201
|
Impaired energetics in heart failure — A new therapeutic target. Pharmacol Ther 2008; 119:264-74. [DOI: 10.1016/j.pharmthera.2008.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 11/20/2022]
|
202
|
Smeets PJH, Teunissen BEJ, Planavila A, de Vogel-van den Bosch H, Willemsen PHM, van der Vusse GJ, van Bilsen M. Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARalpha and PPARdelta. J Biol Chem 2008; 283:29109-18. [PMID: 18701451 DOI: 10.1074/jbc.m802143200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence indicates an important role for inflammation in cardiac hypertrophy and failure. Peroxisome proliferator-activated receptors (PPARs) have been reported to attenuate inflammatory signaling pathways and, as such, may interfere with cardiac remodeling. Accordingly, the objectives of the present study were to explore the relationship between cardiomyocyte hypertrophy and inflammation and to investigate whether PPARalpha and PPARdelta are able to inhibit NF-kappaB activation and, consequently, the hypertrophic growth response of neonatal rat cardiomyocytes (NCM). mRNA levels of markers of both hypertrophy and inflammation were increased following treatment with the pro-hypertrophic factor phenylephrine (PE) or the chemokine TNF-alpha. Induction of inflammatory genes was found to be fast (within 2 h after stimulation) and transient, while induction of hypertrophic marker genes was more gradual (peaking at 24-48 h). Inflammatory and hypertrophic pathways appeared to converge on NF-kappaB as both PE and TNF-alpha increased NF-kappaB binding activity as measured by electrophoretic mobility shift assay. Following transient transfection, the p65-induced transcriptional activation of a NF-kappaB reporter construct was significantly blunted after co-transfection of PPARalpha or PPARdelta in the presence of their respective ligands. Finally, adenoviral overexpression of PPARalpha and PPARdelta markedly attenuated cell enlargement and the expression of hypertrophic marker genes in PE-stimulated NCM. The collective findings reveal a close relationship between hypertrophic and inflammatory signaling pathways in the cardiomyocyte. It was shown that both PPARalpha and PPARdelta are able to mitigate cardiomyocyte hypertrophy in vitro by inhibiting NF-kappaB activation.
Collapse
Affiliation(s)
- Pascal J H Smeets
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
203
|
Wilson KD, Li Z, Wagner R, Yue P, Tsao P, Nestorova G, Huang M, Hirschberg DL, Yock PG, Quertermous T, Wu JC. Transcriptome alteration in the diabetic heart by rosiglitazone: implications for cardiovascular mortality. PLoS One 2008; 3:e2609. [PMID: 18648539 PMCID: PMC2481284 DOI: 10.1371/journal.pone.0002609] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/04/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recently, the type 2 diabetes medication, rosiglitazone, has come under scrutiny for possibly increasing the risk of cardiac disease and death. To investigate the effects of rosiglitazone on the diabetic heart, we performed cardiac transcriptional profiling and imaging studies of a murine model of type 2 diabetes, the C57BL/KLS-lepr(db)/lepr(db) (db/db) mouse. METHODS AND FINDINGS We compared cardiac gene expression profiles from three groups: untreated db/db mice, db/db mice after rosiglitazone treatment, and non-diabetic db/+ mice. Prior to sacrifice, we also performed cardiac magnetic resonance (CMR) and echocardiography. As expected, overall the db/db gene expression signature was markedly different from control, but to our surprise was not significantly reversed with rosiglitazone. In particular, we have uncovered a number of rosiglitazone modulated genes and pathways that may play a role in the pathophysiology of the increase in cardiac mortality as seen in several recent meta-analyses. Specifically, the cumulative upregulation of (1) a matrix metalloproteinase gene that has previously been implicated in plaque rupture, (2) potassium channel genes involved in membrane potential maintenance and action potential generation, and (3) sphingolipid and ceramide metabolism-related genes, together give cause for concern over rosiglitazone's safety. Lastly, in vivo imaging studies revealed minimal differences between rosiglitazone-treated and untreated db/db mouse hearts, indicating that rosiglitazone's effects on gene expression in the heart do not immediately turn into detectable gross functional changes. CONCLUSIONS This study maps the genomic expression patterns in the hearts of the db/db murine model of diabetes and illustrates the impact of rosiglitazone on these patterns. The db/db gene expression signature was markedly different from control, and was not reversed with rosiglitazone. A smaller number of unique and interesting changes in gene expression were noted with rosiglitazone treatment. Further study of these genes and molecular pathways will provide important insights into the cardiac decompensation associated with both diabetes and rosiglitazone treatment.
Collapse
Affiliation(s)
- Kitchener D. Wilson
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zongjin Li
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roger Wagner
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patrick Yue
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Phillip Tsao
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gergana Nestorova
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mei Huang
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - David L. Hirschberg
- Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, California, United States of America
| | - Paul G. Yock
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joseph C. Wu
- Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
204
|
Witteles RM, Fowler MB. Reply. J Am Coll Cardiol 2008. [DOI: 10.1016/j.jacc.2008.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
205
|
Huang TH, He L, Qin Q, Yang Q, Peng G, Harada M, Qi Y, Yamahara J, Roufogalis BD, Li Y. Salacia oblonga root decreases cardiac hypertrophy in Zucker diabetic fatty rats: inhibition of cardiac expression of angiotensin II type 1 receptor. Diabetes Obes Metab 2008; 10:574-85. [PMID: 17645561 DOI: 10.1111/j.1463-1326.2007.00750.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS We investigated the effect of the water extract of Salacia oblonga (SOE), an ayurvedic antidiabetic and antiobesity medicine, on obesity and diabetes-associated cardiac hypertrophy and discuss the role of modulation of cardiac angiotensin II type 1 receptor (AT(1)) expression in the effect. METHODS SOE (100 mg/kg) was given orally to male Zucker diabetic fatty (ZDF) rats for 7 weeks. At the end-point of the treatment, the hearts and left ventricles were weighed, cardiomyocyte cross-sectional areas were measured, and cardiac gene profiles were analysed. On the other hand, angiotensin II-stimulated embryonic rat heart-derived H9c2 cells and neonatal rat cardiac fibroblasts were pretreated with SOE and one of its prominent components mangiferin (MA), respectively. Atrial natriuretic peptide (ANP) mRNA expression and protein synthesis and [(3)H]thymidine incorporation were determined. RESULTS SOE-treated ZDF rats showed less cardiac hypertrophy (decrease in weights of the hearts and left ventricles and reduced cardiomyocyte cross-sectional areas). SOE treatment suppressed cardiac overexpression of ANP, brain natriuretic peptide (BNP) and AT(1) mRNAs and AT(1) protein in ZDF rats. SOE (50-100 microg/ml) and MA (25 micromol) suppressed angiotensin II-induced ANP mRNA overexpression and protein synthesis in H9c2 cells. They also inhibited angiotensin II-stimulated [(3)H]thymidine incorporation by cardiac fibroblasts. CONCLUSIONS Our findings demonstrate that SOE decreases cardiac hypertrophy in ZDF rats, at least in part by inhibiting cardiac AT(1) overexpression. These studies provide insights into a potential cardioprotective role of a traditional herb, which supports further clinical evaluation in obesity and diabetes-associated cardiac hypertrophy.
Collapse
Affiliation(s)
- T H Huang
- Faculty of Pharmacy, University of Sydney, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
206
|
Faiola B, Falls JG, Peterson RA, Bordelon NR, Brodie TA, Cummings CA, Romach EH, Miller RT. PPAR alpha, more than PPAR delta, mediates the hepatic and skeletal muscle alterations induced by the PPAR agonist GW0742. Toxicol Sci 2008; 105:384-94. [PMID: 18593727 DOI: 10.1093/toxsci/kfn130] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Therapeutic use of certain peroxisome proliferator-activated receptor (PPAR) alpha agonists (fibrates) for the treatment of dyslipidemia has infrequently been associated with the untoward side effect of myopathy. With interest in PPAR-delta as a therapeutic target, this study assessed whether a PPAR-delta agonist induced similar hepatic and skeletal muscle alterations as noted with some fibrates. PPAR-alpha null (KO) and corresponding wild-type (WT) mice were administered toxicological dosages of a potent PPAR-delta agonist tool ligand (GW0742; which also has weak PPAR-alpha agonist activity) or a potent PPAR-alpha agonist (WY-14,643) for 10 days. Increases in liver weights and clinical chemistry indicators of skeletal muscle damage and/or liver injury were more pronounced in WT mice compared with KO mice administered the PPAR-delta agonist. Likewise, the incidence and severity of skeletal myopathy were greater in WT mice given GW0742 compared with KO mice. Ultrastructural and immunohistochemical analyses revealed significant peroxisome proliferation in muscle and liver of WT mice treated with each agonist; however, KO animals showed little or no evidence of hepatic and muscle peroxisome proliferation. PMP-70 protein expression in liver was consistent with these results. The hepatomegaly, hepatic and skeletal muscle peroxisome proliferation, and skeletal myopathy induced by this PPAR-delta ligand was predominantly mediated by its cross-activation of PPAR-alpha, though PPAR-delta agonism contributed slightly to these effects.
