201
|
Dhillon J, Li Z, Ortiz RM. Almond Snacking for 8 wk Increases Alpha-Diversity of the Gastrointestinal Microbiome and Decreases Bacteroides fragilis Abundance Compared with an Isocaloric Snack in College Freshmen. Curr Dev Nutr 2019; 3:nzz079. [PMID: 31528836 PMCID: PMC6736066 DOI: 10.1093/cdn/nzz079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/23/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Changes in gut microbiota are associated with cardiometabolic disorders and are influenced by diet. Almonds are a rich source of fiber, unsaturated fats, and polyphenols, all nutrients that can favorably alter the gut microbiome. OBJECTIVES The aim of this study was to examine the effects of 8 wk of almond snacking on the gut (fecal) microbiome diversity and abundance compared with an isocaloric snack of graham crackers in college freshmen. METHODS A randomized, controlled, parallel-arm, 8-wk intervention in 73 college freshmen (age: 18-19 y; 41 women and 32 men; BMI: 18-41 kg/m2) with no cardiometabolic disorders was conducted. Participants were randomly allocated to either an almond snack group (56.7 g/d; 364 kcal; n = 38) or graham cracker control group (77.5 g/d; 338 kcal/d; n = 35). Stool samples were collected at baseline and 8 wk after the intervention to assess primary microbiome outcomes, that is, gut microbiome diversity and abundance. RESULTS Almond snacking resulted in 3% greater quantitative alpha-diversity (Shannon index) and 8% greater qualitative alpha-diversity (Chao1 index) than the cracker group after the intervention (P < 0.05). Moreover, almond snacking for 8 wk decreased the abundance of the pathogenic bacterium Bacteroides fragilis by 48% (overall relative abundance, P < 0.05). Permutational multivariate ANOVA showed significant time effects for the unweighted UniFrac distance and Bray-Curtis beta-diversity methods (P < 0.05; R 2 ≤ 3.1%). The dietary and clinical variables that best correlated with the underlying bacterial community structure at week 8 of the intervention included dietary carbohydrate (percentage energy), dietary fiber (g), and fasting total and HDL cholesterol (model Spearman rho = 0.16; P = 0.01). CONCLUSIONS Almond snacking for 8 wk improved alpha-diversity compared with cracker snacking. Incorporating a morning snack in the dietary regimen of predominantly breakfast-skipping college freshmen improved the diversity and composition of the gut microbiome. This trial was registered at clinicaltrials.gov as NCT03084003.
Collapse
Affiliation(s)
- Jaapna Dhillon
- School of Natural Sciences, University of California, Merced, CA, USA
| | - Zhaoping Li
- Center for Human Nutrition, David Geffen School of Medicine, Department of Medicine, University of California Los Angeles, California, CA USA
| | - Rudy M Ortiz
- School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
202
|
Wan Y, Wang F, Yuan J, Li J, Jiang D, Zhang J, Li H, Wang R, Tang J, Huang T, Zheng J, Sinclair AJ, Mann J, Li D. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 2019; 68:1417-1429. [PMID: 30782617 DOI: 10.1136/gutjnl-2018-317609] [Citation(s) in RCA: 402] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/03/2018] [Accepted: 12/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether diets differing in fat content alter the gut microbiota and faecal metabolomic profiles, and to determine their relationship with cardiometabolic risk factors in healthy adults whose diet is in a transition from a traditional low-fat diet to a diet high in fat and reduced in carbohydrate. METHODS In a 6-month randomised controlled-feeding trial, 217 healthy young adults (aged 18-35 years; body mass index <28 kg/m2; 52% women) who completed the whole trial were included. All the foods were provided during the intervention period. The three isocaloric diets were: a lower-fat diet (fat 20% energy), a moderate-fat diet (fat 30% energy) and a higher-fat diet (fat 40% energy). The effects of the dietary interventions on the gut microbiota, faecal metabolomics and plasma inflammatory factors were investigated. RESULTS The lower-fat diet was associated with increased α-diversity assessed by the Shannon index (p=0.03), increased abundance of Blautia (p=0.007) and Faecalibacterium (p=0.04), whereas the higher-fat diet was associated with increased Alistipes (p=0.04), Bacteroides (p<0.001) and decreased Faecalibacterium (p=0.04). The concentration of total short-chain fatty acids was significantly decreased in the higher-fat diet group in comparison with the other groups (p<0.001). The cometabolites p-cresol and indole, known to be associated with host metabolic disorders, were decreased in the lower-fat diet group. In addition, the higher-fat diet was associated with faecal enrichment in arachidonic acid and the lipopolysaccharide biosynthesis pathway as well as elevated plasma proinflammatory factors after the intervention. CONCLUSION Higher-fat consumption by healthy young adults whose diet is in a state of nutrition transition appeared to be associated with unfavourable changes in gut microbiota, faecal metabolomic profiles and plasma proinflammatory factors, which might confer adverse consequences for long-term health outcomes. TRIAL REGISTRATION NUMBER NCT02355795; Results.
Collapse
Affiliation(s)
- Yi Wan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Fenglei Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Jihong Yuan
- No. 1 Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jie Li
- No. 1 Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Dandan Jiang
- No. 1 Department of Nutrition, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jingjing Zhang
- Department of Gastroenterology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Ruoyi Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, USA
| | - Jun Tang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jusheng Zheng
- Institute of Basic Medical Science, Westlake University, Hangzhou, China
| | - Andrew J Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, Australia
| | - Jim Mann
- Department of Human Nutrition and Medicine, University of Otago, Otago, New Zealand
| | - Duo Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Institute of Nutrition and Health, Qingdao University, Qingdao, China
| |
Collapse
|
203
|
Hyoju SK, Zaborin A, Keskey R, Sharma A, Arnold W, van den Berg F, Kim SM, Gottel N, Bethel C, Charnot-Katsikas A, Jianxin P, Adriaansens C, Papazian E, Gilbert JA, Zaborina O, Alverdy JC. Mice Fed an Obesogenic Western Diet, Administered Antibiotics, and Subjected to a Sterile Surgical Procedure Develop Lethal Septicemia with Multidrug-Resistant Pathobionts. mBio 2019; 10:e00903-19. [PMID: 31363025 PMCID: PMC6667615 DOI: 10.1128/mbio.00903-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Despite antibiotics and sterile technique, postoperative infections remain a real and present danger to patients. Recent estimates suggest that 50% of the pathogens associated with postoperative infections have become resistant to the standard antibiotics used for prophylaxis. Risk factors identified in such cases include obesity and antibiotic exposure. To study the combined effect of obesity and antibiotic exposure on postoperative infection, mice were allowed to gain weight on an obesogenic Western-type diet (WD), administered antibiotics and then subjected to an otherwise recoverable sterile surgical injury (30% hepatectomy). The feeding of a WD alone resulted in a major imbalance of the cecal microbiota characterized by a decrease in diversity, loss of Bacteroidetes, a bloom in Proteobacteria, and the emergence of antibiotic-resistant organisms among the cecal microbiota. When WD-fed mice were administered antibiotics and subjected to 30% liver resection, lethal sepsis, characterized by multiple-organ damage, developed. Notable was the emergence and systemic dissemination of multidrug-resistant (MDR) pathobionts, including carbapenem-resistant, extended-spectrum β-lactamase-producing Serratia marcescens, which expressed a virulent and immunosuppressive phenotype. Analysis of the distribution of exact sequence variants belonging to the genus Serratia suggested that these strains originated from the cecal mucosa. No mortality or MDR pathogens were observed in identically treated mice fed a standard chow diet. Taken together, these results suggest that consumption of a Western diet and exposure to certain antibiotics may predispose to life-threating postoperative infection associated with MDR organisms present among the gut microbiota.IMPORTANCE Obesity remains a prevalent and independent risk factor for life-threatening infection following major surgery. Here, we demonstrate that when mice are fed an obesogenic Western diet (WD), they become susceptible to lethal sepsis with multiple organ damage after exposure to antibiotics and an otherwise-recoverable surgical injury. Analysis of the gut microbiota in this model demonstrates that WD alone leads to loss of Bacteroidetes, a bloom of Proteobacteria, and evidence of antibiotic resistance development even before antibiotics are administered. After antibiotics and surgery, lethal sepsis with organ damage developed in in mice fed a WD with the appearance of multidrug-resistant pathogens in the liver, spleen, and blood. The importance of these findings lies in exposing how the selective pressures of diet, antibiotic exposure, and surgical injury can converge on the microbiome, resulting in lethal sepsis and organ damage without the introduction of an exogenous pathogen.
Collapse
Affiliation(s)
- Sanjiv K Hyoju
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Alexander Zaborin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Robert Keskey
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Anukriti Sharma
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Wyatt Arnold
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Fons van den Berg
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sangman M Kim
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Neil Gottel
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Cindy Bethel
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | - Peng Jianxin
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Guangdong Province Hospital of Chinese Medicine, China
| | - Carleen Adriaansens
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emily Papazian
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jack A Gilbert
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - John C Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
204
|
Dey P. Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol Res 2019; 147:104367. [PMID: 31344423 DOI: 10.1016/j.phrs.2019.104367] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/11/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023]
Abstract
The dynamic and delicate interactions amongst intestinal microbiota, metabolome and metabolism dictates human health and disease. In recent years, our understanding of gut microbial regulation of intestinal immunometabolic and redox homeostasis have evolved mainly out of in vivo studies associated with high-fat feeding induced metabolic diseases. Techniques utilizing fecal transplantation and germ-free mice have been instrumental in reproducibly demonstrating how the gut microbiota affects disease pathogenesis. However, the pillars of modern drug discovery i.e. evidence-based pharmacological studies critically lack focus on intestinal microflora. This is primarily due to targeted in vitro molecular-approaches at cellular-level that largely overlook the etiology of disease pathogenesis from the physiological perspective. Thus, this review aims to provide a comprehensive understanding of the key notions of intestinal microbiota and dysbiosis, and highlight the microbiota-phytochemical bidirectional interactions that affects bioavailability and bioactivity of parent phytochemicals and their metabolites. Potentially by focusing on the three major aspects of gut microbiota i.e. microbial abundance, diversity, and functions, I will discuss phytochemical-microbiota reciprocal interactions, biotransformation of phytochemicals and plant-derived drugs, and pre-clinical and clinical efficacies of herbal medicine on dysbiosis. Additionally, in relation to phytochemical pharmacology, I will briefly discuss the role of dietary-patterns associated with changes in microbial profiles and review pharmacological study models considering possible microbial effects. This review therefore, emphasize on the timely and critically needed evidence-based phytochemical studies focusing on gut microbiota and will provide newer insights for future pre-clinical and clinical phytopharmacological interventions.
