201
|
Hirosue S, Müller BG, Mulligan RC, Langer R. Plasmid DNA encapsulation and release from solvent diffusion nanospheres. J Control Release 2001; 70:231-42. [PMID: 11166423 DOI: 10.1016/s0168-3659(00)00353-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first step toward hydrophobic polymer-based nanospheres for gene delivery is to encapsulate and release plasmid DNA. However, encapsulating large hydrophilic molecules in very small nanospheres has been difficult, and only a few examples exist in the literature. For example, maximizing protein and peptide as well as small molecule encapsulation requires adjustments in pH or addition of excipients to charge neutralize, and make less hydrophilic, the compound to be encapsulated. Following this model, we have used a cationic lipid to load and release plasmid DNA from nanospheres made by the phase inversion/solvent diffusion method.
Collapse
Affiliation(s)
- S Hirosue
- Harvard-MIT Joint Program in Health Sciences and Technology, Massachusetts Institute of Technology, E25-342, 45 Carleton Street, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
202
|
Meuli M, Liu Y, Liggitt D, Kashani-Sabet M, Knauer S, Meuli-Simmen C, Harrison MR, Adzick NS, Heath TD, Debs RJ. Efficient gene expression in skin wound sites following local plasmid injection. J Invest Dermatol 2001; 116:131-5. [PMID: 11168808 DOI: 10.1046/j.1523-1747.2001.00139.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transfection of the skin by local gene delivery, as well as widespread transfection of systemic tissues following intravenous injection of cationic liposome/DNA complexes have been reported. Here, we show that surgically wounded mouse skin can be transfected either by local injection of DNA alone or by intravenous injection of optimized cationic liposome/DNA complexes; however, direct cutaneous injection produces much higher levels of gene expression in the skin, which is targeted to dermal and subdermal layers. High levels of chloramphenicol acetyltransferase activity were present from 3 h to 2 wk following direct injection of a gene expression plasmid into wounded skin and were maintained at detectable levels up to 8 wk after injection. Expression of transferred chloramphenicol acetyltransferase as well as beta-GAL genes was localized to fibroblasts, macrophages, and adipocytes as determined by histochemistry and immunohistochemistry. Further- more, local injection of a human granulocyte- colony-stimulating factor gene expression plasmid produced high levels of the biologically relevant human granulocyte-colony-stimulating factor protein in wounded mouse skin. This efficient and simple method of site-specific gene transfer into wounds may lead to the development of cutaneous gene therapy directed against disorders of abnormal cutaneous wound healing.
Collapse
Affiliation(s)
- M Meuli
- Department of Surgery, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Tousignant JD, Gates AL, Ingram LA, Johnson CL, Nietupski JB, Cheng SH, Eastman SJ, Scheule RK. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther 2000; 11:2493-513. [PMID: 11119421 DOI: 10.1089/10430340050207984] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major limitation associated with systemic administration of cationic lipid:plasmid DNA (pDNA) complexes is the vector toxicity at the doses necessary to produce therapeutically relevant levels of transgene expression. Systematic evaluation of these toxicities has revealed that mice injected intravenously with cationic lipid:pDNA complexes develop significant, dose-dependent hematologic and serologic changes typified by profound leukopenia, thrombocytopenia, and elevated levels of serum transaminases indicative of hepatocellular necrosis. Vector administration also induced a potent inflammatory response characterized by complement activation and the induction of the cytokines IFN-gamma, TNF-alpha, IL-6, and IL-12. These toxicities were found to be transient, resolving with different kinetics to pretreatment levels by 14 days posttreatment. The toxic syndrome observed was independent of the cationic lipid:pDNA ratio, the cationic lipid species, and the level of transgene expression attained. Mechanistic studies determined that neither the complement cascade nor TNF-alpha were key mediators in the development of these characteristic toxicities. Administration of equivalent doses of the individual vector components revealed that cationic liposomes or pDNA alone did not generate the toxic responses observed with cationic lipid:pDNA complexes. Only moderate leukopenia was associated with administration of cationic liposomes or pDNA alone, while only mild thrombocytopenia was noted in pDNA-treated animals. These results establish a panel of objective parameters that can be used to quantify the acute toxicities resulting from systemic administration of cationic lipid:pDNA complexes, which in turn provides a means to compare the therapeutic indices of these vectors.
Collapse
|
204
|
Roehl HH, Leibbrandt ME, Greengard JS, Kamantigue E, Glass WG, Giedlin M, Boekelheide K, Johnson DE, Jolly DJ, Sajjadi NC. Analysis of testes and semen from rabbits treated by intravenous injection with a retroviral vector encoding the human factor VIII gene: no evidence of germ line transduction. Hum Gene Ther 2000; 11:2529-40. [PMID: 11119423 DOI: 10.1089/10430340050208000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In a phase 1 clinical trial, we are evaluating a murine leukemia virus (MuLV)-based retroviral vector encoding the human factor VIII gene [hFVIII(V)], administered intravenously, as a therapy for hemophilia A. Preclinical biolocalization studies in adult rabbits revealed vector-specific PCR signals in testis tissue at low levels. In follow-up animal studies we used PCR to (1) estimate the frequency with which a given cell in testis tissue is transduced, and (2) determine whether a positive PCR signal could be detected in semen samples from animals treated with hFVIII(V). Using the 99% confidence bound, results indicate that the probability that a given cell within the testis was transduced is less than 1/709,000 (97 days after treatment). This probability decreased with time after hFVIII(V) administration. Moreover, the rate of provector sequence detection in semen samples collected weekly throughout two cycles of spermatogenesis was 3/4281 reactions (0.07%), which is lower than the rate of false positives (1/800, 0.125%) observed for control animals. Using PCR assays with single-copy sensitivity, we have shown that the small number of transduced cells present in testis tissue does not give rise to detectable transduced cells in semen.
Collapse
Affiliation(s)
- H H Roehl
- Chiron Corporation, Center for Gene Therapy, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Mizuta T, Fujiwara M, Abe T, Miyano-Kurosaki N, Yokota T, Shigeta S, Takaku H. Inhibitory effects of an antisense oligonucleotide in an experimentally infected mouse model of influenza A virus. Biochem Biophys Res Commun 2000; 279:158-61. [PMID: 11112432 DOI: 10.1006/bbrc.2000.3924] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The antiviral effects of a 20-mer antisense phosphorothioate oligonucleotide, PB2-as, on influenza A virus infection in mice were examined and compared to those of PB2-as encapsulated with several cationic liposomes. Intravenous injection of PB2-as, as a complex with DMRIE-C, a cationic liposome, was most effective for prolonging the mean survival time in days (MSDs) and increasing the survival rates of mice infected with the influenza A virus. In addition, the liposomal PB2-as significantly inhibited viral growth in lung tissues. These results suggest that PB2-as encapsulated with DMRIE-C may be active against the influenza A virus infection through the inhibition of virus replication in the mouse lung.
Collapse
Affiliation(s)
- T Mizuta
- Department of Microbiology, Fukushima University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|
206
|
Emilien G, Maloteaux JM, Penasse C, Goodeve A, Casimir C. Haemophilias: advances towards genetic engineering replacement therapy. CLINICAL AND LABORATORY HAEMATOLOGY 2000; 22:313-23. [PMID: 11318796 DOI: 10.1046/j.1365-2257.2000.00332.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Both haemophilia A and B are X-linked recessive disorders and therefore occur almost exclusively in males. The genes for both factors VIII and IX have been mapped to the distal end of the long arm of the X chromosome, bands Xq28 and Xq27.1, respectively. The Factor VIII gene comprises 186 kb DNA with 9 kb of exon of DNA which encodes an mRNA of nearly 9 kb. The Factor IX gene is 34 kb in length and the essential genetic information is present in eight exons which encode 1.6 kb mRNA. In gene therapy, genetic modification of the target cells can be either ex vivo or in vivo. The advantage of the ex vivo approach is that the genetic modification is strictly limited to the isolated cells. In the in vivo approach, the integrity of the target tissue is maintained but the major challenge is to deliver the gene to the target tissue. The use of improved retroviral and adenovirus-based vectors for gene therapy has produced clinically relevant levels of human factor VIII in mice and haemophilic dogs. If further improvements can increase the persistence of expression and decrease the immunological responses, phase I clinical trials in patients can be considered.
