201
|
Abstract
Humans serve as both host and reservoir for Mycobacterium tuberculosis, making tuberculosis a theoretically eradicable disease. How M. tuberculosis alternates between host-imposed quiescence and sporadic bouts of replication to complete its life cycle, however, remains unknown. Here, we identify a metabolic adaptation that is triggered upon entry into hypoxia-induced quiescence but facilitates subsequent cell cycle re-entry. Catabolic remodelling of the cell surface trehalose mycolates of M. tuberculosis specifically generates metabolic intermediates reserved for re-initiation of peptidoglycan biosynthesis. These adaptations reveal a metabolic network with the regulatory capacity to mount an anticipatory response.
Collapse
|
202
|
Digitally Barcoding Mycobacterium tuberculosis Reveals In Vivo Infection Dynamics in the Macaque Model of Tuberculosis. mBio 2017; 8:mBio.00312-17. [PMID: 28487426 PMCID: PMC5424202 DOI: 10.1128/mbio.00312-17] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection with Mycobacterium tuberculosis causes a spectrum of outcomes; the majority of individuals contain but do not eliminate the infection, while a small subset present with primary active tuberculosis (TB) disease. This variability in infection outcomes is recapitulated at the granuloma level within each host, such that some sites of infection can be fully cleared while others progress. Understanding the spectrum of TB outcomes requires new tools to deconstruct the mechanisms underlying differences in granuloma fate. Here, we use novel genome-encoded barcodes to uniquely tag individual M. tuberculosis bacilli, enabling us to quantitatively track the trajectory of each infecting bacterium in a macaque model of TB. We also introduce a robust bioinformatics pipeline capable of identifying and counting barcode sequences within complex mixtures and at various read depths. By coupling this tagging strategy with serial positron emission tomography coregistered with computed tomography (PET/CT) imaging of lung pathology in macaques, we define a lesional map of M. tuberculosis infection dynamics. We find that there is no significant infection bottleneck, but there are significant constraints on productive bacterial trafficking out of primary granulomas. Our findings validate our barcoding approach and demonstrate its utility in probing lesion-specific biology and dissemination. This novel technology has the potential to greatly enhance our understanding of local dynamics in tuberculosis. Classically, M. tuberculosis infection was thought to result in either latent infection or active disease. More recently, the field has recognized that there is a spectrum of M. tuberculosis infection clinical outcomes. Within a single host, this spectrum is recapitulated at the granuloma level, where there can simultaneously be lesional sterilization and poorly contained disease. To better understand the lesional biology of TB infection, we digitally barcoded M. tuberculosis to quantitatively track the fate of each infecting bacterium. By combining this technology with serial PET-CT imaging, we can dynamically track both bacterial populations and granuloma trajectories. We demonstrate that there is little constraint on the bacterial population at the time of infection. However, the granuloma imposes a strong bottleneck on dissemination, and the subset of granulomas at risk of dissemination can be distinguished by physical features.
Collapse
|
203
|
The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol 2017; 18:71. [PMID: 28424085 PMCID: PMC5395877 DOI: 10.1186/s13059-017-1196-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
Background Combination therapy is one of the most effective tools for limiting the emergence of drug resistance in pathogens. Despite the widespread adoption of combination therapy across diseases, drug resistance rates continue to rise, leading to failing treatment regimens. The mechanisms underlying treatment failure are well studied, but the processes governing successful combination therapy are poorly understood. We address this question by studying the population dynamics of Mycobacterium tuberculosis within tuberculosis patients undergoing treatment with different combinations of antibiotics. Results By combining very deep whole genome sequencing (~1000-fold genome-wide coverage) with sequential sputum sampling, we were able to detect transient genetic diversity driven by the apparently continuous turnover of minor alleles, which could serve as the source of drug-resistant bacteria. However, we report that treatment efficacy has a clear impact on the population dynamics: sufficient drug pressure bears a clear signature of purifying selection leading to apparent genetic stability. In contrast, M. tuberculosis populations subject to less drug pressure show markedly different dynamics, including cases of acquisition of additional drug resistance. Conclusions Our findings show that for a pathogen like M. tuberculosis, which is well adapted to the human host, purifying selection constrains the evolutionary trajectory to resistance in effectively treated individuals. Nonetheless, we also report a continuous turnover of minor variants, which could give rise to the emergence of drug resistance in cases of drug pressure weakening. Monitoring bacterial population dynamics could therefore provide an informative metric for assessing the efficacy of novel drug combinations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1196-0) contains supplementary material, which is available to authorized users.
Collapse
|
204
|
Abstract
The widespread use of vaccines has been one of the most important medical advances in the last century, saving trillions of dollars and millions of lives. Despite local eradication of some infections, travellers returning from affected areas may cause outbreaks through reintroduction of pathogens to individuals who are unable to receive vaccines for medical reasons or who have declined vaccination for non-medical reasons. Infections that would otherwise be uncommonly encountered by anatomical pathologists should therefore remain in the differential diagnosis for immunocompromised and unvaccinated patients. We review here the histopathological features and ancillary testing required for diagnosis of all illnesses preventable by vaccines that are currently approved for use by the United States Food and Drug Administration, organized into three sections: viral infections preventable by routine vaccination (measles, mumps, rubella, varicella, rotavirus, polio, hepatitis A, hepatitis B, influenza, and human papillomavirus), bacterial infections preventable by routine vaccination (diptheria, tetanus, pertussis, Haemophilus influenzae, pneumococcus, and meningococcus), and infections with specific vaccine indications (anthrax, typhoid, tuberculosis, rabies, Japanese encephalitis, yellow fever, smallpox, and adenovirus). Histopathology for the less common diseases is illustrated in this review. Awareness of a patient's immune and/or vaccine status is a crucial component of the infectious disease work-up, especially for rare diseases that may not otherwise be seen.
Collapse
Affiliation(s)
- Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Danny A Milner
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
205
|
Mycobacterium tuberculosis Is Selectively Killed by Rifampin and Rifapentine in Hypoxia at Neutral pH. Antimicrob Agents Chemother 2017; 61:AAC.02296-16. [PMID: 27993848 DOI: 10.1128/aac.02296-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
The activities of rifampin, rifapentine, bedaquiline, PA-824, clofazimine, nitazoxanide, isoniazid, amikacin, moxifloxacin, niclosamide, thioridazine, and pyrazinamide were tested against nonreplicating (dormant) Mycobacterium tuberculosis H37Rv under conditions of hypoxia at pHs 5.8 and 7.3, mimicking environments of cellular granulomas and caseous granulomas, respectively. At pH 5.8, several drugs killed dormant bacilli, with the best being rifampin and rifapentine. At pH 7.3, only rifampin and rifapentine efficiently killed dormant bacilli, while all other drugs showed little activity.
