201
|
Senturk GE, Sezer Z, Sahin H, Isildar B, Abdulova A. Effects of Chronically Exogenous Oxytocin on Ovary and Uterus: A Comparison of Intraperitoneal and Intranasal Administration. Peptides 2023; 165:171006. [PMID: 37003476 DOI: 10.1016/j.peptides.2023.171006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Oxytocin (OT) has been studied as a therapeutic neuropeptide in various diseases, but its effect on the ovary and uterus is not fully known. This study investigates the effects of intranasal and intraperitoneal OT administration on ovaries and uterus in rats. Four experimental groups were created using 7-week-old Sprague Dawley-type female rats: Control (Ctrl), oxytocin-intraperitoneal (0.1µg/day) (OT-IP), oxytocin-intranasal (0.05µg/day) (OT-IN1), and oxytocin-intranasal (0.1µg/day) (OT-IN2). The blood, the ovarian, and the uterus were collected at the end of the 28th day of OT administration. Afterward, histological and biochemical analyses were performed. We observed that the Graaf follicles were higher in both OT-IN2 and OT-IP groups compared to the Ctrl group. Moreover, the corpus luteum was increased only in the OT-IN2 group. Ki-67, CD31, VEGF, and TGF-ß immunostaining showed no significant change in the ovary. In contrast, Ki-67, VEGF, and OTR expressions demonstrated significant alterations in the uterus. Furthermore, TGF-ß immunohistochemistry and the histopathologic score did not reveal the statistical change in the uterus. Serum hormone levels showed that the anti-Müllerian hormone increased in all OT groups vs. the Ctrl. OT-IP showed an increment of follicle-stimulating hormone and estradiol decrement. There was a decrease in serum E2 levels, although the Graafian follicle number increased in OT-IP groups compared to the Ctrl group. However, luteinizing hormone, gonadotropin-releasing hormone, progesterone, testosterone, OT levels, and oxidative stress index did not reveal any statistical difference. Accordingly, the intranasal route may have beneficial effects compared to the intraperitoneal route regarding exogenous OT administration-related studies. In conclusion, we reported that exogenous OT increases the follicle reserve and may cause histological changes in the reproductive system of female rats.
Collapse
Affiliation(s)
- Gozde Erkanli Senturk
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Zehra Sezer
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Hakan Sahin
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Basak Isildar
- Department of Histology and Embryology, Faculty of Medicine, Balikesir University, Balıkesir, Turkey.
| | - Aynur Abdulova
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
202
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
203
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
204
|
Gigliucci V, Busnelli M, Santini F, Paolini C, Bertoni A, Schaller F, Muscatelli F, Chini B. Oxytocin receptors in the Magel2 mouse model of autism: Specific region, age, sex and oxytocin treatment effects. Front Neurosci 2023; 17:1026939. [PMID: 36998737 PMCID: PMC10043208 DOI: 10.3389/fnins.2023.1026939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
The neurohormone oxytocin (OXT) has been implicated in the regulation of social behavior and is intensively investigated as a potential therapeutic treatment in neurodevelopmental disorders characterized by social deficits. In the Magel2-knockout (KO) mouse, a model of Schaaf-Yang Syndrome, an early postnatal administration of OXT rescued autistic-like behavior and cognition at adulthood, making this model relevant for understanding the actions of OXT in (re)programming postnatal brain development. The oxytocin receptor (OXTR), the main brain target of OXT, was dysregulated in the hippocampus of Magel2-KO adult males, and normalized upon OXT treatment at birth. Here we have analyzed male and female Magel2-KO brains at postnatal day 8 (P8) and at postnatal day 90 (P90), investigating age, genotype and OXT treatment effects on OXTR levels in several regions of the brain. We found that, at P8, male and female Magel2-KOs displayed a widespread, substantial, down-regulation of OXTR levels compared to wild type (WT) animals. Most intriguingly, the postnatal OXT treatment did not affect Magel2-KO OXTR levels at P8 and, consistently, did not rescue the ultrasonic vocalization deficits observed at this age. On the contrary, the postnatal OXT treatment reduced OXTR levels at P90 in male Magel2-KO in a region-specific way, restoring normal OXTR levels in regions where the Magel2-KO OXTR was upregulated (central amygdala, hippocampus and piriform cortex). Interestingly, Magel2-KO females, previously shown to lack the social deficits observed in Magel2-KO males, were characterized by a different trend in receptor expression compared to males; as a result, the dimorphic expression of OXTR observed in WT animals, with higher OXTR expression observed in females, was abolished in Magel2-KO mice. In conclusion, our data indicate that in Magel2-KO mice, OXTRs undergo region-specific modifications related to age, sex and postnatal OXT treatment. These results are instrumental to design precisely-timed OXT-based therapeutic strategies that, by acting at specific brain regions, could modify the outcome of social deficits in Schaaf-Yang Syndrome patients.
Collapse
Affiliation(s)
- Valentina Gigliucci
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Marta Busnelli
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Santini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Camilla Paolini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | | | | | - Bice Chini
- Institute of Neuroscience, National Research Council, Vedano al Lambro, Italy
- NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
- *Correspondence: Bice Chini,
| |
Collapse
|
205
|
Salinas-Abarca AB, Martínez-Lorenzana G, Condés-Lara M, González-Hernández A. The role of the endocannabinoid 2-arachidonoylglycerol in the in vivo spinal oxytocin-induced antinociception in male rats. Exp Neurol 2023; 363:114383. [PMID: 36921751 DOI: 10.1016/j.expneurol.2023.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/17/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
Oxytocin receptor (OTR) activation at the spinal level produces antinociception. Some data suggest that central OTR activation enhances social interaction via an increase of endocannabinoids (eCB), but we do not know if this could occur at the spinal level, modulating pain transmission. Considering that oxytocin via OTR stimulates diacylglycerol formation, a key intermediate in synthesizing 2-arachidonylglycerol (2-AG), an eCB molecule, we sought to test the role of the eCB system on the spinal oxytocin-induced antinociception. Behavioral and electrophysiological experiments were conducted in naïve and formalin-treated (to induce long-term mechanical hypersensitivity) male Wistar rats. Intrathecal RHC 80267 injections, an inhibitor of the enzyme diacylglycerol lipase (thus, decreasing 2-AG formation), produces transient mechanical hypersensitivity, an effect unaltered by oxytocin but reversed by gabapentin. Similarly, in in vivo extracellular recordings of naïve spinal wide dynamic range cells, juxtacellular picoinjection of RHC 80267 increases the firing of nociceptive Aδ-, C-fibers, and post-discharge, an effect unaltered by oxytocin. Interestingly, in sensitized rats, oxytocin picoinjection reverses the RHC 80627-induced hyperactivity of Aδ-fibers (but not C- or post-discharge activity). In contrast, a sub-effective dose of JZL184 (a monoacylglycerol lipase inhibitor, thus favoring 2-AG levels), which does not have per se an antinociceptive effect in the formalin-induced hypernociception, the oxytocin-induced antinociception is boosted. Similarly, electrophysiological experiments suggest that juxtacellular JZL184 diminishes the neuronal firing of nociceptive fibers, and co-injection with oxytocin prolongs and enhances the antinociceptive effect. These data may imply that 2-AG formation may play a role in the spinal antinociception induced by oxytocin.
Collapse
Affiliation(s)
- Ana B Salinas-Abarca
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico; Department of Neural and Pain Sciences, University of Maryland Baltimore, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| | - Guadalupe Martínez-Lorenzana
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, QRO 76230, Mexico.
| |
Collapse
|
206
|
Danhof HA, Lee J, Thapa A, Britton RA, Di Rienzi SC. Microbial stimulation of oxytocin release from the intestinal epithelium via secretin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531917. [PMID: 36945649 PMCID: PMC10028957 DOI: 10.1101/2023.03.09.531917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Intestinal microbes impact the health of the intestine and organs distal to the gut. Limosilactobacillus reuteri is a human intestinal microbe that promotes normal gut transit 1 , the anti-inflammatory immune system 2-4 , wound healing 5-7 , normal social behavior in mice 8-10 , and prevents bone reabsorption 11-17 . Each of these functions is impacted by oxytocin 18-22 , and oxytocin signaling is required for L. reuteri- mediated wound healing 5 and social behavior 9 ; however, the initiating events in the gut that lead to oxytocin stimulation and related beneficial functions remain unknown. Here we found evolutionarily conserved oxytocin production in the intestinal epithelium through analysis of single-cell RNA-Seq datasets and imaging of human and mouse intestinal tissues. Moreover, human intestinal organoids produce oxytocin, demonstrating that the intestinal epithelium is sufficient to produce oxytocin. We subsequently found that L. reuteri facilitates oxytocin secretion directly from human intestinal tissue and human intestinal organoids. Finally, we demonstrate that stimulation of oxytocin secretion by L. reuteri is dependent on the gut hormone secretin, which is produced in enteroendocrine cells 23 , while oxytocin itself is produced in enterocytes. Altogether, this work demonstrates that oxytocin is produced and secreted from enterocytes in the intestinal epithelium in response to secretin stimulated by L. reuteri . This work thereby identifies oxytocin as an intestinal hormone and provides mechanistic insight into avenues by which gut microbes promote host health.