Collapse
Affiliation(s)
- G Emilien
- Laboratory of Pharmacology, Université Catholique de Louvain, Belgium.
| | | | | | | | | |
Collapse
|
207
|
Koh JJ, Ko KS, Lee M, Han S, Park JS, Kim SW. Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice. Gene Ther 2000; 7:2099-104. [PMID: 11223991 DOI: 10.1038/sj.gt.3301334] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently, we have reported that biodegradable poly [alpha-(4-aminobutyl)-L-glycolic acid] (PAGA) can condense and protect plasmid DNA from DNase I. In this study, we investigated whether the systemic administration of pCAGGS mouse IL-10 (mIL-10) expression plasmid complexed with PAGA can reduce the development of insulitis in non-obese diabetic (NOD) mice. PAGA/mIL-10 plasmid complexes were stable for more than 60 min, but the naked DNA was destroyed within 10 min by DNase I. The PAGA/DNA complexes were injected into the tail vein of 3-week-old NOD mice. Serum mIL-10 level peaked at 5 days after injection, and could be detected for more than 9 weeks. The prevalence of severe insulitis on 12-week-old NOD mice was markedly reduced by the intravenous injection of PAGA/DNA complex (15.7%) compared with that of naked DNA injection (34.5%) and non-treated controls (90.9%). In conclusion, systemic administration of pCAGGS mIL-10 plasmid/PAGA complexes can reduce the severity of insulitis in NOD mice. This study shows that the PAGA/DNA complex has the potential for the prevention of autoimmune diabetes mellitus. Gene Therapy (2000) 7, 2099-2104.
Collapse
Affiliation(s)
- J J Koh
- Department of Pharmaceutics and Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112-5820, USA
| | | | | | | | | | | |
Collapse
|
208
|
Tam P, Monck M, Lee D, Ludkovski O, Leng EC, Clow K, Stark H, Scherrer P, Graham RW, Cullis PR. Stabilized plasmid-lipid particles for systemic gene therapy. Gene Ther 2000; 7:1867-74. [PMID: 11110420 DOI: 10.1038/sj.gt.3301308] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The structure of 'stabilized plasmid-lipid particles' (SPLP) and their properties as systemic gene therapy vectors has been investigated. We show that SPLP can be visualized employing cryo-electron microscopy to be homogeneous particles of diameter 72 +/- 5 nm consisting of a lipid bilayer surrounding a core of plasmid DNA. It is also shown that SPLP exhibit long circulation lifetimes (circulation half-life >6 h) following intravenous (i.v.) injection in a murine tumor model resulting in accumulation of up to 3% of the total injected dose and concomitant reporter gene expression at a distal (hind flank) tumor site. In contrast, i v. injection of naked plasmid DNA or plasmid DNA-cationic liposome complexes did not result in significant plasmid delivery to the tumor site or gene expression at that site. Furthermore, it is shown that high doses of SPLP corresponding to 175 microg plasmid per mouse are nontoxic as assayed by monitoring serum enzyme levels, whereas i.v. injection of complexes give rise to significant toxicity at dose levels above 20 microg plasmid per mouse. It is concluded that SPLP exhibit properties consistent with potential utility as a nontoxic systemic gene therapy vector.
Collapse
Affiliation(s)
- P Tam
- Inex Pharmaceuticals Corporation, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Dass CR, Su T. Delivery of lipoplexes for genotherapy of solid tumours: role of vascular endothelial cells. J Pharm Pharmacol 2000; 52:1301-17. [PMID: 11186238 DOI: 10.1211/0022357001777450] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cells constituting a solid tumour may vary considerably due to biological disparities, but for a solid tumour to pose as a threat to its host, an adequate blood supply has to be established. Although neovascularisation may have dire consequences for the host, it provides a common route by which tumours in general may be reached and eradicated by drugs. The fact that a tumour's vasculature is relatively more permeable than healthy host tissue means that selective delivery of drugs may be achieved. A closer examination of the role played by the cells making up the tumour vascular bed, vascular endothelial cells (VECs), is required to facilitate design of ways for enhancing drug delivery to solid tumours via the vascular route. VECs have two major roles in the body, barrier and transport, both of which are highly pertinent to drug delivery. This review discusses the factors regulating VEC function, and how these cells may be manipulated in-vivo to improve the selective delivery of lipoplexes, carriers for gene therapy constructs, to solid tumours. It also discusses how genotherapeutic drugs may be targeted against tumour VECs on the premise that by killing these cells, the tumour itself will perish.
Collapse
Affiliation(s)
- C R Dass
- Johnson & Johnson Research, Strawberry Hills, Australia.
| | | |
Collapse
|
210
|
Abstract
The potential use of gene therapy to treat human disease increases with the development of various physical, chemical, and biological methods to deliver genes to mammalian cells, and with our rapidly expanding knowledge of the human genome. One area of therapeutic interest for gene therapy is the treatment of wound healing disorders. Most recently, recombinant human growth factor therapy has been examined as a means to treat problem wounds. However, this approach suffers from the difficulty in providing an accurate dose of growth factor and the expense of the recombinant proteins. Delivery of a gene that could be expressed within the wound is an attractive alternative to application of the protein. This review discusses several methods that have been used to deliver genes encoding growth factor proteins into wounds and the advantages/disadvantages of each approach. Novel methods to regulate the expression of the transgene are also presented, highlighting the ability of these unique vector systems to adjust gene dose as the wound heals. We expect that gene therapy will become a significant treatment modality for those wound healing pathologies refractory to other wound management approaches in the years ahead.
Collapse
Affiliation(s)
- F Yao
- Laboratory of Wound Repair and Gene Transfer, Division of Plastic Surgery, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
211
|
Ishiwata H, Suzuki N, Ando S, Kikuchi H, Kitagawa T. Characteristics and biodistribution of cationic liposomes and their DNA complexes. J Control Release 2000; 69:139-48. [PMID: 11018552 DOI: 10.1016/s0168-3659(00)00293-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have developed some novel liposome formulations for gene transfection. The formulations consisting of O,O'-ditetradecanoyl-N-(alpha-trimethyl ammonio acetyl) diethanolamine chloride (DC-6-14) as a cationic lipid, phospholipid and cholesterol showed effective gene transfection activity in cultured cells with serum and in vivo, i.e., intraperitoneal injection in mice. In this report, the physicochemical characteristics and biodistribution of the liposomes containing DC-6-14 (DC-6-14 liposomes) as a drug (gene) carrier for gene therapy were investigated in vitro and in vivo. DC-6-14 liposome-DNA complexes were usually thought to have positive surface charge. However, depending on the ratio of DNA to liposomes, zeta-potential of the complexes became negative. The diameter of the complexes also depended on the DNA-liposome ratio, and showed a maximum when their surface potential was neutral. When biodistribution of the complexes was determined after intravenous injection, positively charged complexes showed an immediate lung accumulation. On the other hand, negatively charged complexes did not show lung accumulation. These results have suggested that biodistribution of the DNA-liposome complexes, prepared with DC-6-14 liposomes, depends on their surface charge. Therefore, some surface modification of DC-6-14 liposomes may improve the biodistribution and hence the targetability of their DNA complexes.
Collapse
Affiliation(s)
- H Ishiwata
- Pharmaceutical Formulation Research Laboratory, Daiichi Pharmaceutical Co., Ltd., Tokyo R&D Center, 16-13 Kita-Kasai 1-Chome, Edogawa-ku, Tokyo 134-8630, Japan.
| | | | | | | | | |
Collapse
|
212
|
Chen QR, Zhang L, Stass SA, Mixson AJ. Co-polymer of histidine and lysine markedly enhances transfection efficiency of liposomes. Gene Ther 2000; 7:1698-705. [PMID: 11083479 DOI: 10.1038/sj.gt.3301294] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development of nonviral delivery systems is progressing toward a transfection efficiency sufficient to affect metabolic and neoplastic diseases in humans. Nevertheless, inadequate transfection efficiency of target cells with current nonviral systems still limits the utility of this therapy. In the current study, we have determined that a co-polymer of histidine and lysine (H-K) enhances the transfection efficiency of liposomes, a leading nonviral system. We found that in the absence of serum, the addition of this polymer increased transfection as much as 10-fold in comparison with the liposome:DNA complex alone. More impressively, the co-polymer in the presence of serum increased transfection efficiency up to 100-fold. Furthermore, in vivo expression of luciferase in a tumor increased 15-fold with the addition of H-K polymer to the liposome:plasmid DNA complexes. Without liposomes, the H-K polymer had little to no effect on transfection efficiency. We anticipate that further modifications of this co-polymer will yield molecules with both increased complexity and transfection efficiency.
Collapse
Affiliation(s)
- Q R Chen
- Department of Pathology and Greenebaum Cancer Center, University of Maryland Baltimore, 21201, USA
| | | | | | | |
Collapse
|
213
|
Abstract
Cardiovascular[TRACE;del] disease is the leading cause of death in the US and world-wide. Advances in molecular biology and the human genome project have revealed opportunities for novel strategies for cardiac gene therapy. This review discusses general and specific aspects of gene transfer strategies in cardiac tissues. These include 1) the selection and/or optimization of the vector for gene transfer; 2) the identification of the target gene(s); 3) the use of cardiac-specific promoters; and 4) the use of an appropriate delivery system for administration. Currently, several vectors (e.g., viral and nonviral vectors) have been developed and many target genes have been identified (e.g., VEGF, FGF, beta-AR, etc.). Many investigations have provided experimental models for gene delivery systems but the most efficient cardiac gene transfer was obtained from intramyocardial injection or perfusion of explanted myocardium. The data available thus far have suggested favorable immediate effects following gene transfer, but long-term value of cardiac gene therapy has not been proven. Further refinements in appropriate vectors that provide cell or tissue selectivity and long-lasting effects are necessary as well as the development of minimally invasive procedures for gene transfer.
