201
|
Maejima Y, Yokota S, Nishimori K, Shimomura K. The Anorexigenic Neural Pathways of Oxytocin and Their Clinical Implication. Neuroendocrinology 2018; 107:91-104. [PMID: 29660735 DOI: 10.1159/000489263] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
Oxytocin was discovered in 1906 as a peptide that promotes delivery and milk ejection; however, its additional physiological functions were determined 100 years later. Many recent articles have reported newly discovered effects of oxytocin on social communication, bonding, reward-related behavior, adipose tissue, and muscle and food intake regulation. Because oxytocin neurons project to various regions in the brain that contribute to both feeding reward (hedonic feeding) and the regulation of energy balance (homeostatic feeding), the mechanisms of oxytocin on food intake regulation are complicated and largely unknown. Oxytocin neurons in the paraventricular nucleus (PVN) receive neural projections from the arcuate nucleus (ARC), which is an important center for feeding regulation. On the other hand, these neurons in the PVN and supraoptic nucleus project to the ARC. PVN oxytocin neurons also project to the brain stem and the reward-related limbic system. In addition to this, oxytocin induces lipolysis and decreases fat mass. However, these effects in feeding and adipose tissue are known to be dependent on body weight (BW). Oxytocin treatment is more effective in food intake regulation and fat mass decline for individuals with leptin resistance and higher BW, but is known to be less effective in individuals with normal BW. In this review, we present in detail the recent findings on the physiological role of oxytocin in feeding regulation and the anorexigenic neural pathway of oxytocin neurons, as well as the advantage of oxytocin usage for anti-obesity treatment.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
202
|
Bosch OJ, Pohl TT, Neumann ID, Young LJ. Abandoned prairie vole mothers show normal maternal care but altered emotionality: Potential influence of the brain corticotropin-releasing factor system. Behav Brain Res 2017; 341:114-121. [PMID: 29288748 DOI: 10.1016/j.bbr.2017.12.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/24/2017] [Accepted: 12/27/2017] [Indexed: 02/09/2023]
Abstract
When fathers leave the family, mothers are at increased risk of developing depression and anxiety disorders. In biparental, socially monogamous prairie voles (Microtus ochrogaster), sudden bond disruption increases passive stress-coping, indicative of depressive-like behavior, and acts as chronic stressor in both males and females. However, the consequences of separation in lactating prairie vole mothers are unknown. In the present study, following 18 days of cohousing, half of the prairie vole pairs were separated by removing the male. In early lactation, maternal care was unaffected by separation, whereas anxiety-related behavior and passive stress-coping were significantly elevated in separated mothers. Separation significantly increased corticotropin-releasing factor (CRF) mRNA expression in the paraventricular nucleus of the hypothalamus under basal conditions, similar to levels of paired females after acute exposure to forced swim stress. A second cohort of lactating prairie voles was infused intracerebroventricularly with either vehicle or the CRF receptor antagonist D-Phe just prior to behavioral testing. The brief restraining during acute infusion significantly decreased arched back nursing in vehicle-treated paired and separated groups, whereas in the D-Phe-treated separated group the behavior was not impaired. Furthermore, in the latter, anxiety-related behavior and passive stress-coping were normalized to levels similar to vehicle-treated paired mothers. In conclusion, maternal investment is robust enough to withstand loss of the partner, whereas the mother's emotionality is affected, which may be - at least partly - mediated by a CRF-dependent mechanism. This animal model has potential for mechanistic studies of behavioral and physiological consequences of partner loss in single mothers.
Collapse
Affiliation(s)
- Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Universitaetsstr. 31, 93040 Regensburg, Germany.
| | - Tobias T Pohl
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Universitaetsstr. 31, 93040 Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Universitaetsstr. 31, 93040 Regensburg, Germany.
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd., Atlanta, GA 30329, USA.
| |
Collapse
|
203
|
Leblanc É, Dégeilh F, Daneault V, Beauchamp MH, Bernier A. Attachment Security in Infancy: A Preliminary Study of Prospective Links to Brain Morphometry in Late Childhood. Front Psychol 2017; 8:2141. [PMID: 29312029 PMCID: PMC5733037 DOI: 10.3389/fpsyg.2017.02141] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 11/30/2022] Open
Abstract
A large body of longitudinal research provides compelling evidence for the critical role of early attachment relationships in children’s social, emotional, and cognitive development. It is expected that parent–child attachment relationships may also impact children’s brain development, however, studies linking normative caregiving experiences and brain structure are scarce. To our knowledge, no study has yet examined the associations between the quality of parent–infant attachment relationships and brain morphology during childhood. The aim of this preliminary study was to investigate the prospective links between mother–infant attachment security and whole-brain gray matter (GM) volume and thickness in late childhood. Attachment security toward the mother was assessed in 33 children when they were 15 months old. These children were then invited to undergo structural magnetic resonance imaging at 10–11 years of age. Results indicated that children more securely attached to their mother in infancy had larger GM volumes in the superior temporal sulcus and gyrus, temporo-parietal junction, and precentral gyrus in late childhood. No associations between attachment security and cortical thickness were found. If replicated, these results would suggest that a secure attachment relationship and its main features (e.g., adequate dyadic emotion regulation, competent exploration) may influence GM volume in brain regions involved in social, cognitive, and emotional functioning through experience-dependent processes.
Collapse
Affiliation(s)
- Élizabel Leblanc
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Fanny Dégeilh
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Véronique Daneault
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,Functional Neuroimaging Unit, University of Montreal's Geriatric Institute, Montreal, QC, Canada.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Montreal, QC, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, QC, Canada.,CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Annie Bernier
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
204
|
Kinreich S, Djalovski A, Kraus L, Louzoun Y, Feldman R. Brain-to-Brain Synchrony during Naturalistic Social Interactions. Sci Rep 2017; 7:17060. [PMID: 29213107 PMCID: PMC5719019 DOI: 10.1038/s41598-017-17339-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/19/2017] [Indexed: 01/28/2023] Open
Abstract
The evolution of humans as a highly social species tuned the brain to the social world; yet the mechanisms by which humans coordinate their brain response online during social interactions remain unclear. Using hyperscanning EEG recordings, we measured brain-to-brain synchrony in 104 adults during a male-female naturalistic social interaction, comparing romantic couples and strangers. Neural synchrony was found for couples, but not for strangers, localized to temporal-parietal structures and expressed in gamma rhythms. Brain coordination was not found during a three-minute rest, pinpointing neural synchrony to social interactions among affiliative partners. Brain-to-brain synchrony was linked with behavioral synchrony. Among couples, neural synchrony was anchored in moments of social gaze and positive affect, whereas among strangers, longer durations of social gaze and positive affect correlated with greater neural synchrony. Brain-to-brain synchrony was unrelated to episodes of speech/no-speech or general content of conversation. Our findings link brain-to-brain synchrony to the degree of social connectedness among interacting partners, ground neural synchrony in key nonverbal social behaviors, and highlight the role of human attachment in providing a template for two-brain coordination.
Collapse
Affiliation(s)
- Sivan Kinreich
- Gonda Brain Sciences Center, Bar-Ilan University, Ramat Gan, Israel
| | - Amir Djalovski
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Lior Kraus
- Gonda Brain Sciences Center, Bar-Ilan University, Ramat Gan, Israel
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Ruth Feldman
- Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzlia, Israel.
- Yale University Child Study Center, New Haven, USA.
| |
Collapse
|
205
|
Vidal B, Karpenko IA, Liger F, Fieux S, Bouillot C, Billard T, Hibert M, Zimmer L. [ 11 C]PF-3274167 as a PET radiotracer of oxytocin receptors: Radiosynthesis and evaluation in rat brain. Nucl Med Biol 2017; 55:1-6. [DOI: 10.1016/j.nucmedbio.2017.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/24/2017] [Accepted: 07/29/2017] [Indexed: 01/30/2023]
|
206
|
Mitre M, Kranz TM, Marlin BJ, Schiavo JK, Erdjument-Bromage H, Zhang X, Minder J, Neubert TA, Hackett TA, Chao MV, Froemke RC. Sex-Specific Differences in Oxytocin Receptor Expression and Function for Parental Behavior. GENDER AND THE GENOME 2017; 1:142-166. [PMID: 32959027 PMCID: PMC7500123 DOI: 10.1089/gg.2017.0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/17/2023] Open
Abstract
Parental care is among the most profound behavior expressed by humans and other animals. Despite intense interest in understanding the biological basis of parental behaviors, it remains unknown how much of parenting is encoded by the genome and which abilities instead are learned or can be refined by experience. One critical factor at the intersection between innate behaviors and experience-dependent learning is oxytocin, a neurohormone important for maternal physiology and neuroplasticity. Oxytocin acts throughout the body and brain to promote prosocial and maternal behaviors and modulates synaptic transmission to affect neural circuit dynamics. Recently we developed specific antibodies to mouse oxytocin receptors, found that oxytocin receptors are left lateralized in female auditory cortex, and examined how oxytocin enables maternal behavior by sensitizing the cortex to infant distress sounds. In this study we compare oxytocin receptor expression and function in male and female mice. Receptor expression is higher in adult female left auditory cortex than in right auditory cortex or males. Developmental profiles and mRNA expression were comparable between males and females. Behaviorally, male and female mice began expressing parental behavior similarly after cohousing with experienced females; however, oxytocin enhanced parental behavior onset in females but not males. This suggests that left lateralization of oxytocin receptor expression in females provides a mechanism for accelerating maternal behavior onset, although male mice can also effectively co-parent after experience with infants. The sex-specific pattern of oxytocin receptor expression might genetically predispose female cortex to respond to infant cues, which both males and females can also rapidly learn.