Collapse
Affiliation(s)
- Heather A. Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jihwan Lee
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Aanchal Thapa
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Rice University, Houston, Texas, USA
| | - Robert A. Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Sara C. Di Rienzi
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
207
|
Oxytocin has sex-specific effects on trust and underlying neurophysiological processes. Psychoneuroendocrinology 2023; 151:106076. [PMID: 36931056 DOI: 10.1016/j.psyneuen.2023.106076] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 03/04/2023] [Indexed: 03/19/2023]
Abstract
The neuropeptide oxytocin (OT) regulates mammalian social approach behavior across sexes. Yet most OT studies in humans exclusively investigated men. Here, we studied sex differences in OT's effects on human trust behavior in 144 heterosexual participants (73 women, 71 men). Participants received 24 international units of intranasal OT or placebo treatment and played a trust game in the role of the investor while undergoing electroencephalography. Trustees were represented by photos of the other sex gradually varying in their pre-rated intensities of facial features signaling attractiveness and threat. On a behavioral level, we observed that OT increased trust in men and reduced it in women when trustees showed weak signals of attractiveness and threat. Correspondingly, on the neurophysiological level, we noted that OT intensified the P100 in male participants, but dampened it in female ones. Our findings demonstrate OT's sex- and context-specific effects on social approach behavior and an underlying early visual attention-related brain process. This evidence demonstrates the need to consider psychobiological mechanisms of sexual dimorphism in human OT research.
Collapse
|
208
|
Li K, Xiong Z, Zhou M, Ou Y, Li W, Wu G, Che M, Gong H, Wang X, Peng J, Zheng X, Li J, Feng Z, Peng J. A procedure in mice to obtain intact pituitary-infundibulum-hypothalamus preparations: a method to evaluate the reconstruction of hypothalamohypophyseal system. Pituitary 2023:10.1007/s11102-023-01299-3. [PMID: 36862266 DOI: 10.1007/s11102-023-01299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE The histopathological study of brain tissue is a common method in neuroscience. However, efficient procedures to preserve the intact hypothalamic-pituitary brain specimens are not available in mice for histopathological study. METHOD We describe a detailed procedure for obtaining mouse brain with pituitary-hypothalamus continuity. Unlike the traditional methods, we collect the brain via a ventral approach. We cut the intraoccipital synchondrosis, transection the endocranium of pituitary, broke the spheno-occipital synchondrosis, expose the posterior edge of pituitary, separate the trigeminal nerve, then the intact pituitary gland was preserved. RESULT We report an more effective and practical method to obtain continuous hypothalamus -pituitary preparations based on the preserve of leptomeninges. COMPARED WITH THE EXISTING METHODS Our procedure effectively protects the integrity of the fragile infundibulum preventing the pituitary from separating from the hypothalamus. This procedure is more convenient and efficient. CONCLUSION We present a convenient and practical procedure to obtain intact hypothalamic-pituitary brain specimens for subsequent histopathological evaluation in mice.
Collapse
Affiliation(s)
- Kai Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Xiong
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingfeng Zhou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yichao Ou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weizhao Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guangsen Wu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mengjie Che
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haodong Gong
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xingqin Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junjie Peng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxuan Zheng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiahui Li
- The 74th Military Medical Hospital of Chinese People's Liberation Army, Guangzhou, China
| | - Zhanpeng Feng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Junxiang Peng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
209
|
Arakawa H, Higuchi Y, Ozawa A. Oxytocin neurons in the paraventricular nucleus of the hypothalamus circuit-dependently regulates social behavior, which malfunctions in BTBR mouse model of autism. RESEARCH SQUARE 2023:rs.3.rs-2621359. [PMID: 36909537 PMCID: PMC10002846 DOI: 10.21203/rs.3.rs-2621359/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Oxytocin (OXT) a neuropeptide synthesized in the hypothalamic nuclei has a variety of function including socio-emotional processes in mammals. While the neural circuits and signaling pathways in central OXT converge in the paraventricular nucleus of the hypothalamus (PVN), we illuminate specific function of discrete PVN OXT circuits, which connect to the medial amygdala (MeA) and the bed nucleus of the stria terminalis (BnST) in mouse models. The OXTPVN→BnST projections are innervated from entire portions of the PVN, while those OXTPVN→MeA projections are asymmetrically innervated from the posterior portion of the PVN. Compared with OXT neurons in B6 wild type mice, BTBR mice that are recognized as a behavior-based autism model exhibited defect in the OXTPVN→BnST projection. We demonstrate that chemogenetic activation of OXTPVN→MeA circuit enhances anxiety-like behavior and facilitates social approach behavior, while activation of OXTPVN→BnST circuit suppresses anxiety-like behavior along with inhibiting social approach. This chemogenetic manipulation on the OXTPVN→BnST circuit proves ineffective in BTBR mice. Accordingly, chemogenetic activation of OXTPVN neurons that stimulate both OXT circuits induces OXT receptor expressions in both MeA and BnST as with those by social encounter in B6 mice. The induction of OXT receptor genes in the BnST was not observed in BTBR mice. These data support the hypothesis that OXT circuits serve as a regulator for OXT signaling in PVN to control socio-emotional approach/avoidance behavior, and a defect of OXTPVN→BnST circuit contributes to autism-like social phenotypes in BTBR mice.
Collapse
|
210
|
Higuchi Y, Tachigori SI, Arakawa H. Faded neural projection from the posterior bed nucleus of the stria terminalis to the lateral habenula contributes to social signaling deficit in male BTBR mice as a mouse model of autism. Psychoneuroendocrinology 2023; 149:106004. [PMID: 36543023 DOI: 10.1016/j.psyneuen.2022.106004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
BTBR T+ Itpr3tf/J (BTBR) mice display several behavioral characteristics, including social deficits resembling the core symptoms of human autism. Atypical social behaviors include sequential processes of assembled cognitive-behavior components, such as recognition, investigatory assessment, and signaling response. This study aimed to elucidate the neural circuits responsible for the regulation of the social signaling response, as shown by scent marking behavior in male mice. We first assessed the recognition and investigatory patterns of male BTBR mice compared to those of C57BL/6 J (B6) mice. Next, we examined their scent-marking behavior as innate social signaling responses adjusted to a confronted feature of social stimuli and situations, along with the expression of c-Fos as a marker of neuronal activity in selected brain areas involved in the regulation of social behavior. The function of the targeted brain area was confirmed by chemogenetic manipulation. We also examined the social peptides, oxytocin and vasopressin neurons of the major brain regions that are associated with the regulation of social behavior. Our data indicate that male BTBR mice are less responsive to the presentation of social stimuli and the expression of social signaling responses, which is paralleled by blunted c-Fos responsivity and vasopressin neurons morphological changes in selected brain areas, including the posterior bed nucleus of the stria terminalis (pBnST) and lateral habenula (LHb) in BTBR mice. Further investigation of LHb function revealed that chemogenetic inhibition and activation of LHb activity can induce a change in scent marking responses in both B6 and BTBR mice. Our elucidation of the downstream LHb circuits controlling scent marking behavior indicates intact function in BTBR mice. The altered morphological characteristics of oxytocin neurons in the paraventricular nucleus of the hypothalamus and vasopressin-positive neurons and axonal projections in the pBnST and LHb appear to underlie the dysfunction of scent marking responses in BTBR mice. (300/300 words).
Collapse
Affiliation(s)
- Yuki Higuchi
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Shun-Ichi Tachigori
- Department of Systems Physiology, University of the Ryukyus, Faculty of Medicine, Okinawa, Japan
| | - Hiroyuki Arakawa
- Department of Systems Physiology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan.
| |
Collapse
|
211
|
Fu P, Luo S, Liu Z, Furuhara K, Tsuji T, Higashida H, Yokoyama S, Zhong J, Tsuji C. Oral Supplementation with Maca Improves Social Recognition Deficits in the Valproic Acid Animal Model of Autism Spectrum Disorder. Brain Sci 2023; 13:brainsci13020316. [PMID: 36831858 PMCID: PMC9954495 DOI: 10.3390/brainsci13020316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Autism spectrum disorder (ASD) is a congenital, lifelong neurodevelopmental disorder whose main symptom is impaired social communication and interaction. However, no drug can treat social deficits in patients with ASD, and treatments to alleviate social behavioral deficits are sorely needed. Here, we examined the effect of oral supplementation of maca (Lepidium meyenii) on social deficits of in utero-exposed valproic acid (VPA) mice, widely used as an ASD model. Although maca is widely consumed as a fertility enhancer and aphrodisiac, it possesses multiple beneficial activities. Additionally, it benefits learning and memory in experimental animal models. Therefore, the effect of maca supplementation on the social behavioral deficit of VPA mice was assessed using a social interaction test, a three-stage open field test, and a five-trial social memory test. The oral supplementation of maca attenuated social interaction behavior deficit and social memory impairment. The number of c-Fos-positive cells and the percentage of c-Fos-positive oxytocin neurons increased in supraoptic and paraventricular neurons of maca-treated VPA mice. These results reveal for the first time that maca is beneficial to social memory and that it restores social recognition impairments by augmenting the oxytocinergic neuronal pathways, which play an essential role in diverse social behaviors.
Collapse
Affiliation(s)
- Pinyue Fu
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Shuxin Luo
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Zhongyu Liu
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-1193, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa 920-8640, Japan
| | - Jing Zhong
- Physiological Department, Guangxi University of Chinese Medicine, Nanning 530011, China
- Correspondence: (J.Z.); or (C.T.); Tel.: +81-(0)-76-265-2458 (C.T.)