Collapse
|
206
|
Mahamed D, Boulle M, Ganga Y, Mc Arthur C, Skroch S, Oom L, Catinas O, Pillay K, Naicker M, Rampersad S, Mathonsi C, Hunter J, Wong EB, Suleman M, Sreejit G, Pym AS, Lustig G, Sigal A. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. eLife 2017; 6. [PMID: 28130921 PMCID: PMC5319838 DOI: 10.7554/elife.22028] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/27/2017] [Indexed: 01/09/2023] Open
Abstract
A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI:http://dx.doi.org/10.7554/eLife.22028.001 Every year, around two million people worldwide die from tuberculosis, a disease caused by the bacterium Mycobacterium tuberculosis (Mtb). The bacteria generally infect the lungs. In response, the immune system forms structures called granulomas that attempt to control and isolate the infecting pathogens. Granulomas consist of immune cells known as macrophages, which engulf the M. tuberculosis bacteria and isolate them in a cellular compartment where the bacteria either cannot grow or are killed. However, if a large number of macrophages in a granuloma die, the granuloma’s core liquefies and the structure is coughed up into the airways, from where M. tuberculosis bacteria are transmitted to other people. But how do the bacteria manage to cause the extensive death of the cells that are supposed to control the infection? By imaging M. tuberculosis in human macrophages using time-lapse microscopy, Mahamed et al. reveal that the bacteria break down macrophage control by serially killing macrophages. M. tuberculosis cells first clump together and ‘gang up’ on a macrophage, which engulfs the clump and dies because the bacteria overwhelm it. This does not kill the bacteria, and they rapidly grow inside the dead macrophage. The dead cell is then cleaned up by another macrophage. However, the increasing number of bacteria inside the dead macrophage means that the new macrophage is even more likely to die than the first one. Hence, the bacteria use dead macrophages as fuel to grow on and as bait to attract the next immune cell. Overall, Mahamed et al. show that once a clump of M. tuberculosis initiates death of a single macrophage, it may lead to serial killing of other macrophages and a loss of control over the infection. An important next step will be to understand how the initial clump of bacteria is allowed to form. DOI:http://dx.doi.org/10.7554/eLife.22028.002
Collapse
Affiliation(s)
- Deeqa Mahamed
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Mikael Boulle
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yashica Ganga
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Chanelle Mc Arthur
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Steven Skroch
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Lance Oom
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Oana Catinas
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Kelly Pillay
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Myshnee Naicker
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Sanisha Rampersad
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Colisile Mathonsi
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Jessica Hunter
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa
| | - Emily B Wong
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
| | - Moosa Suleman
- Department of Pulmonology and Critical Care, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Department of Pulmonology, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | | | - Alexander S Pym
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Gila Lustig
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa
| | - Alex Sigal
- KwaZulu-Natal Research Institute for TB-HIV, Durban, South Africa.,University of KwaZulu-Natal, Durban, South Africa.,Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
207
|
Singh V, Donini S, Pacitto A, Sala C, Hartkoorn RC, Dhar N, Keri G, Ascher DB, Mondésert G, Vocat A, Lupien A, Sommer R, Vermet H, Lagrange S, Buechler J, Warner D, McKinney JD, Pato J, Cole ST, Blundell TL, Rizzi M, Mizrahi V. The Inosine Monophosphate Dehydrogenase, GuaB2, Is a Vulnerable New Bactericidal Drug Target for Tuberculosis. ACS Infect Dis 2017; 3:5-17. [PMID: 27726334 PMCID: PMC5241705 DOI: 10.1021/acsinfecdis.6b00102] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 12/14/2022]
Abstract
VCC234718, a molecule with growth inhibitory activity against Mycobacterium tuberculosis (Mtb), was identified by phenotypic screening of a 15344-compound library. Sequencing of a VCC234718-resistant mutant identified a Y487C substitution in the inosine monophosphate dehydrogenase, GuaB2, which was subsequently validated to be the primary molecular target of VCC234718 in Mtb. VCC234718 inhibits Mtb GuaB2 with a Ki of 100 nM and is uncompetitive with respect to IMP and NAD+. This compound binds at the NAD+ site, after IMP has bound, and makes direct interactions with IMP; therefore, the inhibitor is by definition uncompetitive. VCC234718 forms strong pi interactions with the Y487 residue side chain from the adjacent protomer in the tetramer, explaining the resistance-conferring mutation. In addition to sensitizing Mtb to VCC234718, depletion of GuaB2 was bactericidal in Mtb in vitro and in macrophages. When supplied at a high concentration (≥125 μM), guanine alleviated the toxicity of VCC234718 treatment or GuaB2 depletion via purine salvage. However, transcriptional silencing of guaB2 prevented Mtb from establishing an infection in mice, confirming that Mtb has limited access to guanine in this animal model. Together, these data provide compelling validation of GuaB2 as a new tuberculosis drug target.
Collapse
Affiliation(s)
- Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology
Research Unit & DST/NRF Centre of Excellence for Biomedical TB
Research, Institute of Infectious Disease and Molecular Medicine &
Department of Pathology, University of Cape
Town, Anzio Road, Observatory 7925, South Africa
| | - Stefano Donini
- Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Angela Pacitto
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Claudia Sala
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, 1015 Lausanne, Switzerland
| | - Ruben C. Hartkoorn
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, 1015 Lausanne, Switzerland
| | - Neeraj Dhar
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, 1015 Lausanne, Switzerland
| | - Gyorgy Keri
- Vichem
Chemie, Herman Ottó
út 15, Budapest, 1022 Hungary
| | - David B. Ascher
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Guillaume Mondésert
- Sanofi-Aventis Research
& Development, Infectious Diseases Unit,
Biology Group, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Anthony Vocat
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, 1015 Lausanne, Switzerland
| | - Andréanne Lupien
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, 1015 Lausanne, Switzerland
| | - Raphael Sommer
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, 1015 Lausanne, Switzerland
| | - Hélène Vermet
- Sanofi-Aventis Research
& Development, Infectious Diseases Unit,
Biology Group, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Sophie Lagrange
- Sanofi-Aventis Research
& Development, Infectious Diseases Unit,
Biology Group, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280 Marcy L’Etoile, France
| | - Joe Buechler
- Alere (San Diego), Summer Ridge Road, San Diego, California 92121, United States
| | - Digby
F. Warner
- MRC/NHLS/UCT Molecular Mycobacteriology
Research Unit & DST/NRF Centre of Excellence for Biomedical TB
Research, Institute of Infectious Disease and Molecular Medicine &
Department of Pathology, University of Cape
Town, Anzio Road, Observatory 7925, South Africa
| | - John D. McKinney
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, 1015 Lausanne, Switzerland
| | - Janos Pato
- Vichem
Chemie, Herman Ottó
út 15, Budapest, 1022 Hungary
| | - Stewart T. Cole
- Ecole Polytechnique Fédérale de Lausanne, Global Health Institute, Station 19, 1015 Lausanne, Switzerland
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Menico Rizzi
- Dipartimento di Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology
Research Unit & DST/NRF Centre of Excellence for Biomedical TB
Research, Institute of Infectious Disease and Molecular Medicine &
Department of Pathology, University of Cape
Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
208
|
Giovagnoli S, Schoubben A, Ricci M. The long and winding road to inhaled TB therapy: not only the bug’s fault. Drug Dev Ind Pharm 2017; 43:347-363. [DOI: 10.1080/03639045.2016.1272119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
209
|
|
210
|
Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, Chaisson LH, Chaisson RE, Daley CL, Grzemska M, Higashi JM, Ho CS, Hopewell PC, Keshavjee SA, Lienhardt C, Menzies R, Merrifield C, Narita M, O'Brien R, Peloquin CA, Raftery A, Saukkonen J, Schaaf HS, Sotgiu G, Starke JR, Migliori GB, Vernon A. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis 2016; 63:e147-e195. [PMID: 27516382 PMCID: PMC6590850 DOI: 10.1093/cid/ciw376] [Citation(s) in RCA: 684] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023] Open
Abstract
The American Thoracic Society, Centers for Disease Control and Prevention, and Infectious Diseases Society of America jointly sponsored the development of this guideline for the treatment of drug-susceptible tuberculosis, which is also endorsed by the European Respiratory Society and the US National Tuberculosis Controllers Association. Representatives from the American Academy of Pediatrics, the Canadian Thoracic Society, the International Union Against Tuberculosis and Lung Disease, and the World Health Organization also participated in the development of the guideline. This guideline provides recommendations on the clinical and public health management of tuberculosis in children and adults in settings in which mycobacterial cultures, molecular and phenotypic drug susceptibility tests, and radiographic studies, among other diagnostic tools, are available on a routine basis. For all recommendations, literature reviews were performed, followed by discussion by an expert committee according to the Grading of Recommendations, Assessment, Development and Evaluation methodology. Given the public health implications of prompt diagnosis and effective management of tuberculosis, empiric multidrug treatment is initiated in almost all situations in which active tuberculosis is suspected. Additional characteristics such as presence of comorbidities, severity of disease, and response to treatment influence management decisions. Specific recommendations on the use of case management strategies (including directly observed therapy), regimen and dosing selection in adults and children (daily vs intermittent), treatment of tuberculosis in the presence of HIV infection (duration of tuberculosis treatment and timing of initiation of antiretroviral therapy), as well as treatment of extrapulmonary disease (central nervous system, pericardial among other sites) are provided. The development of more potent and better-tolerated drug regimens, optimization of drug exposure for the component drugs, optimal management of tuberculosis in special populations, identification of accurate biomarkers of treatment effect, and the assessment of new strategies for implementing regimens in the field remain key priority areas for research. See the full-text online version of the document for detailed discussion of the management of tuberculosis and recommendations for practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Julie M. Higashi