Collapse
Affiliation(s)
- Mariela Mitre
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Thorsten M. Kranz
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Bianca J. Marlin
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Jennifer K. Schiavo
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Hediye Erdjument-Bromage
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | | | - Jess Minder
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| | - Thomas A. Neubert
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York
| | - Troy A. Hackett
- Department of Hearing and Speech Sciences, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Moses V. Chao
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
- Department of Cell Biology, Psychiatry, New York University School of Medicine, New York, New York
| | - Robert C. Froemke
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York
- Neuroscience Institute, New York University School of Medicine, New York, New York
- Department of Otolaryngology, New York University School of Medicine, New York, New York
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York
| |
Collapse
|
207
|
Oxytocin modulates human communication by enhancing cognitive exploration. Psychoneuroendocrinology 2017; 86:64-72. [PMID: 28915382 DOI: 10.1016/j.psyneuen.2017.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 11/22/2022]
Abstract
Oxytocin is a neuropeptide known to influence how humans share material resources. Here we explore whether oxytocin influences how we share knowledge. We focus on two distinguishing features of human communication, namely the ability to select communicative signals that disambiguate the many-to-many mappings that exist between a signal's form and meaning, and adjustments of those signals to the presumed cognitive characteristics of the addressee ("audience design"). Fifty-five males participated in a randomized, double-blind, placebo controlled experiment involving the intranasal administration of oxytocin. The participants produced novel non-verbal communicative signals towards two different addressees, an adult or a child, in an experimentally-controlled live interactive setting. We found that oxytocin administration drives participants to generate signals of higher referential quality, i.e. signals that disambiguate more communicative problems; and to rapidly adjust those communicative signals to what the addressee understands. The combined effects of oxytocin on referential quality and audience design fit with the notion that oxytocin administration leads participants to explore more pervasively behaviors that can convey their intention, and diverse models of the addressees. These findings suggest that, besides affecting prosocial drive and salience of social cues, oxytocin influences how we share knowledge by promoting cognitive exploration.
Collapse
|
208
|
Maternal prolactin during late pregnancy is important in generating nurturing behavior in the offspring. Proc Natl Acad Sci U S A 2017; 114:13042-13047. [PMID: 29158391 DOI: 10.1073/pnas.1621196114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although maternal nurturing behavior is extremely important for the preservation of a species, our knowledge of the biological underpinnings of these behaviors is insufficient. Here we show that the degree of a mother's nurturing behavior is regulated by factors present during her own fetal development. We found that Cin85-deficient (Cin85-/-) mother mice had reduced pituitary hormone prolactin (PRL) secretion as a result of excessive dopamine signaling in the brain. Their offspring matured normally and produced their own pups; however, nurturing behaviors such as pup retrieval and nursing were strongly inhibited. Surprisingly, when WT embryos were transplanted into the fallopian tubes of Cin85-/- mice, they also exhibited inhibited nurturing behavior as adults. Conversely, when Cin85-/- embryos were transplanted into the fallopian tubes of WT mice, the resultant pups exhibited normal nurturing behaviors as adults. When PRL was administered to Cin85-/- mice during late pregnancy, a higher proportion of the resultant pups exhibited nurturing behaviors as adults. This correlates with our findings that neural circuitry associated with nurturing behaviors was less active in pups born to Cin85-/- mothers, but PRL administration to mothers restored neural activity to normal levels. These results suggest that the prenatal period is extremely important in determining the expression of nurturing behaviors in the subsequent generation, and that maternal PRL is one of the critical factors for expression. In conclusion, perinatally secreted maternal PRL affects the expression of nurturing behaviors not only in a mother, but also in her pups when they have reached adulthood.
Collapse
|
209
|
Gross Margolis K, Vittorio J, Talavera M, Gluck K, Li Z, Iuga A, Stevanovic K, Saurman V, Israelyan N, Welch MG, Gershon MD. Enteric serotonin and oxytocin: endogenous regulation of severity in a murine model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G386-G398. [PMID: 28774871 PMCID: PMC5792212 DOI: 10.1152/ajpgi.00215.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC), a gastrointestinal inflammatory disease of unknown etiology that may also affect the liver, causes a great deal of morbidity and mortality in premature infants. We tested the hypothesis that signaling molecules, which are endogenous to the bowel, regulate the severity of intestinal and hepatic damage in an established murine NEC model. Specifically, we postulated that mucosal serotonin (5-HT), which is proinflammatory, would exacerbate experimental NEC and that oxytocin (OT), which is present in enteric neurons and is anti-inflammatory, would oppose it. Genetic deletion of the 5-HT transporter (SERT), which increases and prolongs effects of 5-HT, was found to increase the severity of systemic manifestations, intestinal inflammation, and associated hepatotoxicity of experimental NEC. In contrast, genetic deletion of tryptophan hydroxylase 1 (TPH1), which is responsible for 5-HT biosynthesis in enterochromaffin (EC) cells of the intestinal mucosa, and TPH inhibition with LP-920540 both decrease the severity of experimental NEC in the small intestine and liver. These observations suggest that 5-HT from EC cells helps to drive the inflammatory damage to the gut and liver that occurs in the murine NEC model. Administration of OT decreased, while the OT receptor antagonist atosiban exacerbated, the intestinal inflammation of experimental NEC. Data from the current investigation are consistent with the tested hypotheses-that the enteric signaling molecules, 5-HT (positively) and OT (negatively) regulate severity of inflammation in a mouse model of NEC. Moreover, we suggest that mucosally restricted inhibition of 5-HT biosynthesis and/or administration of OT may be useful in the treatment of NEC.NEW & NOTEWORTHY Serotonin (5-HT) and oxytocin reciprocally regulate the severity of intestinal inflammation and hepatotoxicity in a murine model of necrotizing enterocolitis (NEC). Selective depletion of mucosal 5-HT through genetic deletion or inhibition of tryptophan hydroxylase-1 ameliorates, while deletion of the 5-HT uptake transporter, which increases 5-HT availability, exacerbates the severity of NEC. In contrast, oxytocin reduces, while the oxytocin receptor antagonist atosiban enhances, NEC severity. Peripheral tryptophan hydroxylase inhibition may be useful in treatment of NEC.
Collapse
Affiliation(s)
- Kara Gross Margolis
- Department of Pediatrics, Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York; .,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Jennifer Vittorio
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Maria Talavera
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Karen Gluck
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Zhishan Li
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Alina Iuga
- 2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Korey Stevanovic
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Virginia Saurman
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Narek Israelyan
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| | - Martha G. Welch
- 1Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Medical Center, New York, New York; ,2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and ,3Department of Psychiatry, Columbia University Medical Center, New York, New York
| | - Michael D. Gershon
- 2Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
210
|
Abraham E, Gilam G, Kanat-Maymon Y, Jacob Y, Zagoory-Sharon O, Hendler T, Feldman R. The Human Coparental Bond Implicates Distinct Corticostriatal Pathways: Longitudinal Impact on Family Formation and Child Well-Being. Neuropsychopharmacology 2017; 42:2301-2313. [PMID: 28401924 PMCID: PMC5645748 DOI: 10.1038/npp.2017.71] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 01/05/2023]
Abstract
Alloparental care, the cooperative care of offspring by group members other than the biological mother, has been widely practiced since early hominin evolution to increase infant survival and thriving. The coparental bond-a relationship of solidarity and commitment between two adults who join their effort to care for children-is a central contributor to children's well-being and sociality; yet, the neural basis of coparenting has not been studied in humans. Here, we followed 84 first-time co-parents (42 couples) across the first 6 years of family formation, including opposite-sex and same-sex couples, measured brain response to coparental stimuli, observed collaborative and undermining coparental behaviors in infancy and preschool, assayed oxytocin (OT) and vasopressin (AVP), and measured coparenting and child behavior problems at 6 years. Across family types, coparental stimuli activated the striatum, specifically the ventral striatum and caudate, striatal nodes implicated in motivational goal-directed social behavior. Psychophysiological interaction analysis indicated that both nodes were functionally coupled with the vmPFC in support of the human coparental bond and this connectivity was stronger as collaborative coparental behavior increased. Furthermore, caudate functional connectivity patterns differentiated distinct corticostriatal pathways associated with two stable coparental behavioral styles; stronger caudate-vmPFC connectivity was associated with more collaborative coparenting and was linked to OT, whereas a stronger caudate-dACC connectivity was associated with increase in undermining coparenting and was related to AVP. Finally, dyadic path-analysis model indicated that the parental caudate-vmPFC connectivity in infancy predicted lower child externalizing symptoms at 6 years as mediated by collaborative coparenting in preschool. Findings indicate that the coparental bond is underpinned by striatal activations and corticostriatal connectivity similar to other human affiliative bonds; highlight specific corticostriatal pathways as defining distinct coparental orientations that underpin family life; chart brain-hormone-behavior constellations for the mature, child-orientated coparental bond; and demonstrate the flexibility of this bond across family constellations and its unique contribution to child well-being.