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
- Correspondence: (J.Z.); or (C.T.); Tel.: +81-(0)-76-265-2458 (C.T.)
| |
Collapse
|
212
|
Cherepanov SM, Yuhi T, Iizuka T, Hosono T, Ono M, Fujiwara H, Yokoyama S, Shuto S, Higashida H. Two oxytocin analogs, N-(p-fluorobenzyl) glycine and N-(3-hydroxypropyl) glycine, induce uterine contractions ex vivo in ways that differ from that of oxytocin. PLoS One 2023; 18:e0281363. [PMID: 36758056 PMCID: PMC9910740 DOI: 10.1371/journal.pone.0281363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Contraction of the uterus is critical for parturient processes. Insufficient uterine tone, resulting in atony, can potentiate postpartum hemorrhage; thus, it is a major risk factor and is the main cause of maternity-related deaths worldwide. Oxytocin (OT) is recommended for use in combination with other uterotonics for cases of refractory uterine atony. However, as the effect of OT dose on uterine contraction and control of blood loss during cesarean delivery for labor arrest are highly associated with side effects, small amounts of uterotonics may be used to elicit rapid and superior uterine contraction. We have previously synthesized OT analogs 2 and 5, prolines at the 7th positions of which were replaced with N-(p-fluorobenzyl) glycine [thus, compound 2 is now called fluorobenzyl (FBOT)] or N-(3-hydroxypropyl) glycine [compound 5 is now called hydroxypropyl (HPOT)], which exhibited highly potent binding affinities for human OT receptors in vitro. In this study, we measured the ex vivo effects of FBOT and HPOT on contractions of uteri isolated from human cesarean delivery samples and virgin female mice. We evaluated the potency and efficacy of the analogs on uterine contraction, additivity with OT, and the ability to overcome the effects of atosiban, an OT antagonist. In human samples, the potency rank judged by the calculated EC50 (pM) was as follows: HPOT (189) > FBOT (556) > OT (5,340) > carbetocin (12,090). The calculated Emax was 86% for FBOT and 75% for HPOT (100%). Recovery from atosiban inhibition after HPOT treatment was as potent as that after OT treatment. HPOT showed additivity with OT. FBOT (56 pM) was found to be the strongest agonist in virgin mouse uterus. HPOT and FBOT demonstrated high potency and partial agonist efficacy in the human uterus. These results suggested that HPOT and FBOT are highly uterotonic for the human uterus and performed better than OT, indicating that they may prevent postpartum hemorrhage.
Collapse
Affiliation(s)
- Stanislav M. Cherepanov
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| | - Teruko Yuhi
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Hosono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigeru Yokoyama
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences and Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
213
|
Muscatelli F. [As early as birth, oxytocin plays a key role in both food and social behavior]. Biol Aujourdhui 2023; 216:131-143. [PMID: 36744979 DOI: 10.1051/jbio/2022017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 02/07/2023]
Abstract
Oxytocin (OT) is a neurohormone that regulates the so-called "social brain" and is mainly studied in adulthood. During postnatal development, the mechanisms by which the OT system structures various behaviors are little studied. Here we present the dynamic process of postnatal development of the OT system as well as the OT functions in the perinatal period that are essential for shaping social behaviors. Specifically, we discuss the role of OT, in the newborn, in integrating and adapting responses to early sensory stimuli and in stimulating suckling activity. Sensory dialogue and suckling are involved in mother-infant bonds and structure future social interactions. In rodents and humans, neurodevelopmental diseases with autism spectrum disorders (ASD), such as Prader-Willi and Schaaf-Yang syndromes, are associated with sensory, feeding and behavioral deficits in infancy. We propose that in early postnatal life, OT plays a key role in stimulating the maturation of neural networks controlling feeding behavior and early social interactions from birth. Administration of OT at birth improves sensory integration of environmental factors and the relationship with the mother as well as sucking activity as we have shown in mouse models and in babies with Prader-Willi syndrome. Long-term effects have also been observed on social and cognitive behavior. Therefore, early feeding difficulties might be an early predictive marker of ASD, and OT treatment a promising option to improve feeding behavior and, in the longer term, social behavioral problems.
Collapse
Affiliation(s)
- Françoise Muscatelli
- INMED (Institut de Neurobiologie de la Méditerranée), INSERM, Aix Marseille Univ, Marseille, France
| |
Collapse
|
214
|
Baudon A, Clauss Creusot E, Charlet A. [Emergent role of astrocytes in oxytocin-mediated modulatory control of neuronal circuits and brain functions]. Biol Aujourdhui 2023; 216:155-165. [PMID: 36744981 DOI: 10.1051/jbio/2022022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 02/07/2023]
Abstract
The neuropeptide oxytocin has been in the focus of scientists for decades due to its profound and pleiotropic effects on physiology, activity of neuronal circuits and behaviors. Until recently, it was believed that oxytocinergic action exclusively occurs through direct activation of neuronal oxytocin receptors. However, several studies demonstrated the existence and functional relevance of astroglial oxytocin receptors in various brain regions in the mouse and rat brain. Astrocytic signaling and activity are critical for many important physiological processes including metabolism, neurotransmitter clearance from the synaptic cleft and integrated brain functions. While it can be speculated that oxytocinergic action on astrocytes predominantly facilitates neuromodulation via the release of gliotransmitters, the precise role of astrocytic oxytocin receptors remains elusive. In this review, we discuss the latest studies on the interaction between the oxytocinergic system and astrocytes, and give details of underlying intracellular cascades.
Collapse
Affiliation(s)
- Angel Baudon
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Etienne Clauss Creusot
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| | - Alexandre Charlet
- Centre National de la Recherche Scientifique et Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 8 allée du Général Rouvillois, 67000 Strasbourg, France
| |
Collapse
|
215
|
Talpo F, Spaiardi P, Castagno AN, Maniezzi C, Raffin F, Terribile G, Sancini G, Pisani A, Biella GR. Neuromodulatory functions exerted by oxytocin on different populations of hippocampal neurons in rodents. Front Cell Neurosci 2023; 17:1082010. [PMID: 36816855 PMCID: PMC9932910 DOI: 10.3389/fncel.2023.1082010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Oxytocin (OT) is a neuropeptide widely known for its peripheral hormonal effects (i.e., parturition and lactation) and central neuromodulatory functions, related especially to social behavior and social, spatial, and episodic memory. The hippocampus is a key structure for these functions, it is innervated by oxytocinergic fibers, and contains OT receptors (OTRs). The hippocampal OTR distribution is not homogeneous among its subregions and types of neuronal cells, reflecting the specificity of oxytocin's modulatory action. In this review, we describe the most recent discoveries in OT/OTR signaling in the hippocampus, focusing primarily on the electrophysiological oxytocinergic modulation of the OTR-expressing hippocampal neurons. We then look at the effect this modulation has on the balance of excitation/inhibition and synaptic plasticity in each hippocampal subregion. Additionally, we review OTR downstream signaling, which underlies the OT effects observed in different types of hippocampal neuron. Overall, this review comprehensively summarizes the advancements in unraveling the neuromodulatory functions exerted by OT on specific hippocampal networks.
Collapse
Affiliation(s)
- Francesca Talpo
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Paolo Spaiardi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy
| | - Antonio Nicolas Castagno
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudia Maniezzi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Raffin
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Giulia Terribile
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Giulio Sancini
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy,Nanomedicine Center, Neuroscience Center, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Neurological Institute Foundation Casimiro Mondino (IRCCS), Pavia, Italy
| | - Gerardo Rosario Biella
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia, Italy,*Correspondence: Gerardo Rosario Biella,
| |
Collapse
|
216
|
Cymerblit-Sabba A, Walsh C, Duan KZ, Song J, Holmes O, Young WS. Simultaneous Knockouts of the Oxytocin and Vasopressin 1b Receptors in Hippocampal CA2 Impair Social Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526271. [PMID: 36789441 PMCID: PMC9928026 DOI: 10.1101/2023.01.30.526271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxytocin (Oxt) and vasopressin (Avp) are two neuropeptides with many central actions related to social cognition. The oxytocin (Oxtr) and vasopressin 1b (Avpr1b) receptors are co-expressed in the pyramidal neurons of the hippocampal subfield CA2 and are known to play a critical role in social memory formation. How the neuropeptides perform this function in this region is not fully understood. Here, we report the behavioral effects of a life-long conditional removal (knockout, KO) of either the Oxtr alone or both Avpr1b and Oxtr from the pyramidal neurons of CA2 as well as the resultant changes in synaptic transmission within the different fields of the hippocampus. Surprisingly, the removal of both receptors results in mice that are unable to habituate to a familiar female presented for short duration over short intervals but are able to recognize and discriminate females when presented for a longer duration over a longer interval. Importantly, these double KO mice were unable to discriminate between a male littermate and a novel male. Synaptic transmission between CA3 and CA2 is enhanced in these mice, suggesting a compensatory mechanism is activated to make up for the loss of the receptors. Overall, our results demonstrate that co-expression of the receptors in CA2 is necessary to allow intact social memory processing.
Collapse
Affiliation(s)
- Adi Cymerblit-Sabba
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - Caroline Walsh
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - Kai-Zheng Duan
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - June Song
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - Oliver Holmes
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| | - W Scott Young
- Section on Neural Gene Expression, National Institute of Mental Health (NIMH), National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
217
|
Camerino C. The Long Way of Oxytocin from the Uterus to the Heart in 70 Years from Its Discovery. Int J Mol Sci 2023; 24:ijms24032556. [PMID: 36768879 PMCID: PMC9916674 DOI: 10.3390/ijms24032556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The research program on oxytocin started in 1895, when Oliver and Schafer reported that a substance extracted from the pituitary gland elevates blood pressure when injected intravenously into dogs. Dale later reported that a neurohypophysial substance triggers uterine contraction, lactation, and antidiuresis. Purification of this pituitary gland extracts revealed that the vasopressor and antidiuretic activity could be attributed to vasopressin, while uterotonic and lactation activity could be attributed to oxytocin. In 1950, the amino-acid sequences of vasopressin and oxytocin were determined and chemically synthesized. Vasopressin (CYFQNCPRG-NH2) and oxytocin (CYIQNCPLG-NH2) differ by two amino acids and have a disulfide bridge between the cysteine residues at position one and six conserved in all vasopressin/oxytocin-type peptides. This characterization of oxytocin led to the Nobel Prize awarded in 1955 to Vincent du Vigneaud. Nevertheless, it was only 50 years later when the evidence that mice depleted of oxytocin or its receptor develop late-onset obesity and metabolic syndrome established that oxytocin regulates energy and metabolism. Oxytocin is anorexigenic and regulates the lean/fat mass composition in skeletal muscle. Oxytocin's effect on muscle is mediated by thermogenesis via a pathway initiated in the myocardium. Oxytocin involvement in thermogenesis and muscle contraction is linked to Prader-Willi syndrome in humans, opening exciting therapeutic avenues.
