201
|
Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VAM, Bavazzano A, Comolli R, Paoletti F, La Porta CAM. Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol 2005; 39:1555-61. [PMID: 15501026 DOI: 10.1016/j.exger.2004.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 06/29/2004] [Accepted: 07/15/2004] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative illness and the most frequent cause of dementia in the elderly. The identification of activated microglia within neuritic plaques, coupled with the presence of numerous inflammatory proteins, suggests that inflammation is an integral part of the pathogenetic process in AD. In the present paper we have investigated the levels of circulating inflammatory mediators as potential AD biomarkers concentrating essentially on (a) soluble CD40 (sCD40), a member of the tumor necrosis factor receptor superfamily lacking the membrane-associated endodomain by alternative splicing, and (b) transforming growth factor (TGF)-beta 1, a cytokine deeply involved in AD and playing a protective role on CNS. Decrease of TGF-beta1 in AD patients could enhance the effects of pro-inflammatory cytokines produced by activated microglia as well as the expression of factors, such as the CD40/CD40 ligand complex, by microglia and astrocytes. Total venous blood samples were obtained from 33 patients with clinical diagnosis of possible late-onset AD, 40 healthy age-matched and 11 healthy young individuals. A significant increase of sCD40 levels plasma of AD patients versus healthy controls was measured, concomitantly with a decrease in TGF-beta1 concentration. These variations, however, showed no correlation with the expression of ApoE epsilon 4 allele, which was determined in order to assess the different frequency of this risk factor between AD and control groups. Since no comparable modifications were detected in patients affected by Parkinson's disease or non-AD-based dementia, we propose that sCD40 and TGF-beta1 plasma levels might represent possible differential biomarkers of AD, and be useful pre-mortem to support the clinical diagnosis of late-onset AD.
Collapse
Affiliation(s)
- A Mocali
- Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Fan R, Tenner AJ. Differential regulation of Abeta42-induced neuronal C1q synthesis and microglial activation. J Neuroinflammation 2005; 2:1. [PMID: 15642121 PMCID: PMC545941 DOI: 10.1186/1742-2094-2-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 01/10/2005] [Indexed: 11/26/2022] Open
Abstract
Expression of C1q, an early component of the classical complement pathway, has been shown to be induced in neurons in hippocampal slices, following accumulation of exogenous Aβ42. Microglial activation was also detected by surface marker expression and cytokine production. To determine whether C1q induction was correlated with intraneuronal Aβ and/or microglial activation, D-(-)-2-amino-5-phosphonovaleric acid (APV, an NMDA receptor antagonist) and glycine-arginine-glycine-aspartic acid-serine-proline peptide (RGD, an integrin receptor antagonist), which blocks and enhances Aβ42 uptake, respectively, were assessed for their effect on neuronal C1q synthesis and microglial activation. APV inhibited, and RGD enhanced, microglial activation and neuronal C1q expression. However, addition of Aβ10–20 to slice cultures significantly reduced Aβ42 uptake and microglial activation, but did not alter the Aβ42-induced neuronal C1q expression. Furthermore, Aβ10–20 alone triggered C1q production in neurons, demonstrating that neither neuronal Aβ42 accumulation, nor microglial activation is required for neuronal C1q upregulation. These data are compatible with the hypothesis that multiple receptors are involved in Aβ injury and signaling in neurons. Some lead to neuronal C1q induction, whereas other(s) lead to intraneuronal accumulation of Aβ and/or stimulation of microglia.
Collapse
Affiliation(s)
- Rong Fan
- Department of Molecular Biology and Biochemistry, Institute of Brain Aging and Dementia, University of California, Irvine, Irvine, CA 92697 USA
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, Institute of Brain Aging and Dementia, University of California, Irvine, Irvine, CA 92697 USA
| |
Collapse
|
203
|
Okuno T, Nakatsuji Y, Kumanogoh A, Moriya M, Ichinose H, Sumi H, Fujimura H, Kikutani H, Sakoda S. Loss of dopaminergic neurons by the induction of inducible nitric oxide synthase and cyclooxygenase-2 via CD40: Relevance to Parkinson's disease. J Neurosci Res 2005; 81:874-82. [PMID: 16041799 DOI: 10.1002/jnr.20599] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A glial reaction associated with up-regulation of inflammatory molecules has been suggested to play an important role in dopaminergic neuron loss in Parkinson's disease (PD). Among inflammatory molecules, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been focused upon as key factors in the pathogenesis. However, the mechanism of how these molecules are induced in PD brains is not clearly understood. We focused on CD 40, which is expressed on neural cells and could be implicated in the neuroinflammation by inducing inflammatory molecules. We showed that both iNOS and COX-2 were up-regulated in microglia and astrocytes by CD 40 stimulation in association with a low dose of interferon-gamma (IFN-gamma) in vitro. Selective loss of dopaminergic neurons was induced by costimulation with CD 40 and IFN-gamma in mesencephalic cultures, which was protected by selective inhibitors of iNOS and/or COX-2. We also found in CD 40-stimulated astrocytes an increase of a low-affinity IgE receptor CD 23, which is known to induce iNOS expression. Together these data suggest that up-regulated iNOS and COX-2 via the CD 40 pathway may lead to dopaminergic neuron loss and may participate in the neuroinflammaory pathway of PD.
Collapse
Affiliation(s)
- Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004; 10:1366-73. [PMID: 15558055 DOI: 10.1038/nm1140] [Citation(s) in RCA: 838] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 11/01/2004] [Indexed: 12/31/2022]
Abstract
West Nile virus (WNV), a mosquito-borne single-stranded (ss)RNA flavivirus, causes human disease of variable severity. We investigated the involvement of Toll-like receptor (Tlr) 3, which recognizes viral double-stranded (ds)RNA, on WNV infection. Tlr3-deficient (Tlr3(-/-)) mice were more resistant to lethal WNV infection and had impaired cytokine production and enhanced viral load in the periphery, whereas in the brain, viral load, inflammatory responses and neuropathology were reduced compared to wild-type mice. Peripheral WNV infection led to a breakdown of the blood-brain barrier and enhanced brain infection in wild-type but not in Tlr3(-/-) mice, although both groups were equally susceptible upon intracerebroventricular administration of the virus. Tumor necrosis factor-alpha receptor 1 signaling is vital for blood-brain barrier compromise upon Tlr3 stimulation by dsRNA or WNV. Collectively, WNV infection leads to a Tlr3-dependent inflammatory response, which is involved in brain penetration of the virus and neuronal injury.
Collapse
Affiliation(s)
- Tian Wang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
205
|
Rowan MJ, Klyubin I, Wang Q, Anwyl R. Mechanisms of the inhibitory effects of amyloid β-protein on synaptic plasticity. Exp Gerontol 2004; 39:1661-7. [PMID: 15582282 DOI: 10.1016/j.exger.2004.06.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 06/09/2004] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease can be considered a protein misfolding disease. In particular, inappropriate processing of a proteolytic fragment of amyloid precursor protein, amyloid beta-protein (Abeta), in early stages of Alzheimer's disease may lead to stabilization of small oligomers that are highly mobile and have a potential to be extremely toxic assemblies. Recently, the importance of such soluble species of Abeta in triggering synaptic dysfunction, long before neuronal loss occurs, has become apparent. Animal models have revealed that plasticity of hippocampal excitatory synaptic transmission is relatively selectively vulnerable to Abeta both in vitro and in vivo. This review focuses on the mechanisms of Abeta inhibition of long-term potentiation at synapses in the rodent hippocampus from two complimentary perspectives. Firstly, we examine evidence that the synaptic activity of this peptide resides primarily in oligomeric rather than monomeric or fibrillar Abeta species. Secondly, the importance of different oxidative/nitrosative stress-linked cascades including JNK, p38 MAPK and NADPH oxidase/iNOS-generated reactive oxygen/nitrogen free radicals in mediating the inhibition of LTP by Abeta is emphasised. These mechanistic studies provide a plausible explanation for the sensitivity of hippocampus-dependent memory to impairment in the early preclinical stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Michael J Rowan
- Trinity College Institute of Neuroscience, Department of Pharmacology and Therapeutics, Trinity College, Biotechnology Building, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
206
|
Abstract
Developing neurons are programmed to die by an apoptotic pathway unless they are rescued by extrinsic growth factors that generate an anti-apoptotic response. By contrast, adult neurons need to survive for the lifetime of the organism, and their premature death can cause irreversible functional deficits. The default apoptotic pathway is shut down when development is complete, and consequently growth factors are no longer required to prevent death. To protect against accidental apoptotic cell death, anti-apoptotic mechanisms are activated in mature neurons in response to stress. Loss or reduced activity of these intrinsic anti-apoptotic 'brakes' might contribute to or accelerate neurodegeneration, whereas their activation might rescue neurons from injury or genetic abnormalities.