Collapse
Affiliation(s)
- Priyankar Dey
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
205
|
Ma X, Chi C, Fan L, Dong B, Shao X, Xie S, Li M, Xue W. The Microbiome of Prostate Fluid Is Associated With Prostate Cancer. Front Microbiol 2019; 10:1664. [PMID: 31379800 PMCID: PMC6659105 DOI: 10.3389/fmicb.2019.01664] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 07/04/2019] [Indexed: 01/09/2023] Open
Abstract
Objectives To explore the microbiome of the prostatic fluid in high prostate-specific antigen (PSA) patients. Patients and Methods The microbiome profiles of prostatic fluid samples from 32 prostate cancer (PCa) patients and 27 non-PCa people were assessed. Microbiome analysis was assessed by massive 16S ribosomal RNA gene sequencing. Results Compared with the NCA group, the microbial diversity was lower in the CA group. There were no specific microbial species in the CA group or NCA group. However, many species, such as those in the genera Alkaliphilus, Enterobacter, Lactococcus, Cronobacter, Carnobacterium, and Streptococcus, showed a significant difference between the CA group and NCA group. Conclusion The prostate contains reduced bacteria, suggesting a possible pathophysiological correlation between the composition of the microbiome and PCa. Meanwhile, this study uncovered that the microbiome may be beneficial in maintaining the stability of the microenvironment of the prostate and provides interesting perspectives for the identification of novel biomarkers in high-PSA patients.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenfei Chi
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liancheng Fan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaowei Xie
- Department of Ultrasound in Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Li
- Department of Clinical Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
206
|
Basal Diet Determined Long-Term Composition of the Gut Microbiome and Mouse Phenotype to a Greater Extent than Fecal Microbiome Transfer from Lean or Obese Human Donors. Nutrients 2019; 11:nu11071630. [PMID: 31319545 PMCID: PMC6682898 DOI: 10.3390/nu11071630] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/23/2022] Open
Abstract
The Western dietary pattern can alter the gut microbiome and cause obesity and metabolic disorders. To examine the interactions between diet, the microbiome, and obesity, we transplanted gut microbiota from lean or obese human donors into mice fed one of three diets for 22 weeks: (1) a control AIN93G diet; (2) the total Western diet (TWD), which mimics the American diet; or (3) a 45% high-fat diet-induced obesity (DIO) diet. We hypothesized that a fecal microbiome transfer (FMT) from obese donors would lead to an obese phenotype and aberrant glucose metabolism in recipient mice that would be exacerbated by consumption of the TWD or DIO diets. Prior to the FMT, the native microbiome was depleted using an established broad-spectrum antibiotic protocol. Interestingly, the human donor body type microbiome did not significantly affect final body weight or body composition in mice fed any of the experimental diets. Beta diversity analysis and linear discriminant analysis with effect size (LEfSe) showed that mice that received an FMT from obese donors had a significantly different microbiome compared to mice that received an FMT from lean donors. However, after 22 weeks, diet influenced the microbiome composition irrespective of donor body type, suggesting that diet is a key variable in the shaping of the gut microbiome after FMT.
Collapse
|
207
|
Chen Y, Li Z, Tye KD, Luo H, Tang X, Liao Y, Wang D, Zhou J, Yang P, Li Y, Su Y, Xiao X. Probiotic Supplementation During Human Pregnancy Affects the Gut Microbiota and Immune Status. Front Cell Infect Microbiol 2019; 9:254. [PMID: 31380297 PMCID: PMC6646513 DOI: 10.3389/fcimb.2019.00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
The consumption of probiotics and fermented foods has been very popular in recent decades. The primary aim of our study was to evaluate the effect of probiotics on the gut microbiota and the changes in inflammatory cytokines after an average of 6.7 weeks of probiotic administration among normal pregnant women. Thirty-two healthy pregnant women at 32 weeks of gestation were recruited and divided into two groups. The probiotic group ingested combined probiotics until after birth. The base characteristics of the probiotics and control groups showed no significant differences. The structure of the fecal microbiota at the genus level varied during the third trimester, and administration of probiotics had no influence on the composition of the fecal microbiota however, many highly abundant taxa and core microbiota at the genus level changed in the probiotic group when compared to the control group. The analysis of cytokines showed that IL-5, IL-6, TNF-α, and GM-CSF had equal levels between the baseline and control groups but were significantly increased after probiotic administration (baseline = control < probiotics). Additionally, levels of IL-1β, IL-2, IL-12, and IFN-γ significantly increased among the three groups (baseline < control < probiotics). This result demonstrated that probiotics helped to shift the anti-inflammatory state to a pro-inflammatory state. The correlation analysis outcome suggested that the relationship between the microbiota and the cytokines was not strain-dependent. The gut microbiota varied during the third trimester. The probiotics demonstrated immunomodulation effects that helped to switch over to a pro-inflammatory immune state in the third trimester, which was important for labor.
Collapse
Affiliation(s)
- Yuyi Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yu Liao
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongju Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yimi Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingbing Su
- Department of Clinical Medicine, International School of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
208
|
Bang SJ, Lee ES, Song EJ, Nam YD, Seo MJ, Kim HJ, Park CS, Lim MY, Seo DH. Effect of raw potato starch on the gut microbiome and metabolome in mice. Int J Biol Macromol 2019; 133:37-43. [DOI: 10.1016/j.ijbiomac.2019.04.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
|
209
|
Fogarty C, Burgess CM, Cotter PD, Cabrera-Rubio R, Whyte P, Smyth C, Bolton DJ. Diversity and composition of the gut microbiota of Atlantic salmon (Salmo salar) farmed in Irish waters. J Appl Microbiol 2019; 127:648-657. [PMID: 31021487 DOI: 10.1111/jam.14291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/25/2022]
Abstract
AIMS Information on the gut microbiota of salmon is essential for optimizing nutrition while maintaining host health and welfare. This study's objectives were to characterize the microbiota in the GI tract of Atlantic salmon (Salmo salar) farmed in waters off the west coast of Ireland and to investigate whether there is a difference in microbiota diversity between the proximal and distal regions of the intestine. METHODS AND RESULTS The microbiota from the proximal and distal intestine (PI and DI, respectively) of Atlantic salmon was examined using MiSeq Illumina high-throughput sequencing of the 16S ribosomal RNA gene. The PI region had greater bacterial diversity than the DI region. Six phyla were present in the DI samples, dominated by Tenericutes and Firmicutes. These six phyla were also amongst the 12 phyla detected in the PI samples. The PI microbiota was dominated by Tenericutes, Firmicutes, Bacteroidetes and Proteobacteria. A core microbiota of 20 operational taxonomic units (OTUs) common to both regions was observed. CONCLUSIONS It was concluded that Tenericutes were the dominant phylum in both PI and DI samples, and the PI region had greater Shannon and Simpson diversity of bacteria. However, further work is required to identify the functionality of the salmon microbiota. SIGNIFICANCE AND IMPACT OF THE STUDY Our study determined the composition and diversity of the intestinal microbiota in adult salmon from a commercial fishery and provides data to improve our understanding of their contributions to the nutrition, health and welfare of Atlantic salmon farmed in Irish waters.
Collapse
Affiliation(s)
- Colin Fogarty
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.,School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, Cork, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, Cork, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Conor Smyth
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
210
|
Liu S, Qin P, Wang J. High-Fat Diet Alters the Intestinal Microbiota in Streptozotocin-Induced Type 2 Diabetic Mice. Microorganisms 2019; 7:microorganisms7060176. [PMID: 31208113 PMCID: PMC6617241 DOI: 10.3390/microorganisms7060176] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/04/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Intestinal microbiota is closely associated with various metabolic diseases such as type 2 diabetes (T2D), and microbiota is definitely affected by diet. However, more work is required to gain detailed information about gut metagenome and their associated impact with diet in T2D patients. We used a streptozotocin-high-fat diet (HFD) to induce a T2D mouse model and investigated the effect of standard chow diet and HFD on the composition and function of gut microbiota. We found that a HFD could worsen the diabetes status compared with a standard diet. 16S rRNA gene sequencing revealed that a HFD caused a large disturbance to the microbial structure and was linked to an increased ratio of Firmicutes to Bacteroidetes. A HFD increased the bacteria of the Ruminococcaceae and Erysipelotrichaceae family and decreased the bacteria of S24-7 and Rikenellaceae. Meanwhile, a HFD decreased the abundance of Parabacteroidesdistasonis and Eubacteriumdolichum, both of which have previously been reported to alleviate obesity and metabolic dysfunctions. Moreover, PICRUSt-predicted KEGG pathways related to membrane transport, lipid metabolism, and xenobiotics biodegradation and metabolism were significantly elevated in HFD-fed T2D mice. Our results provide insights into dietary and nutritional approaches for improving host metabolism and ameliorating T2D.