Collapse
Affiliation(s)
- Eyal Abraham
- Department of Psychology and The Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Gadi Gilam
- Functional Brain Center, Wohl Institute of Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- School of Psychological Sciences, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Yael Jacob
- Functional Brain Center, Wohl Institute of Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Orna Zagoory-Sharon
- Department of Psychology and The Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Talma Hendler
- Functional Brain Center, Wohl Institute of Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- School of Psychological Sciences, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Feldman
- Department of Psychology and The Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
211
|
Kim S, Iyengar U, Mayes LC, Potenza MN, Rutherford HJV, Strathearn L. Mothers with substance addictions show reduced reward responses when viewing their own infant's face. Hum Brain Mapp 2017; 38:5421-5439. [PMID: 28746733 PMCID: PMC5763911 DOI: 10.1002/hbm.23731] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 06/13/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022] Open
Abstract
Maternal addiction constitutes a major public health problem affecting children, with high rates of abuse, neglect, and foster care placement. However, little is known about the ways in which substance addiction alters brain function related to maternal behavior. Prior studies have shown that infant face cues activate similar dopamine-associated brain reward regions to substances of abuse. Here, we report on a functional MRI study documenting that mothers with addictions demonstrate reduced activation of reward regions when shown reward-related cues of their own infants. Thirty-six mothers receiving inpatient treatment for substance addiction were scanned at 6 months postpartum, while viewing happy and sad face images of their own infant compared to those of a matched unknown infant. When viewing happy face images of their own infant, mothers with addictions showed a striking pattern of decreased activation in dopamine- and oxytocin-innervated brain regions, including the hypothalamus, ventral striatum, and ventromedial prefrontal cortex-regions in which increased activation has previously been observed in mothers without addictions. Our results are the first to demonstrate that mothers with addictions show reduced activation in key reward regions of the brain in response to their own infant's face cues. Hum Brain Mapp 38:5421-5439, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sohye Kim
- Department of Obstetrics and GynecologyBaylor College of MedicineHoustonTexasUnited States
- Department of Pediatrics and Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUnited States
- Center for Reproductive Psychiatry, Pavilion for Women, Texas Children's HospitalHoustonTexasUnited States
| | - Udita Iyengar
- Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUnited Kingdom
| | - Linda C. Mayes
- Yale Child Study Center, Yale University School of MedicineNew HavenConnecticutUnited States
| | - Marc N. Potenza
- Yale Child Study Center, Yale University School of MedicineNew HavenConnecticutUnited States
- Departments of Psychiatry and Neuroscience and the National Center on Addiction and Substance Abuse (CASAColumbia)Yale University School of MedicineNew HavenConnecticutUnited States
- Connecticut Mental Health CenterNew HavenConnecticutUnited States
| | - Helena J. V. Rutherford
- Yale Child Study Center, Yale University School of MedicineNew HavenConnecticutUnited States
| | - Lane Strathearn
- Department of Pediatrics and Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUnited States
- Stead Family Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityIowaUnited States
| |
Collapse
|
212
|
He Z, Hou W, Hao X, Dong N, Du P, Yuan W, Yang J, Jia R, Tai F. Oxytocin receptor antagonist treatments alter levels of attachment to mothers and central dopamine activity in pre-weaning mandarin vole pups. Psychoneuroendocrinology 2017; 84:124-134. [PMID: 28710956 DOI: 10.1016/j.psyneuen.2017.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 11/15/2022]
Abstract
Oxytocin (OT) is known to be important in mother-infant bonding. Although the relationship between OT and filial attachment behavior has been studied in a few mammalian species, the effects on infant social behavior have received little attention in monogamous species. The present study examined the effects of OT receptor antagonist (OTA) treatment on attachment behavior and central dopamine (DA) activity in male and female pre-weaning mandarin voles (Microtus mandarinus). Our data showed that OTA treatments decreased the attachment behavior of pups to mothers, measured using preference tests at postnatal day 14, 16, 18 and 20. OTA treatments reduced serum OT concentration in pre-weaning pups and decreased tyrosine hydroxylase (TH) levels in the ventral tegmental area (VTA), indicating a decrease in central DA activity. In male and female pups, OTA reduced DA levels, DA 1-type receptor (D1R) and DA 2-type receptor (D2R) protein expression in the nucleus accumbens (NAcc). Our results indicate that OTA treatment inhibits the attachment of pre-weaning pups to mothers. This inhibition is possibly associated with central DA activity and levels of two types of dopamine receptor in the NAcc.
Collapse
Affiliation(s)
- Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Xin Hao
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Na Dong
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Peirong Du
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Jinfeng Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
213
|
Fischer EK, O'Connell LA. Modification of feeding circuits in the evolution of social behavior. ACTA ACUST UNITED AC 2017; 220:92-102. [PMID: 28057832 DOI: 10.1242/jeb.143859] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification.
Collapse
Affiliation(s)
- Eva K Fischer
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lauren A O'Connell
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
214
|
Zilkha N, Scott N, Kimchi T. Sexual Dimorphism of Parental Care: From Genes to Behavior. Annu Rev Neurosci 2017; 40:273-305. [DOI: 10.1146/annurev-neuro-072116-031447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niv Scott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
215
|
Beaulieu M, Ancel A, Chastel O, Criscuolo F, Raclot T. Socially-induced variation in physiological mediators of parental care in a colonial bird. Horm Behav 2017; 93:39-46. [PMID: 28356224 DOI: 10.1016/j.yhbeh.2017.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/11/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
Abstract
Social facilitation of reproduction occurs in humans and animals, and may represent one of the bases of reproduction in groups. However, its underlying physiological mechanisms remain largely unexplored. Here, we found in a colonial bird, the Adélie penguin (Pygoscelis adeliae), that the number of parental interactions (nest relief ceremonies) performed by breeding individuals on the colony was positively related to prolactin levels in other breeding individuals exposed to these interactions (i.e. focal individuals). As prolactin is typically involved in the expression of parental behaviour in birds, this suggests that parental interactions by conspecifics represent social cues that might increase parental motivation in focal individuals. Moreover, parental interactions were not related to corticosterone levels in focal individuals, suggesting that these social cues were not stressful for penguins. However, social stimulation still had a cost for focal individuals, as it was negatively related to their antioxidant defences (a component of self-maintenance). As social stimulation was also positively related to prolactin levels, this highlights the fact that social stimulation acts on the trade-off between reproduction and self-maintenance. For the first time, the results of the current study shed light on the physiological factors potentially underlying social facilitation of parental care. Importantly, they suggest that, even though social facilitation of parental care may increase breeding performance, it can also negatively affect other fitness components.
Collapse
Affiliation(s)
- Michaël Beaulieu
- Zoological Institute & Museum, University of Greifswald, Johann-Sebastian-Bach-Str. 11/12, 17489 Greifswald, Germany.
| | - André Ancel
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR7372-CNRS/Univ. La Rochelle, F-79360, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| | - Thierry Raclot
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France; CNRS, UMR7178, 67087 Strasbourg, France
| |
Collapse
|
216
|
Li T, Chen X, Mascaro J, Haroon E, Rilling JK. Intranasal oxytocin, but not vasopressin, augments neural responses to toddlers in human fathers. Horm Behav 2017; 93:193-202. [PMID: 28161387 PMCID: PMC5565399 DOI: 10.1016/j.yhbeh.2017.01.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 12/30/2022]
Abstract
This study investigates paternal brain function with the hope of better understanding the neural basis for variation in caregiving involvement among men. The neuropeptides oxytocin (OT) and vasopressin (AVP) are implicated in paternal caregiving in humans and other species. In a double-blind, placebo-controlled, within-subject pharmaco-functional MRI experiment, we randomized 30 fathers of 1-2year old children to receive either 24IU intranasal OT before one scan and placebo before the other scan (n=15) or 20IU intranasal AVP before one scan and placebo before the other scan (n=15). Brain function was measured with fMRI as the fathers viewed pictures of their children, unknown children and unknown adults, and as they listened to unknown infant cry stimuli. Intranasal OT, but not AVP, significantly increased the BOLD fMRI response to viewing pictures of own children within the caudate nucleus, a target of midbrain dopamine projections, as well as the dorsal anterior cingulate (dACC) and visual cortex, suggesting that intranasal oxytocin augments activation in brain regions involved in reward, empathy and attention in human fathers. OT effects also varied as a function of order of administration such that when OT was given before placebo, it increased activation within several reward-related structures (substantia nigra, ventral tegmental area, putamen) more than when it was given after placebo. Neither OT nor AVP had significant main effects on the neural response to cries. Our findings suggest that the hormonal changes associated with the transition to fatherhood are likely to facilitate increased approach motivation and empathy for children, and call for future research that evaluates the potential of OT to normalize deficits in paternal motivation, as might be found among men suffering from post-partum depression.