Collapse
Affiliation(s)
- Susanna C Benn
- Day Neuromuscular Research Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, USA
| | | |
Collapse
|
207
|
Twig G, Graf SA, Messerli MA, Smith PJS, Yoo SH, Shirihai OS. Synergistic amplification of beta-amyloid- and interferon-gamma-induced microglial neurotoxic response by the senile plaque component chromogranin A. Am J Physiol Cell Physiol 2004; 288:C169-75. [PMID: 15342341 DOI: 10.1152/ajpcell.00308.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of the microglial neurotoxic response by components of the senile plaque plays a critical role in the pathophysiology of Alzheimer's disease (AD). Microglia induce neurodegeneration primarily by secreting nitric oxide (NO), tumor necrosis factor-alpha (TNFalpha), and hydrogen peroxide. Central to the activation of microglia is the membrane receptor CD40, which is the target of costimulators such as interferon-gamma (IFNgamma). Chromogranin A (CGA) is a recently identified endogenous component of the neurodegenerative plaques of AD and Parkinson's disease. CGA stimulates microglial secretion of NO and TNFalpha, resulting in both neuronal and microglial apoptosis. Using electrochemical recording from primary rat microglial cells in culture, we have shown in the present study that CGA alone induces a fast-initiating oxidative burst in microglia. We compared the potency of CGA with that of beta-amyloid (betaA) under identical conditions and found that CGA induces 5-7 times greater NO and TNFalpha secretion. Coapplication of CGA with betaA or with IFNgamma resulted in a synergistic effect on NO and TNFalpha secretion. CD40 expression was induced by CGA and was further increased when betaA or IFNgamma was added in combination. Tyrphostin A1 (TyrA1), which inhibits the CD40 cascade, exerted a dose-dependent inhibition of the CGA effect alone and in combination with IFNgamma and betaA. Furthermore, CGA-induced mitochondrial depolarization, which precedes microglial apoptosis, was fully blocked in the presence of TyrA1. Our results demonstrate the involvement of CGA with other components of the senile plaque and raise the possibility that a narrowly acting agent such as TyrA1 attenuates plaque formation.
Collapse
Affiliation(s)
- Gilad Twig
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
208
|
Giunta B, Ehrhart J, Townsend K, Sun N, Vendrame M, Shytle D, Tan J, Fernandez F. Galantamine and nicotine have a synergistic effect on inhibition of microglial activation induced by HIV-1 gp120. Brain Res Bull 2004; 64:165-70. [PMID: 15342104 DOI: 10.1016/j.brainresbull.2004.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/03/2004] [Accepted: 06/09/2004] [Indexed: 11/29/2022]
Abstract
Chronic brain inflammation is the common final pathway in the majority of neurodegenerative diseases and central to this phenomenon is the immunological activation of brain mononuclear phagocyte cells, called microglia. This inflammatory mechanism is a central component of HIV-associated dementia (HAD). In the healthy state, there are endogenous signals from neurons and astrocytes, which limit excessive central nervous system (CNS) inflammation. However, the signals controlling this process have not been fully elucidated. Studies on the peripheral nervous system suggest that a cholinergic anti-inflammatory pathway regulates systemic inflammatory response by way of acetylcholine acting at the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) found on blood-borne macrophages. Recent data from our laboratory indicates that cultured microglial cells also express this same receptor and that microglial anti-inflammatory properties are mediated through it and the p44/42 mitogen-activated protein kinase (MAPK) system. Here we report for the first time the creation of an in vitro model of HAD composed of cultured microglial cells synergistically activated by the addition of IFN-gamma and the HIV-1 coat glycoprotein, gp120. Furthermore, this activation, as measured by TNF-alpha and nitric oxide (NO) release, is synergistically attenuated through the alpha7 nAChR and p44/42 MAPK system by pretreatment with nicotine, and the cholinesterase inhibitor, galantamine. Our findings suggest a novel therapeutic combination to treat or prevent the onset of HAD through this modulation of the microglia inflammatory mechanism.
Collapse
Affiliation(s)
- B Giunta
- Neuroimmunology Laboratory, College of Medicine, University of South Florida, 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Wang Q, Rowan MJ, Anwyl R. Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J Neurosci 2004; 24:6049-56. [PMID: 15240796 PMCID: PMC6729673 DOI: 10.1523/jneurosci.0233-04.2004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 05/25/2004] [Accepted: 05/25/2004] [Indexed: 11/21/2022] Open
Abstract
The mechanisms underlying the inhibition of long-term potentiation (LTP) induction by amyloidbeta-peptide (Abeta) were investigated in the medial perforant path of the rat and mouse dentate gyrus in vitro. Evidence is presented in this study that the Abeta-mediated inhibition of LTP induction involves activation of microglia and production of reactive oxygen and nitrogen species. In control slices, Abeta strongly inhibited induction of NMDA receptor-dependent (NMDAR-dependent) LTP, although not induction of NMDAR-independent LTP or long-term depression (LTD). The inhibition of NMDAR-dependent LTP was prevented by minocycline, an agent that prevents activation of microglia. The involvement of inducible nitric oxide synthase (iNOS) was shown by the inability of Abeta to inhibit LTP induction in iNOS knock-out mice and also by the ability of two iNOS inhibitors, aminoguanidine and 1400W, to prevent the Abeta-mediated inhibition of LTP induction. The Abeta-mediated inhibition of LTP induction also was prevented by the superoxide scavenger superoxide dismutase applied together with catalase. Evidence for involvement of superoxide in the action of Abeta on LTP induction was shown by the ability of an inhibitor of NADPH oxidase to prevent the Abeta-mediated inhibition of LTP induction. The study thus provides evidence that the Abeta-mediated inhibition of LTP induction involves an inflammatory-type reaction in which activation of microglia results in the production of nitric oxide and superoxide and thence possibly peroxynitrite, a highly reactive oxidant.
Collapse
Affiliation(s)
- Qinwen Wang
- Department of Physiology, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
210
|
Todd Roach J, Volmar CH, Dwivedi S, Town T, Crescentini R, Crawford F, Tan J, Mullan M. Behavioral effects of CD40–CD40L pathway disruption in aged PSAPP mice. Brain Res 2004; 1015:161-8. [PMID: 15223380 DOI: 10.1016/j.brainres.2004.05.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
We have shown that, when an amyloid-beta peptide (Abeta) overproducing transgenic mouse model (PSAPP) of Alzheimer's disease (AD) is treated with a depleting antibody against CD40L, it causes marked attenuation of Abeta pathology associated with decreased amyloidogenic processing of amyloid precursor protein (APP) and increased cerebral clearance of Abeta. Here, we report that, when PSAPP mice receive a regimen of anti-CD40L antibody commencing at an age associated with initial Abeta deposition, they demonstrate superior spatial memory on the standard water maze and radial arm water maze tasks, as well as exhibiting superior non-spatial memory in the object recognition test, as compared to control PSAPP mice. Furthermore, PSAPP mice treated with an anti-CD40L antibody regimen commencing at an age associated with extensive Abeta deposition demonstrate superior spatial memory on the standard water maze task, as compared to control PSAPP mice. Disruption of CD40L activity has beneficial effects on pathology and cognitive behavior in the PSAPP mouse model, providing support for the therapeutic potential of interrupting the CD40-CD40L interaction in AD.
Collapse
Affiliation(s)
- J Todd Roach
- Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, Ehrhart J, Silver AA, Sanberg PR, Tan J. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J Neurochem 2004; 89:337-43. [PMID: 15056277 DOI: 10.1046/j.1471-4159.2004.02347.x] [Citation(s) in RCA: 461] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.
Collapse
Affiliation(s)
- R Douglas Shytle
- Child Development Center, Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medciine, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Townsend KP, Vendrame M, Ehrhart J, Faza B, Zeng J, Town T, Tan J. CD45 isoform RB as a molecular target to oppose lipopolysaccharide-induced microglial activation in mice. Neurosci Lett 2004; 362:26-30. [PMID: 15147773 DOI: 10.1016/j.neulet.2004.01.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 01/29/2004] [Indexed: 11/16/2022]
Abstract
CD45 is a membrane-bound protein tyrosine phosphatase expressed on all hemopoietic cells with multiple splice variants, including RA, RB, RC and RO. Our previous studies have shown that cross-linking of CD45 with an anti-CD45 antibody markedly inhibits LPS-induced microglia activation. In order to determine which of the CD45 isoforms may be responsible for these effects, we have investigated the expression of CD45 isoforms on cultured microglial cells using flow cytometric analysis. Data reveal that CD45RB is the predominant isoform expressed in murine primary cultured microglial cells. Furthermore, incubation of these cultured cells with anti-CD45RB antibody results in a reduction of microglial activation induced by LPS as evidenced by TNF-alpha production. As a validation of these findings in vivo, brain homogenates from anti-CD45RB antibody (MG23G2)-injected animals that had been treated with LPS demonstrate a significant decrease in TNF-alpha levels compared to control mice treated with LPS plus vehicle. Taken together, these findings suggest that therapeutic agents that specifically stimulate the microglial CD45RB signaling pathway may be effective in suppressing microglial activation associated with several neurodegenerative disorders.
Collapse
Affiliation(s)
- Kirk P Townsend
- Neuroimmunology Laboratory, Institute for Psychiatry in Research, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, 3515 East Fletcher Avenue, Tampa, FL 33613, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Burwinkel M, Schwarz A, Riemer C, Schultz J, van Landeghem F, Baier M. Rapid disease development in scrapie-infected mice deficient for CD40 ligand. EMBO Rep 2004; 5:527-31. [PMID: 15071493 PMCID: PMC1299046 DOI: 10.1038/sj.embor.7400125] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/25/2003] [Accepted: 02/17/2004] [Indexed: 11/09/2022] Open
Abstract
The inhibition of CD40-CD40L interaction-mediated signalling was suggested as a therapeutic strategy for the treatment of Alzheimer's disease. Conversely, CD40-deficient neurons were reported to be more vulnerable to stress associated with ageing as well as nerve growth factor-beta and serum withdrawal. We studied the scrapie infection of CD40L-deficient (CD40L(-/-)) mice to see whether ablation of the CD40L gene would be beneficial or detrimental in this model of a neurodegenerative amyloidosis. CD40L(-/-) mice died on average 40 days earlier than wild-type control mice and exhibited a more pronounced vacuolation of the neuropil and an increased microglia activation. The experimental model indicates that a deficiency for CD40L is highly detrimental in prion diseases and reinforces the neuroprotective function of intact CD40-CD40L interactions. The stimulation of neuroprotective pathways may represent a possibility to delay therapeutically the disease onset in prion infections of the central nervous system.