Collapse
Affiliation(s)
- Sheng Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Panpan Qin
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
211
|
Carvajal-Millan E, Vargas-Albores F, Fierro-Islas JM, Gollas-Galván T, Magdaleno-Moncayo D, Rascon-Chu A, Martínez-Porchas M, Lago-Lestón A. Arabinoxylans and gelled arabinoxylans used as anti-obesogenic agents could protect the stability of intestinal microbiota of rats consuming high-fat diets. Int J Food Sci Nutr 2019; 71:74-83. [PMID: 31170834 DOI: 10.1080/09637486.2019.1610729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study evaluated the effect of using arabinoxylans (AX) and gelled arabinoxylans (AxGel) as anti-obesogenic agents on the faecal microbiota of rats fed with a high-fat (HF) diet. Results revealed that the HF content in diet caused obesity in rats and alterations in the taxonomic and functional profiles of faecal microbiota. However, these effects were lessened when AX and AxGel were used as ingredients of the HF diet. Metabolisms of amino acids and energy, as well as genetic information processing, were negatively affected when the rats consumed the HF diet; however, this effect was not observed if AX and AxGel were included as part of the diet formulation. Results suggest that AX may act as a prebiotic agent. Therefore, AX and AxGel could be considered as hypothetical protectors of the intestinal microbiota against HF consumption.
Collapse
Affiliation(s)
- Elizabeth Carvajal-Millan
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Hermosillo, Mexico
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Hermosillo, Mexico
| | - José Miguel Fierro-Islas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Hermosillo, Mexico
| | - Teresa Gollas-Galván
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Hermosillo, Mexico
| | - Dante Magdaleno-Moncayo
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| | - Agustín Rascon-Chu
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Vegetal, Hermosillo, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Tecnología de Alimentos de Origen Animal, Hermosillo, Mexico
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, México
| |
Collapse
|
212
|
Liu C, Wu H, Liu S, Chai S, Meng Q, Zhou Z. Dynamic Alterations in Yak Rumen Bacteria Community and Metabolome Characteristics in Response to Feed Type. Front Microbiol 2019; 10:1116. [PMID: 31191470 PMCID: PMC6538947 DOI: 10.3389/fmicb.2019.01116] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/02/2019] [Indexed: 01/07/2023] Open
Abstract
Current knowledge about the relationships between ruminal bacterial communities and metabolite profiles in the yak rumen is limited. This is due to differences in the nutritional and metabolic features between yak and other ordinary cattle combined with difficulties associated with farm-based research and a lack of technical guidance. A comprehensive analysis of the composition and alterations in ruminal metabolites is required to advance the development of modern yak husbandry. In the current study, we characterized the effect of feed type on the ruminal fluid microbiota and metabolites in yak using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS). Bacteroidetes and Firmicutes were the predominant bacterial phyla in the yak rumen. At the genus level, the relative abundance of Bacteroidales BS11 gut group, Prevotellaceae UCG-003, Ruminococcaceae UCG-011, Bacteroidales RF16 group and Ruminococcaceae UCG-010 was significantly (P < 0.01) higher in the forage group compared to that in the concentrate group, while the concentrate group harbored higher proportions of Bacteroidales S24-7 group, Ruminococcaceae NK4A214, Succiniclasticum and Ruminococcus 2. Yak rumen metabolomics analysis combined with enrichment analysis revealed that feed type altered the concentrations of ruminal metabolites as well as the metabolic pattern, and significantly (P < 0.01) affected the concentrations of ruminal metabolites involved in protein digestion and absorption (e.g., L-arginine, ornithine, L-threonine, L-proline and β-alanine), purine metabolism (e.g., xanthine, hypoxanthine, deoxyadenosine and deoxyadenosine monophosphate) and fatty acid biosynthesis (e.g., stearic acid, myristic acid and arachidonic acid). Correlation analysis of the association of microorganisms with metabolite features provides us with a comprehensive understanding of the composition and function of microbial communities. Associations between utilization or production were widely identified between affected microbiota and certain metabolites, and these findings will contribute to the direction of future research in yak.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shujie Liu
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Shatuo Chai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China,*Correspondence: Zhenming Zhou
| |
Collapse
|
213
|
Lew KN, Starkweather A, Cong X, Judge M. A Mechanistic Model of Gut-Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biol Res Nurs 2019; 21:384-399. [PMID: 31113222 DOI: 10.1177/1099800419849109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a highly prevalent metabolic disease, affecting nearly 10% of the American population. Although the etiopathogenesis of T2D remains poorly understood, advances in DNA sequencing technologies have allowed for sophisticated interrogation of the human microbiome, providing insight into the role of the gut microbiome in the development and progression of T2D. An emerging body of research reveals that gut-brain axis (GBA) perturbations and a high-fat diet (HFD), along with other modifiable and nonmodifiable risk factors, contribute to gut microbiome homeostatic imbalance. Homeostatic imbalance or disruption increases gut wall permeability and facilitates translocation of endotoxins (lipopolysaccharides) into the circulation with resultant systemic inflammation. Chronic, low-grade systemic inflammation ensues with pro-inflammatory pathways activated, contributing to obesity, insulin resistance (IR), pancreatic β-cell decline, and, thereby, T2D. While GBA perturbations and HFD are implicated in provoking these conditions, prior mechanistic models have tended to examine HFD and GBA pathways exclusively without considering their shared pathways to T2D. Addressing this gap, this article proposes a mechanistic model informed by animal and human studies to advance scientific understanding of (1) modifiable and nonmodifiable risk factors for gut microbiome homeostatic disruption, (2) HFD and GBA pathways contributing to homeostatic disruption, and (3) shared GBA and HFD pro-inflammatory pathways to obesity, IR, β-cell decline, and T2D. The proposed mechanistic model, based on the extant literature, proposes a framework for studying the complex relationships of the gut microbiome to T2D to advance study in this promising area of research.
Collapse
Affiliation(s)
| | | | - Xiaomei Cong
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| | - Michelle Judge
- 1 School of Nursing, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
214
|
Videvall E, Song SJ, Bensch HM, Strandh M, Engelbrecht A, Serfontein N, Hellgren O, Olivier A, Cloete S, Knight R, Cornwallis CK. Major shifts in gut microbiota during development and its relationship to growth in ostriches. Mol Ecol 2019; 28:2653-2667. [DOI: 10.1111/mec.15087] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/26/2022]
Affiliation(s)
| | - Se Jin Song
- Department of Pediatrics University of California San Diego San Diego California
| | | | | | - Anel Engelbrecht
- Directorate Animal Sciences Western Cape Department of Agriculture Elsenburg South Africa
| | | | | | - Adriaan Olivier
- Klein Karoo International, Research and Development Oudtshoorn South Africa
| | - Schalk Cloete
- Directorate Animal Sciences Western Cape Department of Agriculture Elsenburg South Africa
- Department of Animal Sciences Stellenbosch University Matieland South Africa
| | - Rob Knight
- Department of Pediatrics University of California San Diego San Diego California
- Department of Computer Science & Engineering University of California San Diego San Diego California
- Center for Microbiome Innovation University of California San Diego San Diego California
| | | |
Collapse
|
215
|
Gandy KAO, Zhang J, Nagarkatti P, Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci Rep 2019; 9:6923. [PMID: 31061496 PMCID: PMC6502871 DOI: 10.1038/s41598-019-43356-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Using a mouse model of multiple sclerosis (MS), experimental autoimmune encephalitis (EAE), we evaluated the role of gut microbiota in modulating chronic-progressive (CP) versus relapse-remitting (RR) forms of the disease. We hypothesized that clinical courses of EAE may be shaped by differential gut microbiota. Metagenomic sequencing of prokaryotic 16S rRNA present in feces from naïve mice and those exhibiting CP-EAE or RR-EAE revealed significantly diverse microbial populations. Microbiota composition was considerably different between naïve strains of mice, suggesting microbial components present in homeostatic conditions may prime mice for divergent courses of disease. Additionally, there were differentially abundant bacteria in CP and RR forms of EAE, indicating a potential role for gut microbiota in shaping tolerant or remittance-favoring, and pathogenic or pro-inflammatory-promoting conditions. Furthermore, immunization to induce EAE led to significant alterations in gut microbiota, some were shared between disease courses and others were course-specific, supporting a role for gut microbial composition in EAE pathogenesis. Moreover, using Linear Discriminant Analysis (LDA) coupled with effect size measurement (LEfSe) to analyze microbial content, biomarkers of each naïve and disease states were identified. Our findings demonstrate for the first time that gut microbiota may determine the susceptibility to CP or RR forms of EAE.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, USA
| | - Jiajia Zhang
- Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, USA.
- WJB Dorn VA Medical Center, 29208, Columbia, SC, USA.
| |
Collapse
|
216
|
Schmidt E, Mykytczuk N, Schulte-Hostedde AI. Effects of the captive and wild environment on diversity of the gut microbiome of deer mice (Peromyscus maniculatus). THE ISME JOURNAL 2019; 13:1293-1305. [PMID: 30664674 PMCID: PMC6474230 DOI: 10.1038/s41396-019-0345-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Vertebrate gastrointestinal tracts have co-existed with microbes over millennia. These microbial communities provide their host with numerous benefits. However, the extent to which different environmental factors contribute to the assemblage of gut microbial communities is not fully understood. The purpose of this study was to determine how the external environment influences the development of gut microbiome communities (GMCs). Faecal samples were collected from deer mice (Peromyscus maniculatus) born and raised in captivity and the wild at approximately 3-5 weeks of age. Additional samples were collected 2 weeks later, with a subset of individuals being translocated between captive and wild environments. Microbial data were analysed using 16S rRNA next-generation Illumina HiSeq sequencing methods. GMCs of deer mice were more similar between neighbours who shared the same environment, regardless of where an individual was born, demonstrating that GMCs are significantly influenced by the surrounding environment and can rapidly change over time. Mice in natural environments contained more diverse GMCs with higher relative abundances of Ruminoccocaceae, Helicobacteraceae and Lachnospiraceae spp. Future studies should examine the fitness consequences associated with the presence/absence of microbes that are characteristic of GMCs of wild populations to gain a better understanding of environment-microbe-host evolutionary and ecological relationships.