Collapse
Affiliation(s)
- S K Wattanapitayakul
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | |
Collapse
|
214
|
Abstract
The drug delivery system (DDS) is attractive as a therapeutic method. Liposomes are of particular interest as a DDS because they can reduce drug toxicity, and offer promise as gene carriers. An evolution has occurred in the construction of liposomes in the effort to develop efficient vectors for in vivo use. To avoid uptake by the reticuloendothelial system (RES); Lipid components have been optimized. To enhance tissue targeting, liposome surface has been modified with antibodies or ligands recognized by specific cell types. To enhance the efficiency of gene delivery by the introduction of molecules directly into cells, virosomes have been developed by combining liposomes with fusiogenic viral envelope proteins. Liposomes are now being used in the treatment of intractable human diseases such as cancer and monogenic disorders. In the future, many medical procedures will be performed using liposomes.
Collapse
Affiliation(s)
- Y Kaneda
- Division of Gene Therapy Science, Graduate School of Medicine, Osaka University, Suita, 565-0871, Osaka, Japan.
| |
Collapse
|
215
|
Pector V, Backmann J, Maes D, Vandenbranden M, Ruysschaert JM. Biophysical and structural properties of DNA.diC(14)-amidine complexes. Influence of the DNA/lipid ratio. J Biol Chem 2000; 275:29533-8. [PMID: 10896680 DOI: 10.1074/jbc.m909996199] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cationic liposomes are used as vectors for gene delivery both in vitro and in vivo. Comprehension of both DNA/liposome interactions on a molecular level and a description of structural modifications involved, are prerequisites to an optimization of the transfection protocol and, thus, successful application in therapy. Formation and stability of a DNA/cationic liposome complex were investigated here at different DNA:lipid molar ratios (rho). Isothermal titration calorimetry (ITC) of cationic liposomes with plasmid DNA was used to characterize the DNA-lipid interaction. Two processes were shown to be involved in the complex formation. A fast exothermic process was attributed to the electrostatic binding of DNA to the liposome surface. A subsequent slower endothermic reaction is likely to be caused by the fusion of the two components and their rearrangement into a new structure. Fluorescence and differential scanning calorimetry confirmed this interpretation. A kinetic model analyzes the ITC profile in terms of DNA/cationic liposome interactions.
Collapse
Affiliation(s)
- V Pector
- Laboratoire de Chimie Physique des Macromolécules aux Interfaces, Université Libre de Bruxelles, Campus Plaine CP 206/2, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
216
|
Matsui H, Pan S. Conformation Change of Poly(dG-dC)•Poly(dG-dC) in Cationic Polyamine Liposome Complexes: Effect of Charge Density and Flexibility of Amine Chains in Headgroups. J Phys Chem B 2000. [DOI: 10.1021/jp001439g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
217
|
Affiliation(s)
- D C Drummond
- Research Institute, California Pacific Medical Center, 94115, San Francisco, CA, USA
| | | | | |
Collapse
|
218
|
Abstract
Soluble factors normally produced by cells of the human body are of increasing importance as potential therapeutic agents. Although considerable progress has been made in understanding the etiology and pathogenesis of disease, in developing animal models and newer experimental therapeutics, few discoveries have been translated into clinically effective ways of delivering the multiple therapeutic agents obtained from living mammalian cells. This review examines the use of transplanted cells as alternatives to conventional delivery systems to deliver a variety of protein based therapeutic agents. The chapter begins with a set of questions to establish the complexity and challenges of this form of drug delivery. The following section focuses the discussion on our understanding of genetic engineering, tissue engineering, and some areas of developmental biology as they relate to the development of this nascent field. Much of the discussion has a neuro/endocrine emphasis. The chapter ends by listing the basic ingredients needed to push the use of transplanted cells toward medical practice and some general comments about future developments.
Collapse
Affiliation(s)
- P A Tresco
- Department of Bioengineering, The Keck Center for Tissue Engineering, The Huntsman Cancer Institute, Tissue Engineering Laboratory, University of Utah, 20 South 2030 East, Room 506, 84112 9458, Salt Lake City, UT, USA.
| | | | | |
Collapse
|
219
|
Imazu S, Nakagawa S, Nakanishi T, Mizuguchi H, Uemura H, Yamada O, Mayumi T. A novel nonviral vector based on vesicular stomatitis virus. J Control Release 2000; 68:187-94. [PMID: 10925127 DOI: 10.1016/s0168-3659(00)00250-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Here we report a simple and efficient method for nonviral gene transfer using liposomes which have envelope protein of vesicular stomatitis virus (VSV) on their surface (VSV-liposomes). We prepared VSV-liposome by fusing simple liposomes with VSV particles. The density of VSV-liposome fusion products was intermediated between that of liposomes and that of VSV particles. Furthermore, VSV-liposome fusion products included both viral proteins and lipids from liposomes, and were confirmed to be fusion products, but not adsorptive products, by the resonance energy transfer fusion assay. To evaluate whether these particles can efficiently introduce their internal contents into the cytoplasm of mammalian cells, we examined the delivery of fragment A of diphtheria toxin (DTA) by VSV-liposomes into the cytoplasm of FL cells. We found that VSV-liposomes encapsulating DTA were highly cytotoxic to the cells, while empty VSV-liposomes and plain liposomes encapsulating DTA were not, suggesting that VSV-liposomes delivered DTA into cytoplasm. Consistent with this, the cells cultured with plasmid DNA entrapped in VSV-liposomes and coding for firefly luciferase showed significant luciferase expression, whereas cells culture with plasmid DNA in plain liposomes and plasmid DNA-cationic liposomes complex did not. Thus, VSV-liposomes function as a simple and efficient nonviral vector for the delivery of DNA.
Collapse
Affiliation(s)
- S Imazu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
220
|
Wirth JJ, Chen L, Fluck MM. Systemic polyomavirus genome increase and dissemination of capsid-defective genomes in mammary gland tumor-bearing mice. J Virol 2000; 74:6975-83. [PMID: 10888636 PMCID: PMC112214 DOI: 10.1128/jvi.74.15.6975-6983.2000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BALB/c mice that developed tumors 7 to 8 months following neonatal infection by polyomavirus (PYV) wild-type strain A2 were characterized with respect to the abundance and integrity of the viral genome in the tumors and in 12 nontumorous organs. These patterns were compared to those found in tumor-free mice infected in parallel. Six mice were analyzed in detail including four sibling females with mammary gland tumors. In four of five mammary gland tumors, the viral genome had undergone a unique deletion and/or rearrangement. Three tumor-resident genomes with an apparently intact large T coding region were present in abundant levels in an unintegrated state. Two of these had undergone deletions and rearrangements involving the capsid genes and therefore lacked the capacity to produce live virus. In the comparative organ survey, the tumors harboring replication-competent genomes contained by far the highest levels of genomes of any tissue. However, the levels of PYV genomes in other organs were elevated by up to 1 to 2 orders of magnitude compared to those detected in the same organs of tumor-free mice. The genomes found in the nontumorous organs had the same rearrangements as the genomes residing in the tumors. The original wild-type genome was detected at low levels in a few organs, particularly in the kidneys. The data indicate that a systemic increase in the level of viral genomes occurred in conjunction with the induction of tumors by PYV. The results suggest two novel hypotheses: (i) that genomes may spread from the tumors to the usual PYV target tissues and (ii) that this dissemination may take place in the absence of capsids, providing an important path for a virus to escape from the immune response. This situation may offer a useful model for the spread of HPV accompanying HPV-induced oncogenesis.
Collapse
Affiliation(s)
- J J Wirth
- Microbiology Department and Interdepartmental Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | |
Collapse
|
221
|
Nguyen JT. Adeno-associated virus and other potential vectors for angiostatin and endostatin gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:457-66. [PMID: 10810649 DOI: 10.1007/0-306-46817-4_40] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- J T Nguyen
- Department of Diagnostic Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| |
Collapse
|
222
|
Cleator SJ, Price P. Management problems in oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:3-10. [PMID: 10810610 DOI: 10.1007/0-306-46817-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Man has evolved sophisticated defence mechanisms over millions of years to combat insertion of foreign DNA into his cells. However, gene therapy carries huge potential for the treatment of cancer. The challenge is therefore to translate our scientific knowledge into a clinical reality.