Collapse
Affiliation(s)
- Michael Burwinkel
- Project 'Neurodegenerative Diseases', Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Anja Schwarz
- Project 'Neurodegenerative Diseases', Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
- Tel: +49 30 45472524; Fax: +49 30 45472609; E-mail:
| | - Constanze Riemer
- Project 'Neurodegenerative Diseases', Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Julia Schultz
- Project 'Neurodegenerative Diseases', Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Frank van Landeghem
- Institute of Neuropathology, Humboldt-University, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Michael Baier
- Project 'Neurodegenerative Diseases', Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
214
|
Abstract
CD154 (CD40-ligand) has a wide variety of pleiotropic effects throughout the immune system and is critical to both cellular and humoral immunity. Cell surface and soluble CD154 are primarily expressed by activated CD4 T cells. Expression of CD154 is tightly regulated in a time-dependent manner, and, like most T cell-derived cytokines and other members of the tumor necrosis factor (TNF) superfamily, CD154 is largely regulated at the level of gene transcription. Recently, dysregulated expression of CD154 has been noted in a number of autoimmune disorders, including systemic lupus erythematosus (SLE). In addition, abnormal expression of CD154 has been hypothesized to contribute to a wider array of diseases, from atherosclerosis to Alzheimer's disease. Until recently, very little was known about the transcriptional regulation of CD154. We are exploring CD154 regulation in primary human CD4 T cells in hopes of understanding the cis- and trans-regulatory elements that control its expression in the cells that normally express CD154. Ultimately, we hope to be able to correct abnormal expression of CD154 in various disease states and to help design gene therapy vectors for treating CD154-deficient individuals with hyper-IgM syndrome.
Collapse
Affiliation(s)
- Randy Q Cron
- Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
| |
Collapse
|
215
|
Fujiwara Y, Takahashi M, Tanaka M, Hoshi T, Someya T, Shinkai S. Relationships between plasma beta-amyloid peptide 1-42 and atherosclerotic risk factors in community-based older populations. Gerontology 2004; 49:374-9. [PMID: 14624066 DOI: 10.1159/000073765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Accepted: 02/05/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent studies have suggested that atherosclerosis contributes to the development of dementia of the Alzheimer's type (DAT). Convenient and valid biochemical markers of DAT are needed to control risk factors for this disease. The aims of the present study were thus (1) to determine the distribution of plasma beta-amyloid peptide1-42 (Abeta1-42) levels in an older population and (2) to investigate factors correlating with plasma levels of this amyloid peptide. Our data support the hypothesis that atherosclerosis plays a role in the pathogenesis of DAT. METHODS 759 Japanese community residents participated in a municipal medical health evaluation; a subset of 280 was selected at random for the measurement of physiological, psychosocial and life-style variables, together with the analysis of blood specimens for cell counts, hematocrit, Abeta1-42, and other biochemical markers. RESULTS Log-transformed plasma Abeta1-42 concentrations showed a Gaussian distribution. Quartiles of log10 (Abeta1-42) concentrations correlated significantly with age categories, but not with other sociopsychological and life-style variables. Plasma Abeta1-42 was significantly correlated with systolic and diastolic blood pressure (DBP; r = 0.19, p = 0.002 and r = 0.16, p = 0.007, respectively), pulse pressure (r = 0.13, p = 0.036), total cholesterol (r = 0.15, p = 0.011), log10 (triacyl glycerol) (r = 0.14, p = 0.021), and log10 (hemoglobin A1c) [log10 (HbA1c)] (r = 0.14, p = 0.020). Stepwise multiple regression analysis showed significant independent effects of DBP, and log(10) (HbA1c) on plasma Abeta1-42 concentrations. CONCLUSIONS Our findings suggest that conventional atherosclerotic risk factors are associated with plasma Abeta1-42 levels. This observation may be important in the detection and prevention of DAT.
Collapse
Affiliation(s)
- Yoshinori Fujiwara
- Community Health Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
216
|
Chen Z, Yu S, Concha HQ, Zhu Y, Mix E, Winblad B, Ljunggren HG, Zhu J. Kainic acid-induced excitotoxic hippocampal neurodegeneration in C57BL/6 mice: B cell and T cell subsets may contribute differently to the pathogenesis. Brain Behav Immun 2004; 18:175-85. [PMID: 14759595 DOI: 10.1016/s0889-1591(03)00117-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Revised: 06/13/2003] [Accepted: 07/21/2003] [Indexed: 01/06/2023] Open
Abstract
The roles of T cells and B cells in kainic acid (KA)-induced hippocampal lesions were studied in C57BL/6 mice lacking specific T cell populations (CD4, CD8, and CD4/CD8 cells) and B cells [Igh-6(-/-)]. At 48 mg/kg of KA administrated intranasally, KA-induced convulsions were seen in all groups. However, CD4/CD8(-/-) mice exhibited the mildest seizures; the responses of CD8(-/-), Igh-6(-/-) and wild-type mice were intermediate, whereas CD4(-/-) mice displayed much more severe clinical signs and 100% early mortality, indicating that a deficiency of CD4 T cells obviously increased susceptibility to KA-induced brain damage. Histopathological analysis of the mice that survived 7 days after KA administration revealed that CD4/CD8(-/-) mice had the fewest pathologic changes but Igh-6(-/-) mice showed more severe lesions in area CA3 of the hippocampus than CD8(-/-) and wild-type mice. Reactive astrogliosis were prominent in all KA-treated mice. Locomotor activity as assessed by open-field test increased after KA administration in Igh-6(-/-) and wild-type mice only. These results denote the influence of the adaptive immune response on KA-induced hippocampal neurodegeneration and suggest that B cell and T cell subsets may contribute differently to the pathogenesis.
Collapse
Affiliation(s)
- Zhiguo Chen
- Division of Experimental Geriatrics, Department of Neurotec, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Mattson MP. Infectious agents and age-related neurodegenerative disorders. Ageing Res Rev 2004; 3:105-20. [PMID: 15163105 PMCID: PMC7172323 DOI: 10.1016/j.arr.2003.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 08/06/2003] [Indexed: 01/08/2023]
Abstract
chlamdAs with other organ systems, the vulnerability of the nervous system to infectious agents increases with aging. Several different infectious agents can cause neurodegenerative conditions, with prominent examples being human immunodeficiency virus (HIV-1) dementia and prion disorders. Such infections of the central nervous system (CNS) typically have a relatively long incubation period and a chronic progressive course, and are therefore increasing in frequency as more people live longer. Infectious agents may enter the central nervous system in infected migratory macrophages, by transcytosis across blood-brain barrier cells or by intraneuronal transfer from peripheral nerves. Synapses and lipid rafts are important sites at which infectious agents may enter neurons and/or exert their cytotoxic effects. Recent findings suggest the possibility that infectious agents may increase the risk of common age-related neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and stroke. While scenarios can be envisioned whereby viruses such as Chlamydia pneumoniae, herpes simplex and influenza promote damage to neurons during aging, there is no conclusive evidence for a major role of these pathogens in neurodegenerative disorders. In the case of stroke, blood vessels may be adversely affected by bacteria or viruses resulting in atherosclerosis.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
218
|
Townsend KP, Shytle DR, Bai Y, San N, Zeng J, Freeman M, Mori T, Fernandez F, Morgan D, Sanberg P, Tan J. Lovastatin modulation of microglial activation via suppression of functional CD40 expression. J Neurosci Res 2004; 78:167-76. [PMID: 15378516 DOI: 10.1002/jnr.20234] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent studies have shown that the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) possess antiinflammatory and immunomodulatory properties, distinct from their action of lowering serum lipid levels. Moreover, results of epidemiological studies suggest that long-term use of statins is associated with a decreased risk for Alzheimer's disease (AD). Interestingly, lovastatin (one of the most commonly used anticholesterol drugs) treatment of vascular-derived cells has been reported to antagonize activation of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, and it is well known that the JAK/STAT pathway plays a central role in interferon-gamma (IFN-gamma)-induced microglial CD40 expression. We and others have previously reported that microglial CD40 expression is significantly induced by IFN-gamma and amyloid-beta (Abeta) peptide. Moreover, it has been shown that CD40 signaling is critically involved in microglia-related immune responses in the CNS. In this study, we examined the putative role of lovastatin in modulation of CD40 expression and its signaling in cultured microglia. RT-PCR, Western immunoblotting, and flow cytometry data show that lovastatin suppresses IFN-gamma-induced CD40 expression. Additionally, lovastatin markedly inhibits IFN-gamma-induced phosphorylation of JAK/STAT1. Furthermore, lovastatin is able to suppress microglial tumor necrosis factor-alpha, interleukin (IL)-beta1 and IL-6 production promoted either by IFN-gamma or by Abeta peptide challenge in the presence of CD40 cross-linking. To characterize further lovastatin's effect on microglial function, we examined microglial phagocytic capability following CD40 cross-linking. Data reveal that lovastatin markedly attenuates CD40-mediated inhibition of microglial phagocytosis of Abeta. These results provide an insight into the mechanism of the beneficial effects of lovastatin in neurodegenerative disorders, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Kirk P Townsend
- Neuroimmunology Laboratory, Department of Psychiatry and Behavioral Medicine, University of South Florida College of Medicine, Tampa, Florida 33613, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Benveniste EN, Nguyen VT, Wesemann DR. Molecular regulation of CD40 gene expression in macrophages and microglia. Brain Behav Immun 2004; 18:7-12. [PMID: 14651941 DOI: 10.1016/j.bbi.2003.09.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Inflammatory events in the central nervous system (CNS) contribute to the disease process in a variety of neuroinflammatory diseases such as multiple sclerosis (MS), Alzheimer's Disease (AD), and cerebral ischemia, and activated macrophages/microglia are central to this response. Immunological activation of these cells leads to the production of a wide array of cytokines, chemokines, matrix metalloproteinases and neurotoxins, and ultimately to glial/neuronal injury and death. The CD40 molecule has an important role in promoting inflammatory responses by macrophages/microglia, since interaction with its cognate ligand, CD154, leads to secretion of cytokines and neurotoxins. Aberrant CD40 expression by macrophages/microglia, induced by cytokines such as IFN-gamma and TNF-alpha, contributes to neuroimmunologic cascades in the CNS. Strategies to suppress CD40 expression may attenuate inflammation and neuronal damage within the CNS, which will ultimately be of benefit in neuroinflammatory diseases. The mediators that regulate expression of CD40 in macrophages/microglia (both induction and inhibition) function at the level of gene transcription. In this review, we present an overview of the molecular basis of CD40 expression in macrophages/microglia. The signal transduction pathways and transcription factors employed by IFN-gamma and TNF-alpha to induce CD40 expression are described, as are the cis-elements in the CD40 promoter that are critical for CD40 transcription. Information is provided on the mechanism(s) underlying suppression of CD40 in macrophages/microglia by immunomodulatory agents such as IL-4, TGF-beta, neuropeptides, neurotrophins, and statins. A comprehensive assessment of CD40 production and function in macrophages/microglia will establish the foundation for future therapeutic manipulation of this critical immunoregulatory protein.