Collapse
Affiliation(s)
- Elliott Schmidt
- Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| | - Nadia Mykytczuk
- Vale Living with Lakes Centre, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | | |
Collapse
|
217
|
Sethi V, Vitiello GA, Saxena D, Miller G, Dudeja V. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer Immunotherapy. Gastroenterology 2019; 156:2097-2115.e2. [PMID: 30768986 DOI: 10.1053/j.gastro.2018.12.045] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Our understanding of the microbiome and its role in immunity, cancer initiation, and cancer progression has evolved significantly over the past century. The "germ theory of cancer" was first proposed in the early 20th century, and shortly thereafter the bacterium Helicobacter pylori, and later Fusobacterium nucleatum, were implicated in the development of gastric and colorectal cancers, respectively. However, with the development of reliable mouse models and affordable sequencing technologies, the most fascinating aspect of the microbiome-cancer relationship, where microbes undermine cancer immune surveillance and indirectly promote oncogenesis, has only recently been described. In this review, we highlight the essential role of the microbiome in immune system development and maturation. We review how microbe-induced immune activation promotes oncogenesis, focusing particularly on pancreatic carcinogenesis, and show that modulation of the microbiome augments the anti-cancer immune response and enables successful immunotherapy against pancreatic cancer.
Collapse
Affiliation(s)
- Vrishketan Sethi
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Gerardo A Vitiello
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Deepak Saxena
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York; Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, New York, New York
| | - Vikas Dudeja
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida.
| |
Collapse
|
218
|
Abstract
The prevalence of food allergy is raising in industrialized countries, but the mechanisms behind this increased incidence are not fully understood. Environmental factors are believed to play a role in allergic diseases, including lifestyle influences, such as diet. There is a close relationship between allergens and lipids, with many allergenic proteins having the ability to bind lipids. Dietary lipids exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to cells of the adaptive immunity. In addition to modifying the immunostimulating properties of proteins, lipids also alter their digestibility and intestinal absorption, changing allergen bioavailability. This study provides an overview of the role of dietary lipids in food allergy, taking into account epidemiological information, as well as results of mechanistic investigations using in vivo, ex vivo and in vitro models. The emerging link among high-fat diets, obesity, and allergy is also discussed.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
219
|
Tsiaoussis J, Antoniou MN, Koliarakis I, Mesnage R, Vardavas CI, Izotov BN, Psaroulaki A, Tsatsakis A. Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicol Lett 2019; 312:72-97. [PMID: 31034867 DOI: 10.1016/j.toxlet.2019.04.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Human populations are chronically exposed to mixtures of toxic chemicals. Predicting the health effects of these mixtures require a large amount of information on the mode of action of their components. Xenobiotic metabolism by bacteria inhabiting the gastrointestinal tract has a major influence on human health. Our review aims to explore the literature for studies looking to characterize the different modes of action and outcomes of major chemical pollutants, and some components of cosmetics and food additives, on gut microbial communities in order to facilitate an estimation of their potential mixture effects. We identified good evidence that exposure to heavy metals, pesticides, nanoparticles, polycyclic aromatic hydrocarbons, dioxins, furans, polychlorinated biphenyls, and non-caloric artificial sweeteners affect the gut microbiome and which is associated with the development of metabolic, malignant, inflammatory, or immune diseases. Answering the question 'Who is there?' is not sufficient to define the mode of action of a toxicant in predictive modeling of mixture effects. Therefore, we recommend that new studies focus to simulate real-life exposure to diverse chemicals (toxicants, cosmetic/food additives), including as mixtures, and which combine metagenomics, metatranscriptomics and metabolomic analytical methods achieving in that way a comprehensive evaluation of effects on human health.
Collapse
Affiliation(s)
- John Tsiaoussis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Ioannis Koliarakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Constantine I Vardavas
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece
| | - Boris N Izotov
- Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia
| | - Anna Psaroulaki
- Department of Clinical Microbiology and Microbial Pathogenesis, Medical School, University of Crete, 71110 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 71409 Heraklion, Crete, Greece; Department of Analytical, Toxicology, Pharmaceutical Chemistry and Pharmacognosy, Sechenov University, 119991 Moscow, Russia.
| |
Collapse
|
220
|
Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice. Appl Microbiol Biotechnol 2019; 103:5311-5321. [DOI: 10.1007/s00253-019-09786-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/25/2019] [Accepted: 03/19/2019] [Indexed: 12/21/2022]
|
221
|
Zhao R, Khafipour E, Sepehri S, Huang F, Beta T, Shen GX. Impact of Saskatoon berry powder on insulin resistance and relationship with intestinal microbiota in high fat-high sucrose diet-induced obese mice. J Nutr Biochem 2019; 69:130-138. [PMID: 31078906 DOI: 10.1016/j.jnutbio.2019.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/13/2019] [Accepted: 03/25/2019] [Indexed: 12/26/2022]
Abstract
The present study examined the impact of Saskatoon berry powder (SBp) on insulin resistance, inflammation and intestinal microbiota in diet-induced obese mice. Male C57 BL/6 J mice were fed control diet, high fat-high sucrose (HFHS) diet or HFHS+5% SBp (HFHS+B) diet for 15 weeks. The composition of fecal bacterial community was characterized using the Illumina sequencing of V4 region of 16S rRNA gene. HFHS diet increased body weight, fasting plasma glucose, cholesterol, triglycerides, insulin, homeostatic model assessment-insulin resistance, monocyte adhesion, tumor necrosis factor-α, plasminogen activator inhibitor-1, monocyte chemotactic protein-1, intracellular cell adhesion molecule-1, urokinase plasminogen activator and its receptor in plasma or aortae compared to the control diet. HFHS+B diet postponed the increase in body weight, suppressed HFHS diet-induced disorders in the metabolic and inflammatory variables. The ratio of Firmicutes/Bacteroidetes in the HFHS group was higher than that in the control group (P<.01), and that in the HFHS+B group was lower than that in the HFHS group (P<.05). The abundances of S24-7 family negatively correlated with body weight and tested metabolic or inflammatory variables. The results suggest that SBp attenuated HFHS diet-induced metabolic disorders and vascular inflammation in gut microbiota in mice.
Collapse
Affiliation(s)
- Ruozhi Zhao
- Department of Internal Medicine, University of Manitoba
| | | | - Shadi Sepehri
- Department of Animal Science, University of Manitoba
| | - Fei Huang
- Department of Food and Human Nutritional Sciences, University of Manitoba
| | - Trust Beta
- Department of Food and Human Nutritional Sciences, University of Manitoba
| | - Garry X Shen
- Department of Internal Medicine, University of Manitoba; Department of Food and Human Nutritional Sciences, University of Manitoba.
| |
Collapse
|
222
|
Yun Y, Kim HN, Lee EJ, Ryu S, Chang Y, Shin H, Kim HL, Kim TH, Yoo K, Kim HY. Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects. PLoS One 2019; 14:e0213692. [PMID: 30870486 PMCID: PMC6417675 DOI: 10.1371/journal.pone.0213692] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Pathophysiological background in different phenotypes of nonalcoholic fatty liver disease (NAFLD) remains to be elucidated. The aim was to investigate the association between fecal and blood microbiota profiles and the presence of NAFLD in obese versus lean subjects. Demographic and clinical data were reviewed in 268 health checkup examinees, whose fecal and blood samples were available for microbiota analysis. NAFLD was diagnosed with ultrasonography, and subjects with NAFLD were further categorized as obese (body mass index (BMI) ≥25) or lean (BMI <25). Fecal and blood microbiota communities were analyzed by sequencing of the V3-V4 domains of the 16S rRNA genes. Correlation between microbiota taxa and NAFLD was assessed using zero-inflated Gaussian mixture models, with adjustment of age, sex, and BMI, and Bonferroni correction. The NAFLD group (n = 76) showed a distinct bacterial community with a lower biodiversity and a far distant phylotype compared with the control group (n = 192). In the gut microbiota, the decrease in Desulfovibrionaceae was associated with NAFLD in the lean NAFLD group (log2 coefficient (coeff.) = -2.107, P = 1.60E-18), but not in the obese NAFLD group (log2 coeff. = 1.440, P = 1.36E-04). In the blood microbiota, Succinivibrionaceae showed opposite correlations in the lean (log2 coeff. = -1.349, P = 5.34E-06) and obese NAFLD groups (log2 coeff. = 2.215, P = 0.003). Notably, Leuconostocaceae was associated with the obese NAFLD in the gut (log2 coeff. = -1.168, P = 0.041) and blood (log2 coeff. = -2.250, P = 1.28E-10). In conclusion, fecal and blood microbiota profiles showed different patterns between subjects with obese and lean NAFLD, which might be potential biomarkers to discriminate diverse phenotypes of NAFLD.