- Tuberculosis Control Section, San Francisco Department
of Public Health, California
| | - Christine S. Ho
- Division of Tuberculosis Elimination, National Center
for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and
Prevention, Atlanta, Georgia
| | | | | | | | | | | | - Masahiro Narita
- Tuberculosis Control Program, Seattle and King County Public Health, and
University of Washington, Seattle
| | - Rick O'Brien
- Ethics Advisory Group, International Union Against TB
and Lung Disease, Paris,
France
| | | | | | | | - H. Simon Schaaf
- Department of Paediatrics and Child Health, Stellenbosch University, Cape
Town, South Africa
| | | | | | - Giovanni Battista Migliori
- WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri Care and
Research Institute, Tradate, Italy
| | - Andrew Vernon
- Division of Tuberculosis Elimination, National Center
for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and
Prevention, Atlanta, Georgia
| |
Collapse
|
211
|
Qian X, Nguyen DTM, Li Y, Lyu J, Graviss EA, Hu TY. Predictive value of serum bradykinin and desArg 9-bradykinin levels for chemotherapeutic responses in active tuberculosis patients: A retrospective case series. Tuberculosis (Edinb) 2016; 101S:S109-S118. [PMID: 27720377 DOI: 10.1016/j.tube.2016.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND There is an urgent need for methods that can rapidly and accurately assess therapeutic responses in patients with active tuberculosis (TB) in order to predict treatment outcomes. Exposure to bacterial pathogens can rapidly activate the plasma contact system, triggering the release of bradykinin (BK) and its metabolite desArg9-bradykinin (DABK) to induce inflammation and innate immune responses. We hypothesized that serum BK and DABK levels might act as sensitive immune response signatures for changes in Mycobacterium tuberculosis (Mtb) burden, and therefore examined how serum levels of these markers corresponded with anti-TB therapy in a small cohort of active TB cases. METHODS Nanotrap Mass-Spectrometry (MS) was used to analyze serial blood specimens from 13 HIV-negative adults with microbiologically confirmed active TB who were treated with first-line anti-TB chemotherapy. MS signal for BK (m/z 1060.5) and DABK (m/z 904.5) serum peptides were evaluated at multiple time-points (before, during, and after treatment) to evaluate how BK and DABK levels corresponded with disease status. RESULTS Serum BK levels declined from pretreatment baseline levels during the early stage anti-TB therapy (induction phase) and tended to remain below baseline levels during extended treatment (consolidation phase) and after therapy completion. BK levels were consistent with induction phase sputum culture conversions indicative of decreased Mtb burden reflecting good treatment responses. Serum DABK levels tended to increase during the induction phase and decrease at consolidation and post-therapy time points, which may indicate a shift from active disease to chronic inflammation to a disease free state. Elevated BK and DABK levels after treatment completion in one patient may be related to the subsequent recurrent TB disease. CONCLUSIONS Our pilot data suggests that changes in the circulating BK and DABK levels in adult TB patients can be used as potential surrogate markers of the host response both early and late in anti-TB treatment for both pulmonary and extrapulmonary TB patients. We will further exploit these host-response signatures in the future as biomarkers in combination with other clinical and microbiologic tools which may improve treatment efficacy and facilitate the development of host-directed therapy.
Collapse
Affiliation(s)
- Xu Qian
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Duc T M Nguyen
- HMRI Molecular Tuberculosis Laboratory, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Yaojun Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Edward A Graviss
- HMRI Molecular Tuberculosis Laboratory, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| | - Tony Y Hu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Weill Cornell Medical College of Cornel University, New York City, NY, 10065, USA.
| |
Collapse
|
212
|
Gopal P, Yee M, Sarathy J, Low JL, Sarathy JP, Kaya F, Dartois V, Gengenbacher M, Dick T. Pyrazinamide Resistance Is Caused by Two Distinct Mechanisms: Prevention of Coenzyme A Depletion and Loss of Virulence Factor Synthesis. ACS Infect Dis 2016; 2:616-626. [PMID: 27759369 DOI: 10.1021/acsinfecdis.6b00070] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pyrazinamide (PZA) is a critical component of first- and second-line treatments of tuberculosis (TB), yet its mechanism of action largely remains an enigma. We carried out a genetic screen to isolate Mycobacterium bovis BCG mutants resistant to pyrazinoic acid (POA), the bioactive derivative of PZA, followed by whole genome sequencing of 26 POA resistant strains. Rather than finding mutations in the proposed candidate targets fatty acid synthase I and ribosomal protein S1, we found resistance conferring mutations in two pathways: missense mutations in aspartate decarboxylase panD, involved in the synthesis of the essential acyl carrier coenzyme A (CoA), and frameshift mutations in the vitro nonessential polyketide synthase genes mas and ppsA-E, involved in the synthesis of the virulence factor phthiocerol dimycocerosate (PDIM). Probing for cross resistance to two structural analogs of POA, nicotinic acid and benzoic acid, showed that the analogs share the PDIM- but not the CoA-related mechanism of action with POA. We demonstrated that POA depletes CoA in wild-type bacteria, which is prevented by mutations in panD. Sequencing 10 POA-resistant Mycobacterium tuberculosis H37Rv isolates confirmed the presence of at least 2 distinct mechanisms of resistance to the drug. The emergence of resistance through the loss of a virulence factor in vitro may explain the lack of clear molecular patterns in PZA-resistant clinical isolates, other than mutations in the prodrug-converting enzyme. The apparent interference of POA with virulence pathways may contribute to the drug's excellent in vivo efficacy compared to its modest in vitro potency.
Collapse
Affiliation(s)
- Pooja Gopal
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Michelle Yee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jickky Sarathy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jian Liang Low
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Jansy P. Sarathy
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Firat Kaya
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Véronique Dartois
- Public Health Research Institute, Rutgers—New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Martin Gengenbacher
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Thomas Dick
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| |
Collapse
|
213
|
CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proc Natl Acad Sci U S A 2016; 113:E5636-44. [PMID: 27601645 DOI: 10.1073/pnas.1611987113] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synergy between Mycobacterium tuberculosis (Mtb) and HIV in coinfected patients has profoundly impacted global mortality because of tuberculosis (TB) and AIDS. HIV significantly increases rates of reactivation of latent TB infection (LTBI) to active disease, with the decline in CD4(+) T cells believed to be the major causality. In this study, nonhuman primates were coinfected with Mtb and simian immunodeficiency virus (SIV), recapitulating human coinfection. A majority of animals exhibited rapid reactivation of Mtb replication, progressing to disseminated TB and increased SIV-associated pathology. Although a severe loss of pulmonary CD4(+) T cells was observed in all coinfected macaques, a subpopulation of the animals was still able to prevent reactivation and maintain LTBI. Investigation of pulmonary immune responses and pathology in this cohort demonstrated that increased CD8(+) memory T-cell proliferation, higher granzyme B production, and expanded B-cell follicles correlated with protection from reactivation. Our findings reveal mechanisms that control SIV- and TB-associated pathology. These CD4-independent protective immune responses warrant further studies in HIV coinfected humans able to control their TB infection. Moreover, these findings will provide insight into natural immunity to Mtb and will guide development of novel vaccine strategies and immunotherapies.
Collapse
|
214
|
Garcia BJ, Loxton AG, Dolganov GM, Van TT, Davis JL, de Jong BC, Voskuil MI, Leach SM, Schoolnik GK, Walzl G, Strong M, Walter ND. Sputum is a surrogate for bronchoalveolar lavage for monitoring Mycobacterium tuberculosis transcriptional profiles in TB patients. Tuberculosis (Edinb) 2016; 100:89-94. [PMID: 27553415 PMCID: PMC4999252 DOI: 10.1016/j.tube.2016.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/03/2016] [Accepted: 07/09/2016] [Indexed: 12/19/2022]
Abstract
Pathogen-targeted transcriptional profiling in human sputum may elucidate the physiologic state of Mycobacterium tuberculosis (M. tuberculosis) during infection and treatment. However, whether M. tuberculosis transcription in sputum recapitulates transcription in the lung is uncertain. We therefore compared M. tuberculosis transcription in human sputum and bronchoalveolar lavage (BAL) samples from 11 HIV-negative South African patients with pulmonary tuberculosis. We additionally compared these clinical samples with in vitro log phase aerobic growth and hypoxic non-replicating persistence (NRP-2). Of 2179 M. tuberculosis transcripts assayed in sputum and BAL via multiplex RT-PCR, 194 (8.9%) had a p-value <0.05, but none were significant after correction for multiple testing. Categorical enrichment analysis indicated that expression of the hypoxia-responsive DosR regulon was higher in BAL than in sputum. M. tuberculosis transcription in BAL and sputum was distinct from both aerobic growth and NRP-2, with a range of 396-1020 transcripts significantly differentially expressed after multiple testing correction. Collectively, our results indicate that M. tuberculosis transcription in sputum approximates M. tuberculosis transcription in the lung. Minor differences between M. tuberculosis transcription in BAL and sputum suggested lower oxygen concentrations or higher nitric oxide concentrations in BAL. M. tuberculosis-targeted transcriptional profiling of sputa may be a powerful tool for understanding M. tuberculosis pathogenesis and monitoring treatment responses in vivo.