Collapse
Affiliation(s)
- Etty N Benveniste
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
220
|
Bateman DA, Chakrabartty A. Interactions of Alzheimer amyloid peptides with cultured cells and brain tissue, and their biological consequences. Biopolymers 2004; 76:4-14. [PMID: 14997469 DOI: 10.1002/bip.10561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Alzheimer amyloid peptides are the main constituent of the diagnostic hallmark of Alzheimer disease, the senile plaque. A halo of neurodegeneration surrounds the senile plaques observed in the brains of Alzheimer patients. Significant efforts are under way to determine whether the Alzheimer peptides are the causal agents of this neurodegeneration. We review the developments in identifying the putative interaction sites of Alzheimer amyloid peptides on cells and intact brain tissue. We focus on the specificity of this interaction and on the molecular nature of potential receptors. These studies form the bases for developing therapeutics that target potential interaction sites and inhibit Alzheimer amyloid peptide deposition.
Collapse
Affiliation(s)
- David A Bateman
- Division of Molecular and Structural Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada, M5G 2M9
| | | |
Collapse
|
221
|
Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 2003. [PMID: 14586007 DOI: 10.1523/jneurosci.23-30-09796.2003] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk for Alzheimer's disease (AD). To determine the mechanisms by which inflammation affects AD and how NSAIDs protect against it, we stimulated neuroblastoma cells stably transfected with amyloid precursor protein (APP) with proinflammatory cytokines, which increased the secretion of amyloid-beta and APP ectodomain. Addition of ibuprofen, indomethacin, peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists, or cotransfection with PPARgamma cDNA reversed this effect. The inhibitory action of ibuprofen and indomethacin was suppressed by PPARgamma antagonists. Finally, we observed that the mRNA levels, expression, and enzymatic activity of beta-secretase were increased by immunostimulation and normalized by NSAIDs. In conclusion, proinflammatory cytokines activate beta-secretase, and NSAIDs inhibit this effect through PPARgamma.
Collapse
|
222
|
Iijima N, Yanagawa Y, Iwabuchi K, Onoé K. Selective regulation of CD40 expression in murine dendritic cells by thiol antioxidants. Immunology 2003; 110:197-205. [PMID: 14511233 PMCID: PMC1783048 DOI: 10.1046/j.1365-2567.2003.01723.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interaction of CD40 on dendritic cells (DC) with CD40 ligand induces interleukin-12 (IL-12) production by these DC during the antigen presentation. Thus, the level of CD40 expression appears to influence the capability of DC to induce a T helper 1 (Th1) response. However, it is not fully understood how CD40 expression on DC is regulated. In the present study, we examined the effects of the reducing agents, N-acetyl-l-cysteine (NAC) and reduced glutathione (GSH), on tumour necrosis factor-alpha (TNF-alpha)-induced phenotypic changes in murine DC. TNF-alpha markedly increased the expression on DC of major histocompatibility complex (MHC) and the costimulatory molecules, CD40, CD80 and CD86. Both NAC and GSH completely abolished the TNF-alpha-induced enhancement of CD40 expression, but had no considerable effect on the expression of CD80, CD86 and MHC. The marked decrease of CD40 protein with NAC was also detected by Western blotting, but was not associated with the expression level of CD40 mRNA in DC. Thus, NAC appears to reduce CD40 expression on DC by regulating a post-transcriptional pathway. The inhibitory effect of NAC or GSH on TNF-alpha-induced CD40 expression was released by simply removing these agents from the culture. In contrast, culture of TNF-alpha-treated DC with NAC or GSH markedly decreased the expression of CD40 within 12 hr. These results demonstrate that reducing agents selectively, rapidly and reversibly regulate CD40 expression on DC, which may eventually affect the capability of DC for Th1/Th2 polarization.
Collapse
Affiliation(s)
- Norifumi Iijima
- Institute for Genetic Medicine, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
223
|
Abstract
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has been shown to cause synaptic dysfunction and can render neurons vulnerable to excitotoxicity and apoptosis by a mechanism involving disruption of cellular calcium homeostasis. By inducing membrane lipid peroxidation and generation of the aldehyde 4-hydroxynonenal, Abeta impairs the function of membrane ion-motive ATPases and glucose and glutamate transporters, and can enhance calcium influx through voltage-dependent and ligand-gated calcium channels. Reduced levels of a secreted form of APP which normally regulates synaptic plasticity and cell survival may also promote disruption of synaptic calcium homeostasis in AD. Some cases of inherited AD are caused by mutations in presenilins 1 and 2 which perturb endoplasmic reticulum (ER) calcium homeostasis such that greater amounts of calcium are released upon stimulation, possibly as the result of alterations in IP(3) and ryanodine receptor channels, Ca(2+)-ATPases and the ER stress protein Herp. Abnormalities in calcium regulation in astrocytes, oligodendrocytes, and microglia have also been documented in studies of experimental models of AD, suggesting contributions of these alterations to neuronal dysfunction and cell death in AD. Collectively, the available data show that perturbed cellular calcium homeostasis plays a prominent role in the pathogenesis of AD, suggesting potential benefits of preventative and therapeutic strategies that stabilize cellular calcium homeostasis.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Gerontology Research Center 4F01, Baltimore, MD 21224, USA.
| | | |
Collapse
|
224
|
Suo Z, Wu M, Citron BA, Palazzo RE, Festoff BW. Rapid tau aggregation and delayed hippocampal neuronal death induced by persistent thrombin signaling. J Biol Chem 2003; 278:37681-9. [PMID: 12821672 DOI: 10.1074/jbc.m301406200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tau hyperphosphorylation, leading to self-aggregation, is widely held to underlie the neurofibrillary degeneration found in Alzheimer's disease (AD) and other tauopathies. However, it is unclear exactly what environmental factors may trigger this pathogenetic tau hyperphosphorylation. From several perspectives, the coagulation serine protease, thrombin, has been implicated in AD and activates several different protein kinase pathways but has not previously been shown how it may contribute to AD pathogenesis. Here we report that nanomolar thrombin induced rapid tau hyperphosphorylation and aggregation in murine hippocampal neurons via protease-activated receptors, which was followed by delayed synaptophysin reduction and apoptotic neuronal death. Mechanistic study revealed that a persistent thrombin signaling via protease-activated receptor 4 and prolonged downstream p44/42 mitogenactivated protein kinase activation are at least in part responsible. These results pathogenetically linked thrombin to subpopulations of AD and other tauopathies associated with cerebrovascular damage. Such knowledge may be instrumental in transforming therapeutic paradigms.
Collapse
Affiliation(s)
- Zhiming Suo
- Neurobiology Research Laboratory, Veterans Affairs Medical Center, Kansas City, Missouri 64128, USA
| | | | | | | | | |
Collapse
|
225
|
Abstract
Innate responses in the CNS are critical to first line defense against infection and injury. Leukocytes migrate to inflammatory sites in response to chemokines. We studied leukocyte migration and glial chemokine expression within the denervated hippocampus in response to axonal injury caused by entorhinodentate lesions. A population of Mac1/CD11b+ CD45high macrophages (distinct from CD45low microglia) was specifically detected within the lesion-reactive hippocampus by 12 hr after injury. Significant infiltration by CD3+ T cells did not occur in the denervated hippocampus until 24 hr after axotomy. A broad spectrum of chemokines [RANTES/CCL5, monocyte chemoattractant protein (MCP)-1/CCL2, interferon gamma inducible protein (IP)-10/CXCL10, macrophage inflammatory protein (MIP)-1alpha/CCL3, MIP-1beta/CCL4, and MIP-2/CXCL2] was induced at this time. RANTES/CCL5 was not significantly elevated until 24 hr after axotomy, whereas MCP-1/CCL2 was significantly induced before leukocyte infiltration occurred. Neither T cells nor macrophages infiltrated the denervated hippocampus of CCR2-deficient mice, arguing for a critical role for the CCR2 ligand MCP-1/CCL2 in leukocyte migration. Both T cells and macrophages infiltrated CCR5-deficient hippocampi, showing that CCR5 ligands (including RANTES/CCL5) are not critical to this response. In situ hybridization combined with immunohistochemistry for ionized binding calcium adapter molecule (iba)1 or glial fibrillary acidic protein (GFAP) identified iba1+ microglia and GFAP+ astrocytes as major sources of MCP-1/CCL2 within the lesion-reactive hippocampus. We conclude that leukocyte responses to CNS axonal injury are directed via innate glial production of chemokines.