Collapse
Affiliation(s)
- Yeojun Yun
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Ju Lee
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seungho Ryu
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoosoo Chang
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hocheol Shin
- Department of Family Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Tae Hun Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kwon Yoo
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hwi Young Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
223
|
Lazar V, Ditu LM, Pircalabioru GG, Picu A, Petcu L, Cucu N, Chifiriuc MC. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front Nutr 2019; 6:21. [PMID: 30931309 PMCID: PMC6424913 DOI: 10.3389/fnut.2019.00021] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2019] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract with its microbiota is a complex, open, and integrated ecosystem with a high environmental exposure. It is widely accepted that the healthy gut microbiotais essential for host homeostasis and immunostasis, harboring an enormous number and variety of microorganisms and genes tailored by hundreds of exogenous and intrinsic host factors. The occurrence of dysbiosis may contribute to host vulnerability and progression to a large spectrum of infectious and non-communicable diseases, including diabetes and obesity, two metabolic disorders that are showing an endemic trend nowadays. There is an urgent need to develop efficient strategies to prevent and treat metabolic disorders such as diabetes and obesity which are often associated with serious complications. In this paper, we give an overview on the implications of gut microbiota in diabesity, with a focus on the triangle gut microbiota—diet-host metabolism and on the way to manipulate the gut microbial ecosystem toward achieving novel diagnosis and predictive biomarkers with the final goal of reestablishing the healthy metabolic condition. The current research data regarding the precision/personalized nutrition suggest that dietary interventions, including administration of pre-, pro-, and syn-biotics, as well as antibiotic treatment should be individually tailored to prevent chronic diseases based on the genetic background, food and beverage consumption, nutrient intake, microbiome, metabolome, and other omic profiles.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Gratiela G Pircalabioru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Natalia Cucu
- Fundeni Clinical Institute, Bucharest, Romania.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania.,Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| |
Collapse
|
224
|
Iacobini C, Pugliese G, Blasetti Fantauzzi C, Federici M, Menini S. Metabolically healthy versus metabolically unhealthy obesity. Metabolism 2019; 92:51-60. [PMID: 30458177 DOI: 10.1016/j.metabol.2018.11.009] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
Obesity-related disease complications reduce life quality and expectancy and increase health-care costs. Some studies have suggested that obesity not always entails metabolic abnormalities and increased risk of cardiometabolic complications. Because of the lack of universally accepted criteria to identify metabolically healthy obesity (MHO), its prevalence varies widely among studies. Moreover, the prognostic value of MHO is hotly debated, mainly because it likely shifts gradually towards metabolically unhealthy obesity (MUO). In this review, we outline the differential factors contributing to the metabolic heterogeneity of obesity by discussing the behavioral, genetic, phenotypical, and biological aspects associated with each of the two metabolic phenotypes (MHO and MUO) of obesity and their clinical implications. Particular emphasis will be laid on the role of adipose tissue biology and function, including genetic determinants of body fat distribution, depot-specific fat metabolism, adipose tissue plasticity and, particularly, adipogenesis. Finally, the emerging role of gut microbiota in obesity and adipose tissue dysfunction as well as the search for novel biomarkers for the obesity-related metabolic traits and associated diseases will be briefly presented. A better understanding of the main determinants of a healthy metabolic status in obesity would allow promotion of this favorable condition by targeting the relevant pathways.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, "La Sapienza" University, Rome, Italy.
| |
Collapse
|
225
|
Wu Y, Li RW, Huang H, Fletcher A, Yu L, Pham Q, Yu L, He Q, Wang TTY. Inhibition of Tumor Growth by Dietary Indole-3-Carbinol in a Prostate Cancer Xenograft Model May Be Associated with Disrupted Gut Microbial Interactions. Nutrients 2019; 11:nu11020467. [PMID: 30813350 PMCID: PMC6413210 DOI: 10.3390/nu11020467] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulated evidence suggests that the cruciferous vegetables-derived compound indole-3-carbinol (I3C) may protect against prostate cancer, but the precise mechanisms underlying its action remain unclear. This study aimed to verify the hypothesis that the beneficial effect of dietary I3C may be due to its modulatory effect on the gut microbiome of mice. Athymic nude mice (5–7 weeks old, male, Balb c/c nu/nu) with established tumor xenografts were fed a basal diet (AIN-93) with or without 1 µmoles I3C/g for 9 weeks. The effects of dietary I3C on gut microbial composition and microbial species interactions were then examined by 16s rRNA gene-based sequencing and co-occurrence network analysis. I3C supplementation significantly inhibited tumor growth (p < 0.0001) and altered the structure of gut microbiome. The abundance of the phylum Deferribacteres, more specifically, Mucispirillum schaedleri, was significantly increased by dietary I3C. Additionally, I3C consumption also changed gut microbial co-occurrence patterns. One of the network modules in the control group, consisting of seven bacteria in family S-27, was positively correlated with tumor size (p < 0.009). Moreover, dietary I3C disrupted microbial interactions and altered this association between specific microbial network and tumor development. Our results unraveled complex relationships among I3C ingestion, gut microbiota, and prostate tumor development and may provide a novel insight into the mechanism for the chemopreventive effect of dietary I3C on prostate cancer.
Collapse
Affiliation(s)
- Yanbei Wu
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China.
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD 20705, USA.
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | - Haiqiu Huang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD 20705, USA.
| | - Arnetta Fletcher
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
- Department of Family and Consumer Sciences, Shepherd University, Shepherdstown, WV 25443, USA.
| | - Lu Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | - Quynhchi Pham
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD 20705, USA.
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| | - Qiang He
- College of Light Industry, Textile and Food Engineering, Sichuan University, Chengdu 610065, China.
| | - Thomas T Y Wang
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, MD 20705, USA.
| |
Collapse
|
226
|
Zhao Z, Yao M, Wei L, Ge S. Obesity caused by a high-fat diet regulates the Sirt1/PGC-1α/FNDC5/BDNF pathway to exacerbate isoflurane-induced postoperative cognitive dysfunction in older mice. Nutr Neurosci 2019; 23:971-982. [PMID: 30794116 DOI: 10.1080/1028415x.2019.1581460] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objectives: To investigate the effects of obesity caused by high-fat diet (HFD) on postoperative cognitive dysfunction (POCD) and expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampus of older mice. Methods: Fifty-six 15-month-old male C57BL/6 mice were randomly divided into eight groups - ad libitum control (ALC), ad libitum surgery (ALS), ad libitum surgery with PBS (ALS + PBS), ad libitum surgery with resveratrol (ALS + Res), HFD control (HFC), HFD surgery (HFS), HFD surgery with PBS (HFS + PBS), HFD surgery with resveratrol (HFS + Res). Surgery group mice were exposed to isoflurane before tibial fracture internal fixation. Open field tests and fear conditioning were performed to test motor ability and memory. The levels of expression of Sirt1, PGC-1α, FNDC5, and BDNF were detected using western blot and immunofluorescence. Results: The results of the open field tests indicated there were no between-group differences in motor ability and anxiety. The results of the fear conditioning indicated that the memory of the HFC group and HFS group mice were significantly worse compared with the ALC group and ALS group mice, respectively. There were parallel decreases in expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampi of the HFC and HFS group mice. Resveratrol treatment attenuated the memory loss by increasing hippocampal Sirt1 expression. Expression of the PGC-1α/FNDC5/ BDNF pathway in the CA1 area of the hippocampus was upregulated after resveratrol treatment. Conclusion: An HFD exacerbates POCD in older mice. This change was related to HFD inhibition of expression of the Sirt1/PGC-1α/FNDC5/BDNF pathway in the hippocampus. Resveratrol pretreatment reversed the memory loss via upregulation of this pathway.
Collapse
Affiliation(s)
- Zhimeng Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Minmin Yao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lan Wei
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
227
|
Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B, Overmann J, Strowig T, Clavel T. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. MICROBIOME 2019; 7:28. [PMID: 30782206 PMCID: PMC6381624 DOI: 10.1186/s40168-019-0637-2] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/29/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation. METHODS We investigated family S24-7 by combining data from large-scale 16S rRNA gene analysis and from functional and taxonomic studies of metagenomic and cultured species. RESULTS A total of 685 species was inferred by full-length 16S rRNA gene sequence clustering. While many species could not be assigned ecological habitats (93,045 samples analyzed), the mouse was the most commonly identified host (average of 20% relative abundance and nine co-occurring species). Shotgun metagenomics allowed reconstruction of 59 molecular species, of which 34 were representative of the 16S rRNA gene-derived species clusters. In addition, cultivation efforts allowed isolating five strains representing three species, including two novel taxa. Genome analysis revealed that S24-7 spp. are functionally distinct from neighboring families and versatile with respect to complex carbohydrate degradation. CONCLUSIONS We provide novel data on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.
Collapse
Affiliation(s)
- Ilias Lagkouvardos
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Till R. Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Eric J. C. Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nathiana Smit
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Jun Wang
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - John F. Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Birte Abt
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Munich, Germany
| | - Jörg Overmann
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Munich, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Clavel
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
228
|
Oh HYP, Ellero-Simatos S, Manickam R, Tan NS, Guillou H, Wahli W. Depletion of Gram-Positive Bacteria Impacts Hepatic Biological Functions During the Light Phase. Int J Mol Sci 2019; 20:E812. [PMID: 30769793 PMCID: PMC6412208 DOI: 10.3390/ijms20040812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Living organisms display internal biological rhythms, which are an evolutionarily conserved adaptation to the environment that drives their rhythmic behavioral and physiological activities. The gut microbiota has been proposed, in association with diet, to regulate the intestinal peripheral clock. However, the effect of gut dysbiosis on liver remains elusive, despite that germfree mice show alterations in liver metabolic functions and the hepatic daily rhythm. We analyzed whether the disruption of gut microbial populations with various antibiotics would differentially impact liver functions in mice. Our results support the notion of an impact on the hepatic biological rhythm by gram-positive bacteria. In addition, we provide evidence for differential roles of gut microbiota spectra in xenobiotic metabolism that could protect against the harmful pharmacological effects of drugs. Our results underscore a possible link between liver cell proliferation and gram-positive bacteria.
Collapse
Affiliation(s)
- Hui Yun Penny Oh
- Interdisciplinary Graduate School, NTU Institute for Health Technologies, Nanyang Technological University Singapore, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | | | - Ravikumar Manickam
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Hervé Guillou
- INRA UMR1331, ToxAlim, 180 Chemin de Tournefeuille, 31300 Toulouse, France.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore.
- INRA UMR1331, ToxAlim, 180 Chemin de Tournefeuille, 31300 Toulouse, France.
- Center for Integrative Genomics, University of Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
229
|
Ohtsu A, Takeuchi Y, Katagiri S, Suda W, Maekawa S, Shiba T, Komazaki R, Udagawa S, Sasaki N, Hattori M, Izumi Y. Influence of Porphyromonas gingivalis in gut microbiota of streptozotocin-induced diabetic mice. Oral Dis 2019; 25:868-880. [PMID: 30667148 DOI: 10.1111/odi.13044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Increasing evidence suggests that periodontitis can exacerbate diabetes, and gut bacterial dysbiosis appears to be linked with the diabetic condition. The present study examined the effects of oral administration of the periodontopathic bacterium, Porphyromonas gingivalis, on the gut microbiota and systemic conditions in streptozotocin-induced diabetic mice. MATERIALS AND METHODS Diabetes was induced by streptozotocin injection in C57BL/6J male mice (STZ). STZ and wild-type (WT) mice were orally administered P. gingivalis (STZPg, WTPg) or saline (STZco, WTco). Feces were collected, and the gut microbiome was examined by 16S rRNA gene sequencing. The expression of genes related to inflammation, epithelial tight junctions, and glucose/fatty acid metabolism in the ileum or liver were examined by quantitative PCR. RESULTS The relative abundance of several genera, including Brevibacterium, Corynebacterium, and Facklamia, was significantly increased in STZco mice compared to WTco mice. The relative abundances of Staphylococcus and Turicibacter in the gut microbiome were altered by oral administration of P. gingivalis in STZ mice. STZPg mice showed higher concentrations of fasting blood glucose and inflammatory genes levels in the ileum, compared to STZco mice. CONCLUSIONS Oral administration of P. gingivalis altered the gut microbiota and aggravated glycemic control in streptozotocin-induced diabetic mice.