Collapse
Affiliation(s)
- Ting Li
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA
| | - Xu Chen
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Jennifer Mascaro
- Department of Family and Preventive Medicine, Emory University School of Medicine, 1841 Clifton Rd NE, Rm 507, Atlanta, GA 30329, USA
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - James K Rilling
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA 30322, USA; Department of Psychiatry and Behavioral Sciences, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Center for Behavioral Neuroscience, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA.
| |
Collapse
|
217
|
Ko J. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns. Front Neural Circuits 2017; 11:41. [PMID: 28659766 PMCID: PMC5468389 DOI: 10.3389/fncir.2017.00041] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/29/2017] [Indexed: 12/30/2022] Open
Abstract
Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives.
Collapse
Affiliation(s)
- Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu, South Korea
| |
Collapse
|
218
|
Ten Velden FS, Daughters K, De Dreu CKW. Oxytocin promotes intuitive rather than deliberated cooperation with the in-group. Horm Behav 2017; 92:164-171. [PMID: 27288835 DOI: 10.1016/j.yhbeh.2016.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
A contribution to a special issue on Hormones and Human Competition. In intergroup settings, individuals prefer cooperating with their in-group, and sometimes derogate and punish out-groups. Here we replicate earlier work showing that such in-group bounded cooperation is conditioned by oxytocin and extend it by showing that oxytocin-motivated in-group cooperation is intuitive rather than deliberated. Healthy males (N=65) and females (N=129) self-administered intranasal placebo or 24IU oxytocin in a double-blind placebo-controlled between-subjects design, were assigned to a three-person in-group (that faced a 3-person out-group), and given an endowment from which they could contribute to a within-group pool (benefitting the in-group), and/or to a between-group pool (benefitting the in-group and punishing the out-group). Prior to decision-making, participants performed a Stroop Interference task that was either cognitively taxing, or not. Cognitively taxed individuals kept less to themselves and contributed more to the within-group pool. Furthermore, participants receiving placebo contributed more to the within-group pool when they were cognitively taxed rather than not; those receiving oxytocin contributed to the within-group pool regardless of cognitive taxation. Neither taxation nor treatment influenced contributions to the between-group pool, and no significant sex differences were observed. It follows that in intergroup settings (i) oxytocin increases in-group bounded cooperation, (ii) oxytocin neither reduces nor increases out-group directed spite, and (iii) oxytocin-induced in-group cooperation is independent of cognitive taxation and, therefore, likely to be intuitive rather than consciously deliberated.
Collapse
Affiliation(s)
- Femke S Ten Velden
- University of Amsterdam, Work and Organizational Psychology, The Netherlands
| | | | - Carsten K W De Dreu
- Leiden University, Social and Organizational Psychology, The Netherlands; University of Amsterdam, Center for Experimental Economics and Political Decision Making, The Netherlands.
| |
Collapse
|
219
|
Abstract
Recognising emotions from faces that are partly covered is more difficult than from fully visible faces. The focus of the present study is on the role of an Islamic versus non-Islamic context, i.e. Islamic versus non-Islamic headdress in perceiving emotions. We report an experiment that investigates whether briefly presented (40 ms) facial expressions of anger, fear, happiness and sadness are perceived differently when covered by a niqāb or turban, compared to a cap and shawl. In addition, we examined whether oxytocin, a neuropeptide regulating affection, bonding and cooperation between ingroup members and fostering outgroup vigilance and derogation, would differentially impact on emotion recognition from wearers of Islamic versus non-Islamic headdresses. The results first of all show that the recognition of happiness was more accurate when the face was covered by a Western compared to Islamic headdress. Second, participants more often incorrectly assigned sadness to a face covered by an Islamic headdress compared to a cap and shawl. Third, when correctly recognising sadness, they did so faster when the face was covered by an Islamic compared to Western headdress. Fourth, oxytocin did not modulate any of these effects. Implications for theorising about the role of group membership on emotion perception are discussed.
Collapse
Affiliation(s)
- Mariska E Kret
- a Cognitive Psychology Unit, Institute of Psychology , Leiden University , Leiden , Netherlands.,b Leiden Institute for Brain and Cognition , Leiden , Netherlands
| | - Agneta H Fischer
- c Department of Psychology , University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
220
|
Robinson KJ, Twiss SD, Hazon N, Moss S, Pomeroy PP. Positive social behaviours are induced and retained after oxytocin manipulations mimicking endogenous concentrations in a wild mammal. Proc Biol Sci 2017; 284:20170554. [PMID: 28539519 PMCID: PMC5454273 DOI: 10.1098/rspb.2017.0554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 04/26/2017] [Indexed: 11/12/2022] Open
Abstract
The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals (Halichoerus grypus) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg-1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity.
Collapse
Affiliation(s)
- Kelly J Robinson
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Sean D Twiss
- Department of Biosciences, Durham University, Durham, UK
| | - Neil Hazon
- Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Simon Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| | - Patrick P Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
221
|
Parsons CE, Young KS, Petersen MV, Jegindoe Elmholdt EM, Vuust P, Stein A, Kringelbach ML. Duration of motherhood has incremental effects on mothers' neural processing of infant vocal cues: a neuroimaging study of women. Sci Rep 2017; 7:1727. [PMID: 28496095 PMCID: PMC5431892 DOI: 10.1038/s41598-017-01776-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 04/03/2017] [Indexed: 12/03/2022] Open
Abstract
The transition to motherhood, and the resultant experience of caregiving, may change the way women respond to affective, infant signals in their environments. Nonhuman animal studies have robustly demonstrated that mothers process both infant and other salient signals differently from nonmothers. Here, we investigated how women with and without young infants respond to vocalisations from infants and adults (both crying and neutral). We examined mothers with infants ranging in age (1-14 months) to examine the effects of duration of maternal experience. Using functional magnetic resonance imaging, we found that mothers showed greater activity than nonmothers to vocalisations from adults or infants in a range of cortical regions implicated in the processing of affective auditory cues. This main effect of maternal status suggests a general difference in vocalisation processing across infant and adult sounds. We found that a longer duration of motherhood, and therefore more experience with an infant, was associated with greater infant-specific activity in key parental brain regions, including the orbitofrontal cortex and amygdala. We suggest that these incremental differences in neural activity in the maternal brain reflect the building of parental capacity over time. This is consistent with conceptualizations of caregiving as a dynamic, learning process in humans.
Collapse
Affiliation(s)
- Christine E Parsons
- Interacting Minds Center, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Katherine S Young
- Anxiety and Depression Research Center, Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Mikkel V Petersen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, DK, Aarhus C, Denmark
| | | | - Peter Vuust
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, DK & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Alan Stein
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Morten L Kringelbach
- Center for Music in the Brain (MIB), Department of Clinical Medicine, Aarhus University, DK & The Royal Academy of Music, Aarhus/Aalborg, Denmark.
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK.
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, DK, Aarhus C, Denmark.
- Institut d'études avancées de Paris, Paris, France.
| |
Collapse
|
222
|
Marks KA, Vizconde DL, Gibson ES, Rodriguez JR, Nunes S. Play behavior and responses to novel situations in juvenile ground squirrels. J Mammal 2017. [DOI: 10.1093/jmammal/gyx049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
223
|
Ziegler TE, Crockford C. Neuroendocrine control in social relationships in non-human primates: Field based evidence. Horm Behav 2017; 91:107-121. [PMID: 28284710 PMCID: PMC6372243 DOI: 10.1016/j.yhbeh.2017.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 11/22/2022]
Abstract
Primates maintain a variety of social relationships and these can have fitness consequences. Research has established that different types of social relationships are unpinned by different or interacting hormonal systems, for example, the neuropeptide oxytocin influences social bonding, the steroid hormone testosterone influences dominance relationships, and paternal care is characterized by high oxytocin and low testosterone. Although the oxytocinergic system influences social bonding, it can support different types of social bonds in different species, whether pair bonds, parent-offspring bonds or friendships. It seems that selection processes shape social and mating systems and their interactions with neuroendocrine pathways. Within species, there are individual differences in the development of the neuroendocrine system: the social environment individuals are exposed to during ontogeny alters their neuroendocrine and socio-cognitive development, and later, their social interactions as adults. Within individuals, neuroendocrine systems can also have short-term effects, impacting on social interactions, such as those during hunting, intergroup encounters or food sharing, or the likelihood of cooperating, winning or losing. To understand these highly dynamic processes, extending research beyond animals in laboratory settings to wild animals living within their natural social and ecological setting may bring insights that are otherwise unreachable. Field endocrinology with neuropeptides is still emerging. We review the current status of this research, informed by laboratory studies, and identify questions particularly suited to future field studies. We focus on primate social relationships, specifically social bonds (mother-offspring, father-offspring, cooperative breeders, pair bonds and adult platonic friendships), dominance, cooperation and in-group/out-group relationships, and examine evidence with respect to the 'tend and defend' hypothesis.