Collapse
|
226
|
Shibata A, Zelivyanskaya M, Limoges J, Carlson KA, Gorantla S, Branecki C, Bishu S, Xiong H, Gendelman HE. Peripheral nerve induces macrophage neurotrophic activities: regulation of neuronal process outgrowth, intracellular signaling and synaptic function. J Neuroimmunol 2003; 142:112-29. [PMID: 14512170 DOI: 10.1016/s0165-5728(03)00253-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rat cortical neurons cultured in conditioned media from human monocyte-derived macrophages (MDM) show increased neuronal protein synthesis, neurite outgrowth, mitogen-activating protein kinase activity, and synaptic function. Neurotrophic properties of human MDM-conditioned media are significantly enhanced by human peripheral nerve and to a more limited extent by CD40 ligand pre-stimulation. Such positive effects of MDM secretions on neuronal function parallel the secretion of brain-derived neurotrophic factor (BDNF). MDM activation cues may serve to balance toxic activities produced during neurodegenerative diseases and thus, under certain circumstances, mitigate neuronal degeneration.
Collapse
Affiliation(s)
- Annemarie Shibata
- Center for Neurovirology and Neurodegenerative Disorders and the Department of Pathology and Microbiology, University of Nebraska Medical Center, 985215 Nebraska Medical Center, Omaha, NE 68198-5215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Lee J, Chan SL, Mattson MP. Adverse effect of a presenilin-1 mutation in microglia results in enhanced nitric oxide and inflammatory cytokine responses to immune challenge in the brain. Neuromolecular Med 2003; 2:29-45. [PMID: 12230303 DOI: 10.1385/nmm:2:1:29] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inflammatory processes involving glial cell activation are associated with amyloid plaques and neurofibrillary tangles, the cardinal neuropathological lesions in the brains of Alzheimer's disease (AD) patients, However, it is unclear whether these inflammatory processes occur as a response to neuronal degeneration or might represent more seminal events in the disease process. Some cases of AD are caused by mutations in presenilin-1 (PS1), and it has been shown that PS1 mutations perturb neuronal calcium homeostasis, promote increased production of amyloid beta-peptide (Abeta), and render neurons vulnerable to synaptic dysfunction, excitotoxicity, and apoptosis. Although glial cells express PS1, it is not known if PS1 mutations alter glial cell functions. We now report on studies of glial cells in PS1 mutant knockin mice that demonstrate an adverse effect PS1 mutations in microglial cells. Specifically, PS1 mutant mice exhibit an enhanced inflammatory cytokine response to immune challenge with bacterial lipopolysaccharide (LPS). LPS-induced levels of mRNAs encoding tumor necrosis fctor-alpha (TNFalpha), interleukin (IL)-1alpha, IL-1beta, IL-1 receptor antagonist, and IL-6 are significantly greater in the hippocampus and cerebral cortex of PS1 mutant mice as compared to wild-type mice. In contrast, the cytokine responses to LPS in the spleen is unaffected by the PS1 mutation. Studies of cultured microglia from PS1 mutant and wild-type mice reveal that PS1 is expressed in microglia and that the PS1 mutation confers a heightened sensitivity to LPS, as indicated by superinduction of inducible nitric oxide synthase (NOS) and activation of mitogen-activated protein kinase (MAPK). These findings demonstrate an adverse effect of PS1 mutations on microglial cells that results in their hyperactivation under pro-inflammatory conditions, which may, together with direct effects of mutant PS1 in neurons, contribute to the neurodegenerative process in AD. These findings also have important implications for development of a "vaccine" for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Jaewon Lee
- laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
228
|
Omari KM, Dorovini-Zis K. CD40 expressed by human brain endothelial cells regulates CD4+ T cell adhesion to endothelium. J Neuroimmunol 2003; 134:166-78. [PMID: 12507785 DOI: 10.1016/s0165-5728(02)00423-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent evidence suggests that interactions between CD40 on antigen presenting cells (APC) and CD40L on T cells generate signals that result in the activation of APC. In this study, the expression and function of CD40 was investigated in primary cultures of human brain microvessel endothelial cells (HBMEC). Results revealed constitutive expression of CD40 on untreated HBMEC. Stimulation with TNF-alpha, IFN-gamma, LPS or combination of TNF-alpha and IFN-gamma significantly upregulated CD40. The majority of CD40 molecules were localized on the apical surface of EC. Incubation of HBMEC with soluble CD40L resulted in increased expression of the adhesion molecules E-selectin, VCAM-1 and ICAM-1. Consequently, the adhesion of both resting and anti-CD3 activated CD4+ T lymphocytes to CD40L treated HBMEC was significantly increased compared to unstimulated EC. The expression of CD40 by cerebral endothelium, and endothelial cell activation following binding of CD40 to its ligand, CD40L, suggest a potential mechanism by which activated CD40L expressing T cells could enhance adhesion and migration of inflammatory cells across the blood-brain barrier (BBB) to sites of inflammation in the human central nervous system (CNS).
Collapse
Affiliation(s)
- Kakuri M Omari
- Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Vancouver General Hospital and the University of British Columbia, 855 West 12th Avenue, Vancouver, BC, Canada V5Z 1M9
| | | |
Collapse
|
229
|
Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003; 304:1-7. [PMID: 12490568 DOI: 10.1124/jpet.102.035048] [Citation(s) in RCA: 848] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evidence from postmortem analysis implicates the involvement of microglia in the neurodegenerative process of several degenerative neurological diseases, including Alzheimer's disease and Parkinson's disease. It remains to be determined, however, whether microglial activation plays a role in the initiation stage of disease progression or occurs merely as a response to neuronal death. Activated microglia secrete a variety of proinflammatory and neurotoxic factors that are believed to induce and/or exacerbate neurodegeneration. In this article, we summarize recent advances on the study of the role of microglia based on findings from animal and cell culture models in the pathogenesis of neurodegenerative diseases, with particular emphasis on Parkinson's disease. In addition, we also discuss novel approaches to potential therapeutic strategies.
Collapse
Affiliation(s)
- Bin Liu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
230
|
Riemer C, Simon D, Neidhold S, Schultz J, Schwarz A, Baier M. BSE, scrapie, and vCJD: infectious neurodegenerative diseases. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:85-103. [PMID: 12066418 DOI: 10.1007/978-3-662-05073-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- C Riemer
- Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
231
|
Tan J, Town T, Crawford F, Mori T, DelleDonne A, Crescentini R, Obregon D, Flavell RA, Mullan MJ. Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. Nat Neurosci 2002; 5:1288-93. [PMID: 12402041 DOI: 10.1038/nn968] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 09/18/2002] [Indexed: 12/20/2022]
Abstract
We have shown that interaction of CD40 with CD40L enables microglial activation in response to amyloid-beta peptide (Abeta), which is associated with Alzheimer's disease (AD)-like neuronal tau hyperphosphorylation in vivo. Here we report that transgenic mice overproducing Abeta, but deficient in CD40L, showed decreased astrocytosis and microgliosis associated with diminished Abeta levels and beta-amyloid plaque load. Furthermore, in the PSAPP transgenic mouse model of AD, a depleting antibody against CD40L caused marked attenuation of Abeta/beta-amyloid pathology, which was associated with decreased amyloidogenic processing of amyloid precursor protein (APP) and increased circulating levels of Abeta. Conversely, in neuroblastoma cells overexpressing wild-type human APP, the CD40-CD40L interaction resulted in amyloidogenic APP processing. These findings suggest several possible mechanisms underlying mitigation of AD pathology in response to CD40L depletion, and validate the CD40-CD40L interaction as a target for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Jun Tan
- The Roskamp Institute, Department of Psychiatry, University of South Florida, 3515 East Fletcher Avenue, Tampa, Florida 33613, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Baker CA, Martin D, Manuelidis L. Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol 2002; 76:10905-13. [PMID: 12368333 PMCID: PMC136595 DOI: 10.1128/jvi.76.21.10905-10913.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurons are often assumed to be the principal sites for replication of the infectious agents causing Creutzfeldt-Jakob disease (CJD), scrapie, and bovine spongiform encephalopathy because they express high levels of normal and pathological prion protein (PrP). However, isolated brain cell types have not been evaluated for either infection or gene expression. Microglia purified from CJD-infected mice showed infectivity comparable to that of starting brain homogenate but expressed approximately 50-fold less PrP. CJD-infected microglia also displayed morphological changes indicative of cellular activation. To determine the molecular pathways of activation, we evaluated pertinent transcripts, including those linked to inflammation. Semiquantitative reverse transcription-PCR showed a >4-fold increase in cathepsin S, an enzyme important in antigen presentation, the cytokine interleukin-1beta, and the chemokine B-lymphocyte chemoattractant. The profile of microglial changes induced by the CJD agent differed substantially from activation induced by bacterial lipopolysaccharide or by beta-amyloid, a structure comparable to pathological PrP. These microglial studies emphasize migratory hematopoietic cells in the dispersion, and possibly replication, of the CJD agent. The low PrP levels in these highly infectious and activated cells further support the concept that pathological PrP is the result of infection rather than the infectious agent itself. Because microglia develop a specific pattern of responses to the CJD agent, microglial markers may be exploited in the diagnosis of these spongiform encephalopathies.