Collapse
Affiliation(s)
- S J Cleator
- Department of Clinical Oncology, Hammersmith Hospital, London
| | | |
Collapse
|
223
|
Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. Systemic administration of HVJ viral coat-liposome complex containing human insulin vector decreases glucose level in diabetic mouse: A model of gene therapy. Biochem Biophys Res Commun 2000; 273:666-74. [PMID: 10873662 DOI: 10.1006/bbrc.2000.2936] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the feasibility of a systemic administration of HVJ-liposome complex containing human insulin construct into the blood in mice via the tail vein. Transfection of human insulin vector resulted in a transient decrease in serum glucose in streptozotocin (SZT)-induced diabetic mice, accompanied by the detection of human insulin in the liver and spleen. In accordance with the decreased glucose, plasma immunoreactive insulin could be detected up to 14 days after a single transfection in mice transfected with insulin vector. Repeated intravenous injection of human insulin vector every week resulted in a sustained decrease in serum glucose over a 4-week period, accompanied by the detection of C-peptide fragments and a significant decrease in BUN and creatinine. Here, we demonstrated the feasibility of intravenous systemic administration of an insulin vector that results in a sustained improvement of diabetic glucose metabolism.
Collapse
Affiliation(s)
- R Morishita
- Division of Gene Therapy Science, Osaka University Medical School, Suita, 565-0871, Japan
| | | | | | | | | |
Collapse
|
224
|
Perrie Y, Gregoriadis G. Liposome-entrapped plasmid DNA: characterisation studies. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:125-32. [PMID: 10832026 DOI: 10.1016/s0304-4165(00)00055-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Plasmid DNA pRc/CMV HBS (5.6 kb) (100 microg) encoding the S (small) region of hepatitis B surface antigen was incorporated by the dehydration-rehydration method into liposomes composed of 16 micromol egg phosphatidylcholine (PC), 8 micromol dioleoylphosphatidylcholine (DOPE) and 1, 2-diodeoyl-3-(trimethylammonium)propane (DOTAP) (cationic liposomes) or phosphatidylglycerol (anionic liposomes) in a variety of molar ratios. The method, entailing mixing of small unilamellar vesicles (SUV) with the DNA, followed by dehydration and rehydration, yielded incorporation values of 95-97 and 48-54% of the DNA used, respectively. Mixing of preformed cationic liposomes with 100 microg plasmid DNA also led to high complexation values of 73-97%. As expected, the association of DNA with preformed anionic liposomes was low (9%). Further work with cationic PC/DOPE/DOTAP liposomes attempted to establish differences in the nature of DNA association with the vesicles after complexation and the constructs generated by the process of dehydration/rehydration. Several lines of evidence obtained from studies on vesicle size and zeta-potential, fluorescent microscopy and gel electrophoresis in the presence of the anion sodium dodecyl sulphate (SDS) indicate that, under the conditions employed, interaction of DNA with preformed cationic SUV as above, or with cationic SUV made of DOPE and DOTAP (1:1 molar ratio; ESCORT Transfection Reagent), leads to the formation of large complexes with externally bound DNA. For instance, such DNA is accessible to and can be dissociated by competing anionic SDS molecules. However, dehydration of the DNA-SUV complexes and subsequent rehydration, generates submicron size liposomes incorporating most of the DNA in a fashion that prevents DNA displacement through anion competition. It is suggested that, in this case, DNA is entrapped within the aqueous compartments, in between bilayers, presumably bound to the cationic charges.
Collapse
Affiliation(s)
- Y Perrie
- Centre for Delivery Research, School of Pharmacy, University of London, UK
| | | |
Collapse
|
225
|
Schirmacher V, Förg P, Dalemans W, Chlichlia K, Zeng Y, Fournier P, von Hoegen P. Intra-pinna anti-tumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine. Gene Ther 2000; 7:1137-47. [PMID: 10918481 DOI: 10.1038/sj.gt.3301220] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To optimize polynucleotide vaccinations for protective antitumor immunity we used a self-replicating RNA vaccine in which Semliki Forest virus replicase drives RNA expression of the lacZ gene coding for beta-galactosidase as model tumor-associated antigen (TAA). This was compared with replicase-deficient control RNA and with lacZ DNA plasmids with respect to gene expression in vitro and in vivo and for vaccination using the mouse ear pinna as an optimal immunization site. In vitro, the highest expression was observed with self-replicating RNA. Gene expression following pinna inoculation of either non-replicating DNA plasmids or self-replicating RNA was similar, lasting for 2-3 weeks. Higher antibody responses were obtained with RNA than with DNA. beta-Gal peptide specific CTL memory responses to lacZ DNA or RNA lasted for more than 6 weeks while respective responses induced by lacZ-transfected tumor cells lasted for only 2 weeks. To achieve a protective response against lacZ tumor cells with self-replicating RNA about a 100-fold lower dose of polynucleotide was sufficient in comparison to DNA. The extent of protective antitumor immunity not only depended on the gene dose used for vaccination, but also on the aggressiveness of the lacZ-transfected tumor line used for challenge. In comparison to lacZ-transfected tumor cells as vaccines, polynucleotide vaccination also demonstrated superiority with regard to cross-protection. Protective antitumor immunity could be strongly increased upon co-inoculation of lacZ DNA with IL-2 DNA or IL-12 RNA. IL-2 DNA, but not IL-12 RNA, also augmented the CTL response while IL-12 RNA, but not IL-2 DNA, reduced the antibody response. These results demonstrate efficient protective antitumor immunity after intra-pinna lacZ TAA polynucleotide vaccination and show additional immunomodulatory effects by co-administration of cytokine polynucleotides.
Collapse
Affiliation(s)
- V Schirmacher
- German Cancer Research Center (DKFZ), Division of Cellular Immunology, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
226
|
Kukowska-Latallo JF, Raczka E, Quintana A, Chen C, Rymaszewski M, Baker JR. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther 2000; 11:1385-95. [PMID: 10910136 DOI: 10.1089/10430340050057468] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gene transfer to the lung can be achieved via either the airway or the pulmonary vasculature. We evaluated gene transfer and expression by intravascular and endobronchial routes, using DNA complexed with G9 PAMAM dendrimer or naked plasmid DNA. Intravascular tail vein delivery of dendrimer-complexed pCF1CAT plasmid resulted in high levels of transgene expression in the lung at 12 and 24 hr, followed by a second peak of expression 3 to 5 days after administration. After intravenous administration of the complexes, CAT expression was never observed in organs other than the lung. There were only minimal levels of CAT protein expressed in the lung after intravenous administration of naked plasmid DNA. Repeated intravascular doses of the dendrimer-complexed plasmid, administered four times at 4-day intervals, maintained expression at 15-25% of peak concentrations achieved after the initial dose. Endobronchial delivery of naked pCF1CAT plasmid produced significant amounts of CAT protein in the lung. Comparison of intratracheal and intranasal routes resulted in similar expression levels of CAT in the lung and trachea. However, in juxtaposition to vascular delivery, intranasal delivery of dendrimer-complexed plasmid DNA gave lower levels of CAT expression than that observed with naked plasmid DNA. In situ localization of CAT enzymatic activity suggested that vascular administration seemed to achieve expression in the lung parenchyma, mainly within the alveoli, while endobronchial administration primarily targeted bronchial epithelium. Our results show that intravenously administered G9 dendrimer is an effective vector for pulmonary gene transfer and that transgene expression can be prolonged by repeated administration of dendrimer-complexed DNA.
Collapse
Affiliation(s)
- J F Kukowska-Latallo
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | | | |
Collapse
|
227
|
Lin AJ, Slack NL, Ahmad A, Koltover I, George CX, Samuel CE, Safinya CR. Structure and structure-function studies of lipid/plasmid DNA complexes. J Drug Target 2000; 8:13-27. [PMID: 10761642 DOI: 10.3109/10611860009009206] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent synchrotron-based X-ray diffraction studies have enabled us to comprehensively solve the self-assembled structures in mixtures of cationic liposomes (CLs) complexed with linear lambda-DNA. In one case the CL-DNA complexes were found to consist of a higher ordered multilamellar structure (labeled L(alpha)C with DNA sandwiched between cationic bilayer membranes. The membrane charge density is found to control the DNA interaxial spacing with high densities leading to high DNA compaction between lipid bilayers. A second self-assembled structure (labeled H(II)C) consists of linear DNA strands coated by cationic lipid monolayers and arranged on a 2D hexagonal lattice. In this paper we report on a combined X-ray diffraction and optical microscopy study of CLs complexed with functional supercoiled plasmid DNA. We describe the self-assembled structures in cell culture medium for both a high transfectant complex (DOTAP/DOPE, phiDOPE = 0.72) and a low transfectant complex (DOTAP/DOPC, (phiDOPC = 0.72). Fluorescence optica microscopy shows two distinct interactions between these two types of complexes and mouse fibroblast L-cells, demonstrating the existence of a correlation between structure and transfection efficiency.