Collapse
Affiliation(s)
- Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
224
|
Young KS, Parsons CE, Stein A, Vuust P, Craske MG, Kringelbach ML. The neural basis of responsive caregiving behaviour: Investigating temporal dynamics within the parental brain. Behav Brain Res 2017; 325:105-116. [DOI: 10.1016/j.bbr.2016.09.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 02/09/2023]
|
225
|
Hyer MM, Glasper ER. Separation increases passive stress-coping behaviors during forced swim and alters hippocampal dendritic morphology in California mice. PLoS One 2017; 12:e0175713. [PMID: 28406977 PMCID: PMC5391050 DOI: 10.1371/journal.pone.0175713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Individuals within monogamous species form bonds that may buffer against the negative effects of stress on physiology and behavior. In some species, involuntary termination of the mother-offspring bond results in increased symptoms of negative affect in the mother, suggesting that the parent-offspring bond may be equally as important as the pair bond. To our knowledge, the extent to which affect in paternal rodents is altered by involuntary termination of the father-offspring bond is currently unknown. Here, we investigated to what extent separation and paternal experience alters passive stress-coping behaviors and dendritic morphology in hippocampal subfields of California mice (Peromyscus californicus). Irrespective of paternal experience, separated mice displayed shorter latencies to the first bout of immobility, longer durations of immobility, and more bouts of immobility than control (non-separated) mice. This effect of separation was exacerbated by paternal experience in some measures of behavioral despair—separation from offspring further decreased the latency to immobility and increased bouts of immobility. In the dentate gyrus, separation reduced dendritic spine density regardless of paternal experience. Increased spine density was observed on CA1 basal, but not apical, dendrites following paternal experience. Regardless of offspring presence, fatherhood was associated with reduced apical dendritic spine density in area CA3 of the hippocampus. Separation enhanced complexity of both basal and apical dendrites in CA1, while fatherhood reduced dendritic complexity in this region. Our data suggest that forced dissolution of the pair bond induces passive stress-coping behaviors and contributes to region-specific alterations in hippocampal structure in California mouse males.
Collapse
Affiliation(s)
- Molly M. Hyer
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Erica R. Glasper
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, Maryland, United States of America
- Department of Psychology, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
226
|
Ide M, Wada M. Salivary Oxytocin Concentration Associates with the Subjective Feeling of Body Ownership during the Rubber Hand Illusion. Front Hum Neurosci 2017; 11:166. [PMID: 28439234 PMCID: PMC5383663 DOI: 10.3389/fnhum.2017.00166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
Oxytocin is a hormone of the posterior pituitary that promotes lactation, maternal bonding, and birth. Recent studies have shown that oxytocin may modulate social recognition in both sexes, and thus it may be related to empathy. Brain regions that are associated with social recognition and empathy (e.g., the insular cortex) are activated in the rubber hand illusion (RHI), which involves illusory ownership of a rubber hand caused by brush strokes applied synchronously to both a rubber hand and one of the participant's hand, which is hidden from view. It is intriguing to examine whether oxytocin modulates plastic changes in body representation, such as the changes occurring in the RHI. In the present study, we investigated the relationship between salivary oxytocin concentration and the feeling of rubber hand ownership. Brush strokes were applied synchronously or asynchronously to the participant's hand and a rubber hand on different days. Salivary oxytocin was measured before and after the behavioral tasks. We found that participants who had high concentrations of salivary oxytocin tended to feel strong ownership of the rubber hand. We also found that the participants with a high autism spectrum quotient (AQ) score who particularly felt difficulties in social skills and communications tended to feel weak rubber hand ownership. We observed that illusory body ownership was closely linked to social communications and a related neuroendocrine basis. The results of the present study suggest that an individual's salivary oxytocin concentration can predict the extent to which the individual experiences the RHI; furthermore, oxytocin might modulate the sensation of body ownership.
Collapse
Affiliation(s)
- Masakazu Ide
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan.,Japan Society for the Promotion of ScienceTokyo, Japan
| | - Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan
| |
Collapse
|
227
|
Rigo P, De Pisapia N, Bornstein MH, Putnick DL, Serra M, Esposito G, Venuti P. Brain processes in women and men in response to emotive sounds. Soc Neurosci 2017; 12:150-162. [PMID: 26905380 PMCID: PMC5822002 DOI: 10.1080/17470919.2016.1150341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Adult appropriate responding to salient infant signals is vital to child healthy psychological development. Here we investigated how infant crying, relative to other emotive sounds of infant laughing or adult crying, captures adults' brain resources. In a sample of nulliparous women and men, we investigated the effects of different sounds on cerebral activation of the default mode network (DMN) and reaction times (RTs) while listeners engaged in self-referential decision and syllabic counting tasks, which, respectively, require the activation or deactivation of the DMN. Sounds affect women and men differently. In women, infant crying deactivated the DMN during the self-referential decision task; in men, female adult crying interfered with the DMN during the syllabic counting task. These findings point to different brain processes underlying responsiveness to crying in women and men and show that cerebral activation is modulated by situational contexts in which crying occurs.
Collapse
Affiliation(s)
- Paola Rigo
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Nicola De Pisapia
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Marc H. Bornstein
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Diane L. Putnick
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Mauro Serra
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Division of Psychology, Nanyang Technological University, Singapore, Singapore
| | - Paola Venuti
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| |
Collapse
|
228
|
Kim S, Strathearn L. Trauma, Mothering, and Intergenerational Transmission: A Synthesis of Behavioral and Oxytocin Research. PSYCHOANALYTIC STUDY OF THE CHILD 2017. [DOI: 10.1080/00797308.2016.1277897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sohye Kim
- Department of Obstetrics and Gynecology, Baylor College of Medicine
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine
- Department of Pediatrics, Baylor College of Medicine
- Center for Reproductive Psychiatry, Pavilion for Women, Texas Children’s Hospital
| | - Lane Strathearn
- Department of Pediatrics, University of Iowa Carver College of Medicine
- Center for Disabilities and Development, University of Iowa Children’s Hospital
| |
Collapse
|
229
|
Abstract
Although dramatic postnatal changes in maternal behavior have long been noted, we are only now beginning to understand the neurobiological mechanisms that support this transition. The present paper synthesizes growing insights from both animal and human research to provide an overview of the plasticity of the mother's brain, with a particular emphasis on the oxytocin system. We examine plasticity observed within the oxytocin system and discuss how these changes mediate an array of other adaptations observed within the maternal brain. We outline factors that affect the oxytocin-mediated plasticity of the maternal brain and review evidence linking disruptions in oxytocin functions to challenges in maternal adaptation. We conclude by suggesting a strategy for intervention with mothers who may be at risk for maladjustment during this transition to motherhood, while highlighting areas where further research is needed.
Collapse
|
230
|
Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc Natl Acad Sci U S A 2017; 114:3690-3695. [PMID: 28325880 DOI: 10.1073/pnas.1621228114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most variation in behavior has a genetic basis, but the processes determining the level of diversity at behavioral loci are largely unknown for natural populations. Expression of arginine vasopressin receptor 1a (Avpr1a) and oxytocin receptor (Oxtr) in specific regions of the brain regulates diverse social and reproductive behaviors in mammals, including humans. That these genes have important fitness consequences and that natural populations contain extensive diversity at these loci implies the action of balancing selection. In Myodes glareolus, Avpr1a and Oxtr each contain a polymorphic microsatellite locus located in their 5' regulatory region (the regulatory region-associated microsatellite, RRAM) that likely regulates gene expression. To test the hypothesis that balancing selection maintains diversity at behavioral loci, we released artificially bred females and males with different RRAM allele lengths into field enclosures that differed in population density. The length of Avpr1a and Oxtr RRAMs was associated with reproductive success, but population density and the sex interacted to determine the optimal genotype. In general, longer Avpr1a RRAMs were more beneficial for males, and shorter RRAMs were more beneficial for females; the opposite was true for Oxtr RRAMs. Moreover, Avpr1a RRAM allele length is correlated with the reproductive success of the sexes during different phases of reproduction; for males, RRAM length correlated with the numbers of newborn offspring, but for females selection was evident on the number of weaned offspring. This report of density-dependence and sexual antagonism acting on loci within the arginine vasopressin-oxytocin pathway explains how genetic diversity at Avpr1a and Oxtr could be maintained in natural populations.
Collapse
|
231
|
Rousseaud A, Moriceau S, Ramos-Brossier M, Oury F. Bone-brain crosstalk and potential associated diseases. Horm Mol Biol Clin Investig 2017; 28:69-83. [PMID: 27626767 DOI: 10.1515/hmbci-2016-0030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/11/2016] [Indexed: 12/24/2022]
Abstract
Reciprocal relationships between organs are essential to maintain whole body homeostasis. An exciting interplay between two apparently unrelated organs, the bone and the brain, has emerged recently. Indeed, it is now well established that the brain is a powerful regulator of skeletal homeostasis via a complex network of numerous players and pathways. In turn, bone via a bone-derived molecule, osteocalcin, appears as an important factor influencing the central nervous system by regulating brain development and several cognitive functions. In this paper we will discuss this complex and intimate relationship, as well as several pathologic conditions that may reinforce their potential interdependence.