Collapse
Affiliation(s)
- Anri Ohtsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Komazaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Udagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoki Sasaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Faculty of Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
230
|
Ke X, Walker A, Haange SB, Lagkouvardos I, Liu Y, Schmitt-Kopplin P, von Bergen M, Jehmlich N, He X, Clavel T, Cheung PCK. Synbiotic-driven improvement of metabolic disturbances is associated with changes in the gut microbiome in diet-induced obese mice. Mol Metab 2019; 22:96-109. [PMID: 30792016 PMCID: PMC6437638 DOI: 10.1016/j.molmet.2019.01.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The gut microbiota is an important influencing factor of metabolic health. Although dietary interventions with probiotics, prebiotics, and synbiotics can be effective means to regulate obesity and associated comorbidities, the underlying shifts in gut microbial communities, especially at the functional level, have not been characterized in great details. In this study, we sought to investigate the effects of synbiotics on the regulation of gut microbiota and the alleviation of high-fat diet (HFD)-induced metabolic disorders in mice. METHODS Specific pathogen-free (SPF) male C57BL/6J mice were fed diets with either 10% (normal diet, ND) or 60% (high-fat diet, HFD) of total calories from fat (lard). Dietary interventions in the HFD-fed mice included (i) probiotic (Bifidobacterium animalis subsp. lactis and Lactobacillus paracasei subsp. paracasei DSM 46331), (ii) prebiotic (oat β-glucan), and (iii) synbiotic (a mixture of i and ii) treatments for 12 weeks. Besides detailed characterization of host metabolic parameters, a multi-omics approach was used to systematically profile the microbial signatures at both the phylogenetic and functional levels using 16S rRNA gene sequencing, metaproteomics and targeted metabolomics analysis. RESULTS The synbiotic intervention significantly reduced body weight gain and alleviated features of metabolic complications. At the phylogenetic level, the synbiotic treatment significantly reversed HFD-induced changes in microbial populations, both in terms of richness and the relative abundance of specific taxa. Potentially important species such as Faecalibaculum rodentium and Alistipes putredinis that might mediate the beneficial effects of the synbiotic were identified. At the functional level, short-chain fatty acid and bile acid profiles revealed that all dietary interventions significantly restored cecal levels of acetate, propionate, and butyrate, while the synbiotic treatment reduced the bile acid pools most efficiently. Metaproteomics revealed that the effects of the synbiotic intervention might be mediated through metabolic pathways involved in carbohydrate, amino acid, and energy metabolisms. CONCLUSIONS Our results suggested that dietary intervention using the novel synbiotic can alleviate HFD-induced weight gain and restore gut microbial ecosystem homeostasis phylogenetically and functionally.
Collapse
Affiliation(s)
- Xinxin Ke
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, HelmholtzZentrum München, Neuherberg, Germany
| | - Sven-Bastiaan Haange
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Ilias Lagkouvardos
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Yuwen Liu
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60615, USA; Department of Pig Genomic Design and Breeding, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, HelmholtzZentrum München, Neuherberg, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Nico Jehmlich
- Helmholtz-Centre for Environmental Research-UFZ, Department of Molecular Systems Biology, Leipzig, Germany
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60615, USA
| | - Thomas Clavel
- ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany; University Hospital of RWTH Aachen, Functional Microbiome Research Group, Institute of Medical Microbiology, Aachen, Germany
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
231
|
Miller AW, Orr T, Dearing D, Monga M. Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME JOURNAL 2019; 13:1379-1390. [PMID: 30700790 DOI: 10.1038/s41396-019-0357-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 02/08/2023]
Abstract
The incidence of urinary stone disease (USD) has increased four-fold in 50 years. Oxalate, which is degraded exclusively by gut bacteria, is an important constituent in 80% of urinary stones. We quantified the effects of antibiotics and a high fat/high sugar (HFHS) diet on the microbial metabolism of oxalate in the gut. High and low oxalate-degrading mouse models were developed by administering fecal transplants from either the wild mammalian rodent Neotoma albigula or Swiss-Webster mice to Swiss-Webster mice, which produces a microbiota with or without the bacteria necessary for persistent oxalate metabolism, respectively. Antibiotics led to an acute loss of both transplant bacteria and associated oxalate metabolism. Transplant bacteria exhibited some recovery over time but oxalate metabolism did not. In contrast, a HFHS diet led to an acute loss of function coupled with a gradual loss of transplant bacteria, indicative of a shift in overall microbial metabolism. Thus, the effects of oral antibiotics on the microbiome form and function were greater than the effects of diet. Results indicate that both antibiotics and diet strongly influence microbial oxalate metabolism.
Collapse
Affiliation(s)
- Aaron W Miller
- Department of Urology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA. .,Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA.
| | - Teri Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| | - Denise Dearing
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH, USA
| |
Collapse
|
232
|
Biolato M, Manca F, Marrone G, Cefalo C, Racco S, Miggiano GA, Valenza V, Gasbarrini A, Miele L, Grieco A. Intestinal permeability after Mediterranean diet and low-fat diet in non-alcoholic fatty liver disease. World J Gastroenterol 2019; 25:509-520. [PMID: 30700946 PMCID: PMC6350174 DOI: 10.3748/wjg.v25.i4.509] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In non-alcoholic fatty liver disease (NAFLD), a high-fat or high-fructose diet increases intestinal permeability and promotes derangement of the gut-liver axis. We hypothesize that, diet could be able to modulate intestinal permeability in patients with NAFLD.
AIM To detect diet-induced modification of intestinal permeability in patients with NAFLD undergoing a Mediterranean diet or a low-fat diet.
METHODS The current study was a dietary intervention for non-diabetic, patients with biopsy-verified NAFLD and increased transaminases. A crossover design was employed: participants underwent 16 weeks of Mediterranean diet, 16 wk of free wash-out, and 16 weeks of low-fat diet. Both diets were hypocaloric and no consumption of supplements was allowed. All patients were followed bimonthly by a dietitian. Evaluations of clinical and metabolic parameters were completed at baseline and at the end of each dietary period. Intestinal permeability was assessed by chromium-51 ethylene diamine tetraacetate excretion testing (51Cr-EDTA).
RESULTS Twenty Caucasian patients, 90% male, median age 43 years, body mass index (BMI) 30.9, with biopsy-verified NAFLD were enrolled. At the end of 16 weeks of a Mediterranean diet, a significant reduction in mean body weight (-5.3 ± 4.1 kg, P = 0.003), mean waist circumference (-7.9 ± 4.9 cm, P = 0.001), and mean transaminase levels [alanine aminotransferase (ALT) -28.3 ± 11.9 IU/L, P = 0.0001; aspartate aminotransferase (AST) -6.4 ± 56.3 IU/L, P = 0.01] were observed. These benefits were maintained after 16 wk of wash-out and also after 16 wk of low-fat diet, without further improvements. Fourteen of the 20 patients had intestinal permeability alteration at baseline (mean percentage retention of 51Cr-EDTA = 5.4%), but no significant changes in intestinal permeability were observed at the end of the 16 wk of the Mediterranean diet or 16 wk of the low-fat diet.
CONCLUSION Mediterranean diet is an effective strategy for treating overweight, visceral obesity and serum transaminase in patients with NAFLD. If the Mediterranean diet can improve intestinal permeability in patients with NAFLD, it deserves further investigation.
Collapse
Affiliation(s)
- Marco Biolato
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Fiorella Manca
- Institute of Special Medical Pathology and Medical Semeiotics, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Giuseppe Marrone
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Consuelo Cefalo
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Simona Racco
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Giacinto A Miggiano
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
- Institute of Special Medical Pathology and Medical Semeiotics, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Venanzio Valenza
- Department of Image Diagnostics, Oncological Radiotherapy and Hematology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
- Nuclear Medicine Institute, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Gasbarrini
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
- Institute of Special Medical Pathology and Medical Semeiotics, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Luca Miele
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
- Institute of Special Medical Pathology and Medical Semeiotics, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Antonio Grieco
- Department of Gastroenterological, Endocrine-Metabolic and Nefro-Urological Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
- Institute of Internal Medicine and Geriatrics, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
233
|
Role of Dietary Lipids in Modulating Inflammation through the Gut Microbiota. Nutrients 2019; 11:nu11010117. [PMID: 30626117 PMCID: PMC6357048 DOI: 10.3390/nu11010117] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/19/2018] [Accepted: 12/30/2018] [Indexed: 12/12/2022] Open
Abstract
Inflammation and its resolution is a tenuous balance that is under constant contest. Though several regulatory mechanisms are employed to maintain homeostasis, disruptions in the regulation of inflammation can lead to detrimental effects for the host. Of note, the gut and microbial dysbiosis are implicated in the pathology of systemic chronic low-grade inflammation which has been linked to several metabolic diseases. What remains to be described is the extent to which dietary fat and concomitant changes in the gut microbiota contribute to, or arise from, the onset of metabolic disorders. The present review will highlight the role of microorganisms in host energy regulation and several mechanisms that contribute to inflammatory pathways. This review will also discuss the immunomodulatory effects of the endocannabinoid system and its link with the gut microbiota. Finally, a brief discussion arguing for improved taxonomic resolution (at the species and strain level) is needed to deepen our current knowledge of the microbiota and host inflammatory state.