Collapse
Affiliation(s)
- Claudia Camerino
- Department of Biomedical Sciences and Human Oncology, Section of Pharmacology, School of Medicine, University of Bari “Aldo Moro”, P.za G. Cesare 11, 70100 Bari, Italy;
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
218
|
Baumer-Harrison C, Breza JM, Sumners C, Krause EG, de Kloet AD. Sodium Intake and Disease: Another Relationship to Consider. Nutrients 2023; 15:535. [PMID: 36771242 PMCID: PMC9921152 DOI: 10.3390/nu15030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Sodium (Na+) is crucial for numerous homeostatic processes in the body and, consequentially, its levels are tightly regulated by multiple organ systems. Sodium is acquired from the diet, commonly in the form of NaCl (table salt), and substances that contain sodium taste salty and are innately palatable at concentrations that are advantageous to physiological homeostasis. The importance of sodium homeostasis is reflected by sodium appetite, an "all-hands-on-deck" response involving the brain, multiple peripheral organ systems, and endocrine factors, to increase sodium intake and replenish sodium levels in times of depletion. Visceral sensory information and endocrine signals are integrated by the brain to regulate sodium intake. Dysregulation of the systems involved can lead to sodium overconsumption, which numerous studies have considered causal for the development of diseases, such as hypertension. The purpose here is to consider the inverse-how disease impacts sodium intake, with a focus on stress-related and cardiometabolic diseases. Our proposition is that such diseases contribute to an increase in sodium intake, potentially eliciting a vicious cycle toward disease exacerbation. First, we describe the mechanism(s) that regulate each of these processes independently. Then, we highlight the points of overlap and integration of these processes. We propose that the analogous neural circuitry involved in regulating sodium intake and blood pressure, at least in part, underlies the reciprocal relationship between neural control of these functions. Finally, we conclude with a discussion on how stress-related and cardiometabolic diseases influence these circuitries to alter the consumption of sodium.
Collapse
Affiliation(s)
- Caitlin Baumer-Harrison
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Joseph M. Breza
- Department of Psychology, College of Arts and Sciences, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Colin Sumners
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Annette D. de Kloet
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32603, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
219
|
Li D, Zhang L, Bai T, Qiu B, Zhu C, Wang K. Oxytocin-Receptor Gene Modulates Reward-Network Connection and Relationship with Empathy Performance. Psychol Res Behav Manag 2023; 16:85-94. [PMID: 36643732 PMCID: PMC9833327 DOI: 10.2147/prbm.s370834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Empathy traits are highly heritable and linked with reward processing. It is implicated that common variations of the oxytocin-receptor gene (OXTR) play a modulatory effect on empathic performance. However, it is unclear about the neural substrates underlying the modulatory effect of the OXTR genotype on empathic performance. This study aimed to characterize the modulatory effect of common OXTR variations on reward-circuitry function and its relationship with empathy. Methods Based on the seed of the nucleus accumbens (NAcc; a key hub of reward circuitry), we examined differences in spontaneous local activity and functional connectivity between OXTR rs2268493 genotype groups and their relationship with empathic performance among 402 high-homogeneity participants. Results Comparing with C carriers (CC/CT) group, the individuals with the rs2268493 TT genotype exhibited lower functional connectivity of the right NAcc with the medial prefrontal cortex (mPFC) and inferior frontal gyrus. Similarly lower functional connectivity was found between the left NAcc and mPFC. Consequently, no significant difference was found in the spontaneous local activity of NAcc. Discussion Our findings suggested that common OXTR variations have a modulatory effect on the connection of the NAcc with the hub of empathic networks (mPFC and IFG), which may provide insight on the neural substrate underlying the modulatory effect of OXTR on empathic behavior.
Collapse
Affiliation(s)
- Dandan Li
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People’s Republic of China,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People’s Republic of China,Research Center for Translational Medicine, Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Long Zhang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Tongjian Bai
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Bensheng Qiu
- Hefei National Laboratory for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China., Hefei, People’s Republic of China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People’s Republic of China,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People’s Republic of China,Research Center for Translational Medicine, Second Hospital of Anhui Medical University, Hefei, People’s Republic of China,Correspondence: Chunyan Zhu; Kai Wang, Email ;
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, People’s Republic of China,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People’s Republic of China,Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, People’s Republic of China,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, People’s Republic of China
| |
Collapse
|
220
|
Tabak BA, Leng G, Szeto A, Parker KJ, Verbalis JG, Ziegler TE, Lee MR, Neumann ID, Mendez AJ. Advances in human oxytocin measurement: challenges and proposed solutions. Mol Psychiatry 2023; 28:127-140. [PMID: 35999276 PMCID: PMC9812775 DOI: 10.1038/s41380-022-01719-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023]
Abstract
Oxytocin, a neuropeptide known for its role in reproduction and socioemotional processes, may hold promise as a therapeutic agent in treating social impairments in patient populations. However, research has yet to uncover precisely how to manipulate this system for clinical benefit. Moreover, inconsistent use of standardized and validated oxytocin measurement methodologies-including the design and study of hormone secretion and biochemical assays-present unresolved challenges. Human studies measuring peripheral (i.e., in plasma, saliva, or urine) or central (i.e., in cerebrospinal fluid) oxytocin concentrations have involved very diverse methods, including the use of different assay techniques, further compounding this problem. In the present review, we describe the scientific value in measuring human endogenous oxytocin concentrations, common issues in biochemical analysis and study design that researchers face when doing so, and our recommendations for improving studies using valid and reliable methodologies.
Collapse
Affiliation(s)
- Benjamin A Tabak
- Department of Psychology, Southern Methodist University, Dallas, TX, USA.
| | - Gareth Leng
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Angela Szeto
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Joseph G Verbalis
- Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Toni E Ziegler
- Assay Services Unit and Institute for Clinical and Translational Research Core Laboratory, National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Mary R Lee
- Veterans Affairs Medical Center, Washington, DC, USA
| | - Inga D Neumann
- Department of Behaviour and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Armando J Mendez
- Diabetes Research Institute, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
221
|
Ditzen B, Aguilar-Raab C, Winter F, Hernández C, Schneider E, Bodenmann G, Heinrichs M, Ehlert U, Läuchli S. Effects of intranasal oxytocin and positive couple interaction on immune factors in skin wounds. Brain Behav Immun 2023; 107:90-97. [PMID: 36058418 DOI: 10.1016/j.bbi.2022.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Intimate social relationships improve individual health and longevity, an effect which is supposed to be mediated through stress-sensitive endocrine and immune mechanisms in response to positive interaction behavior. On a neuroendocrine level, oxytocin (OT) buffers stress responses, modulates social attachment behavior and has been associated with cytokine expression. Consequently, the aim of the present study was to investigate instructed positive couple interaction, observed behavior, and OT in their effect on immune function. METHODS In a 4-group design, 80 healthy couples (N = 160 individuals) received four standard dermal suction blister wounds and were randomized to instructed positive interaction/control and intranasal OT/placebo. Unstimulated cytokines (IL-1β, IL-6, TNF-α) were assessed from wound liquid at 40 min, 105 min and 24 hrs after wounding. RESULTS Overall, group assignment did not affect friendly or dominant behavior during the interaction sequence. IL-1β and IL-6 levels, however, were moderated by group assignment with lowest levels in women in the positive interaction and OT condition in IL-1 and highest levels in IL-6. TNF-α responses to wounding were not affected from group assignment, however observed friendliness in women was associated with lower TNF-α levels. DISCUSSION These findings support the immune-regulating role of friendly behavior in romantic couples. Above this, the data provide the first empirical evidence that an intervention that simultaneously targets neuroendocrine mediators and behavior could affect immune function in a sex specific manner and with potential long-term health relevance.