Collapse
Affiliation(s)
- Brenda Faiola
- Safety Assessment Department, GlaxoSmithKline, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Shen W, Hao J, Tian C, Ren J, Yang L, Li X, Luo C, Cotma CW, Liu J. A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. PLoS One 2008; 3:e2328. [PMID: 18523557 PMCID: PMC2391295 DOI: 10.1371/journal.pone.0002328] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/26/2008] [Indexed: 12/25/2022] Open
Abstract
Background Recent evidence indicates that insulin resistance in skeletal muscle may be related to reduce mitochondrial number and oxidation capacity. However, it is not known whether increasing mitochondrial number and function improves insulin resistance. In the present study, we investigated the effects of a combination of nutrients on insulin resistance and mitochondrial biogenesis/function in skeletal muscle of type 2 diabetic Goto–Kakizaki rats. Methodology/Principal Findings We demonstrated that defect of glucose and lipid metabolism is associated with low mitochondrial content and reduced mitochondrial enzyme activity in skeletal muscle of the diabetic Goto-Kakizaki rats. The treatment of combination of R-α-lipoic acid, acetyl-L-carnitine, nicotinamide, and biotin effectively improved glucose tolerance, decreased the basal insulin secretion and the level of circulating free fatty acid (FFA), and prevented the reduction of mitochondrial biogenesis in skeletal muscle. The nutrients treatment also significantly increased mRNA levels of genes involved in lipid metabolism, including peroxisome proliferator–activated receptor-α (Pparα), peroxisome proliferator–activated receptor-δ (Pparδ), and carnitine palmitoyl transferase-1 (Mcpt-1) and activity of mitochondrial complex I and II in skeletal muscle. All of these effects of mitochondrial nutrients are comparable to that of the antidiabetic drug, pioglitazone. In addition, the treatment with nutrients, unlike pioglitazone, did not cause body weight gain. Conclusions/Significance These data suggest that a combination of mitochondrial targeting nutrients may improve skeletal mitochondrial dysfunction and exert hypoglycemic effects, without causing weight gain.
Collapse
MESH Headings
- Animals
- DNA, Mitochondrial/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/physiopathology
- Dietary Supplements
- Fatty Acids, Nonesterified/blood
- Glucose Tolerance Test
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Muscle Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Rats
- Rats, Mutant Strains
Collapse
Affiliation(s)
- Weili Shen
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiejie Hao
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Chuan Tian
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Jinmin Ren
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lu Yang
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuesen Li
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Cheng Luo
- Institute for Nutritional Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Carl W. Cotma
- Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California, United States of America
| | - Jiankang Liu
- Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
208
|
Lindegaard MLS, Nielsen LB. Maternal diabetes causes coordinated down-regulation of genes involved with lipid metabolism in the murine fetal heart. Metabolism 2008; 57:766-73. [PMID: 18502258 DOI: 10.1016/j.metabol.2008.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 01/10/2008] [Indexed: 01/13/2023]
Abstract
Maternal diabetes is associated with increased transport of lipids to the fetus and increased risk of hypertrophic cardiomyopathy in the fetus. During fetal life, the heart normally has limited capacity to use lipids as fuel; and, at least in adults, cardiac lipid accumulation may lead to cardiomyopathy. Postnatally, lipid supply is increased when the offspring begins to suckle. We examined offspring from hypoinsulinemic Ins2(Akita) mice to assess whether maternal diabetes results in fetal myocardial hypertrophy and triglyceride accumulation and compared these with fetal hearts collected postnatally. On embryonic days 16 to 19, the fetal heart weight and triglyceride content were similar in offspring from Ins2(Akita) and nondiabetic wild-type mothers. The heart expression of lipid-metabolizing genes (peroxisomal proliferator-activated receptor alpha, lipoprotein lipase, fatty acid translocase, and fatty acid transport protein 1) was reduced in offspring from Ins2(Akita) mothers with high blood glucose levels and were closely intercorrelated, suggesting coordinated down-regulation. In contrast, on day 1 postnatally where the lipid availability to the heart is markedly increased, heart triglycerides and expression of several lipid-metabolizing genes (including lipoprotein lipase and fatty acid transport protein 1) were increased in offspring from wild-type mice. The results suggest that maternal type 1 diabetes mellitus in Ins2(Akita) mice does not cause cardiac hypertrophy or triglycerides accumulation in the fetal heart, possibly because of a coordinated down-regulation of genes controlling fatty acid uptake.
Collapse
|
209
|
Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 2008; 44:968-975. [PMID: 18462747 DOI: 10.1016/j.yjmcc.2008.03.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/07/2008] [Accepted: 03/21/2008] [Indexed: 12/20/2022]
Abstract
Common causes of heart failure are associated with derangements in myocardial fuel utilization. Evidence is emerging that metabolic abnormalities may contribute to the development and progression of myocardial disease. The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptor transcription factors has been shown to regulate cardiac fuel metabolism at the gene expression level. The three PPAR family members (alpha, beta/delta and gamma) are uniquely suited to serve as transducers of developmental, physiological, and dietary cues that influence cardiac fatty acid and glucose metabolism. This review describes murine PPAR loss- and gain-of-function models that have shed light on the roles of these receptors in regulating myocardial metabolic pathways and have defined key links to disease states including the hypertensive and diabetic heart.
Collapse
Affiliation(s)
- Jose A Madrazo
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel P Kelly
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
210
|
Baranowski M, Blachnio-Zabielska A, Zabielski P, Gorski J. Pioglitazone induces lipid accumulation in the rat heart despite concomitant reduction in plasma free fatty acid availability. Arch Biochem Biophys 2008; 477:86-91. [PMID: 18541139 DOI: 10.1016/j.abb.2008.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 05/19/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
Abstract
Thiazolidinediones are insulin-sensitizing drugs which have been proved to be effective in the treatment of type 2 diabetes. However, the action of thiazolidinediones on myocardial metabolism is only poorly recognized. Therefore, the aim of our study was to investigate the effects of two-week pioglitazone treatment (3 mg/kg/d) on lipid and carbohydrate metabolism in the heart of rats fed on a standard chow or on a high-fat diet (HFD) for three weeks. High-fat feeding increased myocardial protein expression of all peroxisome proliferator-activated receptor (PPAR) isoforms. The greatest response was, however, noted in the case of PPARgamma. Surprisingly, administration of pioglitazone induced accumulation of free fatty acids (FFA) and diacylglycerol in the heart in both groups, despite concomitant reduction in plasma FFA concentration. The content of triacylglycerol was increased only in the HFD group. Pioglitazone treatment also shifted myocardial substrate utilization towards greater contribution of glucose in both groups, as evidenced by decreased rate of palmitate oxidation and higher 2-deoxyglucose uptake and elevated glycogen content. This could induce a mismatch between the rate of myocardial fatty acid uptake and oxidation leading to increased intracellular availability of fatty acids for non-oxidative metabolic pathways like synthesis of acylglycerols. Our data suggests that thiazolidinediones improve cardiac insulin sensitivity by mechanisms other than reduction in intramyocardial lipid content.
Collapse
Affiliation(s)
- Marcin Baranowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-230 Bialystok, Poland.
| | | | | | | |
Collapse
|
211
|
Abstract
Interest in peroxisome proliferator-activated receptors (PPARs) has steadily increased over the past 15 years. The recognition that subclasses of this receptor played critical roles in regulation of metabolism led to the development of synthetic ligands and their widespread application in the treatment of type 2 diabetes. At the same time, emerging evidence demonstrated that the influence of PPARs extends well beyond metabolism and diabetes. A salient example of this can be seen in studies that explore the role of PPARs in lung cell biology. In fact, current literature suggests that PPAR receptors may well represent exciting new targets for treatment in a variety of lung disorders. In an attempt to keep the scientific and medical communities abreast of these developments, a symposium sponsored by the American Federation for Medical Research entitled "PPARgamma: A Novel Molecular Target in Lung Disease" was convened on April 29, 2007, at the Experimental Biology Meeting in Washington, DC. During that symposium, 4 speakers reviewed the latest developments in basic and translational research as they relate to specific lung diseases. Jesse Roman, MD, professor and director of the Emory University Division of Pulmonary, Allergy, and Critical Care Medicine, reviewed the role of PPARgamma in the pathogenesis of lung cancer and its implications for therapy. Raju Reddy, MD, assistant professor of Medicine at the University of Michigan, presented data regarding the immunomodulatory role of PPARgamma in alveolar macrophages. Patricia J. Sime, MD, associate professor of Medicine, Environmental Medicine, and Oncology at the University of Rochester School of Medicine, discussed the antifibrogenic potential of PPARgamma ligands in pulmonary fibrosis. Finally, C. Michael Hart, MD, professor of Medicine at Emory University and chief of the Atlanta Veterans Affairs Medical Center Pulmonary Section, reviewed the role of PPARgamma in pulmonary vascular disease. This brief introduction to the symposium will provide background information about PPARs to facilitate the general reader's appreciation of the more in-depth and disease-specific discussions that follow.