Collapse
|
234
|
Wang X, Chen D, Li Y, Zhao S, Chen C, Ning D. Alleviating effects of walnut green husk extract on disorders of lipid levels and gut bacteria flora in high fat diet-induced obesity rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
235
|
The Microbiota and Energy Balance. Endocrinology 2019. [DOI: 10.1007/978-3-319-46933-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
236
|
Abstract
Since the renaissance of microbiome research in the past decade, much insight has accumulated in comprehending forces shaping the architecture and functionality of resident microorganisms in the human gut. Of the multiple host-endogenous and host-exogenous factors involved, diet emerges as a pivotal determinant of gut microbiota community structure and function. By introducing dietary signals into the nexus between the host and its microbiota, nutrition sustains homeostasis or contributes to disease susceptibility. Herein, we summarize major concepts related to the effect of dietary constituents on the gut microbiota, highlighting chief principles in the diet-microbiota crosstalk. We then discuss the health benefits and detrimental consequences that the interactions between dietary and microbial factors elicit in the host. Finally, we present the promises and challenges that arise when seeking to incorporate microbiome data in dietary planning and portray the anticipated revolution that the field of nutrition is facing upon adopting these novel concepts.
Collapse
Affiliation(s)
- Niv Zmora
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Gastroenterology Unit, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jotham Suez
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
237
|
Li T, Gao J, Du M, Mao X. Bovine α-lactalbumin hydrolysates ameliorate obesity-associated endotoxemia and inflammation in high-fat diet-fed mice through modulation of gut microbiota. Food Funct 2019; 10:3368-3378. [DOI: 10.1039/c8fo01967c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gut microbiota has been identified as an important factor in the link between nutrient excess and obesity.
Collapse
Affiliation(s)
- Tiange Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| | - Jing Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| | - Min Du
- Department of Animal Sciences
- Washington State University
- Pullman
- USA
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing
- P. R. China
| |
Collapse
|
238
|
Kleinjans L, Veening-Griffioen DH, Wehkamp T, van Bergenhenegouwen J, Knol J, Garssen J, Knippels LMJ, Belzer C, Jeurink PV. Mice co-administrated with partially hydrolysed whey proteins and prebiotic fibre mixtures show allergen-specific tolerance and a modulated gut microbiota. Benef Microbes 2018; 10:165-178. [PMID: 30525954 DOI: 10.3920/bm2018.0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-breastfed infants at-risk of allergy are recommended to use a hydrolysed formula before the age of 6 months. The addition of prebiotics to this formula may reduce the allergy development in these infants, but clinical evidence is still inconclusive. This study evaluates (1) whether the exposure duration to different prebiotics alongside a partially hydrolysed whey protein (pHP) influences its' effectiveness to prevent allergy development and (2) whether the gut microbiota plays a role in this process. Mice orally sensitised with whey and/or cholera toxin were orally treated for six days before sensitization with phosphate buffered saline, whey or pHP to potentially induce tolerance. Two groups received an oligosaccharide diet only from day -7 until -2 (GFshort and GFAshort) whereas two other groups received their diets from day -15 until 37 (GFlong and GFAlong). On day 35, mice underwent an intradermal whey challenge, and the acute allergic skin response, shock score, and body temperatures were measured. At day 37, mice received whey orally and serum mouse mast cell protease-1, SLPI and whey-specific antibodies were assessed. Faecal samples were taken at day -15, -8 and 34. Feeding mice pHP alone during tolerance induction did not reduce ear swelling. The tolerance inducing mechanisms seem to vary according to the oligosaccharide-composition. GFshort, GFlong, and GFAlong reduced the allergic skin response, whereas GFAshort was not potent enough. However, in the treatment groups, the dominant Lactobacillus species decreased, being replaced by Bacteroidales family S24-7 members. In addition, the relative abundance of Prevotella was significantly higher in the GFlong, GFAshort and GFAlong groups. Co-administration of oligosaccharides and pHP can induce immunological tolerance in mice, although tolerance induction was strongest in the animals that were fed oligosaccharides during the entire protocol. Some microbial changes coincided with tolerance induction, however, a specific mechanism could not be determined based on these data.
Collapse
Affiliation(s)
- L Kleinjans
- 3 Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - D H Veening-Griffioen
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - T Wehkamp
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - J van Bergenhenegouwen
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - J Knol
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,3 Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - J Garssen
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - L M J Knippels
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - C Belzer
- 3 Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - P V Jeurink
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
239
|
Shi C, Li H, Qu X, Huang L, Kong C, Qin H, Sun Z, Yan X. High fat diet exacerbates intestinal barrier dysfunction and changes gut microbiota in intestinal-specific ACF7 knockout mice. Biomed Pharmacother 2018; 110:537-545. [PMID: 30530289 DOI: 10.1016/j.biopha.2018.11.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 12/25/2022] Open
Abstract
Microtubule-actin cross-linking factor-1 (ACF7, or MACF1) regulates cytoskeletal focal adhesion dynamics and migration in various tissues. High fat diet (HFD) induces gut microbiota dysbiosis and metabolic disorders, and increases intestinal permeability and inflammatory response. Here we investigated the synergistic effects of intestinal ACF7 conditional knockout (ACF7 cKO) and HFD on metabolism phenotypes, gut microbiota and intestinal barrier function in mice. ACF7 cKO and control (ACF7fl/fl) mice (8-week-old) were fed with either chow diet or HFD, for 16 weeks. The increase of body weight and fat pad weight were impaired in HFD-fed ACF7 cKO mice, which can be attributed to decreased food intake and absorption. The metabolic status of HFD-fed ACF7 cKO mice was dramatically changed when compared to the other groups. In addition, HFD-fed ACF7 cKO mice had increased epithelial cell apoptosis, intestinal permeability and inflammatory response when compared with the other groups. The ACF7 cKO-induced changes in alimentation, intestinal barrier function, and gut microbiota were independent of dietary treatment. Taken together, our studies for the first time proved HFD and ACF7 cKO have synergistic damaging effects on intestinal homeostasis. ACF7 is a crucial protective molecule in HFD-induced intestinal diseases.
Collapse
Affiliation(s)
- Chenzhang Shi
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301, Yan-chang Road, Shanghai 200072, China
| | - Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301, Yan-chang Road, Shanghai 200072, China
| | - Xiao Qu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301, Yan-chang Road, Shanghai 200072, China
| | - Linsheng Huang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301, Yan-chang Road, Shanghai 200072, China
| | - Cheng Kong
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301, Yan-chang Road, Shanghai 200072, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301, Yan-chang Road, Shanghai 200072, China.
| | - Zhenliang Sun
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301, Yan-chang Road, Shanghai 200072, China.
| | - Xuebing Yan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, No. 301, Yan-chang Road, Shanghai 200072, China; Department of Oncology, Affiliated Hospital of Yangzhou University, No. 368, Han-jiang Road, Yangzhou 225000, China.
| |
Collapse
|
240
|
Zhai X, Lin D, Zhao Y, Li W, Yang X. Effects of Dietary Fiber Supplementation on Fatty Acid Metabolism and Intestinal Microbiota Diversity in C57BL/6J Mice Fed with a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12706-12718. [PMID: 30411889 DOI: 10.1021/acs.jafc.8b05036] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work was to assess possible impacts of novel insoluble fiber 8% bacterial cellulose (BC), soluble fiber 8% konjac glucomannan (KGM), and their mixture (4% BC/4% KGM) on fatty acid metabolism and intestinal microbiota of C57BL/6J mice fed with a high-fat diet (HFD). HFD-fed mice receiving the dietary fibers (DFs) for 16 weeks exhibited an improvement in lipid-associated cytokines and a decrease in inflammation factors, which was associated with the improved hepatic and serum fatty acid composition. The DFs, notably the mixed BC/KGM, elevated the HFD-caused decrease in the contents of acetic acid (from 23.9 ± 0.85 to 32.2 ± 0.84 mM/g; p < 0.05), propionic acid (from 6.53 ± 0.28 to 12.8 ± 0.58 mM/g; p < 0.05), and butyric acid (from 7.73 ± 0.43 to 13.5 ± 0.47 mM/g; p < 0.05). Furthermore, the mixed BC/KGM significantly decreased the abundance of Firmicutes (from 90.4 to 67.6%) and Mucispirillum (from 4.77 to 1.58%) and dramatically increased the abundance of Bacteroidetes (from 7.83 to 25.0%) and Akkermansia (from 0.69 to 2.80%) in the gut of HFD-fed mice at the genus level. Moreover, correlation analysis revealed that the multiplicity of gut microbiota was useful in sustaining colonic integrity through producing short-chain fatty acids to some extent. This finding suggests that a mixture of insoluble BC and soluble KGM has positive effects on modulation of the intestinal microecosystem in mice.
Collapse
|
241
|
A Bronze-Tomato Enriched Diet Affects the Intestinal Microbiome under Homeostatic and Inflammatory Conditions. Nutrients 2018; 10:nu10121862. [PMID: 30513801 PMCID: PMC6315348 DOI: 10.3390/nu10121862] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are debilitating chronic inflammatory disorders that develop as a result of a defective immune response toward intestinal bacteria. Intestinal dysbiosis is associated with the onset of IBD and has been reported to persist even in patients in deep remission. We investigated the possibility of a dietary-induced switch to the gut microbiota composition using Winnie mice as a model of spontaneous ulcerative colitis and chow enriched with 1% Bronze tomato. We used the near isogenic tomato line strategy to investigate the effects of a diet enriched in polyphenols administered to mild but established chronic intestinal inflammation. The Bronze-enriched chow administered for two weeks was not able to produce any macroscopic effect on the IBD symptoms, although, at molecular level there was a significant induction of anti-inflammatory genes and intracellular staining of T cells revealed a mild decrease in IL17A and IFNγ production. Analysis of the microbial composition revealed that two weeks of Bronze enriched diet was sufficient to perturb the microbial composition of Winnie and control mice, suggesting that polyphenol-enriched diets may create unfavorable conditions for distinct bacterial species. In conclusion, dietary regimes enriched in polyphenols may efficiently support IBD remission affecting the intestinal dysbiosis.