Collapse
|
232
|
Genes Related to Oxytocin and Arginine-Vasopressin Pathways: Associations with Autism Spectrum Disorders. Neurosci Bull 2017; 33:238-246. [PMID: 28283809 PMCID: PMC5360847 DOI: 10.1007/s12264-017-0120-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly heritable neurodevelopmental disorders characterized by impaired social interactions, communication deficits, and repetitive behavior. Although the mechanisms underlying its etiology and manifestations are poorly understood, several lines of evidence from rodent and human studies suggest involvement of the evolutionarily highly-conserved oxytocin (OXT) and arginine-vasopressin (AVP), as these neuropeptides modulate various aspects of mammalian social behavior. As far as we know, there is no comprehensive review of the roles of the OXT and AVP systems in the development of ASD from the genetic aspect. In this review, we summarize the current knowledge regarding associations between ASD and single-nucleotide variants of the human OXT-AVP pathway genes OXT, AVP, AVP receptor 1a (AVPR1a), OXT receptor (OXTR), the oxytocinase/vasopressinase (LNPEP), and ADP-ribosyl cyclase (CD38).
Collapse
|
233
|
McHenry JA, Otis JM, Rossi MA, Robinson JE, Kosyk O, Miller NW, McElligott ZA, Budygin EA, Rubinow DR, Stuber GD. Hormonal gain control of a medial preoptic area social reward circuit. Nat Neurosci 2017; 20:449-458. [PMID: 28135243 PMCID: PMC5735833 DOI: 10.1038/nn.4487] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
Abstract
Neural networks that control reproduction must integrate social and hormonal signals, tune motivation, and coordinate social interactions. However, the neural circuit mechanisms for these processes remain unresolved. The medial preoptic area (mPOA), an essential node for social behaviors, comprises molecularly diverse neurons with widespread projections. Here we identify a steroid-responsive subset of neurotensin (Nts)-expressing mPOA neurons that interface with the ventral tegmental area (VTA) to form a socially engaged reward circuit. Using in vivo two-photon imaging in female mice, we show that mPOANts neurons preferentially encode attractive male cues compared to nonsocial appetitive stimuli. Ovarian hormone signals regulate both the physiological and cue-encoding properties of these cells. Furthermore, optogenetic stimulation of mPOANts-VTA circuitry promotes rewarding phenotypes, social approach and striatal dopamine release. Collectively, these data demonstrate that steroid-sensitive mPOA neurons encode ethologically relevant stimuli and co-opt midbrain reward circuits to promote prosocial behaviors critical for species survival.
Collapse
Affiliation(s)
- Jenna A. McHenry
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James M. Otis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark A. Rossi
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - J. Elliott Robinson
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Oksana Kosyk
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Noah W. Miller
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Zoe A. McElligott
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Evgeny A. Budygin
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC
- Institute of Translational Biomedicine St. Petersburg State University, St. Petersburg, Russia
| | - David R. Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Garret D. Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
234
|
The Neurobiology of Human Attachments. Trends Cogn Sci 2017; 21:80-99. [DOI: 10.1016/j.tics.2016.11.007] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
|
235
|
Kroll-Desrosiers AR, Nephew BC, Babb JA, Guilarte-Walker Y, Moore Simas TA, Deligiannidis KM. Association of peripartum synthetic oxytocin administration and depressive and anxiety disorders within the first postpartum year. Depress Anxiety 2017; 34:137-146. [PMID: 28133901 PMCID: PMC5310833 DOI: 10.1002/da.22599] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Due to its potent effects on social behavior, including maternal behavior, oxytocin has been identified as a potential mediator of postpartum depression and anxiety. The objective of this study was to examine the relationship between peripartum synthetic oxytocin administration and the development of depressive and anxiety disorders within the first year postpartum. We hypothesized that women exposed to peripartum synthetic oxytocin would have a reduced risk of postpartum depressive and anxiety disorders compared with those without any exposure. METHODS Population-based data available through the Massachusetts Integrated Clinical Academic Research Database (MiCARD) were used to retrospectively (2005-2014) examine this relationship and calculate the relative risk of peripartum synthetic oxytocin for the development of postpartum depressive and anxiety disorders in exposed (n = 9,684) compared to unexposed (n = 37,048) deliveries. RESULTS Among deliveries to women with a history of prepregnancy depressive or anxiety disorder, exposure to peripartum oxytocin increased the risk of postpartum depressive or anxiety disorder by 36% (relative risk (RR): 1.36; 95% confidence interval (95% CI): 1.20-1.55). In deliveries to women with no history of prepregnancy depressive or anxiety disorder, exposure to peripartum oxytocin increased the risk of postpartum depressive or anxiety disorder by 32% compared to those not exposed (RR: 1.32; 95% CI: 1.23-1.42). CONCLUSIONS Contrary to our hypothesis, results indicate that women with peripartum exposure to synthetic oxytocin had a higher relative risk of receiving a documented depressive or anxiety disorder diagnosis or antidepressant/anxiolytic prescription within the first year postpartum than women without synthetic oxytocin exposure.
Collapse
Affiliation(s)
- Aimee R. Kroll-Desrosiers
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01655
| | - Benjamin C. Nephew
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536
| | - Jessica A. Babb
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Yurima Guilarte-Walker
- Department of Information Technology – Research Computing, University of Massachusetts Medical School, Worcester, MA 01655
| | - Tiffany A. Moore Simas
- Department of Obstetrics & Gynecology and Pediatrics, University of Massachusetts Medical School and UMass Memorial Medical Center, Worcester, MA, 01655
| | - Kristina M. Deligiannidis
- Women’s Mental Health Program, Departments of Psychiatry and Obstetrics & Gynecology, University of Massachusetts Medical School, Worcester, MA, 01655
- Departments of Psychiatry and Obstetrics & Gynecology, Hofstra Northwell School of Medicine and Zucker Hillside Hospital, Northwell Health, NY, NY 11004
| |
Collapse
|
236
|
He Z, Zhang S, Yu C, Li Y, Jia R, Tai F. Emotional attachment of pre-weaning pups to mothers and fathers in mandarin voles. Behav Processes 2017; 135:87-94. [DOI: 10.1016/j.beproc.2016.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
237
|
Stoop R, Yu X. Special issue on: "Oxytocin in development and plasticity". Dev Neurobiol 2017; 77:125-127. [PMID: 27907268 DOI: 10.1002/dneu.22470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ron Stoop
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital Center (CHUV), Prilly-Lausanne, 1008, Switzerland
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
238
|
De Wilde TRW, Ten Velden FS, De Dreu CKW. The Neuropeptide Oxytocin Enhances Information Sharing and Group Decision Making Quality. Sci Rep 2017; 7:40622. [PMID: 28074896 PMCID: PMC5225413 DOI: 10.1038/srep40622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/08/2016] [Indexed: 01/12/2023] Open
Abstract
Groups can make better decisions than individuals when members cooperatively exchange and integrate their uniquely held information and insights. However, under conformity pressures group members are biased towards exchanging commonly known information, and away from exchanging unique information, thus undermining group decision-making quality. At the neurobiological level, conformity associates with the neuropeptide oxytocin. A double-blind placebo controlled study found no evidence for oxytocin induced conformity. Compared to placebo groups, three-person groups whose members received intranasal oxytocin, focused more on unique information (i) and repeated this information more often (ii). These findings reveal oxytocin as a neurobiological driver of group decision-making processes.
Collapse
Affiliation(s)
- Tim R W De Wilde
- Department of Psychology, University of Amsterdam, P.O. Box 15919, 1001 NK Amsterdam, The Netherlands
| | - Femke S Ten Velden
- Department of Psychology, University of Amsterdam, P.O. Box 15919, 1001 NK Amsterdam, The Netherlands
| | - Carsten K W De Dreu
- Institute of Psychology, Leiden University, P.O. Box 9555, 2300 RB Leiden, The Netherlands.,Center for Experimental Economics and Political Decision Making, University of Amsterdam, P.O. Box 15551, 1001 NB Amsterdam, Netherlands
| |
Collapse
|
239
|
Abstract
The oxytocin/vasopressin ancestor molecule has been regulating reproductive and social behaviors for more than 500 million years. In all mammals, oxytocin is the hormone indispensable for milk-ejection during nursing (maternal milk provision to offspring), a process that is crucial for successful mammalian parental care. In laboratory mice, a remarkable transcriptional activation occurs during parental behavior within the anterior commissural nucleus (AC), the largest magnocellular oxytocin cell population within the medial preoptic area (although the transcriptional activation was limited to non-oxytocinergic neurons in the AC). Furthermore, there are numerous recent reports on oxytocin's involvement in positive social behaviors in animals and humans. Given all those, the essential involvement of oxytocin in maternal/parental behaviors may seem obvious, but basic researchers are still struggling to pin down the exact role oxytocin plays in the regulation of parental behaviors. A major aim of this review is to more clearly define this role. The best conclusion at this moment is that OT can facilitate the onset of parental behavior, or parental behavior under stressful conditions.In this chapter, we will first review the basics of rodent parental behavior. Next, the neuroanatomy of oxytocin systems with respect to parental behavior in laboratory mice will be introduced. Then, the research history on the functional relationship between oxytocin and parental behavior, along with advancements in various techniques, will be reviewed. Finally, some technical considerations in conducting behavioral experiments on parental behavior in rodents will be addressed, with the aim of shedding light on certain pitfalls that should be avoided, so that the progress of research in this field will be facilitated. In this age of populism, researchers should strive to do even more scholarly works with further attention to methodological details.