Collapse
Affiliation(s)
- Beate Ditzen
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany.
| | - Corina Aguilar-Raab
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany.
| | - Friederike Winter
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany.
| | - Cristóbal Hernández
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany; Escuela de Psicología, Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Ekaterina Schneider
- Heidelberg University Hospital, Ruprecht Karls-University, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
222
|
Černotová D, Hrůzová K, Levčík D, Svoboda J, Stuchlík A. Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis 2023; 96:861-875. [PMID: 37980658 PMCID: PMC10741376 DOI: 10.3233/jad-230333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/21/2023]
Abstract
Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
223
|
Havranek T, Mihalj D, Bacova Z, Bakos J. Oxytocin action on components of endoplasmic reticulum in hippocampal neuronal cells. Neurosci Lett 2023; 792:136971. [PMID: 36414131 DOI: 10.1016/j.neulet.2022.136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Despite the known importance of the endoplasmic reticulum (ER) in protein synthesis and vesicular transport, it is not clear whether neuropeptide and neuromodulator oxytocin can directly affect components of the ER in neuronal cells. Therefore, in the present study, we hypothesize that incubation of hippocampal neuronal cells in a presence of oxytocin 1) plays a role in the regulation of the expression of selected ER chaperone components and molecules involved in unfolded protein response pathway 2) affects distribution of the intracellular fluorescence signal highly selective for the ER. We found that oxytocin (1 μM) after 60 min significantly decreased the gene expression of oxidoreductase Ero1β, chaperone glucose-regulated proteins (Grp) 78 and Grp94. A significant decrease in GRP78 protein levels in response to oxytocin treatment occurred after 30, 60 and 120 min. We also observed a time-dependent increase in calreticulin protein levels with a statistically significant increase observed after 360 min. We found that the dynamics of the ER network changes significantly within 2 h of incubation under the influence of oxytocin. In conclusion we have shown that ER chaperones, oxidoreductases and trafficking molecules in neuronal cells are changing in response to oxytocin treatment in a short-term scenario potentially relevant for growth of dendrites and axons.
Collapse
Affiliation(s)
- T Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - D Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Z Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - J Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
224
|
Roy A, Patra SK. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev Rep 2023; 19:2-25. [PMID: 35997871 DOI: 10.1007/s12015-022-10448-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 01/29/2023]
Abstract
Molecular views of plasma membrane organization and dynamics are gradually changing over the past fifty years. Dynamics of plasma membrane instigate several signaling nexuses in eukaryotic cells. The striking feature of plasma membrane dynamics is that, it is internally transfigured into various subdomains of clustered macromolecules. Lipid rafts are nanoscale subdomains, enriched with cholesterol and sphingolipids, reside as floating entity mostly on the exoplasmic leaflet of the lipid bilayer. In terms of functionality, lipid rafts are unique among other membrane subdomains. Herein, advances on the roles of lipid rafts in cellular physiology and homeostasis are discussed, precisely, on how rafts dynamically harbor signaling proteins, including GPCRs, catalytic receptors, and ionotropic receptors within it and orchestrate multiple signaling pathways. In the developmental proceedings signaling are designed for patterning of overall organism and they differ from the somatic cell physiology and signaling of fully developed organisms. Some of the developmental signals are characteristic in maintenance of stemness and activated during several types of tumor development and cancer progression. The harmony between extracellular signaling and lineage specific transcriptional programs are extremely important for embryonic development. The roles of plasma membrane lipid rafts mediated signaling in lineage specificity, early embryonic development, stem cell maintenance are emerging. In view of this, we have highlighted and analyzed the roles of lipid rafts in receptor organization, cell signaling, and gene expression during embryonic development; from pre-implantation through the post-implantation phase, in stem cell and cancer biology.
Collapse
Affiliation(s)
- Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
225
|
Wei J, Zheng H, Li G, Chen Z, Fang G, Yan J. Involvement of oxytocin receptor deficiency in psychiatric disorders and behavioral abnormalities. Front Cell Neurosci 2023; 17:1164796. [PMID: 37153633 PMCID: PMC10159063 DOI: 10.3389/fncel.2023.1164796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
Oxytocin and its target receptor (oxytocin receptor, OXTR) exert important roles in the regulation of complex social behaviors and cognition. The oxytocin/OXTR system in the brain could activate and transduce several intracellular signaling pathways to affect neuronal functions or responses and then mediate physiological activities. The persistence and outcome of the oxytocin activity in the brain are closely linked to the regulation, state, and expression of OXTR. Increasing evidence has shown that genetic variations, epigenetic modification states, and the expression of OXTR have been implicated in psychiatric disorders characterized by social deficits, especially in autism. Among these variations and modifications, OXTR gene methylation and polymorphism have been found in many patients with psychiatric disorders and have been considered to be associated with those psychiatric disorders, behavioral abnormalities, and individual differences in response to social stimuli or others. Given the significance of these new findings, in this review, we focus on the progress of OXTR's functions, intrinsic mechanisms, and its correlations with psychiatric disorders or deficits in behaviors. We hope that this review can provide a deep insight into the study of OXTR-involved psychiatric disorders.
Collapse
Affiliation(s)
- Jinbao Wei
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Huanrui Zheng
- Department of Pharmacy, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Guokai Li
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zichun Chen
- Department of Pharmacy, Ningde Municipal Hospital Affiliated to Ningde Normal University, Ningde, Fujian, China
| | - Gengjing Fang
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate (Fujian Maternity and Child Health Hospital), Fuzhou, Fujia, China
- Gengjing Fang
| | - Jianying Yan
- Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Obstetrics, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- *Correspondence: Jianying Yan
| |
Collapse
|
226
|
Quintana DS. A Guide for Calculating Study-Level Statistical Power for Meta-Analyses. ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE 2023. [DOI: 10.1177/25152459221147260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Meta-analysis is a popular approach in the psychological sciences for synthesizing data across studies. However, the credibility of meta-analysis outcomes depends on the evidential value of studies included in the body of evidence used for data synthesis. One important consideration for determining a study’s evidential value is the statistical power of the study’s design/statistical test combination for detecting hypothetical effect sizes of interest. Studies with a design/test combination that cannot reliably detect a wide range of effect sizes are more susceptible to questionable research practices and exaggerated effect sizes. Therefore, determining the statistical power for design/test combinations for studies included in meta-analyses can help researchers make decisions regarding confidence in the body of evidence. Because the one true population effect size is unknown when hypothesis testing, an alternative approach is to determine statistical power for a range of hypothetical effect sizes. This tutorial introduces the metameta R package and web app, which facilitates the straightforward calculation and visualization of study-level statistical power in meta-analyses for a range of hypothetical effect sizes. Readers will be shown how to reanalyze data using information typically presented in meta-analysis forest plots or tables and how to integrate the metameta package when reporting novel meta-analyses. A step-by-step companion screencast video tutorial is also provided to assist readers using the R package.
Collapse
|
227
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
228
|
Kunitake Y, Mizoguchi Y, Imamura Y, Kunitake H, Orihashi R, Matsushima J, Tateishi H, Murakawa-Hirachi T, Yamada S, Monji A. Serum oxytocin correlated with later logical memory in older Japanese women: A 7-year follow-up study. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 13:100166. [PMID: 36605539 PMCID: PMC9807821 DOI: 10.1016/j.cpnec.2022.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Objectives This study aimed to investigate the longitudinal relationship between serum oxytocin and logical memory among older adults in rural Japan and clarify sex differences in this relationship. Measurements The first survey was conducted from October 2009 to March 2011 (Time 1) and the second from November 2016 to September 2017 (Time 2). The final analysis for Time 1 included 385 participants (median age 75 years, interquartile range [IQR] 70-81 years) and that for Time 2 included 76 participants (median age 80 years, IQR 76-83 years). We assessed cognition, logical memory, and living conditions, and measured serum oxytocin levels. Logical memory was evaluated using the Wechsler Memory Scale-Revised Logical Memory II delayed recall part A (LM II-DR). Serum oxytocin was measured using the enzyme immunoassay method. Results The median (IQR) oxytocin level among men (n = 20) was 34 (16-78) pg/mL at Time 1 and 53 (28-140) pg/mL at Time 2. The median (IQR) oxytocin level among women (n = 56) was 117 (35-412) pg/mL at Time 1 and 76 (32-145) pg/mL at Time 2. The median oxytocin level among women at Time 2 was significantly lower than that at Time 1 (p = 0.004). The multivariate analysis showed that for women, LM II-DR score at Time 2 was positively associated with oxytocin level at Time 1 (p = 0.042) and negatively associated with age (p = 0.02). Conclusions Our study suggests that maintaining high oxytocin levels in older women may prevent age-related decline in logical memory.
Collapse
Affiliation(s)
- Yutaka Kunitake
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan,Corresponding author. 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan,Institute of Comparative Studies of International Cultures and Societies, Kurume University, Kurume, Fukuoka, Japan
| | - Hiroko Kunitake
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Ryuzo Orihashi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan,School of Nursing, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Jun Matsushima
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Hiroshi Tateishi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | | | | | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan,Wakahisa Hospital, Fukuoka, Japan
| |
Collapse
|
229
|
Maejima Y, Yokota S, Ono T, Yu Z, Yamachi M, Hidema S, Nollet KE, Nishimori K, Tomita H, Yaginuma H, Shimomura K. Identification of oxytocin expression in human and murine microglia. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110600. [PMID: 35842075 DOI: 10.1016/j.pnpbp.2022.110600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/13/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Oxytocin is a neuropeptide synthesized in the hypothalamus. In addition to its role in parturition and lactation, oxytocin mediates social behavior and pair bonding. The possibility of using oxytocin to modify behavior in neurodevelopmental disorders, such as autism spectrum disorder, is of clinical interest. Microglia are tissue-resident macrophages with roles in neurogenesis, synapse pruning, and immunological mediation of brain homeostasis. Recently, oxytocin was found to attenuate microglial secretion of proinflammatory cytokines, but the source of this oxytocin was not established. This prompted us to investigate whether microglia themselves were the source. METHODS We examined oxytocin expression in human and murine brain tissue in both sexes using immunohistochemistry. Oxytocin mRNA expression and secretion were examined in isolated murine microglia from wild type and oxytocin-knockout mice. Also, secretion of oxytocin and cytokines was measured in cultured microglia (MG6) stimulated with lipopolysaccharide (LPS). RESULTS We identified oxytocin expression in microglia of human brain tissue, cultured microglia (MG6), and primary murine microglia. Furthermore, LPS stimulation increased oxytocin mRNA expression in primary murine microglia and MG6 cells, and oxytocin secretion as well. A positive correlation between oxytocin and IL-1β, IL-10 secretion emerged, respectively. CONCLUSION This may be the first demonstration of oxytocin expression in microglia. Functionally, oxytocin might regulate inflammatory cytokine release from microglia in a paracrine/autocrine manner.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Ono
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Megumi Yamachi
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shizu Hidema
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kenneth E Nollet
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
230
|
Muscatelli F, Matarazzo V, Chini B. Neonatal oxytocin gives the tempo of social and feeding behaviors. Front Mol Neurosci 2022; 15:1071719. [PMID: 36583080 PMCID: PMC9792990 DOI: 10.3389/fnmol.2022.1071719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
The nonapeptide oxytocin (OT) is a master regulator of the social brain in early infancy, adolescence, and adult life. Here, we review the postnatal dynamic development of OT-system as well as early-life OT functions that are essential for shaping social behaviors. We specifically address the role of OT in neonates, focusing on its role in modulating/adapting sensory input and feeding behavior; both processes are involved in the establishing mother-infant bond, a crucial event for structuring all future social interactions. In patients and rodent models of Prader-Willi and Schaaf-Yang syndromes, two neurodevelopmental diseases characterized by autism-related features, sensory impairments, and feeding difficulties in early infancy are linked to an alteration of OT-system. Successful preclinical studies in mice and a phase I/II clinical trial in Prader-Willi babies constitute a proof of concept that OT-treatment in early life not only improves suckling deficit but has also a positive long-term effect on learning and social behavior. We propose that in early postnatal life, OT plays a pivotal role in stimulating and coordinating the maturation of neuronal networks controlling feeding behavior and the first social interactions. Consequently, OT therapy might be considered to improve feeding behavior and, all over the life, social cognition, and learning capabilities.