Collapse
Affiliation(s)
- A J Lin
- Department of Physics, University of California, Santa Barbara 93106, USA
| | | | | | | | | | | | | |
Collapse
|
228
|
Nishikawa M, Takemura S, Yamashita F, Takakura Y, Meijer DK, Hashida M, Swart PJ. Pharmacokinetics and in vivo gene transfer of plasmid DNA complexed with mannosylated poly(L-lysine) in mice. J Drug Target 2000; 8:29-38. [PMID: 10761643 DOI: 10.3109/10611860009009207] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To achieve mannose receptor-mediated, cell-specific, in vivo gene transfer by intravenous injection of plasmid DNA, mannosylated poly(L-lysine) (Man-PLL) was synthesized as a carrier molecule, and mixed with a plasmid DNA encoding chloramphenicol acetyltransferase (CAT) gene to form DNA/Man-PLL complex. The particle size and zeta potential of DNA/Man-PLL (prepared at 1:0.7 on a weight basis) were determined to be 220 nm and +12 mV, respectively. The pharmacokinetics of the DNA/Man-PLL complex was assessed in mice using 32P-labeled DNA ([32P]DNA). After intravenous injection of [32P]DNA/Man-PLL, the radioactivity in plasma fell rapidly and was recovered mainly in the liver nonparenchymal cells. The amount in the liver reached more than 80% of the dose. Radioactivity observed in kidney, lung, and spleen was very low compared to that in the liver. Then, the in vivo gene expression after intravenous injection of DNA/Man-PLL was examined by a CAT assay. Highest CAT activity was detected in the liver, but no activity was detected in the lung, kidney, and spleen. These results clearly indicate that a cell-specific gene delivery system can be developed by regulating the biodistribution of DNA/carrier complex through the control of its physicochemical properties.
Collapse
Affiliation(s)
- M Nishikawa
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
Gene therapy of the brain is hindered by the presence of the blood-brain barrier (BBB), which prevents the brain uptake of bloodborne gene formulations. Exogenous genes have been expressed in the brain after invasive routes of administration, such as craniotomy or intracarotid arterial infusion of noxious agents causing BBB disruption. The present studies describe the expression of an exogenous gene in brain after noninvasive i.v. administration of a 6- to 7-kb expression plasmid encoding either luciferase or beta-galactosidase packaged in the interior of neutral pegylated immunoliposomes. The latter are conjugated with the OX26 mAb to the rat transferrin receptor, which enables targeting of the plasmid DNA to the brain via the endogenous BBB transferrin receptor. Unlike cationic liposomes, this neutral liposome formulation is stable in blood and does not result in selective entrapment in the lung. Luciferase gene expression in the brain peaks at 48 h after a single i.v. administration of 10 microg of plasmid DNA per adult rat, a dose that is 30- to 100-fold lower than that used for gene expression in rodents with cationic liposomes. beta-Galactosidase histochemistry demonstrated gene expression throughout the central nervous system, including neurons, choroid plexus epithelium, and the brain microvasculature. In conclusion, widespread gene expression in the brain can be achieved by using a formulation that does not employ viruses or cationic liposomes, but instead uses endogenous receptor-mediated transport pathways at the BBB.
Collapse
Affiliation(s)
- N Shi
- Department of Medicine, University of California School of Medicine, Los Angeles, CA 90095-1682, USA
| | | |
Collapse
|
230
|
Walsh P, Gonzalez R, Dow S, Elmslie R, Potter T, Glode LM, Baron AE, Balmer C, Easterday K, Allen J, Rosse P. A phase I study using direct combination DNA injections for the immunotherapy of metastatic melanoma. University of Colorado Cancer Center Clinical Trial. Hum Gene Ther 2000; 11:1355-68. [PMID: 10890744 DOI: 10.1089/10430340050032447] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- P Walsh
- Division of Dermatology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Marshall J, Nietupski JB, Lee ER, Siegel CS, Rafter PW, Rudginsky SA, Chang CD, Eastman SJ, Harris DJ, Scheule RK, Cheng SH. Cationic lipid structure and formulation considerations for optimal gene transfection of the lung. J Drug Target 2000; 7:453-69. [PMID: 10758915 DOI: 10.3109/10611860009102219] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enhanced gene transduction to the lung using cationic lipids could be attained through optimization of the structure of the lipids and the formulation of the cationic lipid:plasmid DNA (pDNA) complexes. We have expanded on our earlier observation of the importance of the structural orientation of the cationic lipid headgroup. Through the synthesis of a number of matched pairs of cationic lipids differing only in the configuration of their headgroup, we confirmed that those harboring a T-shape headgroup are more active than their linear counterparts, at least when tested in the lungs of BALB/c mice. Additionally, we demonstrated that not only are the structural considerations of these cationic lipids important, but also their protonation state, the free base being invariably more active than its salt counterpart. The salt forms of cationic lipids bound pDNA with greater avidity, which may have affected their subsequent intracellular dissolution and transit of the pDNA to the nucleus. Inclusion of a number of frequently used solutes in the vehicle severely inhibited the gene transfection activity of the cationic lipids. The selection of neutral co-lipids was also an important factor for overall transfection activity of the formulation, with significant gains in transfection activity realized when diphytanoylphosphatidylethanolamine or dilinoleoylphosphatidylethanolamine were used in lieu of dioleoylphosphatidylethanolamine. Finally, we showed that a transacylation reaction could occur between the cationic lipid and neutral co-lipid which reduced the transfection activity of the complexes. It is the hope that as our understanding of the many factors that influence the activity of these cationic lipid:pDNA complexes improves, formulations with much greater potency can be realized for use in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- J Marshall
- Genzyme Corporation, Framingham, MA 01701-9322, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Ren T, Song YK, Zhang G, Liu D. Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther 2000; 7:764-8. [PMID: 10822303 DOI: 10.1038/sj.gt.3301153] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eleven structural analogues of two known cationic lipids, N-[1-(2, 3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP) were synthesized and utilized to evaluate the structural characteristics of DOTMA for its high intravenous transfection activity. Using a CMV-driven expression system and luciferase gene as a reporter, the transfection activity of these analogues was evaluated in mice using tail vein injection. Results concerning the structure-activity relationship with regard to the influence of the backbone, relative position between head group and the hydrophobic chains on the backbone, linkage bonds, as well as the composition of the aliphatic chains revealed that cationic lipids which give a higher in vivo transfection activity share the following structural characteristics: (1) cationic head group and its neighboring aliphatic chain being in a 1,2-relationship on the backbone; (2) ether bond for bridging the aliphatic chains to the backbone; and (3) paired oleyl chains as the hydrophobic anchor. Cationic lipids without these structural features had lower in vivo transfection activity. These structural characteristics, however, did not significantly influence their in vitro transfection activity. The contribution that cationic lipids make to the overall in vivo transfection activity is likely to be determined by the structure of DNA/lipid complexes and by the outcome of the interaction between the DNA/lipid complexes and blood components upon intravenous administration.
Collapse
Affiliation(s)
- T Ren
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
233
|
Tamura Y, Tao M, Miyano-Kurosaki N, Takai K, Takaku H. Inhibition of human telomerase activity by antisense phosphorothioate oligonucleotides encapsulated with the transfection reagent, FuGENE6, in HeLa cells. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2000; 10:87-96. [PMID: 10805159 DOI: 10.1089/oli.1.2000.10.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Telomerase, a ribonucleoprotein, synthesizes telomeric repeats (TTAGGG) onto the ends of chromosomes to maintain the constant length of the telomere DNA, and its activity is detectable in approximately 85%-90% of primary human cancers. Thus, it is postulated that human telomerase might be associated with malignant tumor development and could be a highly selective target for antitumor drug design. Antisense phosphorothioate oligonucleotides (S-ODN) were investigated for their abilities to inhibit telomerase activity in the HeLa cell line. The S-ODN were designed to be complementary to nucleotides within the RNA active site of telomerase. As a transfection reagent, FuGENE6 (Boehringer Mannheim, Mannheim, Germany) was used to enhance the cellular uptake of the oligonucleotides in cell cultures. The S-ODN encapsulated with FuGENE6 clearly inhibited telomerase activity in HeLa cells and showed sequence-specific inhibition. The encapsulated S-ODN-3 with a 19-nucleotide, (nt) chain length had inhibitory effects similar to those of the 21-mer and 23-mer S-ODN sequences (S-ODN-4 and 5), but the 15-mer and 17-mer S-ODN sequences (S-ODN-1 and 2) failed to satisfactorily prevent telomerase activity. However, apoptotic HeLa cell death was not associated with telomerase inhibition. Furthermore, the encapsulated S-ODN did not appear to be cytotoxic in terms of the cell growth rate. The oligonucleotides encapsulated with the transfection reagent had enhanced cellular uptake, and cytoplasmic and nuclear localizations were observed. However, weak fluorescent signals were observed within the cytoplasms of HeLa cells treated with the free S-ODN-3. Thus, the activities of the S-ODN were effectively enhanced by using the transfection reagent. The transfection reagent, FuGENE6, may thus be a potentially useful delivery vehicle for oligonucleotide-based therapeutics and transgenes and is appropriate for use in vitro and in vivo.