Collapse
Affiliation(s)
- Benjamin J Garcia
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Andre G Loxton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gregory M Dolganov
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Tran T Van
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - J Lucian Davis
- Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Martin I Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sonia M Leach
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Gary K Schoolnik
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Gerhard Walzl
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Computational Bioscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas D Walter
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Pulmonary Section, Denver Veterans Affairs Medical Center, Denver, CO, USA; Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
215
|
Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3. Antimicrob Agents Chemother 2016; 60:5198-207. [PMID: 27297488 DOI: 10.1128/aac.00826-16] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022] Open
Abstract
In recent years, whole-cell-based screens for novel small molecule inhibitors active against Mycobacterium tuberculosis in culture followed by the whole-genome sequencing of spontaneous resistant mutants have identified multiple chemical scaffolds thought to kill the bacterium through the inactivation of the mycolic acid transporter, MmpL3. Consistent with the fact that MmpL3 is required for the formation of the mycobacterial outer membrane, we have conclusively shown in this study, using conditionally regulated knockdown mutants, that mmpL3 is required for the replication and viability of M. tuberculosis, both under standard laboratory growth conditions and during the acute and chronic phases of infection in mice. Speaking for the vulnerability of this target, silencing mmpL3 had a rapid bactericidal effect on actively replicating cells in vitro and reduced by 3 to 5 logs in less than 4 weeks the bacterial loads of acutely and chronically infected mouse lungs, respectively. Depletion of MmpL3 further rendered M. tuberculosis hypersusceptible to MmpL3 inhibitors. The exquisite vulnerability of MmpL3 at all stages of the infection establishes this transporter as an attractive new target with the potential to improve and shorten current drug-susceptible and drug-resistant tuberculosis chemotherapies.
Collapse
|
216
|
Schluger NW. Host-Pathogen Interactions in Tuberculosis: The Evolving Story. J Infect Dis 2016; 214:1137-8. [PMID: 27534688 DOI: 10.1093/infdis/jiw366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 11/12/2022] Open
|
217
|
Kuhn ML, Alexander E, Minasov G, Page HJ, Warwrzak Z, Shuvalova L, Flores KJ, Wilson DJ, Shi C, Aldrich CC, Anderson WF. Structure of the Essential Mtb FadD32 Enzyme: A Promising Drug Target for Treating Tuberculosis. ACS Infect Dis 2016; 2:579-591. [PMID: 27547819 DOI: 10.1021/acsinfecdis.6b00082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mycolic acids are indispensible lipids of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), and contribute to the distinctive architecture and impermeability of the mycobacterial cell envelope. FadD32 plays a pivotal role in mycolic acid biosynthesis by functionally linking fatty acid synthase (FAS) and polyketide synthase (PKS) biosynthetic pathways. FadD32, a fatty acyl-AMP ligase (FAAL), represents one of the best genetically and chemically validated new TB drug targets. We have determined the three-dimensional crystal structure of Mtb FadD32 in complex with a ligand specifically designed to stabilize the catalytically active adenylate-conformation, which provides a foundation for structure-based drug design efforts against this essential protein. The structure also captures the unique interactions of a FAAL-specific insertion sequence and provides insight into the specificity and mechanism of fatty acid transfer.
Collapse
Affiliation(s)
- Misty L. Kuhn
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | | | - George Minasov
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Holland J. Page
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, California 94132, United States
| | - Zdzislaw Warwrzak
- LS-CAT,
Synchrotron Research Center, Northwestern University, Argonne, Illinois 60439, United States
| | - Ludmilla Shuvalova
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Kristin J. Flores
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | | | | | | | - Wayne F. Anderson
- Center for Structural
Genomics of Infectious Diseases, Department of Biochemistry and Molecular
Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| |
Collapse
|
218
|
Bhavanam S, Rayat GR, Keelan M, Kunimoto D, Drews SJ. Understanding the pathophysiology of the human TB lung granuloma using in vitro granuloma models. Future Microbiol 2016; 11:1073-89. [PMID: 27501829 DOI: 10.2217/fmb-2016-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis remains a major human health threat that infects one in three individuals worldwide. Infection with Mycobacterium tuberculosis is a standoff between host and bacteria in the formation of a granuloma. This review will introduce a variety of bacterial and host factors that impact individual granuloma fates. The authors describe advances in the development of in vitro granuloma models, current evidence surrounding infection and granuloma development, and the applicability of existing in vitro models in the study of human disease. In vitro models of infection help improve our understanding of pathophysiology and allow for the discovery of other potential models of study.
Collapse
Affiliation(s)
- Sudha Bhavanam
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R Rayat
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Monika Keelan
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Dennis Kunimoto
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J Drews
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery, Surgical-Medical Research Institute, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Provincial Laboratory for Public Health, Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
219
|
Iona E, Pardini M, Mustazzolu A, Piccaro G, Nisini R, Fattorini L, Giannoni F. Mycobacterium tuberculosis gene expression at different stages of hypoxia-induced dormancy and upon resuscitation. J Microbiol 2016; 54:565-72. [PMID: 27480637 DOI: 10.1007/s12275-016-6150-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/01/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022]
Abstract
The physiology of dormant Mycobacterium tuberculosis was studied in detail by examining the gene expression of 51 genes using quantitative Reverse-Transcription Polymerase Chain Reaction. A forty-day period of dormancy in the Wayne culture model depicted four major transcription patterns. Some sigma factors and many metabolic genes were constant, whereas genes belonging to the dormancy regulon were activated on day 9. In particular, alpha-crystallin mRNA showed more than a 1,000-fold increase compared to replicating bacilli. Genes belonging to the enduring hypoxic response were up-regulated at day 16, notably, transcription factors sigma B and E. Early genes typical of log-phase bacilli, esat-6 and fbpB, were uniformly down-regulated during dormancy. Late stages of dormancy showed a drop in gene expression likely due to a lack of substrates in anaerobic respiration as demonstrated by the transcriptional activation observed following nitrates addition. Among genes involved in nitrate metabolism, narG was strongly up-regulated by nitrates addition. Dormant bacilli responded very rapidly when exposed to oxygen and fresh medium, showing a transcriptional activation of many genes, including resuscitation-promoting factors, within one hour. Our observations extend the current knowledge on dormant M. tuberculosis gene expression and its response to nutrients and to aerobic and anaerobic respiration.
Collapse
Affiliation(s)
- Elisabetta Iona
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Manuela Pardini
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Alessandro Mustazzolu
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Giovanni Piccaro
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Lanfranco Fattorini
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Federico Giannoni
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| |
Collapse
|
220
|
Schinköthe J, Köhler H, Liebler-Tenorio EM. Characterization of tuberculous granulomas in different stages of progression and associated tertiary lymphoid tissue in goats experimentally infected with Mycobacterium avium subsp. hominissuis. Comp Immunol Microbiol Infect Dis 2016; 47:41-51. [DOI: 10.1016/j.cimid.2016.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
|
221
|
Schinköthe J, Möbius P, Köhler H, Liebler-Tenorio EM. Experimental Infection of Goats with Mycobacterium avium subsp. hominissuis: a Model for Comparative Tuberculosis Research. J Comp Pathol 2016; 155:218-230. [PMID: 27426001 DOI: 10.1016/j.jcpa.2016.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 05/17/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is an opportunistic pathogen that causes infections in man and animals. In this study, 18 goat kids were inoculated orally with a high dose of MAH. One group of goats (n = 9) developed severe clinical disease for up to 2-3 months post inoculation (mpi). At necropsy examination, there were ulcerative and granulomatous lesions in gut-associated lymphoid tissue and granulomas with extensive necrosis in the lymph nodes (LNs) of the cranial mesenteric lymphocentre (CMLNs). Culture revealed growth of MAH in all lesions with systemic spread. A second group of goats were healthy at the end of the trial (13 mpi); however, all had extensive granulomas in the CMLNs, but no extra-intestinal spread of bacteria. Moderate faecal shedding occurred in all goats up to 2 mpi. Microscopical characterization of the granulomas revealed solid non-necrotic, necrotic, calcified and fibrocalcified granulomas with resemblance to those seen in human and bovine tuberculosis. The two different courses of disease, with highly heterogenic lesions, systemic spread in goats with severe clinical disease and the development of granulomas of all stages in the surviving goats, makes the experimental infection of goats with MAH a valuable model for tuberculosis research. This model might allow new insights into host-pathogen interaction and anti-mycobacterial compound testing.