Collapse
Affiliation(s)
- Christopher A Baker
- Section of Neuropathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
233
|
Abstract
Cytokines constitute a significant portion of the immuno- and neuromodulatory messengers that can be released by activated microglia. By virtue of potent effects on resident and invading cells, microglial cyto- and chemokines regulate innate defense mechanisms, help the initiation and influence the type of immune responses, participate in the recruitment of leukocytes to the CNS, and support attempts of tissue repair and recovery. Microglia can also receive cyto- and chemokine signals as part of auto- and paracrine communications with astrocytes, neurons, the endothelium, and leukocyte infiltrates. Strong responses and modulatory influences can be demonstrated, adding to the emerging view that microglial behavior is highly dependent on the (cytokine) environment and that reactions to a challenge may vary with the stimulation context. In principle, microglial activation aims at CNS protection. However, failed microglial engagement due to excessive or sustained activation could significantly contribute to acute and chronic neuropathologies. Dysregulation of microglial cytokine production could thereby promote harmful actions of the defense mechanisms, result in direct neurotoxicity, as well as disturb neural cell functions as they are sensitive to cytokine signaling.
Collapse
Affiliation(s)
- Uwe-Karsten Hanisch
- Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- University of Applied Sciences Lausitz, Senftenberg, Germany
| |
Collapse
|
234
|
Abstract
Genetic evidence suggests that generation of amyloid beta peptide is the pivotal step in the pathophysiology of Alzheimer's disease (AD). The mechanism by which this peptide induces neurodegeneration may involve inflammatory processes. Pharmacological suppression of inflammation may therefore ameliorate the neuropathology. Basic research studies provide substantial evidence that inflammatory processes present in the brains of patients with AD are destructive, and that anti-inflammatory drugs can provide protection. Furthermore, epidemiological studies suggest that anti-inflammatory drugs reduce the risk of AD. However, there is not yet any strong evidence from completed randomised controlled trials that anti-inflammatory treatment is beneficial. Large trials of glucocorticoid therapy, hydroxychloroquine, and non-steroidal anti-inflammatory drugs (NSAIDs) in the treatment of AD have so far been disappointing. Several studies, including a large primary prevention trial with NSAIDs, are still in progress. Major issues of selection of patients, drug regimen, and duration of treatment remain unresolved.
Collapse
Affiliation(s)
- Paul S Aisen
- Department of Neurology, Georgetown University Medical Center, Washington DC 20007, USA.
| |
Collapse
|
235
|
Liu Y, Qin L, Wilson BC, An L, Hong JS, Liu B. Inhibition by naloxone stereoisomers of beta-amyloid peptide (1-42)-induced superoxide production in microglia and degeneration of cortical and mesencephalic neurons. J Pharmacol Exp Ther 2002; 302:1212-9. [PMID: 12183682 DOI: 10.1124/jpet.102.035956] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously we reported that naloxone stereoisomers, in an opioid receptor-independent manner, attenuated the inflammation-mediated degeneration of dopaminergic neurons by inhibition of the activation of microglia, the resident immune cells in the brain. Recently we discovered that beta-amyloid peptide Abeta (1-42) exhibited enhanced neurotoxicity toward both cortical and mesencephalic neurons through the activation of microglia and production of superoxide. The purpose of this study was to determine whether naloxone isomers had any effect on Abeta (1-42)-induced neurodegeneration. Pretreatment of either cortical or mesencephalic neuron-glia cultures with 1 to 10 microM (-)-naloxone, prior to treatment for up to 11 days with 0.1 to 3 microM Abeta (1-42), afforded significant neuroprotection as judged by neurotransmitter uptake, immunocytochemical analysis, and cell counting. More importantly, (+)-naloxone, the ineffective enantiomer of (-)-naloxone in binding opioid receptors, was equally effective in affording neuroprotection. Mechanistically, inhibition of Abeta (1-42)-induced production of superoxide in microglia underlay the neuroprotective effect of naloxone stereoisomers. Moreover, neuroprotection and inhibition of Abeta (1-42)-induced superoxide production was also achieved with naloxone methiodide, a charged analog with quaternary amine, suggesting that the site of action for naloxone isomers is at the cell surface of microglia. These results demonstrated that naloxone isomers, through mechanisms unrelated to the opioid receptors, were capable of inhibiting Abeta (1-42)-induced microglial activation and degeneration of both cortical and mesencephalic neurons. Combined with our previous observations with inflammagen-induced neurodegeneration, naloxone analogs, especially (+)-naloxone, may have potential therapeutic efficacy for the treatment of Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Yuxin Liu
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
236
|
Abstract
Microglia, residential macrophages in the central nervous system, can release a variety of factors including cytokines, chemokines, etc. to regulate the communication among neuronal and other types of glial cells. Microglia play immunological roles in mechanisms underlying the phagocytosis of invading microorganisms and removal of dead or damaged cells. When microglia are hyperactivated due to a certain pathological imbalance, they may cause neuronal degeneration. Pathological activation of microglia has been reported in a wide range of conditions such as cerebral ischemia, Alzheimer's disease, prion diseases, multiple sclerosis, AIDS dementia, and others. Nearly 5000 papers on microglia can be retrieved on the Web site PubMed at present (November 2001) and half of them were published within the past 5 years. Although it is not possible to read each paper in detail, as many factors as possible affecting microglial functions in in vitro culture systems are presented in this review. The factors are separated into "activators" and "inhibitors," although it is difficult to classify many of them. An overview on these factors may help in the development of a new strategy for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University; Sakai, Japan.
| |
Collapse
|
237
|
Abstract
Inflammation is a defense reaction against diverse insults, designed to remove noxious agents and to inhibit their detrimental effects. It consists of a dazzling array of molecular and cellular mechanisms and an intricate network of controls to keep them in check. In neurodegenerative diseases, inflammation may be triggered by the accumulation of proteins with abnormal conformations or by signals emanating from injured neurons. Given the multiple functions of many inflammatory factors, it has been difficult to pinpoint their roles in specific (patho)physiological situations. Studies of genetically modified mice and of molecular pathways in activated glia are beginning to shed light on this issue. Altered expression of different inflammatory factors can either promote or counteract neurodegenerative processes. Since many inflammatory responses are beneficial, directing and instructing the inflammatory machinery may be a better therapeutic objective than suppressing it.
Collapse
Affiliation(s)
- Tony Wyss-Coray
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California-San Francisco, San Francisco, CA 94141, USA.
| | | |
Collapse
|
238
|
Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, Vinters HV. Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer's disease brain and damage the blood-brain barrier. Eur J Clin Invest 2002; 32:360-71. [PMID: 12027877 DOI: 10.1046/j.1365-2362.2002.00994.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Monocyte/macrophages are known to infiltrate the brain of patients with HIV-1 encephalitis (HIVE). In Alzheimer's disease brain, the origin of activated microglia has not been determined. MATERIALS AND METHODS We employed the antigen retrieval technique, immunocytochemistry, immunofluorescense, and confocal microscopy to identify macrophages and microglia in relation to amyloid-beta plaques and the blood-brain barrier in autopsy brain tissues from patients with Alzheimer's disease (AD) and HIVE. RESULTS In both conditions, cyclooxygenase-2 positive macrophages and, to a lesser degree, T and B cells infiltrate brain perivascular spaces and neuropil. The macrophages are distinguishable from ramified microglia, and decorate the vessels at the sites of apparent of endothelial tight junction protein ZO-1 disruption. The macrophages also infiltrate amyloid-beta plaques, display intracellular amyloid-beta and are surrounded by amyloid-beta-free lacunae. Furthermore, the macrophages partially encircle the walls of amyloid-beta-containing vessels in amyloid angiopathy, and exhibit intracellular amyloid-beta but not paracellular lacunae. Significantly larger zones of fibrinogen leakage surround the microvessels in HIVE brain tissues compared with AD tissues (P = 0.034), and AD tissues have significantly greater leakage than control tissues (P = 0.0339). The AD group differs from a normal control age-matched group with respect to both the area occupied by CD68 (P = 0.03) and cyclooxygenase-2 immunoreactive cells (P = 0.004). CONCLUSION In both HIVE and AD, blood-borne activated monocyte/macrophages and lymphocytes appear to migrate through a disrupted blood-brain barrier. The lacunae around macrophages in amyloid-beta plaques but not in vessel walls are consistent with the ability of macrophages to phagocytize and clear amyloid-beta deposits in vitro.