Collapse
Affiliation(s)
- Y Tamura
- Department of Industrial Chemistry and High Technology Research Center, Chiba Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
234
|
Nishikawa M, Yamauchi M, Morimoto K, Ishida E, Takakura Y, Hashida M. Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther 2000; 7:548-55. [PMID: 10819569 DOI: 10.1038/sj.gt.3301140] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To achieve hepatocyte-targeted in vivo gene expression, a carrier that controls both the tissue and intracellular distribution of DNA was designed and synthesized. A cationic polymer, poly(L-ornithine) (pOrn), was modified first with galactose, then with a fusigenic peptide (mHA2) to obtain Gal-pOrn-mHA2. When applied with Gal-pOrn-mHA2 to asialoglycoprotein receptor-positive cells, fluorescein-labeled DNA showed a diffuse profile, suggesting the release of DNA from endosomes and/or lysosomes by the carrier. Then the biodistribution and gene expression after intravenous injection of DNA complexes (10 microg DNA per mouse) were examined. After injection of [32P]DNA/Gal-pOrn-mHA2, about 60% of the radioactivity was recovered in the liver, mostly in parenchymal cells. A large amount (81 ng/g tissue) of transgene product (luciferase) was detected in the liver of mice injected with DNA/Gal-pOm-mHA2, which was 280-fold greater than that obtained with DNA/DOTMA:Chol liposomes (50 microg DNA). Prior administration of galactosylated albumin reduced the gene expression to 1/100, indicating the asialoglycoprotein receptor-mediated gene transfer in liver parenchymal cells, ie hepatocytes. The luciferase activity in hepatocytes contributed more than 95% of the total activity in all the tissues examined. Thus, hepatocyte-targeted in vivo gene expression was achieved by the intravenous injection of DNA complex with the multifunctional gene carrier.
Collapse
Affiliation(s)
- M Nishikawa
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
235
|
Floch V, Delépine P, Guillaume C, Loisel S, Chassé S, Le Bolc'h G, Gobin E, Leroy JP, Férec C. Systemic administration of cationic phosphonolipids/DNA complexes and the relationship between formulation and lung transfection efficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:95-103. [PMID: 10704923 DOI: 10.1016/s0005-2736(99)00250-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Performances of cationic lipid formulations for intravenous gene delivery to mouse lungs have been previously reported. We report in this study that cationic phosphonolipids, when appropriately formulated, can be good synthetic vectors for gene delivery to lung after intravenous administration. One of our reagents, GLB43, was capable of mediating a 500-fold higher expression in the lungs of mice than could be obtained with free pDNA alone (P=0.018). We demonstrate that the most important parameters for cationic phosphonolipid transfection activity after systemic administration are the chemical structure of the cationic phosphonolipid, the lipid to DNA charge ratio and the inclusion of co-lipid in the formulation. We report using a luciferase reporter gene that transfection activity in vivo 24 h after cationic phosphonolipid systemic administration could not be predicted from in vitro analysis. In contrast to in vitro studies, cationic phosphonolipids including the oleyl acyl chains (GLB43) were more effective than its analogue with the myristyl acyl chains (GLB73). Using pathological analysis of animal livers, we demonstrate that the toxicity level was correlated with the lipoplex formulation and the lipid to DNA ratio.
Collapse
Affiliation(s)
- V Floch
- Centre de Biogénétique, CHU, ETSBO, 46, rue Félix le Dantec, P.O. Box 454, 29275, Brest, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
236
|
McDonnell CO, Hill AD, McNamara DA, Walsh TN, Bouchier-Hayes DJ. Tumour micrometastases: the influence of angiogenesis. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2000; 26:105-15. [PMID: 10744927 DOI: 10.1053/ejso.1999.0753] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Many cancer patients have undetected micrometastatic disease at first presentation which ultimately progresses. Angiogenesis-the development of an independent blood supply-is a key event in the growth of metastases. Improved understanding of the influence of angiogenesis on micrometastatic growth may lead to new therapeutic intervention. METHODS This study examines current concepts of the significance of micrometastases and the role of angiogenesis in their development and destruction. A comprehensive review of the literature on micrometastasis and angiogenesis was performed using the Medline database between 1966 and 1999. CONCLUSIONS Advances in technology have improved our ability to diagnose metastatic disease, but micrometastases in loco-regional lymph nodes and at distant sites can only be detected by sophisticated histological techniques. While the significance of micrometastases remains controversial, there is increasing evidence that micrometastatic status provides useful prognostic information and should be part of standard staging techniques. Anti-angiogenic therapy has the potential to favourably influence management of certain cancers by manipulating a number of key events in the metastatic process.
Collapse
Affiliation(s)
- C O McDonnell
- Royal College of Surgeons in Ireland, Department of Surgery, Dublin 9, Ireland
| | | | | | | | | |
Collapse
|
237
|
Li S, Tan Y, Viroonchatapan E, Pitt BR, Huang L. Targeted gene delivery to pulmonary endothelium by anti-PECAM antibody. Am J Physiol Lung Cell Mol Physiol 2000; 278:L504-11. [PMID: 10710522 DOI: 10.1152/ajplung.2000.278.3.l504] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To achieve efficient systemic gene delivery to the lung with minimal toxicity, a vector was developed by chemically conjugating a cationic polymer, polyethylenimine (PEI), with anti-platelet endothelial cell adhesion molecule (PECAM) antibody (Ab). Transfection of mouse lung endothelial cells with a plasmid expression vector with cDNA to luciferase (pCMVL) complexed with anti-PECAM Ab-PEI conjugate was more efficient than that with PEI-pCMVL complexes. Furthermore, the anti-PECAM Ab-PEI conjugate mediated efficient transfection at lower charge plus-to-minus ratios. Conjugation of PEI with a control IgG (hamster IgG) did not enhance transfection of mouse lung endothelial cells, suggesting that the cellular uptake of anti-PECAM Ab-PEI-DNA complexes and subsequent gene expression were governed by a receptor-mediated process rather than by a nonspecific charge interaction. Conjugation of PEI with anti-PECAM Ab also led to significant improvement in lung gene transfer to intact mice after intravenous administration. The increase in lung transfection was associated with a decrease compared with PEI-pCMVL with respect to circulating proinflammatory cytokine (tumor necrosis factor-alpha) levels. These results indicate that targeted gene delivery to the lung endothelium is an effective strategy to enhance gene delivery to the pulmonary circulation while simultaneously reducing toxicity.
Collapse
Affiliation(s)
- S Li
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | |
Collapse
|
238
|
Abstract
BACKGROUND Several nonviral vectors including linear polyethylenimine (L-PEI) confer a pronounced lung tropism to plasmid DNA when injected into the mouse tail vein in a nonionic solution. METHODS and results We have optimized this route by injecting 50 microg DNA with excess L-PEI (PEI nitrogen/DNA phosphate = 10) in a large volume of 5% glucose (0.4 ml). In these conditions, 1-5% of lung cells were transfected (corresponding to 2 ng luciferase/mg protein), the other organs remaining essentially refractory to transfection (1-10 pg luciferase/mg protein). beta-Galactosidase histochemistry confirmed alveolar cells, including pneumocytes, to be the main target, thus leading to the puzzling observation that the lung microvasculature must be permeable to cationic L-PEI/DNA particles of ca 60 nm. A smaller injected volume, premixing of the complexes with autologous mouse serum, as well as removal of excess free L-PEI, all severely decreased transgene expression in the lung. Arterial or portal vein delivery did not increase transgene expression in other organs. CONCLUSIONS These observations suggest that effective lung transfection primarily depends on the injection conditions: the large nonionic glucose bolus prevents aggregation as well as mixing of the cationic complexes and excess free L-PEI with blood. This may favour vascular leakage in the region where the vasculature is dense and fragile, i.e. around the lung alveoli. Cationic particles can thus reach the epithelium from the basolateral side where their receptors (heparan sulphate proteoglycans) are abundant.
Collapse
Affiliation(s)
- S M Zou
- Laboratoire de Chimie Génétique, Faculté de Pharmacie de Strasbourg, France
| | | | | | | |
Collapse
|
239
|
Simões S, Slepushkin V, Pires P, Gaspar R, Pedroso de Lima MC, Düzgüneş N. Human serum albumin enhances DNA transfection by lipoplexes and confers resistance to inhibition by serum. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1463:459-69. [PMID: 10675522 DOI: 10.1016/s0005-2736(99)00238-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic liposome-DNA complexes ('lipoplexes') are used as gene delivery vehicles and may overcome some of the limitations of viral vectors for gene therapy applications. The interaction of highly positively charged lipoplexes with biological macromolecules in blood and tissues is one of the drawbacks of this system. We examined whether coating cationic liposomes with human serum albumin (HSA) could generate complexes that maintained transfection activity. The association of HSA with liposomes composed of 1, 2-dioleoyl-3-(trimethylammonium) propane and dioleoylphosphatidylethanolamine, and subsequent complexation with the plasmid pCMVluc greatly increased luciferase expression in epithelial and lymphocytic cell lines above that obtained with plain lipoplexes. The percentage of cells transfected also increased by an order of magnitude. The zeta potential of the ternary complexes was lower than that of the lipoplexes. Transfection activity by HSA-lipoplexes was not inhibited by up to 30% serum. The combined use of HSA and a pH-sensitive peptide resulted in significant gene expression in human primary macrophages. HSA-lipoplexes mediated significantly higher gene expression than plain lipoplexes or naked DNA in the lungs and spleen of mice. Our results indicate that negatively charged HSA-lipoplexes can facilitate efficient transfection of cultured cells, and that they may overcome some of the problems associated with the use of highly positively charged complexes for gene delivery in vivo.
