NW, Benfey PN. Intercellular communication during plant development. THE PLANT CELL 2011; 23:855-64. [PMID: 21386031 PMCID: PMC3082268 DOI: 10.1105/tpc.111.082982] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/04/2011] [Accepted: 02/14/2011] [Indexed: 05/18/2023]
Abstract
Multicellular organisms depend on cell-to-cell communication to coordinate both development and environmental responses across diverse cell types. Intercellular signaling is particularly critical in plants because development is primarily postembryonic and continuous over a plant's life span. Additionally, development is impacted by restrictions imposed by a sessile lifestyle and limitations on relative cell positions. Many non-cell-autonomous signaling mechanisms are known to function in plant development, including those involving receptor kinases, small peptides, and mobile transcription factors. In this review, we focus on recent findings that highlight novel mechanisms in intercellular signaling during development. New details of small RNA movement, including microRNA movement, are discussed, as well as protein movement and distribution of reactive oxygen species (ROS) in ROS signaling. Finally, a novel temporal mechanism for lateral root positioning and the implications for intercellular signaling are considered.
Collapse
|
250
|
Hu L, Liang W, Yin C, Cui X, Zong J, Wang X, Hu J, Zhang D. Rice MADS3 regulates ROS homeostasis during late anther development. THE PLANT CELL 2011; 23:515-33. [PMID: 21297036 PMCID: PMC3077785 DOI: 10.1105/tpc.110.074369] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 01/06/2011] [Accepted: 01/19/2011] [Indexed: 05/17/2023]
Abstract
The rice (Oryza sativa) floral homeotic C-class gene, MADS3, was previously shown to be required for stamen identity determination during early flower development. Here, we describe a role for MADS3 in regulating late anther development and pollen formation. Consistent with this role, MADS3 is highly expressed in the tapetum and microspores during late anther development, and a newly identified MADS3 mutant allele, mads3-4, displays defective anther walls, aborted microspores, and complete male sterility. During late anther development, mads3-4 exhibits oxidative stress-related phenotypes. Microarray analysis revealed expression level changes in many genes in mads3-4 anthers. Some of these genes encode proteins involved in reactive oxygen species (ROS) homeostasis; among them is MT-1-4b, which encodes a type 1 small Cys-rich and metal binding protein. In vivo and in vitro assays showed that MADS3 is associated with the promoter of MT-1-4b, and recombinant MT-1-4b has superoxide anion and hydroxyl radical scavenging activity. Reducing the expression of MT-1-4b causes decreased pollen fertility and an increased level of superoxide anion in transgenic plants. Our findings suggest that MADS3 is a key transcriptional regulator that functions in rice male reproductive development, at least in part, by modulating ROS levels through MT-1-4b.
Collapse
Affiliation(s)
- Lifang Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changsong Yin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Cui
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Xing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Bio-X Research Center, Key Laboratory of Genetics and Development and Neuropsychiatric Diseases, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
- Address correspondence to
| |
Collapse
|