Collapse
Affiliation(s)
- Françoise Muscatelli
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France,*Correspondence: Françoise Muscatelli,
| | - Valery Matarazzo
- Institut de Neurobiologie de la Méditerranée (INMED), INSERM, Aix Marseille Université, Marseille, France
| | - Bice Chini
- Institute of Neuroscience, National Research Council (CNR), Vedano al Lambro, Italy and NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
231
|
Borroto-Escuela DO, Cuesta-Marti C, Lopez-Salas A, Chruścicka-Smaga B, Crespo-Ramírez M, Tesoro-Cruz E, Palacios-Lagunas DA, Perez de la Mora M, Schellekens H, Fuxe K. The oxytocin receptor represents a key hub in the GPCR heteroreceptor network: potential relevance for brain and behavior. Front Mol Neurosci 2022; 15:1055344. [PMID: 36618821 PMCID: PMC9812438 DOI: 10.3389/fnmol.2022.1055344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
In the last 10 years, it has become increasingly clear that large numbers of axon collaterals extend from the oxytocin (OXT) hypothalamic axons, especially the parvocellular components, to other brain regions. Consequently, the OXT signaling system forms, like other monoamine axons, a rich functional network across several brain regions. In this manuscript, we review the recently indicated higher order G-protein coupled heteroreceptor complexes of the oxytocin receptor (OXTR), and how these, via allosteric receptor-receptor interactions modulate the recognition, signaling, and trafficking of the participating receptor protomers and their potential impact for brain and behavior. The major focus will be on complexes of the OXTR protomer with the dopamine D2 receptor (D2R) protomer and the serotonin 2A (5-HT2AR) and 2C (5-HT2CR) receptor protomers. Specifically, the existence of D2R-OXTR heterocomplexes in the nucleus accumbens and the caudate putamen of rats has led to a postulated function for this heteromer in social behavior. Next, a physical interaction between OXTRs and the growth hormone secretagogue or ghrelin receptor (GHS-R1a) was demonstrated, which consequently was able to attenuate OXTR-mediated Gαq signaling. This highlights the potential of ghrelin-targeted therapies to modulate oxytocinergic signaling with relevance for appetite regulation, anxiety, depression, and schizophrenia. Similarly, evidence for 5-HT2AR-OXTR heteromerization in the pyramidal cell layer of CA2 and CA3 in the dorsal hippocampus and in the nucleus accumbens shell was demonstrated. This complex may offer new strategies for the treatment of both mental disease and social behavior. Finally, the 5-HT2CR-OXTR heterocomplexes were demonstrated in the CA1, CA2, and CA3 regions of the dorsal hippocampus. Future work should be done to investigate the precise functional consequence of region-specific OXTR heteromerization in the brain, as well across the periphery, and whether the integration of neuronal signals in the brain may also involve higher order OXTR-GHS-R1a heteroreceptor complexes including the dopamine (DA), noradrenaline (NA) or serotonin (5-HT) receptor protomers or other types of G-protein coupled receptors (GPCRs).
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden,Receptomics and Brain Disorders Lab, Department of Human Physiology, Faculty of Medicine, University of Malaga, Málaga, Spain,Department of Biomolecular Science, Section of Morphology, Physiology and Environmental Biology, University of Urbino, Urbino, Italy,*Correspondence: Dasiel O. Borroto-Escuela Harriët Schellekens
| | - Cristina Cuesta-Marti
- APC Microbiome Ireland, University College CorkCork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alexander Lopez-Salas
- Receptomics and Brain Disorders Lab, Department of Human Physiology, Faculty of Medicine, University of Malaga, Málaga, Spain
| | | | - Minerva Crespo-Ramírez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Biomédica en Inmunología e Infectología, Hospital de Infectología, Centro Médico Nacional La Raza, IMSS, Ciudad de México, Mexico
| | | | - Miguel Perez de la Mora
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Harriët Schellekens
- APC Microbiome Ireland, University College CorkCork, Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,*Correspondence: Dasiel O. Borroto-Escuela Harriët Schellekens
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
232
|
Maddahi A, Edvinsson L, Warfvinge K. Expression of vasopressin and its receptors in migraine-related regions in CNS and the trigeminal system: influence of sex. J Headache Pain 2022; 23:152. [PMID: 36456902 PMCID: PMC9713967 DOI: 10.1186/s10194-022-01524-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Hypothalamus is a key region in migraine attacks. In addition, women are disproportionately affected by migraine. The calcitonin gene-related peptide (CGRP) system is an important key player in migraine pathophysiology. CGRP signaling could be a target of hormones that influence migraine. Our aim is to identify the expression of vasopressin and its receptors in the brain and in the trigeminovascular system with focus on the migraine-related regions and, furthermore, to examine the role of sex on the expression of neurohormones in the trigeminal ganglion. METHODS Rat brain and trigeminal ganglia were carefully harvested, and protein and mRNA levels were analyzed by immunohistochemistry and real-time PCR, respectively. RESULTS Vasopressin and its receptors immunoreactivity were found in migraine-related areas within the brain and, in the trigeminal ganglion, predominantly in neuronal cytoplasm. There were no differences in the number of positive immunoreactivity cells expression of CGRP and vasopressin in the trigeminal ganglion between male and female rats. In contrast, the number of RAMP1 (CGRP receptor), oxytocin (molecular relative to vasopressin), oxytocin receptor and vasopressin receptors (V1aR and V1bR) immunoreactive cells were higher in female compared to male rats. Vasopressin and its receptors mRNA were expressed in both hypothalamus and trigeminal ganglion; however, the vasopressin mRNA level was significantly higher in the hypothalamus. CONCLUSIONS A better understanding of potential hormonal influences on migraine mechanisms is needed to improve treatment of female migraineurs. It is intriguing that vasopressin is an output of hypothalamic neurons that influences areas associated with migraine. Therefore, vasopressin and the closely related oxytocin might be important hypothalamic components that contribute to migraine pathophysiology.
Collapse
Affiliation(s)
- Aida Maddahi
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Lars Edvinsson
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden ,grid.475435.4Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| | - Karin Warfvinge
- grid.411843.b0000 0004 0623 9987Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden ,grid.475435.4Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
233
|
Carter CS. Sex, love and oxytocin: Two metaphors and a molecule. Neurosci Biobehav Rev 2022; 143:104948. [PMID: 36347382 PMCID: PMC9759207 DOI: 10.1016/j.neubiorev.2022.104948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Dozens of studies, most conducted in the last four decades, have implicated oxytocin, as well as vasopressin and their receptors, in processes that mediate selective sociality and the consequences of early experience. Oxytocin is critical for the capacity to experience emotional safety and healthy sexuality. Oxytocin also plays a central role in almost every aspect of physical and mental health, including the coordination of sociality and loving relationships with physiological reactions to challenges across the lifespan. Species, including prairie voles, that share with humans the capacity for selective social bonds have been a particularly rich source of insights into the behavioral importance of peptides. The purpose of this historical review is to describe the discovery of a central role for oxytocin in behavioral interactions associated with love, and in the capacity to use sociality to anticipate and cope with challenges across the lifespan - a process that here is called "sociostasis."