Collapse
Affiliation(s)
- C Michael Hart
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University Medical Centers, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
212
|
Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 2008; 79:208-17. [PMID: 18430751 DOI: 10.1093/cvr/cvn098] [Citation(s) in RCA: 681] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the concept of energy starvation in the failing heart was proposed decades ago, still very little is known about the origin of energetic failure. Recent advances in molecular biology have started to elucidate the transcriptional events governing mitochondrial biogenesis. In particular, a great step was taken with the discovery that peroxisome proliferator-activated receptor gamma co-activator (PGC-1alpha) is the master regulator of mitochondrial biogenesis. The molecular mechanisms underlying the downregulation of PGC-1alpha and the consequent decrease in mitochondrial function in heart failure are, however, still poorly understood. Indeed, the main pathways involved in mitochondrial biogenesis are thought to be up- rather than down-regulated in pathological hypertrophy and heart failure. The current review summarizes recent advances in this field and is restricted to the heart when cardiac data are available.
Collapse
|
213
|
Chang CH, McNamara LA, Wu MS, Muise ES, Tan Y, Wood HB, Meinke PT, Thompson JR, Doebber TW, Berger JP, McCann ME. A novel selective peroxisome proliferator-activator receptor-γ modulator—SPPARγM5 improves insulin sensitivity with diminished adverse cardiovascular effects. Eur J Pharmacol 2008; 584:192-201. [DOI: 10.1016/j.ejphar.2007.12.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 11/28/2007] [Accepted: 12/16/2007] [Indexed: 11/25/2022]
|
214
|
Chess DJ, Stanley WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res 2008; 79:269-78. [PMID: 18343896 DOI: 10.1093/cvr/cvn074] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Under physiological conditions, the human heart derives energy from glucose, fatty acids, and/or lactate depending upon substrate availability, circulating hormone levels, and nutritional status. Circulating free fatty acid and glucose levels often exceed the normal range, as observed with type 2 diabetes, obesity, or physical inactivity. Chronic exposure of the heart to high plasma levels of free fatty acids may cause accumulation of toxic lipid intermediates within cardiomyocytes. Furthermore, suppression of glucose oxidation by increased fatty acid uptake shunts glucose into the oxidative pentose phosphate and hexosamine biosynthetic pathways, both of which yield potentially harmful products. Noxious derivatives of aberrant glucose and fatty acid oxidation can activate signalling cascades leading to myocyte dysfunction or death, processes termed 'glucotoxicity' and 'lipotoxicity'. This review discusses the effects of dietary extremes (e.g. high fat and high carbohydrate consumption) and substrate overabundance in the context of heart failure (HF) development and progression. Emerging data suggest that substrate excess leads to cardiac dysfunction and HF, which may be prevented or slowed by maintaining low body fat and high insulin sensitivity and consuming a diet of low glycaemic load that is high in mono- and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- David J Chess
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
215
|
Montessuit C, Papageorgiou I, Lerch R. Nuclear receptor agonists improve insulin responsiveness in cultured cardiomyocytes through enhanced signaling and preserved cytoskeletal architecture. Endocrinology 2008; 149:1064-74. [PMID: 18063688 DOI: 10.1210/en.2007-0656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin resistance is the failure of insulin to stimulate the transport of glucose into its target cells. A highly regulatable supply of glucose is important for cardiomyocytes to cope with situations of metabolic stress. We recently observed that isolated adult rat cardiomyocytes become insulin resistant in vitro. Insulin resistance is combated at the whole body level with agonists of the nuclear receptor complex peroxisome proliferator-activated receptor gamma (PPARgamma)/retinoid X receptor (RXR). We investigated the effects of PPARgamma/RXR agonists on the insulin-stimulated glucose transport and on insulin signaling in insulin-resistant adult rat cardiomyocytes. Treatment of cardiomyocytes with ciglitazone, a PPARgamma agonist, or 9-cis retinoic acid (RA), a RXR agonist, increased insulin- and metabolic stress-stimulated glucose transport, whereas agonists of PPARalpha or PPARbeta/delta had no effect. Stimulation of glucose transport in response to insulin requires the phosphorylation of the signaling intermediate Akt on the residues Thr308 and Ser473 and, downstream of Akt, AS160 on several Thr and Ser residues. Phosphorylation of Akt and AS160 in response to insulin was lower in insulin-resistant cardiomyocytes. However, treatment with 9-cis RA markedly increased phosphorylation of both proteins. Treatment with 9-cis RA also led to better preservation of microtubules in cultured cardiomyocytes. Disruption of microtubules in insulin-responsive cardiomyocytes abolished insulin-stimulated glucose transport and reduced phosphorylation of AS160 but not Akt. Metabolic stress-stimulated glucose transport also involved AS160 phosphorylation in a microtubule-dependent manner. Thus, the stimulation of glucose uptake in response to insulin or metabolic stress is dependent in cardiomyocytes on the presence of intact microtubules.
Collapse
Affiliation(s)
- Christophe Montessuit
- Division of Cardiology, Geneva University Hospitals, 24 Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | | | |
Collapse
|
216
|
Yue TL, Nerurkar SS, Bao W, Jucker BM, Sarov-Blat L, Steplewski K, Ohlstein EH, Willette RN. In vivo activation of peroxisome proliferator-activated receptor-delta protects the heart from ischemia/reperfusion injury in Zucker fatty rats. J Pharmacol Exp Ther 2008; 325:466-74. [PMID: 18287212 DOI: 10.1124/jpet.107.135327] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-delta is a transcription factor that belongs to the PPAR family. PPAR-delta is abundantly expressed in the heart, and its role in the heart is largely unknown. We tested whether pharmacological activation of PPAR-delta protects the heart from ischemia/reperfusion (I/R) injury in male Zucker fatty rats, a rodent model of obesity and dyslipidemia. A highly selective PPAR-delta agonist, [4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl] thio]-2-methylphenoxy]acetic acid (GW0742), was administered for 7 days at 10 mg/kg/day (p.o., once a day). Ischemic injury was produced by occlusion of the left anterior descending artery for 30 min followed by reperfusion for up to 24 h. Treatment with GW0742 reduced serum levels of cardiac troponin-I and infarct size by 63% (p < 0.01) and 32% (p < 0.01), respectively, and improved left ventricular function. Treatment with GW0742 up-regulated gene expression involved in cardiac fatty acid oxidation, increased fat use in the heart, and reduced serum levels of free fatty acids. The enhanced cardiac expression of interleukin (IL)-6, IL-8, intercellular adhesion molecule-1, and monocyte chemoattractant protein-1 induced by I/R were significantly attenuated by GW0742. Treatment with GW0742 also reduced apoptotic cardiomyocytes by 34% and cardiac caspase-3 activity by 61% (both p < 0.01 versus vehicle). GW0742 differentially regulated Bcl family members, favoring cell survival, and attenuated I/R-induced cardiac mitochondrial damage. In addition, GW0742 treatment augmented the cardiac Akt signaling pathway, as reflected by enhanced phospho-3-phosphoinositide-dependent kinase-1 and p-Akt. The results indicate that activation of PPAR-delta protected the heart from I/R injury in Zucker fatty rats, and multiple mechanisms including amelioration of lipotoxicity, anti-inflammation, and up-regulation of prosurvival signaling contribute together to the cardioprotection.
Collapse
Affiliation(s)
- Tian-Li Yue
- Department of Cardiac Biology, GlaxoSmithKline, 709 Swedeland Rd., King of Prussia, PA 19406, USA.
| | | | | | | | | | | | | | | |
Collapse
|
217
|
Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi K, Welch MJ, Kelly DP. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 2008; 117:3930-9. [PMID: 18037994 DOI: 10.1172/jci32578] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022] Open
Abstract
In the diabetic heart, chronic activation of the PPARalpha pathway drives excessive fatty acid (FA) oxidation, lipid accumulation, reduced glucose utilization, and cardiomyopathy. The related nuclear receptor, PPARbeta/delta, is also highly expressed in the heart, yet its function has not been fully delineated. To address its role in myocardial metabolism, we generated transgenic mice with cardiac-specific expression of PPARbeta/delta, driven by the myosin heavy chain (MHC-PPARbeta/delta mice). In striking contrast to MHC-PPARalpha mice, MHC-PPARbeta/delta mice had increased myocardial glucose utilization, did not accumulate myocardial lipid, and had normal cardiac function. Consistent with these observed metabolic phenotypes, we found that expression of genes involved in cellular FA transport were activated by PPARalpha but not by PPARbeta/delta. Conversely, cardiac glucose transport and glycolytic genes were activated in MHC-PPARbeta/delta mice, but repressed in MHC-PPARalpha mice. In reporter assays, we showed that PPARbeta/delta and PPARalpha exerted differential transcriptional control of the GLUT4 promoter, which may explain the observed isotype-specific effects on glucose uptake. Furthermore, myocardial injury due to ischemia/reperfusion injury was significantly reduced in the MHC-PPARbeta/delta mice compared with control or MHC-PPARalpha mice, consistent with an increased capacity for myocardial glucose utilization. These results demonstrate that PPARalpha and PPARbeta/delta drive distinct cardiac metabolic regulatory programs and identify PPARbeta/delta as a potential target for metabolic modulation therapy aimed at cardiac dysfunction caused by diabetes and ischemia.
Collapse
Affiliation(s)
- Eileen M Burkart
- Center for Cardiovascular Research, Department of Medicine,Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond) 2008; 114:195-210. [PMID: 18184113 DOI: 10.1042/cs20070166] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The metabolic syndrome represents a cluster of abnormalities, including obesity, insulin resistance, dyslipidaemia and Type 2 diabetes, that increases the risk of developing cardiovascular diseases, such as coronary artery disease and heart failure. The heart failure risk is increased even after adjusting for coronary artery disease and hypertension, and evidence is emerging that changes in cardiac energy metabolism might contribute to the development of contractile dysfunction. Recent findings suggest that myocardial mitochondrial dysfunction may play an important role in the pathogenesis of cardiac contractile dysfunction in obesity, insulin resistance and Type 2 diabetes. This review will discuss potential molecular mechanisms for these mitochondrial abnormalities.