Collapse
Affiliation(s)
- J Schinköthe
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald, Insel Riems, Germany
| | - P Möbius
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str. 96a, Jena, Germany
| | - H Köhler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str. 96a, Jena, Germany
| | - E M Liebler-Tenorio
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Naumburger Str. 96a, Jena, Germany.
| |
Collapse
|
222
|
Wu ML, Gengenbacher M, Dick T. Mild Nutrient Starvation Triggers the Development of a Small-Cell Survival Morphotype in Mycobacteria. Front Microbiol 2016; 7:947. [PMID: 27379076 PMCID: PMC4909757 DOI: 10.3389/fmicb.2016.00947] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria, generally believed to be non-sporulating, are well known to survive shock starvation in saline for extended periods of time in a non-replicating state without any apparent morphological changes. Here, we uncover that mycobacteria can undergo cellular differentiation by exposing Mycobacterium smegmatis to mild starvation conditions. Traces of various carbon sources in saline triggered the development of a novel small resting cell (SMRC) morphotype. Development of SMRCs could also be observed for other mycobacteria, suggesting evolutionary conservation of this differentiation pathway. Fluorescence microscopic analyses showed that development of SMRCs progresses via septated, multi-nucleoided cell intermediates, which divide to generate mono-nucleoided SMRCs. Intriguingly, saline shock-starved large resting cells (LARCs), which did not show cell size or surface changes when observed by scanning electron microscopy, remodeled their internal structure to septated, multi-nucleoided cells, similar to the intermediates seen during differentiation to SMRCs. Our results suggest that mycobacteria harbor a starvation-induced differentiation program in which at first septated, multi-nucleoided cells are generated. Under zero-nutrient conditions bacteria terminate development at this stage as LARCs. In the presence of traces of a carbon source, these multi-nucleoided cells continue differentiation into mono-nucleoided SMRCs. Both SMRCs and LARCs exhibited extreme antibiotic tolerance. SMRCs showed increased long-term starvation survival, which was associated with the presence of lipid inclusion bodies.
Collapse
Affiliation(s)
- Mu-Lu Wu
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Martin Gengenbacher
- Tuberculosis Research Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Thomas Dick
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
223
|
Ordonez AA, Tasneen R, Pokkali S, Xu Z, Converse PJ, Klunk MH, Mollura DJ, Nuermberger EL, Jain SK. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9. Dis Model Mech 2016; 9:779-88. [PMID: 27482816 PMCID: PMC4958312 DOI: 10.1242/dmm.025643] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/20/2016] [Indexed: 01/12/2023] Open
Abstract
Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rokeya Tasneen
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Supriya Pokkali
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ziyue Xu
- Center for Infectious Disease Imaging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul J Converse
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariah H Klunk
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel J Mollura
- Center for Infectious Disease Imaging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
224
|
Krajczyk A, Zeidler J, Januszczyk P, Dawadi S, Boshoff HI, Barry CE, Ostrowski T, Aldrich CC. 2-Aryl-8-aza-3-deazaadenosine analogues of 5'-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis. Bioorg Med Chem 2016; 24:3133-43. [PMID: 27265685 DOI: 10.1016/j.bmc.2016.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/16/2022]
Abstract
A series of 5'-O-[N-(salicyl)sulfamoyl]-2-aryl-8-aza-3-deazaadenosines were designed to block mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) through inhibition of the essential adenylating enzyme MbtA. The synthesis of the 2-aryl-8-aza-3-deazaadenosine nucleosides featured sequential copper-free palladium-catalyzed Sonogashira coupling of a precursor 4-cyano-5-iodo-1,2,3-triazolonucleoside with terminal alkynes and a Minakawa-Matsuda annulation reaction. These modified nucleosides were shown to inhibit MbtA with apparent Ki values ranging from 6.1 to 25nM and to inhibit Mtb growth under iron-deficient conditions with minimum inhibitory concentrations ranging from 12.5 to >50μM.
Collapse
Affiliation(s)
- Anna Krajczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Joanna Zeidler
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Piotr Januszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Helena I Boshoff
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Clifton E Barry
- Tuberculosis Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Tomasz Ostrowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
225
|
Pienaar E, Matern WM, Linderman JJ, Bader JS, Kirschner DE. Multiscale Model of Mycobacterium tuberculosis Infection Maps Metabolite and Gene Perturbations to Granuloma Sterilization Predictions. Infect Immun 2016; 84:1650-1669. [PMID: 26975995 PMCID: PMC4862722 DOI: 10.1128/iai.01438-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
Granulomas are a hallmark of tuberculosis. Inside granulomas, the pathogen Mycobacterium tuberculosis may enter a metabolically inactive state that is less susceptible to antibiotics. Understanding M. tuberculosis metabolism within granulomas could contribute to reducing the lengthy treatment required for tuberculosis and provide additional targets for new drugs. Two key adaptations of M. tuberculosis are a nonreplicating phenotype and accumulation of lipid inclusions in response to hypoxic conditions. To explore how these adaptations influence granuloma-scale outcomes in vivo, we present a multiscale in silico model of granuloma formation in tuberculosis. The model comprises host immunity, M. tuberculosis metabolism, M. tuberculosis growth adaptation to hypoxia, and nutrient diffusion. We calibrated our model to in vivo data from nonhuman primates and rabbits and apply the model to predict M. tuberculosis population dynamics and heterogeneity within granulomas. We found that bacterial populations are highly dynamic throughout infection in response to changing oxygen levels and host immunity pressures. Our results indicate that a nonreplicating phenotype, but not lipid inclusion formation, is important for long-term M. tuberculosis survival in granulomas. We used virtual M. tuberculosis knockouts to predict the impact of both metabolic enzyme inhibitors and metabolic pathways exploited to overcome inhibition. Results indicate that knockouts whose growth rates are below ∼66% of the wild-type growth rate in a culture medium featuring lipid as the only carbon source are unable to sustain infections in granulomas. By mapping metabolite- and gene-scale perturbations to granuloma-scale outcomes and predicting mechanisms of sterilization, our method provides a powerful tool for hypothesis testing and guiding experimental searches for novel antituberculosis interventions.
Collapse
Affiliation(s)
- Elsje Pienaar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William M Matern
- Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Joel S Bader
- Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
226
|
Mukherjee D, Zou H, Liu S, Beuerman R, Dick T. Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiol 2016; 11:643-50. [DOI: 10.2217/fmb-2015-0015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To test the hypothesis that targeting the cytoplasmic membrane may be an effective way to kill persister mycobacteria and delay the emergence of resistance. Methods: In vitro activity of AM-0016, a novel xanthone-based antibacterial, was assessed against growing and persister tubercle bacilli. Resistance mutation frequencies were determined. Biochemical membrane and electron microscopic analyses were carried out. Results: AM-0016 rapidly sterilized growing tubercle bacillus cultures and displayed strong bactericidal activity against persister bacteria. Spontaneous resistance mutation frequency was lower than 10-8. Exposure to AM-0016 resulted in rapid collapse of the membrane potential. Imaging revealed deformation of the cell envelope. Conclusion: Targeting the cytoplasmic membrane may be an attractive approach to eliminate persister mycobacteria and slow down the emergence of genetic drug resistance.