Collapse
Affiliation(s)
- M Fiala
- Brain Research Institute, UCLA School of Medicine, Los Angeles, CA 90095-1760, USA.
| | | | | | | | | | | | | |
Collapse
|
239
|
Kim WK, Ganea D, Jonakait GM. Inhibition of microglial CD40 expression by pituitary adenylate cyclase-activating polypeptide is mediated by interleukin-10. J Neuroimmunol 2002; 126:16-24. [PMID: 12020953 DOI: 10.1016/s0165-5728(02)00059-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microglia are intrinsic mediators of the central nervous system (CNS) immune response induced by a variety of insults. Activated microglia express costimulatory molecules CD40 and B7 that are important equally for T-cell activation and further activation of microglia. In this study, we sought to investigate the regulation of costimulatory molecule expression on primary microglia and microglial cell line, BV-2, by pituitary adenylyl cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP), potent anti-inflammatory neuropeptides. The neuropeptides inhibited CD40 and B7-2 mRNA expression in activated microglia. PACAP decreased surface expression of CD40 and B7-2 on activated microglia. The inclusion of an anti-IL-10 antibody completely abrogated PACAP inhibition of lipopolysaccharide (LPS)-induced CD40 expression, suggesting that PACAP inhibition is at least in part mediated by IL-10. Indeed, PACAP enhanced LPS-induced IL-10 mRNA and protein levels in microglia. These data indicate that PACAP, through an increase in IL-10 protein, can down-regulate important costimulatory molecule expression on microglia, thereby possibly affecting CNS immunity.
Collapse
Affiliation(s)
- Woong-Ki Kim
- Department of Biological Sciences, Rutgers University, 101 Warren Street, Newark, NJ 07102, USA
| | | | | |
Collapse
|
240
|
German DC, Liang CL, Song T, Yazdani U, Xie C, Dietschy JM. Neurodegeneration in the Niemann-Pick C mouse: glial involvement. Neuroscience 2002; 109:437-50. [PMID: 11823057 DOI: 10.1016/s0306-4522(01)00517-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mouse model of Niemann-Pick type C disease has been found that exhibits neuropathology similar to the human condition. There is an age-related neurodegeneration in several brain regions and a lack of myelin in the corpus callosum in these mice. The purpose of the present study was to examine the Niemann-Pick mouse and determine whether: (1) microglia and astrocytes exhibit ultrastructural pathology similar to that found in neurons; (2) nerve fiber number is reduced when the myelin sheath is absent; and (3) the lysosomal hydrolase, cathepsin-D, is involved in the neurodegenerative process. Using light and electron microscopic methods, and immunocytochemistry, Niemann-Pick and control animals were examined at several ages. Cathepsin-D content was semi-quantitatively measured in neurons and glial cells in brain regions known to exhibit neurodegeneration, as was the density of glial fibrillary acidic protein-labeled astrocytes. The Niemann-Pick mouse exhibited: (1) an age-related increase in inclusion bodies in microglia and astrocytes, similar to that observed within neurons; (2) an almost complete absence of myelin in the corpus callosum by 7-8 weeks of age, along with a 30% reduction in the number of corpus callosum axons; (3) a mild age-related increase in cathepsin-D content within nerve cells in many brain regions. However, the cathepsin-D elevation was greatest in microglial cells; (4) an age-related increase in the number of microglial cells containing intense cathepsin-D immunoreactivity in both the thalamus and cerebellum. Both of these brain regions have been shown previously to exhibit an age-related loss of neurons; and (5) an increase in the number of reactive astrocytes immunostained for glial fibrillary acidic protein, especially in the thalamus and cerebellum. These data indicate that glial cells are a major target for pathology in the Niemann-Pick mouse. The lack of myelin within the corpus callosum may be related to the loss of nerve fibers in this structure. The increase in cathepsin-D-laden microglial cells, in brain regions previously shown to undergo neurodegeneration, is consistent with a role for microglia in the phagocytosis of dead neurons and in actively contributing to the neurodegenerative process. The activation of astrocytes in regions that undergo neurodegeneration is also consistent with a role for these glial cells in the neurodegenerative process.
Collapse
Affiliation(s)
- D C German
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA.
| | | | | | | | | | | |
Collapse
|
241
|
Tan J, Town T, Mori T, Obregon D, Wu Y, DelleDonne A, Rojiani A, Crawford F, Flavell RA, Mullan M. CD40 is expressed and functional on neuronal cells. EMBO J 2002; 21:643-52. [PMID: 11847112 PMCID: PMC125862 DOI: 10.1093/emboj/21.4.643] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We show here that CD40 mRNA and protein are expressed by neuronal cells, and are increased in differentiated versus undifferentiated N2a and PC12 cells as measured by RT-PCR, western blotting and immunofluorescence staining. Additionally, immunohistochemistry reveals that neurons from adult mouse and human brain also express CD40 in situ. CD40 ligation results in a time-dependent increase in p44/42 MAPK activation in neuronal cells. Furthermore, ligation of CD40 opposes JNK phosphorylation and activity induced by NGF-beta removal from differentiated PC12 cells or serum withdrawal from primary cultured neurons. Importantly, CD40 ligation also protects neuronal cells from NGF-beta or serum withdrawal-induced injury and affects neuronal differentiation. Finally, adult mice deficient for the CD40 receptor demonstrate neuronal dysfunction as evidenced by decreased neurofilament isoforms, reduced Bcl-x(L):Bax ratio, neuronal morphological change, increased DNA fragmentation, and gross brain abnormality. These changes occur with age, and are clearly evident at 16 months. Taken together, these data demonstrate a role of CD40 in neuronal development, maintenance and protection in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Tan
- The Roskamp Institute, Department of Psychiatry, University of South Florida, 3515 East Fletcher Avenue, Tampa, FL 33613,
Department of Pathology, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612 and Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, Hew Haven, CT 06520, USA Corresponding author e-mail:
| | | | | | | | | | | | - Amyn Rojiani
- The Roskamp Institute, Department of Psychiatry, University of South Florida, 3515 East Fletcher Avenue, Tampa, FL 33613,
Department of Pathology, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612 and Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, Hew Haven, CT 06520, USA Corresponding author e-mail:
| | | | - Richard A. Flavell
- The Roskamp Institute, Department of Psychiatry, University of South Florida, 3515 East Fletcher Avenue, Tampa, FL 33613,
Department of Pathology, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612 and Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, Hew Haven, CT 06520, USA Corresponding author e-mail:
| | | |
Collapse
|
242
|
Calingasan NY, Erdely HA, Altar CA. Identification of CD40 ligand in Alzheimer's disease and in animal models of Alzheimer's disease and brain injury. Neurobiol Aging 2002; 23:31-9. [PMID: 11755016 DOI: 10.1016/s0197-4580(01)00246-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic neuroinflammatory processes including glial activation may play a role in the pathogenesis of Alzheimer's disease (AD). The immune and inflammatory mediator CD40 ligand (CD40L) can augment the activation of cultured microglia by amyloid beta-protein (Abeta) and promote neuron death. We investigated whether CD40L is increased in AD and in animal models of AD and neuroinflammation. In the frontal cortex of elderly, non-AD controls, CD40L immunoreactivity was found in the glial limiting membrane, astrocytes, and vascular profiles in gray and white matter. In AD, intense CD40L immunoreactivity occurred in hypertrophied astrocytes throughout the frontal cortex. The majority of CD40L-immunoreactive astrocytes in the gray matter occurred within, or at the periphery of, Abeta(1-42)-immunoreactive plaques. A semiquantitative analysis revealed a three-fold elevation in the number of CD40L-immunoreactive astrocytes in AD compared to controls. The cortex and hippocampus from 6 and 12 month-old amyloid precursor protein/presenilin 1 transgenic mice exhibited numerous neuritic plaques and CD40L-positive astrocytes, which were not detected in non-transgenic controls. In adult rats, little or no CD40L staining occurred in astrocytes of the intact brain, whereas intrastriatal excitotoxic or stab wound lesions produced a strong CD40L immunoreactivity that was more segregated than glial fibrillary acidic protein. These findings indicate that astrocytes are the predominant source of CD40L in brain, and are consistent with the proposed role of CD40L-mediated neurotoxic inflammation in AD.
Collapse
Affiliation(s)
- Noel Y Calingasan
- Neuroscience Research, Maryland Research Laboratories, Otsuka Maryland Research Institute, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
243
|
Larsson LC, Corbascio M, Widner H, Pearson TC, Larsen CP, Ekberg H. Simultaneous inhibition of B7 and LFA-1 signaling prevents rejection of discordant neural xenografts in mice lacking CD40L. Xenotransplantation 2002; 9:68-76. [PMID: 12005106 DOI: 10.1034/j.1399-3089.2002.1o010.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transplantation of embryonic human neural tissue can restore dopamine neurotransmission and improve neurological function in patients with Parkinson's disease. Logistical and ethical factors limit the availability of human embryonic allogeneic tissue. Embryonic xenogeneic neural tissue from porcine donors is an alternative form of donor tissue, but effective immunomodulatory techniques are warranted for neural xenotransplantation to become clinically feasible. We transplanted embryonic porcine ventral mesencephalic tissue into the brains of adult untreated C57BL/6 mice, untreated CD40L-/-mice and CD40L-/-mice that received injections of anti-LFA-1, CTLA41g or both compounds. Double-treated CD40L-/-mice had large grafts with high numbers of dopaminergic neurons 4 wk after transplantation. The grafts were completely devoid of lymphocytes, macrophages and activated microglia. Untreated C57BL/6 mice had rejected their grafts. Untreated CD40L-/-mice and CD40L-/-mice treated with monotherapy of anti-LFA-1 or CTLA41g had smaller grafts and more microglial and lymphocytic infiltration than double-treated CD40L-/-mice. We conclude that immunomodulation with concomitant inhibition of LFA-1 and B7 signaling in the perioperative period in CD40L-/-mice prevented the rejection of discordant neural xenografts. The treatment most likely reduced antigen presenting capacity and interfered with the costimulatory signaling needed for T cell activation to occur.