Collapse
Affiliation(s)
- Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Michael Numan
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA.
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
240
|
Nishitani S, Ikematsu K, Takamura T, Honda S, Yoshiura KI, Shinohara K. Genetic variants in oxytocin receptor and arginine-vasopressin receptor 1A are associated with the neural correlates of maternal and paternal affection towards their child. Horm Behav 2017; 87:47-56. [PMID: 27743766 DOI: 10.1016/j.yhbeh.2016.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/19/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022]
Abstract
There is extensive evidence in animal studies, particularly in vole species (Microtus), that oxytocin (OT) receptor and arginine-vasopressin (AVP) receptor 1a is critical for the regulation of maternal and paternal behavior, respectively. Human studies have gained insight into the relationship between both hormone receptor gene variants and behavior, but not between the variants and the underlying brain activity. To study this, we investigated the association between neural activation of the anterior prefrontal cortex (APFC) in mothers and fathers in response to their child smiling video stimuli to induce the positive affect related to attachment with their child, and genetic variants of OT receptor (OXTR) and AVP receptor 1A (AVPR1A). Overall, 43 mothers and 41 fathers participated, and each parent's child smiling was video recorded. Participants were then genotyped and underwent near-infrared spectroscopy to measure neural activation of the APFC while observing their own child smiling compared with an unfamiliar child. We found that the right inferior APFC was activated in response to child video stimuli in mothers and differential hemispheric activation of the inferior APFC in OXTR rs2254298-G/G mothers compared with -A carrier mothers, but not in fathers. Furthermore, we found a difference in the left inferior APFC activation between AVPR1A RS3-non-334 and -334 carrier fathers, but not mothers. Our results indicate a sex-dependent association between the genetic variants and the inferior APFC activations of maternal and paternal positive affect, analogous to the results reported in voles.
Collapse
Affiliation(s)
- Shota Nishitani
- Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuya Ikematsu
- Department of Forensic Pathology and Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tsunehiko Takamura
- Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Sumihisa Honda
- Department of Nursing, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8520, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
241
|
Abstract
Social relationships throughout life are vital for well-being and physical and mental health. A significant amount of research in animal models as well as in humans suggests that oxytocin (OT) plays an important role in the development of the capacity to form social bonds, the mediation of the positive aspects of early-life nurturing on adult bonding capacity, and the maintenance of social bonding. Here, we focus on the extensive research on a socially monogamous rodent model organism, the prairie vole (Microtus ochrogaster). OT facilitates mating-induced pair bonds in adults through interaction with the mesolimbic dopamine system. Variation in striatal OT receptor density predicts resilience and susceptibility to neonatal social neglect in female prairie voles. Finally, in adults, loss of a partner results in multiple disruptions in OT signaling, including decreased OT release in the striatum, which is caused by an activation of the brain corticotropin releasing factor (CRF) system. The dramatic behavioral consequence of partner loss is increased depressive-like behavior reminiscent of bereavement. Importantly, infusions of OT into the striatum of adults prevents the onset of depressive-like behavior following partner loss, and evoking endogenous OT release using melanocortin agonists during neonatal social isolation rescues impairments in social bonding in adulthood. This work has important translational implications relevant to the disruptions of social bonds in childhood and in adults.
Collapse
Affiliation(s)
- Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, 93053, Germany.
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, 30329, USA.
| |
Collapse
|
242
|
Molecular Basis of Oxytocin Receptor Signalling in the Brain: What We Know and What We Need to Know. Curr Top Behav Neurosci 2017; 35:3-29. [PMID: 28812263 DOI: 10.1007/7854_2017_6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin (OT), a hypothalamic neuropeptide involved in regulating the social behaviour of all vertebrates, has been proposed as a treatment for a number of neuropsychiatric disorders characterised by deficits in the social domain. Over the last few decades, advances focused on understanding the social effects of OT and its role in physiological conditions and brain diseases, but much less has been done to clarify the molecular cascade of events involved in mediating such effects and in particular the cellular and molecular pharmacology of OT and its target receptor (OTR) in neuronal and glial cells.The entity and persistence of OT activity in the brain is closely related to the expression and regulation of the OTR expressed on the cell surface, which transmits the signal intracellularly and permits OT to affect cell function. Understanding the various signalling mechanisms mediating OTR-induced cell responses is crucial to determine the different responses in different cells and brain regions, and the success of OT and OT-derived analogues in the treatment of neurodevelopmental and psychiatric diseases depends on how well we can control such responses. In this review, we will consider the most important aspects of OT/OTR signalling by focusing on the molecular events involved in OT binding and coupling, on the main signalling pathways activated by the OTR in neuronal cells and on intracellular and plasma membrane OTR trafficking, all of which contribute to the quantitative and qualitative features of OT responses in the brain.
Collapse
|
243
|
Abstract
Oxytocin is a hypothalamic neuropeptide first recognized as a regulator of parturition and lactation which has recently gained attention for its ability to modulate social behaviors. In this chapter, we review several aspects of the oxytocinergic system, focusing on evidence for release of oxytocin and its receptor distribution in the cortex as the foundation for important networks that control social behavior. We examine the developmental timeline of the cortical oxytocin system as demonstrated by RNA, autoradiographic binding, and protein immunohistochemical studies, and describe how that might shape brain development and behavior. Many recent studies have implicated oxytocin in cognitive processes such as processing of sensory stimuli, social recognition, social memory, and fear. We review these studies and discuss the function of oxytocin in the young and adult cortex as a neuromodulator of central synaptic transmission and mediator of plasticity.
Collapse
|
244
|
McCarty R. Cross-fostering: Elucidating the effects of gene×environment interactions on phenotypic development. Neurosci Biobehav Rev 2016; 73:219-254. [PMID: 28034661 DOI: 10.1016/j.neubiorev.2016.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/03/2023]
Abstract
Cross-fostering of litters from soon after birth until weaning is a valuable tool to study the ways in which gene×environment interactions program the development of neural, physiological and behavioral characteristics of mammalian species. In laboratory mice and rats, the primary focus of this review, cross-fostering of litters between mothers of different strains or treatment groups (intraspecific) or between mothers of different species (interspecific) has been conducted over the past 9 decades. Areas of particular interest have included maternal effects on emotionality, social preferences, responses to stressful stimulation, nutrition and growth, blood pressure regulation, and epigenetic effects on brain development and behavior. Results from these areas of research highlight the critical role of the postnatal maternal environment in programming the development of offspring phenotypic characteristics. In addition, experimental paradigms that have included cross-fostering have permitted investigators to tease apart prenatal versus postnatal effects of various treatments on offspring development and behavior.
Collapse
Affiliation(s)
- Richard McCarty
- Department of Psychology, Vanderbilt University, Nashville, TN 37240 USA.
| |
Collapse
|
245
|
Toepfer P, Heim C, Entringer S, Binder E, Wadhwa P, Buss C. Oxytocin pathways in the intergenerational transmission of maternal early life stress. Neurosci Biobehav Rev 2016; 73:293-308. [PMID: 28027955 DOI: 10.1016/j.neubiorev.2016.12.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/17/2016] [Indexed: 12/17/2022]
Abstract
Severe stress in early life, such as childhood abuse and neglect, constitutes a major risk factor in the etiology of psychiatric disorders and somatic diseases. Importantly, these long-term effects may impact the next generation. The intergenerational transmission of maternal early life stress (ELS) may occur via pre-and postnatal pathways, such as alterations in maternal-fetal-placental stress physiology, maternal depression during pregnancy and postpartum, as well as impaired mother-offspring interactions. The neuropeptide oxytocin (OT) has gained considerable attention for its role in modulating all of these assumed transmission pathways. Moreover, central and peripheral OT signaling pathways are highly sensitive to environmental exposures and may be compromised by ELS with implications for these putative transmission mechanisms. Together, these data suggest that OT pathways play an important role in the intergenerational transmission of maternal ELS in humans. By integrating recent studies on gene-environment interactions and epigenetic modifications in OT pathway genes, the present review aims to develop a conceptual framework of intergenerational transmission of maternal ELS that emphasizes the role of OT.