Collapse
|
242
|
van den Munckhof ICL, Kurilshikov A, Ter Horst R, Riksen NP, Joosten LAB, Zhernakova A, Fu J, Keating ST, Netea MG, de Graaf J, Rutten JHW. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes Rev 2018; 19:1719-1734. [PMID: 30144260 DOI: 10.1111/obr.12750] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
A hallmark of obesity is chronic low-grade inflammation, which plays a major role in the process of atherosclerotic cardiovascular disease (ACVD). Gut microbiota is one of the factors influencing systemic immune responses, and profound changes have been found in its composition and metabolic function in individuals with obesity. This systematic review assesses the association between the gut microbiota and markers of low-grade inflammation in humans. We identified 14 studies which were mostly observational and relatively small (n = 10 to 471). The way in which the microbiome is analysed differed extensively between these studies. Lower gut microbial diversity was associated with higher white blood cell counts and high sensitivity C-reactive protein (hsCRP) levels. The abundance of Bifidobacterium, Faecalibacterium, Ruminococcus and Prevotella were inversely related to different markers of low-grade inflammation such as hsCRP and interleukin (IL)-6. In addition, this review speculates on possible mechanisms through which the gut microbiota can affect low-grade inflammation and thereby ACVD. We discuss the associations between the microbiome and the inflammasome, the innate immune system, bile acids, gut permeability, the endocannabinoid system and TMAO. These data reinforce the importance of human research into the gut microbiota as potential diagnostic and therapeutic strategy to prevent ACVD.
Collapse
Affiliation(s)
- I C L van den Munckhof
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - A Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - J Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - S T Keating
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - J de Graaf
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
243
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:785. [PMID: 29785003 PMCID: PMC7133393 DOI: 10.1038/s41575-018-0031-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the original version of Table 1 published online, upward arrows to indicate increased translocation of PAMPs were missing from the row entitled 'Translocation' for both the column on alcoholic liver disease and nonalcoholic fatty liver disease. This error has now been updated in the PDF and HTML version of the article.
Collapse
|
244
|
Chen Y, Guo J, Shi D, Fang D, Chen C, Li L. Ascitic Bacterial Composition Is Associated With Clinical Outcomes in Cirrhotic Patients With Culture-Negative and Non-neutrocytic Ascites. Front Cell Infect Microbiol 2018; 8:420. [PMID: 30555804 PMCID: PMC6284044 DOI: 10.3389/fcimb.2018.00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Ascites bacterial burden is associated with poor clinical outcomes in patients with end-stage liver disease. However, the impact of ascitic microbial composition on clinical course was still not clear. In this study, the ascitic microbiota composition of 100 cirrhotic patients with culture-negative and non-neutrocytic ascites were researched with 16S rRNA pyrosequencing and enterotype-like cluster analysis. Results: By characterizing the ascitic microbial composition, two distinct microbial clusters were observed, Cluster 1 (86 patients) and Cluster 2 (14 patients). Cluster 1 showed lower microbial richness than Cluster 2. At the phylum level, Cluster 1 had greater abundance of Bacteroidetes and Firmicutes, but less abundance of Proteobacteria and Actinobacteria than Cluster 2. At the family level, family Bacteroidales S24-7 group, Prevotellaceae, Lachnospiraceae, Lactobacillaceae, Rikenellaceae, and Vibrionaceae were found over-represented in Cluster 1. And family Acetobacteraceae, Erysipelotrichaceae, Rickettsiaceae, and Streptococcaceae were found enriched in Cluster 2. The levels of plasma cytokine IL-17A, IL-7, and PDGF-BB were found significantly higher in Cluster 1 than in Cluster 2. There were four OTUs closely correlated with plasma cytokines, which were OTU 140 and OTU 271 (both from Bacteroidales S24-7 group), OTU 68 (Veillonellaceae), and OTU 53 (Helicobacteraceae). Patients from Cluster 1 showed significant higher short-term mortality than patients from Cluster 2. Conclusion: Our study demonstrated that the microbial composition of culture-negative and non-neutrocytic ascites in cirrhotic patients is associated with short-term clinical outcomes. The results here offer a rational for the identification of patients with high risk, and provide references for selective use of prophylactic methods.
Collapse
Affiliation(s)
- Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Daiqiong Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chunlei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
245
|
Reichelt AC, Loughman A, Bernard A, Raipuria M, Abbott KN, Dachtler J, Van TTH, Moore RJ. An intermittent hypercaloric diet alters gut microbiota, prefrontal cortical gene expression and social behaviours in rats. Nutr Neurosci 2018; 23:613-627. [DOI: 10.1080/1028415x.2018.1537169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Amy C. Reichelt
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, Australia
- BrainsCAN, Western University, 1151 Richmond St, London, Ontario, N6A 3K7, Canada
| | - Amy Loughman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
- Food and Mood Centre, Deakin University, Geelong, 3220, Victoria, Australia
| | - Ashton Bernard
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Mukesh Raipuria
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, 3083, Australia
- Children’s Cancer Institute, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Kirsten N Abbott
- School of Psychology, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - James Dachtler
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK
| | - Thi Thu Hao Van
- School of Applied Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Robert J. Moore
- School of Applied Science, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
246
|
Jayachandran M, Chen J, Chung SSM, Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. J Nutr Biochem 2018; 61:101-110. [DOI: 10.1016/j.jnutbio.2018.06.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/04/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
247
|
Chianese R, Coccurello R, Viggiano A, Scafuro M, Fiore M, Coppola G, Operto FF, Fasano S, Laye S, Pierantoni R, Meccariello R. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16:1059-1085. [PMID: 29046155 PMCID: PMC6120115 DOI: 10.2174/1570159x15666171017102547] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. METHODS This review aims at summarizing the impact of dietary fats on brain functions. RESULTS Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. CONCLUSION Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases.
Collapse
Affiliation(s)
- Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
| | - Marika Scafuro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.,UO Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | | | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sophie Laye
- INRA, Bordeaux University, Nutrition and Integrative Neurobiology, UMR, Bordeaux, France
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
248
|
Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients 2018; 10:nu10101499. [PMID: 30322146 PMCID: PMC6213552 DOI: 10.3390/nu10101499] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023] Open
Abstract
A major challenge in affluent societies is the increase in disorders related to gut and metabolic health. Chronic over nutrition by unhealthy foods high in energy, fat, and sugar, and low in dietary fibre is a key environmental factor responsible for this development, which may cause local and systemic inflammation. A low intake of dietary fibre is a limiting factor for maintaining a viable and diverse microbiota and production of short-chain fatty acids in the gut. A suppressed production of butyrate is crucial, as this short-chain fatty acid (SCFA) can play a key role not only in colonic health and function but also at the systemic level. At both sites, the mode of action is through mediation of signalling pathways involving nuclear NF-κB and inhibition of histone deacetylase. The intake and composition of dietary fibre modulate production of butyrate in the large intestine. While butyrate production is easily adjustable it is more variable how it influences gut barrier function and inflammatory markers in the gut and periphery. The effect of butyrate seems generally to be more consistent and positive on inflammatory markers related to the gut than on inflammatory markers in the peripheral tissue. This discrepancy may be explained by differences in butyrate concentrations in the gut compared with the much lower concentration at more remote sites.
Collapse
|
249
|
Cross TWL, Kasahara K, Rey FE. Sexual dimorphism of cardiometabolic dysfunction: Gut microbiome in the play? Mol Metab 2018; 15:70-81. [PMID: 29887245 PMCID: PMC6066746 DOI: 10.1016/j.molmet.2018.05.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sex is one of the most powerful modifiers of disease development. Clear sexual dimorphism exists in cardiometabolic health susceptibility, likely due to differences in sex steroid hormones. Changes in the gut microbiome have been linked with the development of obesity, type 2 diabetes, and atherosclerosis; however, the impact of microbes in sex-biased cardiometabolic disorders remains unclear. The gut microbiome is critical for maintaining a normal estrous cycle, testosterone levels, and reproductive function. Gut microbes modulate the enterohepatic recirculation of estrogens and androgens, affecting local and systemic levels of sex steroid hormones. Gut bacteria can also generate androgens from glucocorticoids. SCOPE OF REVIEW This review summarizes current knowledge of the complex interplay between sexual dimorphism in cardiometabolic disease and the gut microbiome. MAJOR CONCLUSIONS Emerging evidence suggests the role of gut microbiome as a modifier of disease susceptibility due to sex; however, the impact on cardiometabolic disease in this complex interplay is lacking. Elucidating the role of gut microbiome on sex-biased susceptibility in cardiometabolic disease is of high relevance to public health given its high prevalence and significant financial burden.
Collapse
Affiliation(s)
- Tzu-Wen L Cross
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Federico E Rey
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI, 53705, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| |
Collapse
|
250
|
Effect of A Polyphenol-Rich Canarium album Extract on the Composition of the Gut Microbiota of Mice Fed a High-Fat Diet. Molecules 2018; 23:molecules23092188. [PMID: 30200213 PMCID: PMC6225199 DOI: 10.3390/molecules23092188] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/12/2023] Open
Abstract
This study investigated the influence of Canarium album extract (CAext) on intestinal microbiota composition of mice fed a high-fat diet (HFD). Kun Ming (KM) mice were fed either a normal chow diet or a HFD for six weeks. At the seventh week, HFD-fed mice were gavaged daily with saline, or a different dose of CAext for four weeks, respectively. Then, the composition of the gut microbiota was analyzed by high-throughput sequencing technology. Analysis of fecal microbial populations, grouped by phyla, showed significant increases of Firmicutes and Verrucomicrobia, but a decrease of Bacteroidetes in all CAext-fed mice. Particularly, CAext gavage in a low dose or a medium dose caused a significant increase in the proportion of Akkermansia. These findings suggested that CAext can alter the gut microbiota composition of HFD-fed mice, and had a potential prebiotic effects on Akkermansia.
Collapse
|