Collapse
|
219
|
Murray AJ, Cole MA, Lygate CA, Carr CA, Stuckey DJ, Little SE, Neubauer S, Clarke K. Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 2008; 44:694-700. [PMID: 18328500 DOI: 10.1016/j.yjmcc.2008.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 01/28/2008] [Accepted: 01/29/2008] [Indexed: 11/30/2022]
Abstract
Heart failure patients have abnormal cardiac high energy phosphate metabolism, the explanation for which is unknown. Patients with heart failure also have elevated plasma free fatty acid (FFA) concentrations. Elevated FFA levels are associated with increased cardiac mitochondrial uncoupling proteins (UCPs), which, in turn, are associated with decreased mitochondrial respiratory coupling and low cardiac efficiency. Here, we determined whether increased mitochondrial UCP levels contribute to decreased energetics in the failing heart by measuring UCPs and respiration in mitochondria isolated from the viable myocardium of chronically infarcted rat hearts and measuring efficiency (hydraulic work/O(2) consumption) in the isolated, working rat heart. Ten weeks after infarction, cardiac levels of UCP3 were increased by 53% in infarcted, failing hearts that had ejection fractions less than 45%. Cardiac UCP3 levels correlated positively with non-fasting plasma FFAs (r=0.81; p<0.01). Mitochondria from failing hearts were less coupled than those from control hearts, as demonstrated by the lower ADP/O ratio of 1.9+/-0.1 compared with 2.5+/-0.2 in controls (p<0.05). The decreased ADP/O ratio was reflected in an efficiency of 14+/-2% in the failing hearts when perfused with 1 mM palmitate, compared with 20+/-1% in controls (p<0.05). We conclude that failing hearts have increased UCP3 levels that are associated with high circulating FFA concentrations, mitochondrial uncoupling, and decreased cardiac efficiency. Thus, respiratory uncoupling may underlie the abnormal energetics and low efficiency in the failing heart, although whether this is maladaptive or adaptive would require direct investigation.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, England.
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Larsen TS, Aasum E. Metabolic (In)Flexibility of the Diabetic Heart. Cardiovasc Drugs Ther 2008; 22:91-5. [DOI: 10.1007/s10557-008-6083-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|
221
|
Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 2008; 51:93-102. [PMID: 18191731 DOI: 10.1016/j.jacc.2007.10.021] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 10/04/2007] [Accepted: 10/22/2007] [Indexed: 02/07/2023]
Abstract
Increasing evidence points to insulin resistance as a primary etiologic factor in the development of nonischemic heart failure (HF). The myocardium normally responds to injury by altering substrate metabolism to increase energy efficiency. Insulin resistance prevents this adaptive response and can lead to further injury by contributing to lipotoxicity, sympathetic up-regulation, inflammation, oxidative stress, and fibrosis. Animal models have repeatedly demonstrated the existence of an insulin-resistant cardiomyopathy, one that is characterized by inefficient energy metabolism and is reversible by improving energy use. Clinical studies in humans strongly support the link between insulin resistance and nonischemic HF. Insulin resistance is highly prevalent in the nonischemic HF population, predates the development of HF, independently defines a worse prognosis, and predicts response to antiadrenergic therapy. Potential options for treatment include metabolic-modulating agents and antidiabetic drugs. This article reviews the basic science evidence, animal experiments, and human clinical data supporting the existence of an "insulin-resistant cardiomyopathy" and proposes specific potential therapeutic approaches.
Collapse
Affiliation(s)
- Ronald M Witteles
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|
222
|
Gélinas R, Labarthe F, Bouchard B, Mc Duff J, Charron G, Young ME, Des Rosiers C. Alterations in carbohydrate metabolism and its regulation in PPARalpha null mouse hearts. Am J Physiol Heart Circ Physiol 2008; 294:H1571-80. [PMID: 18223187 DOI: 10.1152/ajpheart.01340.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although a shift from fatty acids (FAs) to carbohydrates (CHOs) is considered beneficial for the diseased heart, it is unclear why subjects with FA beta-oxidation defects are prone to cardiac decompensation under stress conditions. The present study investigated potential alterations in the myocardial utilization of CHOs for energy production and anaplerosis in 12-wk-old peroxisome proliferator-activating receptor-alpha (PPARalpha) null mice (a model of FA beta-oxidation defects). Carbon-13 methodology was used to assess substrate flux through energy-yielding pathways in hearts perfused ex vivo at two workloads with a physiological substrate mixture mimicking the fed state, and real-time RT-quantitative polymerase chain reaction was used to document the expression of selected metabolic genes. When compared with that from control C57BL/6 mice, isolated working hearts from PPARalpha null mice displayed an impaired capacity to withstand a rise in preload (mimicking an increased venous return as it occurs during exercise) as reflected by a 20% decline in the aortic flow rate. At the metabolic level, beyond the expected shift from FA (5-fold down) to CHO (1.5-fold up; P < 0.001) at both preloads, PPARalpha null hearts also displayed 1) a significantly greater contribution of exogenous lactate and glucose and/or glycogen (2-fold up) to endogenous pyruvate formation, whereas that of exogenous pyruvate remained unchanged and 2) marginal alterations in citric acid cycle-related parameters. The lactate production rate was the only measured parameter that was affected differently by preloads in control and PPARalpha null mouse hearts, suggesting a restricted reserve for the latter hearts to enhance glycolysis when the energy demand is increased. Alterations in the expression of some glycolysis-related genes suggest potential mechanisms involved in this defective CHO metabolism. Collectively, our data highlight the importance of metabolic alterations in CHO metabolism associated with FA oxidation defects as a factor that may predispose the heart to decompensation under stress conditions even in the fed state.
Collapse
Affiliation(s)
- Roselle Gélinas
- Montreal Heart Inst. Research Center, 5350, Montreal, Quebec, Canada H1T 1C8
| | | | | | | | | | | | | |
Collapse
|
223
|
Koufany M, Moulin D, Bianchi A, Muresan M, Sebillaud S, Netter P, Weryha G, Jouzeau JY. Anti-inflammatory effect of antidiabetic thiazolidinediones prevents bone resorption rather than cartilage changes in experimental polyarthritis. Arthritis Res Ther 2008; 10:R6. [PMID: 18199331 PMCID: PMC2374462 DOI: 10.1186/ar2354] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/27/2007] [Accepted: 01/16/2008] [Indexed: 12/19/2022] Open
Abstract
Background Rosiglitazone and pioglitazone are high-affinity peroxisome proliferator-activated receptor (PPAR)-γ agonists with potent anti-diabetic properties and potential anti-inflammatory effects. We compared the ability of a range of oral doses of these thiazolidinediones, including those sufficient to restore insulin sensitization, to inhibit the pathogenesis of adjuvant-induced arthritis (AIA). Methods AIA was induced in Lewis rats by a subcutaneous injection of 1 mg of complete Freund's adjuvant. Rats were treated orally for 21 days with pioglitazone 3, 10 or 30 mg/kg/day, rosiglitazone 3 or 10 mg/kg/day, or with vehicle only. The time course of AIA was evaluated by biotelemetry to monitor body temperature and locomotor activity, by clinical score and plethysmographic measurement of hindpaw oedema. At necropsy, RT-PCR analysis was performed on synovium, liver and subcutaneous fat. Changes in cartilage were evaluated by histological examination of ankle joints, radiolabelled sulphate incorporation (proteoglycan synthesis), glycosaminoglycan content (proteoglycan turnover) and aggrecan expression in patellar cartilage. Whole-body bone mineral content was measured by dual-energy X-ray absorptiometry. Results The highest doses of rosiglitazone (10 mg/kg/day) or pioglitazone (30 mg/kg/day) were required to reduce fever peaks associated with acute or chronic inflammation, respectively, and to decrease arthritis severity. At these doses, thiazolidinediones reduced synovitis and synovial expression of TNF-α, IL-1β and basic fibroblast growth factor without affecting neovascularization or the expression of vascular endothelial growth factor. Thiazolidinediones failed to prevent cartilage lesions and arthritis-induced inhibition of proteoglycan synthesis, aggrecan mRNA level or glycosaminoglycan content in patellar cartilage, but reduced bone erosions and inflammatory bone loss. A trend towards lower urinary levels of deoxipyridinolin was also noted in arthritic rats treated with thiazolidinediones. Rosiglitazone 10 mg/kg/day or pioglitazone 30 mg/kg/day increased the expression of PPAR-γ and adiponectin in adipose tissue, confirming that they were activating PPAR-γ in inflammatory conditions, although an increase in fat mass percentage was observed for the most anti-arthritic dose. Conclusion These data emphasize that higher dosages of thiazolidinediones are required for the treatment of arthritis than for restoring insulin sensitivity but that thiazolidinediones prevent inflammatory bone loss despite exposing animals to increased fatness possibly resulting from excessive activation of PPAR-γ.