Collapse
Affiliation(s)
- S Simões
- Department of Microbiology, School of Dentistry, University of the Pacific, 2155 Webster Street, San Francisco, CA 94115, USA
| | | | | | | | | | | |
Collapse
|
240
|
Kawakami S, Sato A, Nishikawa M, Yamashita F, Hashida M. Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 2000; 7:292-9. [PMID: 10694809 DOI: 10.1038/sj.gt.3301089] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A novel mannosylated cholesterol derivative, cholesten-5-yloxy-N-(4-((1-imino-2-beta-D-thiomannosyl -ethyl)amino)bu tyl) formamide (Man-C4-Chol), was synthesized in order to perform mannose receptor-mediated gene transfer with liposomes. Plasmid DNA encoding luciferase gene (pCMV-Luc) complexed with liposomes, consisting of a 6:4 mixture of Man-C4-Chol and dioleoylphosphatidylethanolamine (DOPE), showed higher transfection activity than that complexed with 3beta[N-(N', N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol)/DOPE(6:4) and N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA)/DOPE(1:1) liposomes in mouse peritoneal macrophages. The presence of 20 mM mannose significantly inhibited the transfection efficiency of pCMV-Luc complexed with Man-C4-Chol/DC- Chol/DOPE(3:3:4) and Man-C4-Chol/DOPE(6:4) liposomes. High gene expression of pCMV-Luc was observed in the liver after intravenously injecting mice with Man-C4-Chol/DOPE(6:4) liposomes, whereas DC-Chol/DOPE(6:4) liposomes only showed marked expression in the lung. The gene expression with Man-C4-Chol/DOPE(6:4) liposome/ DNA complexes in the liver was observed preferentially in the non-parenchymal cells and was significantly reduced by predosing with mannosylated bovine serum albumin. The gene expression in the liver was greater following intraportal injection. These results suggest that plasmid DNA complexed with mannosylated liposomes exhibits high transfection activity due to recognition by mannose receptors both in vitro and in vivo. Gene Therapy (2000) 7, 292-299.
Collapse
Affiliation(s)
- S Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
241
|
Ribeiro A, Nagorney DM, Gores GJ. Localized hepatocellular carcinoma: therapeutic options. Curr Gastroenterol Rep 2000; 2:72-81. [PMID: 10981006 DOI: 10.1007/s11894-000-0054-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies worldwide. Recent surveillance programs have allowed early detection and diagnosis, but overall survival of patients with HCC remains poor. This article provides a definition for localized HCC and summarizes the array of treatments that have emerged and the salient literature and findings for each. Among the treatments reviewed here are surgical resection, orthotopic liver transplantation, and local ablative therapies such as cryosurgery, percutaneous ethanol injection therapy, and transarterial chemoembolization.
Collapse
Affiliation(s)
- A Ribeiro
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | |
Collapse
|
242
|
Zhou S, Yeh F, Burger C, Hu H, Liu T, Chu B. SAXS study on complexes formed by anionic poly(sodium methacrylate-co-N-isopropylacrylamide) gels with cationic surfactants. POLYM ADVAN TECHNOL 2000. [DOI: 10.1002/1099-1581(200005)11:5<235::aid-pat969>3.0.co;2-k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
243
|
Dow SW, Elmslie RE, Fradkin LG, Liggitt DH, Heath TD, Willson AP, Potter TA. Intravenous cytokine gene delivery by lipid-DNA complexes controls the growth of established lung metastases. Hum Gene Ther 1999; 10:2961-72. [PMID: 10609657 DOI: 10.1089/10430349950016375] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Local expression of cytokine genes by ex vivo transfection or intratumoral gene delivery can control the growth of cutaneous tumors. However, control of tumor metastases by conventional nonviral gene therapy approaches is more difficult. Intravenous injection of lipid-DNA complexes containing noncoding plasmid DNA can significantly inhibit the growth of early metastatic lung tumors. Therefore, we hypothesized that delivery of a cytokine gene by lipid-plasmid DNA complexes could induce even greater antitumor activity in mice with established lung metastases. The effectiveness of treatment with lipid-DNA complexes containing the IL-2 or IL-12 gene was compared with the effectiveness of treatment with complexes containing noncoding (empty vector) DNA. Treatment effects were evaluated in mice with either early (day 3) or late (day 6) established lung tumors. Lung tumor burdens and local intrapulmonary immune responses were assessed. Treatment with either noncoding plasmid DNA or with the IL-2 or IL-12 gene significantly inhibited the growth of early tumors. However, only treatment with the IL-2 or IL-12 gene induced a significant reduction in lung tumor burden in mice with more advanced metastases. Furthermore, the reduction in tumor burden was substantially greater than that achieved by treatment with recombinant cytokines. Treatment with the IL-2 or IL-12 gene was accompanied by increased numbers of NK cells and CD8+ T cells within lung tissues, increased cytotoxic activity, and increased local production of IFN-gamma by lung tissues, compared with treatment with noncoding DNA. Thus, cytokine gene delivery to the lungs by means of intravenously administered lipid-DNA complexes may be an effective method of controlling lung tumor metastases.
Collapse
Affiliation(s)
- S W Dow
- Department of Medicine, National Jewish Medical and Research Center, Denver, CO 80206-2761, USA.
| | | | | | | | | | | | | |
Collapse
|
244
|
Bragonzi A, Boletta A, Biffi A, Muggia A, Sersale G, Cheng SH, Bordignon C, Assael BM, Conese M. Comparison between cationic polymers and lipids in mediating systemic gene delivery to the lungs. Gene Ther 1999; 6:1995-2004. [PMID: 10637451 DOI: 10.1038/sj.gt.3301039] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Airway inflammation frequently found in congenital and acquired lung diseases may interfere with gene delivery by direct administration through either instillation or aerosol. Systemic delivery by the intravenous administration represents an alternative route of delivery that might bypass this barrier. A nonviral approach for transfecting various airway-derived cell lines in vitro showed that cationic polymers (PEI 22K and 25K) and lipids (DOTAP, GL-67/DOPE) are able to transfect with high efficiency the reporter genes firefly luciferase and E. coli lacZ. Notably, two properties predicted that cationic vectors would be useful for a systemic gene delivery approach to the lung: (1) transfection was not inhibited or increased when cells were incubated with cationic lipids or polymers in the presence of serum; and (2) cationic vectors protected plasmid DNA from DNase degradation. A single injection of DNA complexed to the cationic polymer PEI 22K into the tail vein of adult mice efficiently transfected primarily the lungs and to a lesser extent, heart, spleen, kidney and liver. The other vectors mediated lower to undetectable levels of luciferase expression in the lungs, with DOTAP > GL67/DOPE > PEI 25K > DOTMA/DOPE. A double injection protocol with a 15-min interval between the two doses of DOTAP/DNA complexes was investigated and showed a relevant role of the first injection in transfecting the lungs. A two log increase in luciferase expression was obtained either when the two doses were comprised of luciferase plasmid or when an irrelevant plasmid was used in the first injection. The double injection of luciferase/PEI 22K complexes determined higher transgene levels than a single dose, but a clear difference using an irrelevant plasmid as first dose was not observed. Using lacZ as a reporter gene, it was shown that only cells in the alveolar region, including type II penumocytes, stained positively for the transgene product.
Collapse
Affiliation(s)
- A Bragonzi
- Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Gaensler KM, Tu G, Bruch S, Liggitt D, Lipshutz GS, Metkus A, Harrison M, Heath TD, Debs RJ. Fetal gene transfer by transuterine injection of cationic liposome-DNA complexes. Nat Biotechnol 1999; 17:1188-92. [PMID: 10585716 DOI: 10.1038/70729] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In utero injection of cationic liposome-DNA complexes (CLDCs) containing chloramphenicol acetyltransferase, beta-galactosidase (beta-gal), or human granulocyte colony-stimulating factor (hG-CSF) expression plasmids produced high-level gene expression in fetal rats. Tissues adjacent to the injection site exhibited the highest levels of gene expression. Chloramphenicol acetyltransferase expression persisted for at least 14 days and was reexpressed following postnatal reinjection of CLDCs. Intraperitoneal administration of the hG-CSF gene produced high serum hG-CSF levels. X-gal staining demonstrated widespread beta-gal expression in multiple fetal tissues and cell types. No toxic or inflammatory responses were observed, nor was there evidence of fetal-maternal or maternal-fetal gene transfer, suggesting that CLDCs may provide a useful alternative to viral vectors for in utero gene transfer.