Collapse
Affiliation(s)
- Philipp Toepfer
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany
| | - Christine Heim
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building University Park, PA, 16802, USA
| | - Sonja Entringer
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA
| | - Elisabeth Binder
- Max-Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, School of Medicine Atlanta, GA, 30307, USA
| | - Pathik Wadhwa
- UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA
| | - Claudia Buss
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA.
| |
Collapse
|
246
|
Murgatroyd CA, Hicks-Nelson A, Fink A, Beamer G, Gurel K, Elnady F, Pittet F, Nephew BC. Effects of Chronic Social Stress and Maternal Intranasal Oxytocin and Vasopressin on Offspring Interferon-γ and Behavior. Front Endocrinol (Lausanne) 2016; 7:155. [PMID: 28018290 PMCID: PMC5155012 DOI: 10.3389/fendo.2016.00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 11/18/2022] Open
Abstract
Recent studies support the hypothesis that the adverse effects of early-life adversity and transgenerational stress on neural plasticity and behavior are mediated by inflammation. The objective of the present study was to investigate the immune and behavioral programing effects of intranasal (IN) vasopressin (AVP) and oxytocin (OXT) treatment of chronic social stress (CSS)-exposed F1 dams on F2 juvenile female offspring. It was hypothesized that maternal AVP and OXT treatment would have preventative effects on social stress-induced deficits in offspring anxiety and social behavior and that these effects would be associated with changes in interferon-γ (IFNγ). Control and CSS-exposed F1 dams were administered IN saline, AVP, or OXT during lactation and the F2 juvenile female offspring were assessed for basal plasma IFNγ and perseverative, anxiety, and social behavior. CSS F2 female juvenile offspring had elevated IFNγ levels and exhibited increased repetitive/perseverative and anxiety behaviors and deficits in social behavior. These effects were modulated by AVP and OXT in a context- and behavior-dependent manner, with OXT exhibiting preventative effects on repetitive and anxiety behaviors and AVP possessing preventative effects on social behavior deficits and anxiety. Basal IFNγ levels were elevated in the F2 offspring of OXT-treated F1 dams, but IFNγ was not correlated with the behavioral effects. These results support the hypothesis that maternal AVP and OXT treatment have context- and behavior-specific effects on peripheral IFNγ levels and perseverative, anxiety, and social behaviors in the female offspring of early-life social stress-exposed dams. Both maternal AVP and OXT are effective at preventing social stress-induced increases in self-directed measures of anxiety, and AVP is particularly effective at preventing impairments in overall social contact. OXT is specifically effective at preventing repetitive/perseverative behaviors, yet is ineffective at preventing deficits in overall social behavior.
Collapse
Affiliation(s)
| | - Alexandria Hicks-Nelson
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | | | - Gillian Beamer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Kursat Gurel
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Fawzy Elnady
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Florent Pittet
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Benjamin C. Nephew
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| |
Collapse
|
247
|
Tabbaa M, Paedae B, Liu Y, Wang Z. Neuropeptide Regulation of Social Attachment: The Prairie Vole Model. Compr Physiol 2016; 7:81-104. [PMID: 28135000 DOI: 10.1002/cphy.c150055] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Social attachments are ubiquitous among humans and integral to human health. Although great efforts have been made to elucidate the neural underpinnings regulating social attachments, we still know relatively little about the neuronal and neurochemical regulation of social attachments. As a laboratory animal research model, the socially monogamous prairie vole (Microtus ochrogaster) displays behaviors paralleling human social attachments and thus has provided unique insights into the neural regulation of social behaviors. Research in prairie voles has particularly highlighted the significance of neuropeptidergic regulation of social behaviors, especially of the roles of oxytocin (OT) and vasopressin (AVP). This article aims to review these findings. We begin by discussing the role of the OT and AVP systems in regulating social behaviors relevant to social attachments, and thereafter restrict our discussion to studies in prairie voles. Specifically, we discuss the role of OT and AVP in adult mate attachments, biparental care, social isolation, and social buffering as informed by studies utilizing the prairie vole model. Not only do these studies offer insight into social attachments in humans, but they also point to dysregulated mechanisms in several mental disorders. We conclude by discussing these implications for human health. © 2017 American Physiological Society. Compr Physiol 7:81-104, 2017.
Collapse
Affiliation(s)
- Manal Tabbaa
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Brennan Paedae
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
248
|
Xie K, Fox GE, Liu J, Lyu C, Lee JC, Kuang H, Jacobs S, Li M, Liu T, Song S, Tsien JZ. Brain Computation Is Organized via Power-of-Two-Based Permutation Logic. Front Syst Neurosci 2016; 10:95. [PMID: 27895562 PMCID: PMC5108790 DOI: 10.3389/fnsys.2016.00095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
There is considerable scientific interest in understanding how cell assemblies—the long-presumed computational motif—are organized so that the brain can generate intelligent cognition and flexible behavior. The Theory of Connectivity proposes that the origin of intelligence is rooted in a power-of-two-based permutation logic (N = 2i–1), producing specific-to-general cell-assembly architecture capable of generating specific perceptions and memories, as well as generalized knowledge and flexible actions. We show that this power-of-two-based permutation logic is widely used in cortical and subcortical circuits across animal species and is conserved for the processing of a variety of cognitive modalities including appetitive, emotional and social information. However, modulatory neurons, such as dopaminergic (DA) neurons, use a simpler logic despite their distinct subtypes. Interestingly, this specific-to-general permutation logic remained largely intact although NMDA receptors—the synaptic switch for learning and memory—were deleted throughout adulthood, suggesting that the logic is developmentally pre-configured. Moreover, this computational logic is implemented in the cortex via combining a random-connectivity strategy in superficial layers 2/3 with nonrandom organizations in deep layers 5/6. This randomness of layers 2/3 cliques—which preferentially encode specific and low-combinatorial features and project inter-cortically—is ideal for maximizing cross-modality novel pattern-extraction, pattern-discrimination and pattern-categorization using sparse code, consequently explaining why it requires hippocampal offline-consolidation. In contrast, the nonrandomness in layers 5/6—which consists of few specific cliques but a higher portion of more general cliques projecting mostly to subcortical systems—is ideal for feedback-control of motivation, emotion, consciousness and behaviors. These observations suggest that the brain’s basic computational algorithm is indeed organized by the power-of-two-based permutation logic. This simple mathematical logic can account for brain computation across the entire evolutionary spectrum, ranging from the simplest neural networks to the most complex.
Collapse
Affiliation(s)
- Kun Xie
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Grace E Fox
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Jun Liu
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Cheng Lyu
- Department of Computer Science and Brain Imaging Center, University of GeorgiaAthens, GA, USA; School of Automation, Northwestern Polytechnical UniversityXi'an, China
| | - Jason C Lee
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Hui Kuang
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Stephanie Jacobs
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta University Augusta, GA, USA
| | - Meng Li
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Tianming Liu
- Department of Computer Science and Brain Imaging Center, University of Georgia Athens, GA, USA
| | - Sen Song
- McGovern Institute for Brain Research and Center for Brain-Inspired Computing Research, Tsinghua University Beijing, China
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| |
Collapse
|
249
|
Smith AL, Walum H, Connor-Stroud F, Freeman SM, Inoue K, Parr LA, Goodman MM, Young LJ. An evaluation of central penetration from a peripherally administered oxytocin receptor selective antagonist in nonhuman primates. Bioorg Med Chem 2016; 25:305-315. [PMID: 27838170 DOI: 10.1016/j.bmc.2016.10.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022]
Abstract
The physiology of the oxytocin receptor has increasingly become a focus of scientific investigation due to its connection with social behavior and psychiatric disorders with impairments in social funciton. Experimental utilization of small molecule and peptide antagonists for the oxytocin receptor has played a role in deciphering these biological and social behavior connections in rodents. Described herein is the evaluation of a potent and selective oxytocin receptor antagonist, ALS-I-41, and details to consider for its use in nonhuman primate behavioral pharmacology experiments utilizing intranasal or intramuscular administration. The central nervous system penetration and rate of metabolism of ALS-I-41 was investigated via mass spectroscopy analysis of cerebrospinal fluid and plasma in the rhesus macaque after intranasal and intramuscular administration. Positron emission tomography was also utilized with [18F] ALS-I-41 in a macaque to verify observed central nervous system (CNS) penetration and to further evaluate the effects of administration rate on CNS penetration of Sprague-Dawley rats in comparison to previous studies.
Collapse
Affiliation(s)
- Aaron L Smith
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA; Center for Systems Imaging, Emory University, 1841 Clifton Road NE, Atlanta, GA 30322, USA.
| | - Hasse Walum
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Fawn Connor-Stroud
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Sara M Freeman
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Kiyoshi Inoue
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Lisa A Parr
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Mark M Goodman
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA; Center for Systems Imaging, Emory University, 1841 Clifton Road NE, Atlanta, GA 30322, USA
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| |
Collapse
|
250
|
Abstract
AbstractVariation in the quality of parental care has a tremendous impact on a child's social–emotional development. Research investigating the predictors of this variability in human caregiving behavior has mostly focused on learning mechanisms. Evidence is currently accumulating for the complementary underlying role of steroid hormones and neuropeptides. An overview is provided of the hormones and neuropeptides relevant for human caregiving behavior. Then the developmental factors are described that stimulate variability in sensitivity to these hormones and neuropeptides, which may result in variability in the behavioral repertoire of caregiving. The role of genetic variation in neuropeptide and steroid receptors, the role of testosterone and oxytocin during fetal development and parturition, and the impact of experienced caregiving in childhood on functioning of the neuroendocrine stress and oxytocin system are discussed. Besides providing a heuristic framework for further research on the ontogenetic development of human caregiving, a neuroendocrine model is also presented for the intergenerational transmission of caregiving practices. Insight into the underlying biological mechanisms that bring about maladaptive caregiving behavior, such as neglect and insensitive parenting, will hopefully result in more efficient approaches to reduce the high prevalence of such behavior and to minimize the impact on those affected.
Collapse
|