Collapse
Affiliation(s)
- Meriem Koufany
- Laboratoire de Physiopathologie et Pharmacologie Articulaires (LPPA), UMR 7561 CNRS-Nancy Université, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-lès-Nancy, France.
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Jucker BM, Doe CP, Schnackenberg CG, Olzinski AR, Maniscalco K, Williams C, Hu TCC, Lenhard SC, Costell M, Bernard R, Sarov-Blat L, Steplewski K, Willette RN. PPARdelta activation normalizes cardiac substrate metabolism and reduces right ventricular hypertrophy in congestive heart failure. J Cardiovasc Pharmacol 2007; 50:25-34. [PMID: 17666912 DOI: 10.1097/fjc.0b013e31804b4163] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previously, it was shown that selective deletion of peroxisome proliferator activated receptor delta (PPARdelta) in the heart resulted in a cardiac lipotoxicity, hypertrophy, and heart failure. The aim of the present study was to determine the effects of chronic and selective pharmacological activation of PPARdelta in a model of congestive heart failure. PPARdelta-specific agonist treatment (GW610742X at 30 and 100 mg/kg/day for 6-9 weeks) was initiated immediately postmyocardial infarction (MI) in Sprague-Dawley rats. Magnetic resonance imaging/spectroscopy was used to assess cardiac function and energetics. A 1-(13)C glucose clamp was performed to assess relative cardiac carbohydrate versus fat oxidation. Additionally, cardiac hemodynamics and reverse-transcription polymerase chain reaction gene expression analysis was performed. MI rats had significantly reduced left ventricle (LV) ejection fractions and whole heart phosphocreatine/adenosine triphosphate ratio compared with Sham animals (reduction of 43% and 14%, respectively). However, GW610742X treatment had no effect on either parameter. In contrast, the decrease in relative fat oxidation rate observed in both LV and right ventricle (RV) following MI (decrease of 58% and 54%, respectively) was normalized in a dose-dependent manner following treatment with GW610742X. These metabolic changes were associated with an increase in lipid transport/metabolism target gene expression (eg, CD36, CPT1, UCP3). Although there was no difference between groups in LV weight or infarct size measured upon necropsy, there was a dramatic reduction in RV hypertrophy and lung congestion (decrease of 22-48%, P<0.01) with treatment which was associated with a >7-fold decrease (P<0.05) in aterial natriuretic peptide gene expression in RV. Diuretic effects were not observed with GW610742X. In conclusion, chronic treatment with a selective PPARdelta agonist normalizes cardiac substrate metabolism and reduces RV hypertrophy and pulmonary congestion consistent with improvement in congestive heart failure.
Collapse
Affiliation(s)
- Beat M Jucker
- Cardiovascular and Urogenital Center of Excellence for Drug Discovery, and Genomics Research, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Rodriguez-Calvo R, Serrano L, Barroso E, Coll T, Palomer X, Camins A, Sanchez RM, Alegret M, Merlos M, Pallas M, Laguna JC, Vazquez-Carrera M. Peroxisome Proliferator-Activated Receptor Down-Regulation Is Associated With Enhanced Ceramide Levels in Age-Associated Cardiac Hypertrophy. J Gerontol A Biol Sci Med Sci 2007; 62:1326-36. [DOI: 10.1093/gerona/62.12.1326] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
226
|
Abstract
PURPOSE OF REVIEW Energetic abnormalities in cardiac and skeletal muscle occur in heart failure and correlate with clinical symptoms and mortality. It is likely that the cellular mechanism leading to energetic failure involves mitochondrial dysfunction. Therefore, it is crucial to elucidate the causes of mitochondrial myopathy, in order to improve cardiac and skeletal muscle function, and hence quality of life, in heart failure patients. RECENT FINDINGS Recent studies identified several potential stresses that lead to mitochondrial dysfunction in heart failure. Chronically elevated plasma free fatty acid levels in heart failure are associated with decreased metabolic efficiency and cellular insulin resistance. Tissue hypoxia, resulting from low cardiac output and endothelial impairment, can lead to oxidative stress and mitochondrial DNA damage, which in turn causes dysfunction and loss of mitochondrial mass. Therapies aimed at protecting mitochondrial function have shown promise in patients and animal models with heart failure. SUMMARY Despite current therapies, which provide substantial benefit to patients, heart failure remains a relentlessly progressive disease, and new approaches to treatment are necessary. Novel pharmacological agents are needed that optimize substrate metabolism and maintain mitochondrial integrity, improve oxidative capacity in heart and skeletal muscle, and alleviate many of the clinical symptoms associated with heart failure.
Collapse
Affiliation(s)
- Andrew J Murray
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK. [corrected]
| | | | | |
Collapse
|
227
|
Smeets PJH, Planavila A, van der Vusse GJ, van Bilsen M. Peroxisome proliferator-activated receptors and inflammation: take it to heart. Acta Physiol (Oxf) 2007; 191:171-88. [PMID: 17935522 DOI: 10.1111/j.1748-1716.2007.01752.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors acting as key regulators of lipid metabolism as well as modulators of inflammation. The role of PPARalpha and PPARgamma in cardiac ischaemia-reperfusion injury, infarct healing and hypertrophy is the subject of intense research. Due to the later development of PPARdelta-specific ligands, the role of this PPAR isoform in cardiac disease remains to be established. Although many studies point to salutatory effects of PPAR ligands in cardiac disease, the exact molecular mechanism is still largely unsolved. Both the metabolic (via transactivation) and the more recently discovered anti-inflammatory (via transrepression) effects of PPARs are likely to play a role. In this review the reported, and sometimes contradictory, effects of PPAR ligands on ischaemia-reperfusion, infarct healing and cardiac hypertrophy are critically evaluated. In particular the role of inflammation in these disease processes, the ability of PPARs to interfere with pro-inflammatory processes, and the mechanisms of transrepression are discussed. Currently, the significance of PPARs as therapeutic targets in cardiovascular disease is receiving widespread attention. Accordingly, detailed understanding of the mechanisms controlling the activity of these nuclear hormone receptors is essential.
Collapse
Affiliation(s)
- P J H Smeets
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
228
|
Abstract
The goal of pharmacogenetics is to define the genetic determinants of individual drug responsiveness, and thereby provide personalized treatment to each individual. The peroxisome proliferator-activated receptors (PPARs) are polypeptide products of a set of related genes functioning to regulate several cellular processes that are central to cardiovascular health and disease. Given their pleiotropic roles in lipid and glucose homeostasis, cardiac energy balance and regulation of adipocyte release of circulating inflammatory factors, it is not surprising that PPARs represent an attractive target for clinical investigation and intervention in disease states, such as diabetes, obesity, atherosclerosis, cardiomyopathy, cardiac hypertrophy and heart failure. Research into the manipulation of PPAR function by pharmacologic agents has already resulted in important advances in the treatment of diabetes mellitus and cardiovascular disease. It follows that PPAR pharmacogenetics promises important advances in the personalized treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sharon Cresci
- Washington University School of Medicine, Department of Medicine, Saint Louis, Missouri, 660 South Euclid Avenue, Campus Box 8086 Saint Louis, MO 63110-1093, USA
| |
Collapse
|
229
|
How OJ, Larsen TS, Hafstad AD, Khalid A, Myhre ESP, Murray AJ, Boardman NT, Cole M, Clarke K, Severson DL, Aasum E. Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice. Arch Physiol Biochem 2007; 113:211-20. [PMID: 18158644 DOI: 10.1080/13813450701783281] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Isolated perfused hearts from type 2 diabetic (db/db) mice show impaired ventricular function, as well as altered cardiac metabolism. Assessment of the relationship between myocardial oxygen consumption (MVO(2)) and ventricular pressure-volume area (PVA) has also demonstrated reduced cardiac efficiency in db/db hearts. We hypothesized that lowering the plasma fatty acid supply and subsequent normalization of altered cardiac metabolism by chronic treatment with a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist will improve cardiac efficiency in db/db hearts. Rosiglitazone (23 mg/kg body weight/day) was administered as a food admixture to db/db mice for five weeks. Ventricular function and PVA were assessed using a miniaturized (1.4 Fr) pressure-volume catheter; MVO(2) was measured using a fibre-optic oxygen sensor. Chronic rosiglitazone treatment of db/db mice normalized plasma glucose and lipid concentrations, restored rates of cardiac glucose and fatty acid oxidation, and improved cardiac efficiency. The improved cardiac efficiency was due to a significant decrease in unloaded MVO(2), while contractile efficiency was unchanged. Rosiglitazone treatment also improved functional recovery after low-flow ischemia. In conclusion, the present study demonstrates that in vivo PPARgamma-treatment restores cardiac efficiency and improves ventricular function in perfused hearts from type 2 diabetic mice.