Collapse
Affiliation(s)
- K M Gaensler
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Parker GA, Peng B, He M, Gould-Fogerite S, Chou CC, Raveché ES. In vivo and in vitro antiproliferative effects of antisense interleukin 10 oligonucleotides. Methods Enzymol 1999; 314:411-29. [PMID: 10565029 DOI: 10.1016/s0076-6879(99)14119-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
MESH Headings
- Animals
- B-Lymphocyte Subsets/drug effects
- B-Lymphocyte Subsets/pathology
- CD5 Antigens
- Dose-Response Relationship, Drug
- Humans
- Interleukin-10/genetics
- Leukemia, Experimental/drug therapy
- Leukemia, Experimental/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Liver/pathology
- Mice
- Oligonucleotides, Antisense/therapeutic use
- Spine/pathology
- Spleen/pathology
Collapse
Affiliation(s)
- G A Parker
- Department of Pathology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark 07103, USA
| | | | | | | | | | | |
Collapse
|
247
|
Thiry M. Ultrastructural methods for nucleic acid detection by immunocytology. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1999; 34:87-159. [PMID: 10546283 DOI: 10.1016/s0079-6336(99)80008-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In the present review are summarized recent developments in immunocytochemical detection of nucleic acids in biological materials at the ultrastructural level. Not only the approaches using antibodies to natural nucleic acids are described but also the techniques involving the use of antibodies raised against various nucleotide analogs incorporated beforehand into nucleic acids. Special emphasis is placed on each method's potential and limitations. These methods, combined or not with molecular biotechnology, are powerful tools for studying the structure and function of nucleic acids. They can be used to investigate the distribution and topological organization of DNA and RNA molecules or of specialized within these molecules in the cells.
Collapse
Affiliation(s)
- M Thiry
- Laboratory of Cell and Tissue Biology, Institute of Histology, University of Liège, Belgium.
| |
Collapse
|
248
|
Yano M, Hiratsuka M, Nagahiro I, Mora BN, Scheule RK, Patterson GA. Ex vivo transfection of pulmonary artery segments in lung isografts. Ann Thorac Surg 1999; 68:1805-9. [PMID: 10585062 DOI: 10.1016/s0003-4975(99)00719-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Gene transfer to lung grafts may be useful in ameliorating ischemia-reperfusion injury and rejection. Proximal pulmonary artery endothelial transfection may provide beneficial downstream effects on the whole lung graft. We have already demonstrated the feasibility of in vivo and ex vivo transfection in proximal pulmonary artery segments of rat lung grafts. The aim of this study was to determine the optimal conditions for and duration of transfection. METHODS Orthotopic left lung transplantation was performed in F344 rats after donor lung proximal pulmonary artery segments were isolated and injected with lipid 67/DOPE-chloramphenicol acetyl transferase (CAT) complementary deoxyribonucleic acid construct. Effect of exposure time was studied by exposing donor pulmonary artery segments to the construct for 0, 30, and 60 minutes prior to transplantation. In another series of experiments, pulmonary artery segments were exposed to the construct for 60 minutes prior to transplantation. Onset and duration of gene expression were determined after sacrificing animals at 3, 6, 12, and 24 hours and 3 days as well as 1 week, 2, 4, and 8 weeks after transplantation. Effect of exposure temperature was studied by exposing pulmonary artery segments to the construct for 60 minutes at 4 degrees, 10 degrees, and 23 degrees C. These recipients were sacrificed on postoperative day 3. Effect of exposure pressure was studied by using two volumes of the construct (0.01 and 0.03 mL). These recipients were sacrificed on postoperative day 3. Transgene expression was assessed by chloramphenicol acetyl transferase activity assay. RESULTS Transgene expression was similar after 30- and 60-minute exposure. Transgene expression was evident within 3 to 6 hours after operation and persisted at 8 weeks after operation. Expression was detected at all temperatures and was equivalent at both exposure pressures. CONCLUSIONS Gene transfection into graft pulmonary artery segments is possible under a range of conditions applicable to clinical lung transplantation.
Collapse
Affiliation(s)
- M Yano
- Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
249
|
Reddy JA, Dean D, Kennedy MD, Low PS. Optimization of folate-conjugated liposomal vectors for folate receptor-mediated gene therapy. J Pharm Sci 1999; 88:1112-8. [PMID: 10564057 DOI: 10.1021/js990169e] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A folate-targeted transfection complex that is internalized by certain cancer cells and displays several properties reminiscent of enveloped viruses has been developed. These liposomal vectors are comprised of a polycation-condensed DNA plasmid associated with a mixture of neutral and anionic lipids supplemented with folate-poly(ethylene glycol)-dioleylphosphatidylethanolamine for tumor cell-specific targeting. N-Citraconyl-dioleylphosphatidylethanolamine is also included for pH-dependent release of endosome-entrapped DNA into the cytoplasm, and a novel plasmid containing a 366-bp segment from SV40 DNA has been employed to facilitate transport of the plasmid into the nucleus. Because formation of the DNA core is an important step in the assembly of liposomal vectors, considerable effort was devoted to comparing the transfection efficiencies of various DNA condensing agents. It was found that complexation of plasmid DNA with high molecular weight polymers such as acylated-polylysine and cationic dendrimers leads to higher folate-mediated transfection efficiency than DNA complexed with unmodified polylysine. In contrast, compaction of plasmid DNA with small cationic molecules such as spermine, spermidine, or gramicidin S yields only weakly active folate-targeted liposomal vectors. Compared to analogous liposomal vector preparations lacking an optimally compacted DNA core, a cell-specific targeting ligand, a caged fusogenic lipid, and a nucleotide sequence that facilitates nuclear uptake, these modified liposomal vectors display greatly improved transfection efficiencies and target cell specificity.
Collapse
Affiliation(s)
- J A Reddy
- Department of Chemistry, 1393 Brown Building, Purdue University, West Lafayette, Indiana 47907-1393, USA
| | | | | | | |
Collapse
|
250
|
Meuli-Simmen C, Liu Y, Yeo TT, Liggitt D, Tu G, Yang T, Meuli M, Knauer S, Heath TD, Longo FM, Debs RJ. Gene expression along the cerebral-spinal axis after regional gene delivery. Hum Gene Ther 1999; 10:2689-700. [PMID: 10566897 DOI: 10.1089/10430349950016735] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrate here that intracerebroventricular or spinal cord (intrathecal) injection of either plasmid DNA alone or cationic liposome: DNA complexes (CLDCs) produces significant levels of expression of both reporter genes and biologically relevant genes in nonparenchymal cells lining both the brain and the spinal cord. Gene expression was identified both within the spinal cord and the brain after intracerebroventricular or intrathecal injection of either CLDCs or plasmid DNA alone. Intracerebroventricular or intrathecal injection of CLDCs containing the beta-galactosidase (beta-Gal) gene produced patchy, widely scattered areas of beta-Gal expression. The chloramphenicol acetyltransferase (CAT) reporter gene product reached peak levels between 24 hr and 1 week postinjection, and was still present at significant levels 3 weeks after a single intracerebroventricular or intrathecal injection. Intrathecal injection of the human granulocyte colony-stimulating factor (G-CSF) gene produced high levels of hG-CSF activity in both the spinal cord and the brain. Intracerebroventricular injection of CLDCs containing the murine nerve growth factor (NGF) gene increased mNGF levels in the hippocampus, a target region for cholinergic neurons in the medial septum, and increased cholinergic neurotransmitter synthetic enzyme choline acetyltransferase (ChAT) activity within the brain, a well-characterized effect of both purified and recombinant NGF protein. These findings indicate that intracerebroventricular or intrathecal injection of CLDCs can produce significant levels of expression of biologically and therapeutically relevant genes within the CNS. Efficient gene transfer into the CNS will facilitate the evaluation of gene function and regulation within the brain and spinal cord. We attempted to transfer and express genes within the brain and spinal cord by direct CNS injection of either DNA alone or CLDCs into the intraventricular and subarachnoid compartments. We show that intracerebroventricular or spinal cord (intrathecal) injection of either plasmid DNA alone or CLDCs produces significant levels of expression of both reporter genes and biologically relevant genes in nonparenchymal cells lining both the brain and the spinal cord. Intrathecal injection of the hG-CSF gene produced high levels of hG-CSF activity in both the spinal cord and the brain. Intracerebroventricular injection of CLDCs containing the murine NGF gene increased mNGF levels in the hippocampus, and increased cholinergic neurotransmitter synthetic enzyme ChAT activity within the brain. Locoregional diffusion of gene products expressed by transfected meningeal lining cells into brain and spinal cord parenchyma could potentially target secreted proteins within brain and spinal cord regions relevant to neuropathological states while limiting peripheral side effects.
Collapse
Affiliation(s)
- C Meuli-Simmen
- Division of Reconstructive Surgery, University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|