Collapse
Affiliation(s)
- Devika Mukherjee
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| | - Hanxun Zou
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
| | - Shouping Liu
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
- SRP Neuroscience & Behavioural Disorders, Duke-NUS Graduate Medical School, Singapore 169857
| | - Roger Beuerman
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
- SRP Neuroscience & Behavioural Disorders, Duke-NUS Graduate Medical School, Singapore 169857
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| | - Thomas Dick
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117545
| |
Collapse
|
227
|
Irwin SM, Prideaux B, Lyon ER, Zimmerman MD, Brooks EJ, Schrupp CA, Chen C, Reichlen MJ, Asay BC, Voskuil MI, Nuermberger EL, Andries K, Lyons MA, Dartois V, Lenaerts AJ. Bedaquiline and Pyrazinamide Treatment Responses Are Affected by Pulmonary Lesion Heterogeneity in Mycobacterium tuberculosis Infected C3HeB/FeJ Mice. ACS Infect Dis 2016; 2:251-267. [PMID: 27227164 PMCID: PMC4874602 DOI: 10.1021/acsinfecdis.5b00127] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 12/31/2022]
Abstract
![]()
BALB/c and Swiss mice are routinely
used to validate the effectiveness of tuberculosis drug regimens,
although these mouse strains fail to develop human-like pulmonary
granulomas exhibiting caseous necrosis. Microenvironmental conditions
within human granulomas may negatively impact drug efficacy, and this
may not be reflected in non-necrotizing lesions found within conventional
mouse models. The C3HeB/FeJ mouse model has been increasingly utilized
as it develops hypoxic, caseous necrotic granulomas which may more
closely mimic the pathophysiological conditions found within human
pulmonary granulomas. Here, we examined the treatment response of
BALB/c and C3HeB/FeJ mice to bedaquiline (BDQ) and pyrazinamide (PZA)
administered singly and in combination. BALB/c mice consistently displayed
a highly uniform treatment response to both drugs, while C3HeB/FeJ
mice displayed a bimodal response composed of responsive and less-responsive
mice. Plasma pharmacokinetic analysis of dissected lesions from BALB/c
and C3HeB/FeJ mice revealed that PZA penetrated lesion types from
both mouse strains with similar efficiency. However, the pH of the
necrotic caseum of C3HeB/FeJ granulomas was determined to be 7.5,
which is in the range where PZA is essentially ineffective under standard
laboratory in vitro growth conditions. BDQ preferentially accumulated
within the highly cellular regions in the lungs of both mouse strains,
although it was present at reduced but still biologically relevant
concentrations within the central caseum when dosed at 25 mg/kg. The
differential treatment response which resulted from the heterogeneous
pulmonary pathology in the C3HeB/FeJ mouse model revealed several
factors which may impact treatment efficacy, and could be further
evaluated in clinical trials.
Collapse
Affiliation(s)
- Scott M. Irwin
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Brendan Prideaux
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Edward R. Lyon
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Matthew D. Zimmerman
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Elizabeth J. Brooks
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Christopher A. Schrupp
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Chao Chen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Matthew J. Reichlen
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Bryce C. Asay
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin I. Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Eric L. Nuermberger
- Center
for Tuberculosis Research, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Koen Andries
- Department
of Infectious Diseases, Janssen Pharmaceutica, 2340 Beerse, Belgium
| | - Michael A. Lyons
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Véronique Dartois
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Anne J. Lenaerts
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
228
|
du Plessis WJ, Kleynhans L, du Plessis N, Stanley K, Malherbe ST, Maasdorp E, Ronacher K, Chegou NN, Walzl G, Loxton AG. The Functional Response of B Cells to Antigenic Stimulation: A Preliminary Report of Latent Tuberculosis. PLoS One 2016; 11:e0152710. [PMID: 27050308 PMCID: PMC4822853 DOI: 10.1371/journal.pone.0152710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/17/2016] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) remains a successful pathogen, causing tuberculosis disease numbers to constantly increase. Although great progress has been made in delineating the disease, the host-pathogen interaction is incompletely described. B cells have shown to function as both effectors and regulators of immunity via non-humoral methods in both innate and adaptive immune settings. Here we assessed specific B cell functional interaction following stimulation with a broad range of antigens within the LTBI milieu. Our results indicate that B cells readily produce pro- and anti-inflammatory cytokines (including IL-1β, IL-10, IL-17, IL-21 and TNF-α) in response to stimulation. TLR4 and TLR9 based stimulations achieved the greatest secreted cytokine-production response and BCG stimulation displayed a clear preference for inducing IL-1β production. We also show that the cytokines produced by B cells are implicated strongly in cell-mediated communication and that plasma (memory) B cells (CD19+CD27+CD138+) is the subset with the greatest contribution to cytokine production. Collectively our data provides insight into B cell responses, where they are implicated in and quantifies responses from specific B cell phenotypes. These findings warrant further functional B cell research with a focus on specific B cell phenotypes under conditions of active TB disease to further our knowledge about the contribution of various cell subsets which could have implications for future vaccine development or refined B cell orientated treatment in the health setting.
Collapse
Affiliation(s)
- Willem J. du Plessis
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nelita du Plessis
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kim Stanley
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stephanus T. Malherbe
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Elizna Maasdorp
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Novel N. Chegou
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard Walzl
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
229
|
Dawadi S, Kawamura S, Rubenstein A, Remmel R, Aldrich CC. Synthesis and pharmacological evaluation of nucleoside prodrugs designed to target siderophore biosynthesis in Mycobacterium tuberculosis. Bioorg Med Chem 2016; 24:1314-21. [PMID: 26875934 PMCID: PMC4769951 DOI: 10.1016/j.bmc.2016.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 11/22/2022]
Abstract
The nucleoside antibiotic, 5'-O-[N-(salicyl)sulfamoyl]adenosine (1), possesses potent whole-cell activity against Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB). This compound is also active in vivo, but suffers from poor drug disposition properties that result in poor bioavailability and rapid clearance. The synthesis and evaluation of a systematic series of lipophilic ester prodrugs containing linear and α-branched alkanoyl groups from two to twelve carbons at the 3'-position of a 2'-fluorinated analog of 1 is reported with the goal to improve oral bioavailability. The prodrugs were stable in simulated gastric fluid (pH 1.2) and under physiological conditions (pH 7.4). The prodrugs were also remarkably stable in mouse, rat, and human serum (relative serum stability: human∼rat≫mouse) displaying a parabolic trend in the SAR with hydrolysis rates increasing with chain length up to eight carbons (t1/2=1.6 h for octanoyl prodrug 7 in mouse serum) and then decreasing again with higher chain lengths. The permeability of the prodrugs was also assessed in a Caco-2 cell transwell model. All of the prodrugs were found to have reduced permeation in the apical-to-basolateral direction and enhanced permeation in the basolateral-to-apical direction relative to the parent compound 2, resulting in efflux ratios 5-28 times greater than 2. Additionally, Caco-2 cells were found to hydrolyze the prodrugs with SAR mirroring the serum stability results and a preference for hydrolysis on the apical side. Taken together, these results suggest that the described prodrug strategy will lead to lower than expected oral bioavailability of 2 and highlight the contribution of intestinal esterases for prodrug hydrolysis.
Collapse
Affiliation(s)
- Surendra Dawadi
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Shuhei Kawamura
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Anja Rubenstein
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Rory Remmel
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
230
|
Moreira W, Aziz DB, Dick T. Boromycin Kills Mycobacterial Persisters without Detectable Resistance. Front Microbiol 2016; 7:199. [PMID: 26941723 PMCID: PMC4761863 DOI: 10.3389/fmicb.2016.00199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/05/2016] [Indexed: 11/13/2022] Open
Abstract
Boromycin is a boron-containing polyether macrolide antibiotic isolated from Streptomyces antibioticus. It was shown to be active against Gram positive bacteria and to act as an ionophore for potassium ions. The antibiotic is ineffective against Gram negative bacteria where the outer membrane appears to block access of the molecule to the cytoplasmic membrane. Here we asked whether boromycin is active against Mycobacterium tuberculosis which, similar to Gram negative bacteria, possesses an outer membrane. The results show that boromycin is a potent inhibitor of mycobacterial growth (MIC50 = 80 nM) with strong bactericidal activity against growing and non-growing drug tolerant persister bacilli. Exposure to boromycin resulted in a rapid loss of membrane potential, reduction of the intracellular ATP level and leakage of cytoplasmic protein. Consistent with boromycin acting as a potassium ionophore, addition of KCl to the medium blocked its antimycobacterial activity. In contrast to the potent antimycobacterial activities of the polyether macrolide, its cytotoxicity and haemolytic activity were low (CC50 = 30 μM, HC50 = 40 μM) with a selectivity index of more than 300. Spontaneous resistant mutants could not be isolated suggesting a mutation frequency of less than 10(-9)/CFU. Taken together, the results suggests that targeting mycobacterial transmembrane ion gradients may be an attractive chemotherapeutic intervention level to kill otherwise drug tolerant persister bacilli, and to slow down the development of genetic antibiotic resistance.