Collapse
Affiliation(s)
- O-J How
- Department of Medical Physiology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Xu Y, Wang Q, Cook TJ, Knipp GT. Effect of Placental Fatty Acid Metabolism and Regulation by Peroxisome Proliferator Activated Receptor on Pregnancy and Fetal Outcomes. J Pharm Sci 2007; 96:2582-606. [PMID: 17549724 DOI: 10.1002/jps.20973] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fatty acids, particularly the omega-3 and omega-6 essential fatty acids (EFAs), are considered critical nutritional sources for the developing fetus. The placenta governs the fetal supply of fatty acids via two processes: transport and metabolism. Placental fatty acid metabolism can play a critical role in guiding pregnancy and fetal outcome. EFAs can be metabolized to important cell signaling molecules in placenta by several major isoform families including: the Cytochrome P450 subfamily 4A (CYP4A); Cyclooxygenases (COXs); and Lipoxygenases (LOXs). Peroxisome proliferator-activated nuclear receptors (PPARs) have been demonstrated to regulate a number of placental fatty acid/lipid homeostasis-related proteins (e.g., metabolizing enzymes and transporters). The present review summarizes research on the molecular and functional relevance of fatty acid metabolizing enzymes and the role of PPARs in regulating their expression in the mammalian placenta. Elucidating the pathways of placental fatty acid metabolism and the regulatory processes governing these pathways is critical for advancing our understanding of the role of placenta in supplying EFAs to the developing fetus and the potential implications on pregnancy and fetal outcome. A more complete understanding of placental fatty acid disposition may also provide a basis for nutritional/pharmacological interventions to ameliorate the risk of adverse pregnancy and/or fetal outcomes.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
231
|
Aasum E, Khalid AM, Gudbrandsen OA, How OJ, Berge RK, Larsen TS. Fenofibrate modulates cardiac and hepatic metabolism and increases ischemic tolerance in diet-induced obese mice. J Mol Cell Cardiol 2007; 44:201-9. [PMID: 17931655 DOI: 10.1016/j.yjmcc.2007.08.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 08/21/2007] [Accepted: 08/23/2007] [Indexed: 10/22/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) play an important role in the transcriptional regulation of lipid utilization and storage in several organs, including liver and heart. Our working hypothesis is that treatment of obesity/hyperlipedemia with the PPARalpha ligand fenofibrate leads to drainage of plasma lipids by the liver, resulting in reduced myocardial lipid supply, reduced myocardial fatty acid oxidation and improved myocardial tolerance to ischemic stress. Thus, we investigated changes in substrate utilization in heart and liver, as well as post-ischemic functional recovery in hearts from diet-induced obese (DIO) mice following long-term (11-12 weeks) treatment with fenofibrate. The present study shows that DIO mice express increased plasma lipids and glucose, as well as increased myocardial fatty acid oxidation and a concomitant decrease in glucose oxidation. The lipid-lowering effect of fenofibrate was associated with increased hepatic mitochondrial and peroxisomal fatty acid oxidation, as indicated by a more than 30% increase in hepatic palmiotyl-CoA oxidation and more than a 10-fold increase in acyl-CoA oxidase (ACO) activity. In line with an adaptation to the reduced myocardial lipid supply, isolated hearts from fenofibrate-treated DIO mice showed increased glucose oxidation and decreased fatty acid oxidation, as well as reduced ACO activity. Fenofibrate treatment also prevented the diet-induced decrease in cardiac function and improved post-ischemic functional recovery. We also found that, while fenofibrate treatment markedly increased the expression of PPARalpha target genes in the liver, there were no such changes in the heart. These data demonstrate that fenofibrate results in a direct activation of PPARalpha in the liver with increased hepatic drainage of plasma lipids, while the cardiac effect of the compound most likely is secondary to its lipid-lowering effect.
Collapse
Affiliation(s)
- Ellen Aasum
- Department of Medical Physiology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
232
|
Schaiff WT, Knapp FFR, Barak Y, Biron-Shental T, Nelson DM, Sadovsky Y. Ligand-activated peroxisome proliferator activated receptor gamma alters placental morphology and placental fatty acid uptake in mice. Endocrinology 2007; 148:3625-34. [PMID: 17463056 DOI: 10.1210/en.2007-0211] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nuclear receptor peroxisome proliferator activated receptor gamma (PPARgamma) is essential for murine placental development. We previously showed that activation of PPARgamma in primary human trophoblasts enhances the uptake of fatty acids and alters the expression of several proteins associated with fatty acid trafficking. In this study we examined the effect of ligand-activated PPARgamma on placental development and transplacental fatty acid transport in wild-type (wt) and PPARgamma(+/-) embryos. We found that exposure of pregnant mice to the PPARgamma agonist rosiglitazone for 8 d (embryonic d 10.5-18.5) reduced the weights of wt, but not PPARgamma(+/-) placentas and embryos. Exposure to rosiglitazone reduced the thickness of the spongiotrophoblast layer and the surface area of labyrinthine vasculature, and altered expression of proteins implicated in placental development. The expression of fatty acid transport protein 1 (FATP1), FATP4, adipose differentiation related protein, S3-12, and myocardial lipid droplet protein was enhanced in placentas of rosiglitazone-treated wt embryos, whereas the expression of FATP-2, -3, and -6 was decreased. Additionally, rosiglitazone treatment was associated with enhanced accumulation of the fatty acid analog 15-(p-iodophenyl)-3-(R, S)-methyl pentadecanoic acid in the placenta, but not in the embryos. These results demonstrate that in vivo activation of PPARgamma modulates placental morphology and fatty acid accumulation.
Collapse
Affiliation(s)
- W Timothy Schaiff
- Washington University School of Medicine, Department of Obstetrics and Gynecology, Campus Box 8064, 4566 Scott Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
233
|
Pellieux C, Montessuit C, Papageorgiou I, Lerch R. Inactivation of peroxisome proliferator-activated receptor isoforms α, β/δ, and γ mediate distinct facets of hypertrophic transformation of adult cardiac myocytes. Pflugers Arch 2007; 455:443-54. [PMID: 17643263 DOI: 10.1007/s00424-007-0297-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/30/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Inactivation of peroxisome proliferator-activated receptor (PPARs) isoforms alpha, beta/delta, and gamma mediate distinct facets of hypertrophic transformation of adult cardiac myocytes. PPARs are ligand-activated transcription factors that modulate the transcriptional regulation of fatty acid metabolism and the hypertrophic response in neonatal cardiac myocytes. The purpose of this study was to determine the role of PPAR isoforms in the morphologic and metabolic phenotype transformation of adult cardiac myocytes in culture, which, in medium containing 20% fetal calf serum, undergo hypertrophy-like cell growth associated with downregulation of regulatory proteins of fatty acid metabolism. Expression and DNA-binding activity of PPARalpha, PPARbeta/delta, and PPARgamma rapidly decreased after cell isolation and remained persistently reduced during the 14-day culture period. Cells progressively increased in size and developed both re-expression of atrial natriuretic factor and downregulation of regulatory proteins of fatty acid metabolism. Supplementation of the medium with fatty acid (oleate 0.25 mM/palmitate 0.25 mM) prevented inactivation of PPARs and downregulation of metabolic genes. Furthermore, cell size and markers of hypertrophy were markedly reduced. Selective activation of either PPARalpha or PPARbeta/delta completely restored expression of regulatory genes of fatty acid metabolism but did not influence cardiac myocyte size and markers of hypertrophy. Conversely, activation of PPARgamma prevented cardiomyocyte hypertrophy but had no effect on fatty acid metabolism. The results indicate that PPAR activity markedly influences hypertrophic transformation of adult rat cardiac myocytes. Inactivation of PPARalpha and PPARbeta/delta accounts for downregulation of the fatty acid oxidation pathway, whereas inactivation of PPARgamma enables development of hypertrophy.
Collapse
Affiliation(s)
- Corinne Pellieux
- Department of Internal Medicine, Cardiology Center, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
234
|
Kuroda T, Hirota H, Fujio Y, Sugiyama S, Masaki M, Hiramoto Y, Shioyama W, Okamoto K, Hori M, Yamauchi-Takihara K. Carbacyclin induces carnitine palmitoyltransferase-1 in cardiomyocytes via peroxisome proliferator-activated receptor (PPAR) δ independent of the IP receptor signaling pathway. J Mol Cell Cardiol 2007; 43:54-62. [PMID: 17540403 DOI: 10.1016/j.yjmcc.2007.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 04/04/2007] [Accepted: 04/04/2007] [Indexed: 11/19/2022]
Abstract
Prostacyclin (PGI2) and its analogues exert cardioprotective effects via the rhodopsin type membrane PGI2 receptor, IP. Peroxisome proliferator-activated receptor (PPAR) delta is a nuclear receptor abundantly expressed in cardiomyocytes and plays a pivotal role in maintaining constitutive mitochondrial fatty acid beta-oxidation (FAO). Recently, a novel signaling pathway of PGI2 via PPARdelta has been demonstrated in non-cardiac tissues. We therefore examined whether carbacyclin (cPGI2), a PGI2 analogue, up-regulates transcriptional expression of carnitine palmitoyltransferase-1 (CPT-1), the rate-limiting enzyme in mitochondrial FAO, via PPARdelta in cardiomyocytes. Intraperitoneal injection of cPGI2 increased CPT-1 mRNA expression in murine hearts. Transcriptional activity was evaluated by PPAR responsive element (PPRE)-luciferase reporter gene assay in cultured neonatal rat cardiomyocytes. CPT-1 mRNA expression and PPRE promoter activity were significantly increased by cPGI2 in a concentration-dependent manner, where PPRE has been mapped to the promoter region of the CPT-1 gene. Moreover, the elevation of CPT-1 mRNA expression and PPRE promoter activity by cPGI2 was not abolished by H-89, a potent protein kinase A inhibitor, but was significantly inhibited in cardiomyocytes over-expressing a dominant-negative type of PPARdelta. Furthermore, electrophoretic mobility shift assays demonstrated that binding of PPARdelta to PPRE in the CPT-1 gene promoter is enhanced in response to cPGI2 stimulation. In addition, down-regulation of CPT-1 mRNA expression in cardiomyocytes subjected to hypoxia was attenuated by cPGI2. These results indicate that cPGI2 induces CPT-1 mRNA expression through PPARdelta, independent of the IP receptor signaling pathway, suggesting a possibility that cPGI2 modulates cardiac energy metabolism by activating FAO via PPARdelta.