Collapse
Affiliation(s)
- Lena C Larsson
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | | | | | |
Collapse
|
244
|
Scorer CA. Preclinical and clinical challenges in the development of disease-modifying therapies for Alzheimer's disease. Drug Discov Today 2001; 6:1207-1219. [PMID: 11722873 DOI: 10.1016/s1359-6446(01)02042-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neurodegenerative disease first described almost 100 years ago by Alois Alzheimer is predicted to be one of the major health problems of the 21st century. Alzheimer's disease (AD) is a progressive dementia characterized by global cognitive decline and is defined pathologically by amyloid plaques and neurofibrillary tangles. Major unmet medical need has encouraged pharmaceutical companies to invest in AD drug development. Promising novel approaches are under way, assisted by recent advances in animal models and an increased understanding of pathophysiology. However, demonstration of disease modification and identification of at-risk individuals are among the significant challenges facing those working in AD drug development.
Collapse
Affiliation(s)
- Carol A. Scorer
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, CM19 5AW tel: +44 1279 875227 fax: +44 1279 622660, Essex, UK
| |
Collapse
|
245
|
Schwarz MJ, Chiang S, Müller N, Ackenheil M. T-helper-1 and T-helper-2 responses in psychiatric disorders. Brain Behav Immun 2001; 15:340-70. [PMID: 11782103 DOI: 10.1006/brbi.2001.0647] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The expanding field of psychoneuroimmunology has markedly increased knowledge about the interference of the central nervous system and the immune system. Immunological abnormalities in psychiatric patients have been repeatedly described in the last century. Modern concepts of immunology and the growing knowledge of psychoneuroimmunology may help in understanding the distinct immunological mechanisms in psychiatric disorders. One of these concepts regarding the adaptive immune system is the discrimination between Th1-like cell-mediated and Th2-like antibody-related immune responses. This article systematically describes alterations of Th1- or Th2-specific parameters in the major psychiatric disorders schizophrenia, major depression, and Alzheimer's disease. There are several hints of associations of these two distinct arms of immune response with subgroups of schizophrenia and major depression. The immunological research in Alzheimer's disease has already led to a preclinical model of immunotherapy. Categorization of immune parameters may also help to identify a possible immune-related pathophysiology in psychotic and affective disorders, resulting in specific treatment strategies.
Collapse
Affiliation(s)
- M J Schwarz
- Psychiatric Hospital, University of Munich, Nussbaumstr. 7, D-80336 Munich, Germany
| | | | | | | |
Collapse
|
246
|
Vehmas AK, Borchelt DR, Price DL, McCarthy D, Wills-Karp M, Peper MJ, Rudow G, Luyinbazi J, Siew LT, Troncoso JC. beta-Amyloid peptide vaccination results in marked changes in serum and brain Abeta levels in APPswe/PS1DeltaE9 mice, as detected by SELDI-TOF-based ProteinChip technology. DNA Cell Biol 2001; 20:713-21. [PMID: 11788049 DOI: 10.1089/10445490152717578] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the pathogenesis of Alzheimer's disease (AD) is not fully understood, growing evidence indicates that the deposition of beta-amyloid (Abeta) and the local reactions of various cell types to this protein play major roles in the development of the disease. Immunization with the Abeta 1-42 peptide has been reported to decrease Abeta deposits in the brains of mutant amyloid precursor protein (APP/V717F) transgenic (tg) mice (Schenk et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173-177). We have replicated this finding in APPswe/PS1DeltaE9 tg mice, which also develop Abeta deposits in the brain. The immunized animals developed high titers of antibodies against Abeta 1-42 in serum, and Abeta deposits in the brains were significantly reduced. Using surface-enhanced laser desorption/ionization (SELDI) mass spectrometry and ProteinChip((R)) technology, we detected trends toward increased soluble Abeta peptide in the brain and a decrease in assayable Abeta peptide in the serum of immunized compared with control animals. This last finding raises the possibility that anti-Abeta antibodies in the periphery sequester Abeta peptides or target them for degradation and in this way contribute to the enhanced Abeta clearance from the brain in immunized animals.
Collapse
Affiliation(s)
- A K Vehmas
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
The interaction between CD40 and its cognate ligand, CD40 ligand, is a primary regulator of the peripheral immune response, including modulation of T lymphocyte activation, B lymphocyte differentiation and antibody secretion, and innate immune cell activation, maturation, and survival. Recently, we and others have identified CD40 expression on a variety of CNS cells, including endothelial cells, smooth muscle cells, astroglia and microglia, and have found that, on many of these cells, CD40 expression is enhanced by pro-inflammatory stimuli. Importantly, the CD40-CD40 ligand interaction on microglia triggers a series of intracellular signaling events that are discussed, beginning with Src-family kinase activation and culminating in microglial activation as evidenced by tumor necrosis factor-alpha secretion. Based on the involvement of microglial activation and brain inflammation in Alzheimer's disease pathogenesis, we have investigated co-stimulation of microglia, smooth muscle, and endothelial cells with CD40 ligand in the presence of low doses of freshly solubilized amyloid-beta peptides. Data reviewed herein show that CD40 ligand and amyloid-beta act synergistically to promote pro-inflammatory responses by these cells, including secretion of interleukin-1 beta by endothelial cells and tumor necrosis factor-alpha by microglia. As these cytokines have been implicated in neuronal injury, a comprehensive model of pro-inflammatory CD40 ligand and amyloid-beta initiated Alzheimer's disease pathogenesis (mediated by multiple CNS cells) is proposed.
Collapse
Affiliation(s)
- T Town
- Department of Psychiatry, Roskamp Institute, University of South Florida, 3515 E. Fletcher Avenue, Tampa, FL 33613, USA
| | | | | |
Collapse
|
248
|
Benveniste EN, Nguyen VT, O'Keefe GM. Immunological aspects of microglia: relevance to Alzheimer's disease. Neurochem Int 2001; 39:381-91. [PMID: 11578773 DOI: 10.1016/s0197-0186(01)00045-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Alzheimer's disease (AD) is a progressive dementing neurologic illness, and the most frequent cause of dementia in the elderly. Neuritic plaques are one of the main neuropathological findings in AD, and the major protein component is the beta-amyloid protein (A beta). Another striking feature of neuritic plaques is the presence of activated microglia, cytokines, and complement components, suggestive of "inflammatory foci" within AD brain. In this review, we will examine the mechanisms by which microglia become activated in AD, emphasizing the role in the A beta protein and proinflammatory cytokines. As well, pathways for suppression of microglial activation by immunosuppressive cytokines will be described. Inflammation mediated by activated microglia is an important component of AD pathophysiology, and strategies to control this response could provide new therapeutic approaches for the treatment of AD.
Collapse
Affiliation(s)
- E N Benveniste
- Department of Cell Biology, The University of Alabama at Birmingham, 1918 University Boulevard, MCLM 395, Birmingham, AL 35294-0005, USA.
| | | | | |
Collapse
|
249
|
Abstract
During the past decade, mechanisms involved in the immune surveillance of the central nervous system (CNS) have moved to the forefront of neuropathological research mainly because of the recognition that most neurological disorders involve activation and, possibly, dysregulation of microglia, the intrinsic macrophages of the CNS. Increasing evidence indicates that, in addition to their well-established phagocytic function, microglia may also participate in the regulation of non specific inflammation as well as adaptive immune responses. This article focuses on the signals regulating microglia innate immune functions, the role of microglia in antigen presentation, and their possible involvement in the development of CNS immunopathology.
Collapse
Affiliation(s)
- F Aloisi
- Neurophysiology Unit, Laboratory of Organ and System Pathophysiology, Istituto Superiore di Sanità, Roma, Italy.
| |
Collapse
|
250
|
Involvement of nitric oxide released from microglia-macrophages in pathological changes of cathepsin D-deficient mice. J Neurosci 2001. [PMID: 11567042 DOI: 10.1523/jneurosci.21-19-07526.2001] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cathepsin D (CD) deficiency has been shown to induce ceroid-lipofuscin storage in lysosomes of mouse CNS neuron (Koike et al., 2000). To understand the behavior of microglial cells corresponding to these neuronal changes, CD-deficient (CD-/-) mice, which die at approximately postnatal day (P) 25 by intestinal necrosis, were examined using morphological as well as biochemical approaches. Light and electron microscopic observations revealed that microglia showing large round cell bodies with few processes appeared in the cerebral cortex and thalamus after P16. At P24, microglia often encircled neurons that were occupied with autolysosomes, indicating increased phagocytic activity. These morphologically transformed microglia markedly expressed inducible nitric oxide synthase (iNOS), which was also detected in the intestine of the mice. To assess the role of microglial nitric oxide (NO) in neuropathological changes in CD-/- mice, l-N(G)-nitro-arginine methylester (l-NAME), a competitive NOS inhibitor, or S-methylisothiourea hemisulfate (SMT), an iNOS inhibitor, was administered intraperitoneally for 13 consecutive days. The total number of terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling-positive cells counted in the thalamus was found to be significantly decreased by chronic treatment of l-NAME or SMT, whereas neither the neuronal accumulation of ceroid-lipofuscin nor the microglial phagocytic activity was affected by these treatments. Moreover, the chronic treatment of l-NAME or SMT completely suppressed hemorrhage-necrotic changes in the small intestine of CD-/- mice, resulting in normal growth of the body weight of the mice. These results suggest that NO production via iNOS activity in microglia and peripheral macrophages contributes to secondary tissue damages such as neuronal apoptosis and intestinal necrosis, respectively.
Collapse
|