Collapse
Affiliation(s)
- Wilfried Moreira
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Dinah B Aziz
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Thomas Dick
- Antibacterial Drug Discovery Laboratory, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
231
|
Hunter RL. Tuberculosis as a three-act play: A new paradigm for the pathogenesis of pulmonary tuberculosis. Tuberculosis (Edinb) 2016; 97:8-17. [PMID: 26980490 DOI: 10.1016/j.tube.2015.11.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/22/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Lack of access to human tissues with untreated tuberculosis (TB) has forced generations of researchers to use animal models and to adopt a paradigm that granulomas are the characteristic lesion of both primary and post primary TB. An extended search of studies of human lung tissues failed to find any reports that support this paradigm. We found scores of publications from gross pathology in 1804 through high resolution CT scans in 2015 that identify obstructive lobular pneumonia, not granulomas, as the characteristic lesion of developing post-primary TB. This paper reviews this literature together with other relevant observations to formulate a new paradigm of TB with three distinct stages: a three-act play. First, primary TB, a war of attrition, begins with infection that spreads via lymphatics and blood stream before inducing systemic immunity that contains and controls the organisms within granulomas. Second, post-primary TB, a sneak attack, develops during latent TB as an asymptomatic obstructive lobular pneumonia in persons with effective systemic immunity. It is a paucibacillary process with no granulomas that spreads via bronchi and accumulates mycobacterial antigens and host lipids for 1-2 years before suddenly undergoing caseous necrosis. Third, the fallout, is responsible for nearly all clinical post primary disease. It begins with caseous necrotic pneumonia that is either retained to become the focus of fibrocaseous disease or is coughed out to leave a cavity. This three-stage paradigm suggests testable hypotheses and plausible answers to long standing questions of immunity to TB.
Collapse
Affiliation(s)
- Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at Houston, MSB 2.136, 6431 Fannin, Houston, TX 77030, USA.
| |
Collapse
|
232
|
|
233
|
Nathan C. What can immunology contribute to the control of the world's leading cause of death from bacterial infection? Immunol Rev 2015; 264:2-5. [PMID: 25703548 DOI: 10.1111/imr.12277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Video podcast available Go to www.immunologicalreviews.com to watch an interview with Guest Editor Carl Nathan.
Collapse
Affiliation(s)
- Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
234
|
Selective Inactivity of Pyrazinamide against Tuberculosis in C3HeB/FeJ Mice Is Best Explained by Neutral pH of Caseum. Antimicrob Agents Chemother 2015; 60:735-43. [PMID: 26574016 DOI: 10.1128/aac.01370-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/08/2015] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide (PZA) is one of only two sterilizing drugs in the first-line antituberculosis regimen. Its activity is strongly pH dependent; the MIC changes by several orders of magnitude over a range of pH values that may be encountered in various in vivo compartments. We recently reported selective inactivity of PZA in a subset of C3HeB/FeJ mice with large caseous lung lesions. In the present study, we evaluated whether such inactivity was explained by poor penetration of PZA into such lesions or selection of drug-resistant mutants. Despite demonstrating similar dose-proportional PZA exposures in plasma, epithelial lining fluid, and lung lesions, no dose response was observed in a subset of C3HeB/FeJ mice with the highest CFU burden. Although PZA-resistant mutants eventually replaced the susceptible bacilli in BALB/c mice and in C3HeB/FeJ mice with low total CFU burdens, they never exceeded 1% of the total population in nonresponding C3HeB/FeJ mice. The selective inactivity of PZA in large caseous lesions of C3HeB/FeJ mice is best explained by the neutral pH of liquefying caseum.
Collapse
|
235
|
Mouse models of human TB pathology: roles in the analysis of necrosis and the development of host-directed therapies. Semin Immunopathol 2015; 38:221-37. [PMID: 26542392 PMCID: PMC4779126 DOI: 10.1007/s00281-015-0538-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/22/2015] [Indexed: 12/28/2022]
Abstract
A key aspect of TB pathogenesis that maintains Mycobacterium tuberculosis in the human population is the ability to cause necrosis in pulmonary lesions. As co-evolution shaped M. tuberculosis (M.tb) and human responses, the complete TB disease profile and lesion manifestation are not fully reproduced by any animal model. However, animal models are absolutely critical to understand how infection with virulent M.tb generates outcomes necessary for the pathogen transmission and evolutionary success. In humans, a wide spectrum of TB outcomes has been recognized based on clinical and epidemiological data. In mice, there is clear genetic basis for susceptibility. Although the spectra of human and mouse TB do not completely overlap, comparison of human TB with mouse lesions across genetically diverse strains firmly establishes points of convergence. By embracing the genetic heterogeneity of the mouse population, we gain tremendous advantage in the quest for suitable in vivo models. Below, we review genetically defined mouse models that recapitulate a key element of M.tb pathogenesis—induction of necrotic TB lesions in the lungs—and discuss how these models may reflect TB stratification and pathogenesis in humans. The approach ensures that roles that mouse models play in basic and translational TB research will continue to increase allowing researchers to address fundamental questions of TB pathogenesis and bacterial physiology in vivo using this well-defined, reproducible, and cost-efficient system. Combination of the new generation mouse models with advanced imaging technologies will also allow rapid and inexpensive assessment of experimental vaccines and therapies prior to testing in larger animals and clinical trials.
Collapse
|
236
|
Dutta NK, Karakousis PC. Can the duration of tuberculosis treatment be shortened with higher dosages of rifampicin? Front Microbiol 2015; 6:1117. [PMID: 26528265 PMCID: PMC4604300 DOI: 10.3389/fmicb.2015.01117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Noton K Dutta
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Petros C Karakousis
- Department of Medicine, Center for Tuberculosis Research, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of International Health, Johns Hopkins Bloomberg School of Public Health Baltimore, MD, USA
| |
Collapse
|
237
|
Kiran D, Podell BK, Chambers M, Basaraba RJ. Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review. Semin Immunopathol 2015; 38:167-83. [PMID: 26510950 PMCID: PMC4779125 DOI: 10.1007/s00281-015-0537-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Abstract
Infection by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb) is a major cause of morbidity and mortality worldwide. Slow progress has been made in lessening the impact of tuberculosis (TB) on human health, especially in parts of the world where Mtb is endemic. Due to the complexity of TB disease, there is still an urgent need to improve diagnosis, prevention, and treatment strategies to control global spread of disease. Active research targeting avenues to prevent infection or transmission through vaccination, to diagnose asymptomatic carriers of Mtb, and to improve antimicrobial drug treatment responses is ongoing. However, this research is hampered by a relatively poor understanding of the pathogenesis of early infection and the factors that contribute to host susceptibility, protection, and the development of active disease. There is increasing interest in the development of adjunctive therapy that will aid the host in responding to Mtb infection appropriately thereby improving the effectiveness of current and future drug treatments. In this review, we summarize what is known about the host response to Mtb infection in humans and animal models and highlight potential therapeutic targets involved in TB granuloma formation and resolution. Strategies designed to shift the balance of TB granuloma formation toward protective rather than destructive processes are discussed based on our current knowledge. These therapeutic strategies are based on the assumption that granuloma formation, although thought to prevent the spread of the tubercle bacillus within and between individuals contributes to manifestations of active TB disease in human patients when left unchecked. This effect of granuloma formation favors the spread of infection and impairs antimicrobial drug treatment. By gaining a better understanding of the mechanisms by which Mtb infection contributes to irreversible tissue damage, down regulates protective immune responses, and delays tissue healing, new treatment strategies can be rationally designed. Granuloma-targeted therapy is advantageous because it allows for the repurpose of existing drugs used to treat other communicable and non-communicable diseases as adjunctive therapies combined with existing and future anti-TB drugs. Thus, the development of adjunctive, granuloma-targeted therapy, like other host-directed therapies, may benefit from the availability of approved drugs to aid in treatment and prevention of TB. In this review, we have attempted to summarize the results of published studies in the context of new innovative approaches to host-directed therapy that need to be more thoroughly explored in pre-clinical animal studies and in human clinical trials.
Collapse
Affiliation(s)
- Dilara Kiran
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA
| | - Brendan K Podell
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA
| | - Mark Chambers
- Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.,School of Veterinary Medicine Faculty of Health and Medical Sciences, University of Surrey, Vet School Main Building, Daphne Jackson Road, Guildford, GU2 7AL, UK
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, Metabolism of Infectious Diseases Laboratory and Mycobacteria Research Laboratories, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 200 West Lake Street, 1619 Campus Delivery, Fort Collins, CO, 80523-1619, USA.
| |
Collapse
|
238
|
Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis. Semin Immunopathol 2015; 38:153-66. [PMID: 26438324 DOI: 10.1007/s00281-015-0531-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022]
Abstract
Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.