Collapse
Affiliation(s)
- Tadashi Kuroda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Marx N, Walcher D. Vascular effects of PPARgamma activators - from bench to bedside. Prog Lipid Res 2007; 46:283-96. [PMID: 17637478 DOI: 10.1016/j.plipres.2007.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/21/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Activation of the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma) plays an important role in adipogenesis, insulin resistance, and glucose homeostasis. Activators of PPARgamma include the anti-diabetic thiazolidinediones (TZDs), drugs that are in clinical use to treat patients with type 2 diabetes mellitus. Experimental as well as clinical data gathered over the last decade suggest that PPARgamma activators may exert direct modulatory function in the vasculature in addition to their metabolic effects. PPARgamma is expressed in all vascular cells, where its activators exhibit anti-inflammatory and anti-atherogenic properties, suggesting that PPARgamma ligands could influence important processes in all phases of atherogenesis. Results from clinical trials demonstrated that TZDs reduce blood levels of inflammatory biomarkers of arteriosclerosis, improve endothelial function, and directly influence lesion morphology and plaque stability, underscoring that PPAR activators may have direct effects in the vasculature in humans. This review will focus on the vascular effects of PPARgamma activators and summarize the current knowledge of their modulatory function on atherogenesis and vascular disease.
Collapse
Affiliation(s)
- Nikolaus Marx
- Department of Internal Medicine II - Cardiology, University of Ulm, Robert-Koch-Str. 8, D-89081 Ulm, Germany.
| | | |
Collapse
|
236
|
Pandey NR, Benkirane K, Amiri F, Schiffrin EL. Effects of PPAR-γ Knock-down and Hyperglycemia on Insulin Signaling in Vascular Smooth Muscle Cells From Hypertensive Rats. J Cardiovasc Pharmacol 2007; 49:346-54. [PMID: 17577098 DOI: 10.1097/fjc.0b013e31804654d7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-gamma, a target in the treatment of diabetes, improves insulin sensitivity and exerts cardiovascular protective effects by mechanisms that are not completely elucidated. To investigate underlying molecular mechanisms responsible for PPAR-gamma-associated vascular insulin signaling in hypertension, we tested whether PPAR-gamma downregulation in vascular smooth muscle cells (VSMC) from WKY and SHRSP rats would decrease insulin signaling and glucose uptake and whether this response would be worsened by hyperglycemia to a greater extent in VSMC of hypertensive origin. Passaged mesenteric artery VSMC grown in euglycemic (5.5 mmol/L) or hyperglycemic media (25.0 mmol/L) were treated with PPAR-gamma-siRNA (5 nmol/L), PPAR-gamma antagonist (GW-9662, 10 micromol/L), or PPAR-gamma activator (rosiglitazone, 10 micromol/L) in the presence or absence of insulin (100 nmol/L). Immunoblotting revealed that hyperglycemia and PPAR-gamma inhibition significantly (P < 0.001) decreased insulin-stimulated insulin receptor (IR)-beta, Akt, and glycogen synthase kinase (GSK)-3beta phosphorylation, whereas phosphotyrosine phosphatase (PTP)-1B expression was increased in VSMC from both strains. These effects were more pronounced in SHRSP under hyperglycemia. Rosiglitazone tended to increase insulin-mediated IR-beta, Akt, and GSK-3beta phosphorylation in VSMC from both strains, whereas insulin-induced PTP-1B expression was reduced by hyperglycemia. Insulin-stimulated GLUT-4 expression and glucose transport were attenuated by hyperglycemia in both VSMC. These data suggest that PPAR-gamma inhibition results in decreased insulin signaling, particularly in SHR, in an IR-beta phosphorylation-dependent manner.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Blotting, Western
- Cell Cycle/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Down-Regulation
- Electrophoretic Mobility Shift Assay
- Flow Cytometry
- Gene Silencing
- Glucose/metabolism
- Glucose/pharmacology
- Glucose Transporter Type 4/metabolism
- Hypertension/metabolism
- Insulin/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- PPAR gamma/antagonists & inhibitors
- PPAR gamma/genetics
- RNA, Small Interfering/genetics
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Transfection
Collapse
Affiliation(s)
- Nihar R Pandey
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
237
|
Bedu E, Desplanches D, Pequignot J, Bordier B, Desvergne B. Double gene deletion reveals the lack of cooperation between PPARα and PPARβ in skeletal muscle. Biochem Biophys Res Commun 2007; 357:877-81. [PMID: 17466944 DOI: 10.1016/j.bbrc.2007.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 04/02/2007] [Indexed: 11/19/2022]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARalpha and PPARbeta isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARalpha-/-, PPARbeta-/-, and double PPARalpha-/- beta-/- mice. Heart and soleus muscle analyses show that the deletion of PPARalpha induces a decrease of the HAD activity (beta-oxidation) while soleus contractile phenotype remains unchanged. A PPARbeta deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARbeta and PPARalpha functions since double gene deletion PPARalpha-PPARbeta mostly reproduces the null PPARalpha-mediated reduced beta-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARbeta is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARalpha in PPARalpha null mice.
Collapse
Affiliation(s)
- E Bedu
- Center of Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
238
|
Affiliation(s)
- Sadao Takahashi
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | | | | |
Collapse
|
239
|
Finck BN, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) regulatory cascade in cardiac physiology and disease. Circulation 2007; 115:2540-8. [PMID: 17502589 DOI: 10.1161/circulationaha.107.670588] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
240
|
Zhang H, Pi R, Li R, Wang P, Tang F, Zhou S, Gao J, Jiang J, Chen S, Liu P. PPARβ/δ activation inhibits angiotensin II-induced collagen type I expression in rat cardiac fibroblasts. Arch Biochem Biophys 2007; 460:25-32. [PMID: 17346664 DOI: 10.1016/j.abb.2007.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 01/27/2007] [Accepted: 01/29/2007] [Indexed: 01/21/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARalpha, beta/delta and gamma) are nuclear receptors and PPARgamma activation was previously reported to inhibit collagen expression in the heart, but whether PPARbeta/delta also regulates collagen expression in the heart remains unclear. In this study, we investigated the effect of PPARbeta/delta activation on angiotensin II (Ang II)-induced collagen type I expression in adult rat cardiac fibroblasts. The results showed that PPARbeta/delta was expressed at the moderate level in cardiac fibroblasts. GW501516, a selective PPARbeta/delta agonist, depressed Ang II-stimulated collagen type I expression and collagen synthesis in cardiac fibroblasts in a concentration-dependent manner. Furthermore, these inhibitory effects of GW501516 were completely reversed by the knockdown of PPARbeta/delta via RNA interference. In summary, we find that PPARbeta/delta is present in cardiac fibroblasts and PPARbeta/delta activation inhibits Ang II-induced collagen type I expression at least in part via decreasing collagen synthesis. PPARbeta/delta may be a promising therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Huijie Zhang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510080, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Yang Q, Li Y. Roles of PPARs on regulating myocardial energy and lipid homeostasis. J Mol Med (Berl) 2007; 85:697-706. [PMID: 17356846 DOI: 10.1007/s00109-007-0170-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/19/2007] [Accepted: 02/23/2007] [Indexed: 12/13/2022]
Abstract
Myocardial energy and lipid homeostasis is crucial for normal cardiac structure and function. Either shortage of energy or excessive lipid accumulation in the heart leads to cardiac disorders. Peroxisome proliferator-activated receptors (PPARalpha, -beta/delta and -gamma), members of the nuclear receptor transcription factor superfamily, play important roles in regulating lipid metabolic genes. All three PPAR subtypes are expressed in cardiomyocytes. PPARalpha has been shown to control transcriptional expression of key enzymes that are involved in fatty acid (FA) uptake and oxidation, triglyceride synthesis, mitochondrial respiration uncoupling, and glucose metabolism. Similarly, PPARbeta/delta is a transcriptional regulator of FA uptake and oxidation, mitochondrial respiration uncoupling, and glucose metabolism. On the other hand, the role of PPARgamma on transcriptional regulation of FA metabolism in the heart remains obscure. Therefore, both PPARalpha and PPARbeta/delta are important transcriptional regulators of myocardial energy and lipid homeostasis. Moreover, it appears that the heart needs to have two PPAR subtypes with seemingly overlapping functions in maintaining myocardial lipid and energy homeostasis. Further studies on the potential distinctive roles of each PPAR subtype in the heart should provide new therapeutic targets for treating heart disease.