Collapse
Affiliation(s)
- C Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA; Kinsey Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
234
|
Berendzen KM, Manoli DS. Rethinking the Architecture of Attachment: New Insights into the Role for Oxytocin Signaling. AFFECTIVE SCIENCE 2022; 3:734-748. [PMID: 36519145 PMCID: PMC9743890 DOI: 10.1007/s42761-022-00142-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Social attachments, the enduring bonds between individuals and groups, are essential to health and well-being. The appropriate formation and maintenance of social relationships depend upon a number of affective processes, including stress regulation, motivation, reward, as well as reciprocal interactions necessary for evaluating the affective state of others. A genetic, molecular, and neural circuit level understanding of social attachments therefore provides a powerful substrate for probing the affective processes associated with social behaviors. Socially monogamous species form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment. Now, molecular genetic tools permit manipulations in monogamous species. Studies using these tools reveal new insights into the genetic and neuroendocrine factors that design and control the neural architecture underlying attachment behavior. We focus this discussion on the prairie vole and oxytocinergic signaling in this and related species as a model of attachment behavior that has been studied in the context of genetic and pharmacological manipulations. We consider developmental processes that impact the demonstration of bonding behavior across genetic backgrounds, the modularity of mechanisms underlying bonding behaviors, and the distributed circuitry supporting these behaviors. Incorporating such theoretical considerations when interpreting reverse genetic studies in the context of the rich ethological and pharmacological data collected in monogamous species provides an important framework for studies of attachment behavior in both animal models and studies of human relationships.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 95158 USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 95158 USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 95158 USA
| |
Collapse
|
235
|
Mota-Rojas D, Bienboire-Frosini C, Marcet-Rius M, Domínguez-Oliva A, Mora-Medina P, Lezama-García K, Orihuela A. Mother-young bond in non-human mammals: Neonatal communication pathways and neurobiological basis. Front Psychol 2022; 13:1064444. [DOI: 10.3389/fpsyg.2022.1064444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Mother-young bonding is a process by which the young establish social preferences for their mother. It fosters reproductive success and the survival of offspring by providing food, heat, and maternal care. This process promotes the establishment of the mother-young bond through the interaction of olfactory, auditory, tactile, visual, and thermal stimuli. The neural integration of multimodal sensory stimuli and attachment is coordinated into motor responses. The sensory and neurobiological mechanisms involved in filial recognition in precocial and altricial mammals are summarized and analyzed in this review.
Collapse
|
236
|
Li Q, Zhao W, Kendrick KM. Affective touch in the context of development, oxytocin signaling, and autism. Front Psychol 2022; 13:967791. [PMID: 36506943 PMCID: PMC9728590 DOI: 10.3389/fpsyg.2022.967791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Touch represents one of our most important senses throughout life and particularly in the context of our social and emotional experiences. In this review, we draw on research on touch processing from both animal models and humans. Firstly, we briefly describe the cutaneous touch receptors and neural processing of both affective and discriminative touch. We then outline how our sense of touch develops and summarize increasing evidence demonstrating how essential early tactile stimulation is for the development of brain and behavior, with a particular focus on effects of tactile stimulation in infant animals and pediatric massage and Kangaroo care in human infants. Next, the potential mechanisms whereby early tactile stimulation influences both brain and behavioral development are discussed, focusing on its ability to promote neural plasticity changes and brain interhemispheric communication, development of social behavior and bonding, and reward sensitivity through modulation of growth factor, oxytocin, and opioid signaling. Finally, we consider the implications of evidence for atypical responses to touch in neurodevelopmental disorders such as autism spectrum disorder and discuss existing evidence and future priorities for establishing potential beneficial effects of interventions using massage or pharmacological treatments targeting oxytocin or other neurochemical systems.
Collapse
Affiliation(s)
- Qin Li
- School of Foreign Language, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M. Kendrick
- Ministry of Education, Key Laboratory for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
237
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
238
|
Malone SG, Shaykin JD, Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability: An updated review. Pharmacol Biochem Behav 2022; 221:173471. [PMID: 36228739 DOI: 10.1016/j.pbb.2022.173471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Environmental enrichment consisting of social peers and novel objects is known to alter neurobiological functioning and have an influence on the behavioral effects of drugs of abuse in preclinical rodent models. An earlier review from our laboratory (Stairs and Bardo, 2009) provided an overview of enrichment-specific changes in addiction-like behaviors and neurobiology. The current review updates the literature in this extensive field. Key findings from this updated review indicate that enrichment produces positive outcomes in drug abuse vulnerability beyond just psychostimulants. Additionally, recent studies indicate that enrichment activates key genes involved in cell proliferation and protein synthesis in nucleus accumbens and enhances growth factors in hippocampus and neurotransmitter signaling pathways in prefrontal cortex, amygdala, and hypothalamus. Remaining gaps in the literature and future directions for environmental enrichment and drug abuse research are identified.
Collapse
Affiliation(s)
- Samantha G Malone
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Hixson-Lied Science Building, 2500 California Plaza, Omaha, NE, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA.
| |
Collapse
|
239
|
Inoue K, Ford CL, Horie K, Young LJ. Oxytocin receptors are widely distributed in the prairie vole (Microtus ochrogaster) brain: Relation to social behavior, genetic polymorphisms, and the dopamine system. J Comp Neurol 2022; 530:2881-2900. [PMID: 35763609 PMCID: PMC9474670 DOI: 10.1002/cne.25382] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/15/2022]
Abstract
Oxytocin regulates social behavior via direct modulation of neurons, regulation of neural network activity, and interaction with other neurotransmitter systems. The behavioral effects of oxytocin signaling are determined by the species-specific distribution of brain oxytocin receptors. The socially monogamous prairie vole has been a useful model organism for elucidating the role of oxytocin in social behaviors, including pair bonding, response to social loss, and consoling. However, there has been no comprehensive mapping of oxytocin receptor-expressing cells throughout the prairie vole brain. Here, we employed a highly sensitive in situ hybridization, RNAscope, to construct an exhaustive, brain-wide map of oxytocin receptor mRNA-expressing cells. We found that oxytocin receptor mRNA expression was widespread and diffused throughout the brain, with specific areas displaying a particularly robust expression. Comparing receptor binding with mRNA revealed that regions of the hippocampus and substantia nigra contained oxytocin receptor protein but lacked mRNA, indicating that oxytocin receptors can be transported to distal neuronal processes, consistent with presynaptic oxytocin receptor functions. In the nucleus accumbens, a region involved in oxytocin-dependent social bonding, oxytocin receptor mRNA expression was detected in both the D1 and D2 dopamine receptor-expressing subtypes of cells. Furthermore, natural genetic polymorphisms robustly influenced oxytocin receptor expression in both D1 and D2 receptor cell types in the nucleus accumbens. Collectively, our findings further elucidate the extent to which oxytocin signaling is capable of influencing brain-wide neural activity, responses to social stimuli, and social behavior. KEY POINTS: Oxytocin receptor mRNA is diffusely expressed throughout the brain, with strong expression concentrated in certain areas involved in social behavior. Oxytocin receptor mRNA expression and protein localization are misaligned in some areas, indicating that the receptor protein may be transported to distal processes. In the nucleus accumbens, oxytocin receptors are expressed on cells expressing both D1 and D2 dopamine receptor subtypes, and the majority of variation in oxytocin receptor expression between animals is attributable to polymorphisms in the oxytocin receptor gene.
Collapse
Affiliation(s)
- Kiyoshi Inoue
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Charles L. Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
| | - Larry J. Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Emory University, Atlanta GA 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
240
|
Sunahara CS, Wilson SJ, Rosenfield D, Alvi T, Szeto A, Mendez AJ, Tabak BA. Oxytocin reactivity to a lab-based stressor predicts support seeking after stress in daily life: Implications for the Tend-and-Befriend theory. Psychoneuroendocrinology 2022; 145:105897. [PMID: 36095915 DOI: 10.1016/j.psyneuen.2022.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Social relationships play an important role in mental and physical health, particularly during times of stress. However, little is known about the biological mechanisms underlying the tendency to seek support following stress. The Tend-and-Befriend theory suggests that oxytocin (OT) may enhance the desire for social contact in response to stress. Yet, no studies in humans have provided empirical support for the connection between stress-induced changes in endogenous OT and increased support seeking after stress. In the present study, 94 participants performed a standardized laboratory stressor and then completed two weeks of daily assessments of support seeking after stress. In line with preregistered hypotheses, stress-induced plasma OT reactivity to the laboratory stressor was associated with more frequent support seeking behaviors following stress in daily life (i.e., outside of the laboratory). Additional results suggested that attachment anxiety (but not avoidance) strengthened this association. Our findings implicate the OT system in affiliative behaviors following stress, providing empirical support for the Tend-and-Befriend theory.
Collapse
Affiliation(s)
- Cecile S Sunahara
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Stephanie J Wilson
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Talha Alvi
- Department of Psychology, Southern Methodist University, Dallas, TX, United States
| | - Angela Szeto
- Department of Psychology, University of Miami, Miami, FL, United States
| | - Armando J Mendez
- Diabetes Research Institute, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Benjamin A Tabak
- Department of Psychology, Southern Methodist University, Dallas, TX, United States.
| |
Collapse
|
241
|
Tsingotjidou AS. Oxytocin: A Multi-Functional Biomolecule with Potential Actions in Dysfunctional Conditions; From Animal Studies and Beyond. Biomolecules 2022; 12:1603. [PMID: 36358953 PMCID: PMC9687803 DOI: 10.3390/biom12111603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 10/13/2023] Open
Abstract
Oxytocin is a hormone secreted from definite neuroendocrine neurons located in specific nuclei in the hypothalamus (mainly from paraventricular and supraoptic nuclei), and its main known function is the contraction of uterine and/or mammary gland cells responsible for parturition and breastfeeding. Among the actions of the peripherally secreted oxytocin is the prevention of different degenerative disorders. These actions have been proven in cell culture and in animal models or have been tested in humans based on hypotheses from previous studies. This review presents the knowledge gained from the previous studies, displays the results from oxytocin intervention and/or treatment and proposes that the well described actions of oxytocin might be connected to other numerous, diverse actions of the biomolecule.