Collapse
|
239
|
Kubler A, Larsson C, Luna B, Andrade BB, Amaral EP, Urbanowski M, Orandle M, Bock K, Ammerman NC, Cheung LS, Winglee K, Halushka M, Park JK, Sher A, Friedland JS, Elkington PT, Bishai WR. Cathepsin K Contributes to Cavitation and Collagen Turnover in Pulmonary Tuberculosis. J Infect Dis 2015; 213:618-27. [PMID: 26416658 DOI: 10.1093/infdis/jiv458] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022] Open
Abstract
Cavitation in tuberculosis enables highly efficient person-to-person aerosol transmission. We performed transcriptomics in the rabbit cavitary tuberculosis model. Among 17 318 transcripts, we identified 22 upregulated proteases. Five type I collagenases were overrepresented: cathepsin K (CTSK), mast cell chymase-1 (CMA1), matrix metalloproteinase 1 (MMP-1), MMP-13, and MMP-14. Studies of collagen turnover markers, specifically, collagen type I C-terminal propeptide (CICP), urinary deoxypyridinoline (DPD), and urinary helical peptide, revealed that cavitation in tuberculosis leads to both type I collagen destruction and synthesis and that proteases other than MMP-1, MMP-13, and MMP-14 are involved, suggesting a key role for CTSK. We confirmed the importance of CTSK upregulation in human lung specimens, using immunohistochemical analysis, which revealed perigranulomatous staining for CTSK, and we showed that CTSK levels were increased in the serum of patients with tuberculosis, compared with those in controls (3.3 vs 0.3 ng/mL; P = .005).
Collapse
Affiliation(s)
- Andre Kubler
- Infectious Diseases and Immunity, Imperial College London Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | | | - Brian Luna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Michael Urbanowski
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Marlene Orandle
- Infectious Diseases Pathogenesis Section, Comparative Medicine Branch, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Kevin Bock
- Infectious Diseases Pathogenesis Section, Comparative Medicine Branch, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Nicole C Ammerman
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Laurene S Cheung
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Kathryn Winglee
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Marc Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore
| | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, South Korea
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | | | - Paul T Elkington
- Infectious Diseases and Immunity, Imperial College London Faculty of Medicine, University of Southampton, United Kingdom
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
240
|
A Novel Reading Scheme for Assessing the Extent of Radiographic Abnormalities and Its Association with Disease Severity in Sputum Smear-Positive Tuberculosis: An Observational Study in Hyderabad/India. PLoS One 2015; 10:e0138070. [PMID: 26381644 PMCID: PMC4575099 DOI: 10.1371/journal.pone.0138070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/25/2015] [Indexed: 11/19/2022] Open
Abstract
Background Existing reading schemes for chest X-ray (CXR) used to grade the extent of disease severity at diagnosis in patients with pulmonary tuberculosis (PTB) are often based on numerical scores that summate specific radiographic features. However, since PTB is known to exhibit a wide heterogeneity in pathology, certain features might be differentially associated with clinical parameters of disease severity. Objective We aimed to grade disease severity in PTB patients at diagnosis and after completion of DOTS treatment by developing a reading scheme based on five different radiographic manifestations and analyze their association with the clinical parameters of systemic involvement and infectivity. Methods 141 HIV-negative adults with newly diagnosed sputum smear-positive PTB were enrolled in a prospective observational study in Hyderabad, India. The presence and extent on CXRs of five radiographic manifestations, i.e., lung involvement, alveolar infiltration, cavitation, lymphadenopathy and pleural effusion, were classified using the new reading scheme by using a four-quadrant approach. We evaluated the inter-reader reliability of each manifestation, and its association with BMI and sputum smear positivity at diagnosis. The presence and extent of these radiographic manifestations were further compared with CXRs on completion of DOTS treatment. Results At diagnosis, an average lung area of 51.7% +/- 23.3% was affected by radiographic abnormalities. 94% of the patients had alveolar infiltrates, with 89.4% located in the upper quadrants, suggesting post primary PTB and in 34.8% of patients cavities were found. We further showed that the extent of affected lung area was a negative predictor of BMI (β value -0.035, p 0.019). No significant association of BMI with any of the other CXR features was found. The extent of alveolar infiltrates, along with the presence of cavitation, were strongly associated with sputum smear positivity. The microbiological cure rate in our cohort after 6 months of DOTS treatment was 95%. The extent of the affected lung area in these patients decreased from 56.0% +/- 21.5% to 31.0 +/- 20% and a decrease was also observed in the extent of alveolar infiltrates from 98.4% to 25.8% in at least one quadrant, presence of cavities from 34.8% to 1.6%, lymphadenopathy from 46.8% to 16.1%, and pleural effusion from 19.4% to 6.5%. Conclusions We established a new assessment scheme for grading disease severity in PTB by specifically considering five radiographic manifestations which were differently associated with the BMI and sputum smear positivity, changed to a different extent after 6 months of treatment and exhibited an excellent agreement between radiologists. Our results suggest that this reading scheme might contribute to the estimation of disease severity with respect to differences in disease pathology. Further studies are needed to determine a correlation with short and long-term pulmonary function impairment and whether there would be any benefit in lengthening or modulating therapy based on this CXR severity assessment.
Collapse
|
241
|
Eagle Effect in Nonreplicating Persister Mycobacteria. Antimicrob Agents Chemother 2015; 59:7786-9. [PMID: 26349831 PMCID: PMC4649170 DOI: 10.1128/aac.01476-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/03/2015] [Indexed: 11/25/2022] Open
Abstract
We determined the microbicidal activities of antibacterials against nonreplicating Mycobacterium smegmatis grown in a starvation-based Loebel model for persistence. Whereas most drugs lost their activity, fluoroquinolones retained lethal potency. Dose-response characterizations showed a paradoxical more-drug-kills-less Eagle effect. Pretreatment of cultures with chloramphenicol blocked the lethal action of the gyrase inhibitors. These results suggest that fluoroquinolones at low concentrations trigger a protein synthesis-dependent cell death pathway and shut off this suicide pathway at elevated concentrations.
Collapse
|
242
|
Keswani RK, Yoon GS, Sud S, Stringer KA, Rosania GR. A far-red fluorescent probe for flow cytometry and image-based functional studies of xenobiotic sequestering macrophages. Cytometry A 2015; 87:855-67. [PMID: 26109497 PMCID: PMC4553085 DOI: 10.1002/cyto.a.22706] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/17/2023]
Abstract
Clofazimine (CFZ) is an optically active, red-colored chemotherapeutic agent that is FDA approved for the treatment of leprosy and is on the World Health Organization's list of essential medications. Interestingly, CFZ massively accumulates in macrophages where it forms crystal-like drug inclusions (CLDIs) after oral administration of the drug in animals and humans. The analysis of the fluorescence spectra of CLDIs formed by resident tissue macrophages revealed that CFZ, when accumulated as CLDIs, undergoes a red shift in fluorescence excitation (from Ex: 540-570 to 560-600 nm) and emission (Em: 560-580 to 640-700 nm) signal relative to the soluble and free-base crystal forms of CFZ. Using epifluorescence microscopy, CLDI(+) cells could be identified, relative to CLDI(-) cells, based on a >3-fold increment in mean fluorescence signal at excitation 640 nm and emission at 670 nm. Similarly, CLDI(+) cells could be identified by flow cytometry, based on a >100-fold increment in mean fluorescence signal using excitation lasers at 640 nm and emission detectors >600 nm. CLDI's fluorescence excitation and emission was orthogonal to that of cell viability dyes such as propidium iodide and 4,6-diamidino-2-phenylindole dihydrochloride (DAPI), cellular staining dyes such as Hoechst 33342 (nucleus) and FM 1-43 (plasma membrane), as well as many other fluorescently tagged antibodies used for immunophenotyping analyses. In vivo, >85% of CLDI(+) cells in the peritoneal exudate were F4/80(+) macrophages and >97% of CLDI(+) cells in the alveolar exudate were CD11c(+). Most importantly, the viability of cells was minimally affected by the presence of CLDIs. Accordingly, these results establish that CFZ fluorescence in CLDIs is suitable for quantitative flow cytometric phenotyping analysis and functional studies of xenobiotic sequestering macrophages.
Collapse
Affiliation(s)
- Rahul K. Keswani
- Department of Pharmaceutical Sciences College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109
| | - Gi Sang Yoon
- Department of Pharmaceutical Sciences College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109
| | - Sudha Sud
- Department of Pharmaceutical Sciences College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109
| | - Kathleen A. Stringer
- Department of Clinical, Social and Administrative Sciences College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI 48109
| |
Collapse
|
243
|
Piccaro G, Poce G, Biava M, Giannoni F, Fattorini L. Activity of lipophilic and hydrophilic drugs against dormant and replicating Mycobacterium tuberculosis. J Antibiot (Tokyo) 2015; 68:711-4. [PMID: 25944535 DOI: 10.1038/ja.2015.52] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/12/2015] [Accepted: 04/08/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Giovanni Piccaro
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Mariangela Biava
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Federico Giannoni
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Lanfranco Fattorini
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|