Collapse
Affiliation(s)
- Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
242
|
Light exposure during early life promotes learning in adulthood. SCIENCE CHINA LIFE SCIENCES 2022; 66:887-888. [PMID: 36322323 DOI: 10.1007/s11427-022-2222-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
243
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|
244
|
Inada K, Tsujimoto K, Yoshida M, Nishimori K, Miyamichi K. Oxytocin signaling in the posterior hypothalamus prevents hyperphagic obesity in mice. eLife 2022; 11:75718. [PMID: 36281647 PMCID: PMC9596155 DOI: 10.7554/elife.75718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Decades of studies have revealed molecular and neural circuit bases for body weight homeostasis. Neural hormone oxytocin (Oxt) has received attention in this context because it is produced by neurons in the paraventricular hypothalamic nucleus (PVH), a known output center of hypothalamic regulation of appetite. Oxt has an anorexigenic effect, as shown in human studies, and can mediate satiety signals in rodents. However, the function of Oxt signaling in the physiological regulation of appetite has remained in question, because whole-body knockout (KO) of Oxt or Oxt receptor (Oxtr) has little effect on food intake. We herein show that acute conditional KO (cKO) of Oxt selectively in the adult PVH, but not in the supraoptic nucleus, markedly increases body weight and food intake, with an elevated level of plasma triglyceride and leptin. Intraperitoneal administration of Oxt rescues the hyperphagic phenotype of the PVH Oxt cKO model. Furthermore, we show that cKO of Oxtr selectively in the posterior hypothalamic regions, especially the arcuate hypothalamic nucleus, a primary center for appetite regulations, phenocopies hyperphagic obesity. Collectively, these data reveal that Oxt signaling in the arcuate nucleus suppresses excessive food intake.
Collapse
Affiliation(s)
- Kengo Inada
- RIKEN Center for Biosystems Dynamics Research
| | | | - Masahide Yoshida
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University
- Department of Obesity and Inflammation Research, Fukushima Medical University
| | - Kazunari Miyamichi
- RIKEN Center for Biosystems Dynamics Research
- CREST, Japan Science and Technology Agency
| |
Collapse
|
245
|
Jurek B, Denk L, Schäfer N, Salehi MS, Pandamooz S, Haerteis S. Oxytocin accelerates tight junction formation and impairs cellular migration in 3D spheroids: evidence from Gapmer-induced exon skipping. Front Cell Neurosci 2022; 16:1000538. [PMID: 36263085 PMCID: PMC9574052 DOI: 10.3389/fncel.2022.1000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (OXT) is a neuropeptide that has been associated with neurological diseases like autism, a strong regulating activity on anxiety and stress-related behavior, physiological effects during pregnancy and parenting, and various cellular effects in neoplastic tissue. In this study, we aimed to unravel the underlying mechanism that OXT employs to regulate cell-cell contacts, spheroid formation, and cellular migration in a 3D culture model of human MLS-402 cells. We have generated a labeled OXT receptor (OXTR) overexpressing cell line cultivated in spheroids that were treated with the OXTR agonists OXT, Atosiban, and Thr4-Gly7-oxytocin (TGOT); with or without a pre-treatment of antisense oligos (Gapmers) that induce exon skipping in the human OXTR gene. This exon skipping leads to the exclusion of exon 4 and therefore a receptor that lost its intracellular G-protein-binding domain. Sensitive digital PCR (dPCR) provided us with the means to differentiate between wild type and truncated OXTR in our cellular model. OXTR truncation differentially activated intracellular signaling cascades related to cell-cell attachment and proliferation like Akt, ERK1/2-RSK1/2, HSP27, STAT1/5, and CREB, as assessed by a Kinase Profiler Assay. Digital and transmission electron microscopy revealed increased tight junction formation and well-organized cellular protrusions into an enlarged extracellular space after OXT treatment, resulting in increased cellular survival. In summary, OXT decreases cellular migration but increases cell-cell contacts and therefore improves nutrient supply. These data reveal a novel cellular effect of OXT that might have implications for degenerating CNS diseases and tumor formation in various tissues.
Collapse
Affiliation(s)
- Benjamin Jurek
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lucia Denk
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Nicole Schäfer
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), Bio Park 1, University of Regensburg, Regensburg, Germany
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- *Correspondence: Silke Haerteis
| |
Collapse
|
246
|
De Laurentiis A, Correa F, Fernandez Solari J. Endocannabinoid System in the Neuroendocrine Response to Lipopolysaccharide-induced Immune Challenge. J Endocr Soc 2022; 6:bvac120. [PMID: 36042978 PMCID: PMC9419496 DOI: 10.1210/jendso/bvac120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid system plays a key role in the intersection of the nervous, endocrine, and immune systems, regulating not only their functions but also how they interplay with each other. Endogenous ligands, named endocannabinoids, are produced "on demand" to finely regulate the synthesis and secretion of hormones and neurotransmitters, as well as to regulate the production of cytokines and other proinflammatory mediators. It is well known that immune challenges, such as exposure to lipopolysaccharide, the main component of the Gram-negative bacteria cell wall, disrupt not only the hypothalamic-pituitary-adrenal axis but also affects other endocrine systems such as the hypothalamic-pituitary-gonadal axis and the release of oxytocin from the neurohypophysis. Here we explore which actors and molecular mechanisms are involved in these processes.
Collapse
Affiliation(s)
- Andrea De Laurentiis
- Universidad de Buenos Aires (UBA), Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
- Centro de Estudios Farmacológicos y Botánicos, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (UBA/CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando Correa
- Centro de Estudios Farmacológicos y Botánicos, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (UBA/CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier Fernandez Solari
- Universidad de Buenos Aires (UBA), Facultad de Odontología, Cátedra de Fisiología, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
247
|
Rashidi M, Maier E, Dekel S, Sütterlin M, Wolf RC, Ditzen B, Grinevich V, Herpertz SC. Peripartum effects of synthetic oxytocin: The good, the bad, and the unknown. Neurosci Biobehav Rev 2022; 141:104859. [PMID: 36087759 DOI: 10.1016/j.neubiorev.2022.104859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/30/2022]
Abstract
The first clinical applications of oxytocin (OT) were in obstetrics as a hormone to start and speed up labor and to control postpartum hemorrhage. Discoveries in the 1960s and 1970s revealed that the effects of OT are not limited to its peripheral actions around birth and milk ejection. Indeed, OT also acts as a neuromodulator in the brain affecting fear memory, social attachment, and other forms of social behaviors. The peripheral and central effects of OT have been separately subject to extensive scrutiny. However, the effects of peripheral OT-particularly in the form of administration of synthetic OT (synOT) around birth-on the central nervous system are surprisingly understudied. Here, we provide a narrative review of the current evidence, suggest putative mechanisms of synOT action, and provide new directions and hypotheses for future studies to bridge the gaps between neuroscience, obstetrics, and psychiatry.
Collapse
Affiliation(s)
- Mahmoud Rashidi
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany.
| | - Eduard Maier
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sharon Dekel
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Marc Sütterlin
- Department of Gynecology and Obstetrics, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Beate Ditzen
- Institute of Medical Psychology, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sabine C Herpertz
- Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
248
|
A fluorescent sensor for real-time measurement of extracellular oxytocin dynamics in the brain. Nat Methods 2022; 19:1286-1294. [PMID: 36138174 PMCID: PMC9550624 DOI: 10.1038/s41592-022-01597-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/01/2022] [Indexed: 12/21/2022]
Abstract
Oxytocin (OT), a hypothalamic neuropeptide that acts as a neuromodulator in the brain, orchestrates a variety of animal behaviors. However, the relationship between brain OT dynamics and complex animal behaviors remains largely elusive, partly because of the lack of a suitable technique for its real-time recording in vivo. Here, we describe MTRIAOT, a G-protein-coupled receptor-based green fluorescent OT sensor that has a large dynamic range, suitable affinity, ligand specificity for OT orthologs, minimal effects on downstream signaling and long-term fluorescence stability. By combining viral gene delivery and fiber photometry-mediated fluorescence measurements, we demonstrate the utility of MTRIAOT for real-time detection of brain OT dynamics in living mice. MTRIAOT-mediated measurements indicate variability of OT dynamics depending on the behavioral context and physical condition of an animal. MTRIAOT will likely enable the analysis of OT dynamics in a variety of physiological and pathological processes.
Collapse
|
249
|
Geißert L, Schmidt NM, Henkel K, Luxem A, Hennig J. Dopamine and oxytocin and their relevance for attachment: A gene x gene interaction study. PERSONALITY AND INDIVIDUAL DIFFERENCES 2022. [DOI: 10.1016/j.paid.2022.111752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
250
|
Pati D, Krause EG, Frazier CJ. Intrahypothalamic effects of oxytocin on PVN CRH neurons in response to acute stress. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 26:100382. [PMID: 36618014 PMCID: PMC9815561 DOI: 10.1016/j.coemr.2022.100382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Much of the centrally available oxytocin (OT) is synthesized in magnocellular neurons located in the paraventricular nucleus of the hypothalamus. This same area is home to parvocellular corticotropin-releasing hormone (CRH) synthesizing neurons that regulate activation of the hypothalamic-pituitary-adrenal (HPA) axis. A large body of data indicates that complex interactions between these systems inextricably link central OT signaling with the neuroendocrine response to stress. This review focuses on a small but diverse set of cellular and synaptic mechanisms that have been proposed to underlie intrahypothalamic OT/CRF interactions during the response to acute stress.
Collapse
Affiliation(s)
- Dipa Pati
- Department of Pharmacodynamics, College of Pharmacy, University of Florida
| | - Eric G. Krause
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Pharmacodynamics, College of Pharmacy, University of Florida
| | - Charles J. Frazier
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, FL
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL
| |
Collapse
|