Collapse
Affiliation(s)
- Qinglin Yang
- Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Dr SW, Atlanta, GA 30310, USA.
| | | |
Collapse
|
242
|
Duhaney TAS, Cui L, Rude MK, Lebrasseur NK, Ngoy S, De Silva DS, Siwik DA, Liao R, Sam F. Peroxisome proliferator-activated receptor alpha-independent actions of fenofibrate exacerbates left ventricular dilation and fibrosis in chronic pressure overload. Hypertension 2007; 49:1084-94. [PMID: 17353509 DOI: 10.1161/hypertensionaha.107.086926] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progressive cardiac remodeling is characterized by subsequent chamber hypertrophy, enlargement, and pump dysfunction. It is also associated with increased cardiac fibrosis and matrix turnover. Interestingly, peroxisome proliferator-activated receptor (PPAR) alpha activators reduce cardiac hypertrophy, inflammation, and fibrosis. Little is known about the role of fenofibrates in mediating PPARalpha-independent effects in response to chronic pressure overload (PO). Wild-type and PPARalpha-deficient mice were subjected to chronic PO caused by ascending aortic constriction to test the role of fenofibrates in chronic, progressive cardiac remodeling by a PPARalpha-independent mechanism. Mice were randomized to regular chow or chow-containing fenofibrate (100 mg/kg of body weight per day) for 1 week before and 8 weeks after ascending aortic constriction. In the presence of PPARalpha, wild-type chronic PO mice, treated with fenofibrate, had improved cardiac remodeling. However, PO PPARalpha-deficient mice treated with fenofibrate had increased mortality, significantly adverse left ventricular end diastolic (3.4+/-0.1 versus 4.2+/-0.1 mm) and end systolic (1.5+/-0.2 versus 2.5+/-0.2 mm) dimensions, and fractional shortening (57+/-3% versus 40+/-3%). Fenofibrate also increased myocardial hypertrophy, cardiac fibrosis, and the ratio of matrix metalloproteinase-2/tissue inhibitor of matrix metalloproteinase-2 in PO PPARalpha-deficient mice. Fenofibrate inhibited matrix metalloproteinase activity in vitro and aldosterone-induced increases in extracellular signal-regulated kinase phosphorylation. Thus, fenofibrate improved cardiac remodeling in chronic PO mice. However, in PPARalpha-deficient mice, this chronic PO was exacerbated and associated with increased myocardial fibrosis and altered matrix remodeling. In the absence of PPARalpha, fenofibrates exerts deleterious, pleiotropic myocardial actions. This is an important observation, because PPARalpha agonists are considered possible inhibitory regulators of cardiac remodeling in the remodeled heart.
Collapse
Affiliation(s)
- Toni-Ann S Duhaney
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
De Ciuceis C, Amiri F, Iglarz M, Cohn JS, Touyz RM, Schiffrin EL. Synergistic vascular protective effects of combined low doses of PPARalpha and PPARgamma activators in angiotensin II-induced hypertension in rats. Br J Pharmacol 2007; 151:45-53. [PMID: 17351653 PMCID: PMC2012983 DOI: 10.1038/sj.bjp.0707215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Protective cardiovascular effects of peroxisome proliferator activated receptor (PPAR)alpha and PPARgamma activators have been demonstrated. If used as vasoprotective agents in high risk vascular patients rather than for their metabolic benefits, these agents could be associated with unwanted side effects. As a proof of concept to support the use of combined low doses of PPARalpha and PPARgamma as vascular protective agents in high risk vascular patients, we tested the hypothesis that combined low doses of PPARalpha (fenofibrate) and PPARgamma (rosiglitazone) activators would provide vascular protective benefits similar to full individual doses of these PPAR agonists. EXPERIMENTAL APPROACH Male Sprague-Dawley rats infused with Ang II (120 ng kg(-1) min(-1)) were treated with rosiglitazone (1 or 2 mg kg(-1) day(-1)) alone or concomitantly with fenofibrate (30 mg kg(-1) day(-1)) for 7 days. Thereafter, vessels was assessed on a pressurized myograph, while NAD(P)H oxidase activity was determined by lucigenin chemiluminescence. Inflammation was evaluated using ELISA for NFkappaB and Western blotting for adhesion molecules. KEY RESULTS Ang II-induced blood pressure increase, impaired acetylcholine-induced vasorelaxation, altered vascular structure, and enhanced vascular NAD(P)H oxidase activity and inflammation were significantly reduced by low dose rosiglitazone+fenofibrate. CONCLUSIONS AND IMPLICATIONS Combined low doses of PPARalpha and PPARgamma activators attenuated development of hypertension, corrected vascular structural abnormalities, improved endothelial function, oxidative stress, and vascular inflammation. These agents used in low-dose combination have synergistic vascular protective effects. The clinical effects of combined low-dose PPARalpha and PPARgamma activators as vascular protective therapy, potentially with reduced side-effects and drug interactions, should be assessed.
Collapse
Affiliation(s)
- C De Ciuceis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital Montreal, Quebec, Canada
| | - F Amiri
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital Montreal, Quebec, Canada
| | - M Iglarz
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital Montreal, Quebec, Canada
| | - J S Cohn
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montreal, University of Montreal Montreal, Quebec, Canada
| | - R M Touyz
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa Ottawa, Ontario, Canada
| | - E L Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital Montreal, Quebec, Canada
- Author for correspondence:
| |
Collapse
|
244
|
Bordoni A, Astolfi A, Morandi L, Pession A, Danesi F, Di Nunzio M, Franzoni M, Biagi P, Pession A. N-3 PUFAs modulate global gene expression profile in cultured rat cardiomyocytes. Implications in cardiac hypertrophy and heart failure. FEBS Lett 2007; 581:923-9. [PMID: 17303130 DOI: 10.1016/j.febslet.2007.01.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 01/24/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
In cardiac cells the effects of n-3 PUFAs on the whole genome are still unknown despite their recognized cardioprotective effects and ability to modulate gene expression. We have evaluated the effects of n-3 PUFAs supplementation on the global gene expression profile in cultured neonatal rat cardiomyocytes, detecting many genes related to lipid transport and metabolism among the upregulated ones. Many of the downregulated genes appeared related to inflammation, cell growth, extracellular and cardiac matrix remodelling, calcium movements and ROS generation. Our data allow to speculate that the cardioprotective effect of n-3 PUFAs is related to a direct modulation of genes in cardiac cells.
Collapse
Affiliation(s)
- Alessandra Bordoni
- Nutrition Research Center, Department of Biochemistry "G. Moruzzi", University of Bologna, Via Irnerio, 48 - 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Okere IC, Chandler MP, McElfresh TA, Rennison JH, Kung TA, Hoit BD, Ernsberger P, Young ME, Stanley WC. CARNITINE PALMITOYL TRANSFERASE-I INHIBITION IS NOT ASSOCIATED WITH CARDIAC HYPERTROPHY IN RATS FED A HIGH-FAT DIET. Clin Exp Pharmacol Physiol 2007; 34:113-9. [PMID: 17201745 DOI: 10.1111/j.1440-1681.2007.04545.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
1. Cardiac lipotoxicity is characterized by hypertrophy and contractile dysfunction and can be triggered by impaired mitochondrial fatty acid oxidation and lipid accumulation. The present study investigated the effect of dietary fatty acid intake alone and in combination with inhibition of mitochondrial fatty acid uptake with the carnitine palmitoyl transferase (CPT)-I inhibitor oxfenicine. Long-chain fatty acids activate peroxisome proliferator-activated receptors (PPAR), thus mRNA levels of PPAR target genes were measured. 2. Rats were untreated or given the CPT-I inhibitor oxfenicine (150 mg/kg per day) and were fed for 8 weeks with either: (i) standard low-fat chow (10% of energy from fat); (ii) a long-chain saturated fatty acid diet; (iii) a long-chain unsaturated fatty acid diet; or (iv) a medium-chain fatty acid diet (which bypasses CPT-I). High-fat diets contained 60% of energy from fat. 3. Cardiac triglyceride content was increased in the absence of oxfenicine in the saturated fat group compared with other diets. Oxfenicine treatment further increased cardiac triglyceride stores in the saturated fat group and caused a significant increase in the unsaturated fat group. Despite elevations in triglyceride stores, left ventricular mass, end diastolic volume and systolic function were unaffected. 4. The mRNA levels of PPAR-regulated genes were increased by the high saturated and unsaturated fat diets compared with standard chow or the medium chain fatty acid chow. Oxfenicine did not further upregulate PPARalpha target genes within each dietary treatment group. 5. Taken together, the data suggest that consuming a high-fat diet or inhibiting CPT-I do not result in cardiac hypertrophy or cardiac dysfunction in normal rats.
Collapse
Affiliation(s)
- Isidore C Okere
- Department of Physiology, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Fürnsinn C, Willson TM, Brunmair B. Peroxisome proliferator-activated receptor-delta, a regulator of oxidative capacity, fuel switching and cholesterol transport. Diabetologia 2007; 50:8-17. [PMID: 17119917 DOI: 10.1007/s00125-006-0492-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 08/16/2006] [Indexed: 12/14/2022]
Abstract
Synthetic agonists of peroxisome proliferator-activated receptor (PPAR)-delta have shown a promising pharmacological profile in preclinical models of metabolic and cardiovascular disease. At present, the pharmaceutical development of these drugs exploits the potential to raise plasma HDL-cholesterol in animals and their insulin-sensitising and glucose-lowering properties. PPAR-delta agonists have also proven to be powerful research tools that have provided insights into the role of fatty acid metabolism in human physiology and disease. Activation of PPAR-delta induces the expression of genes important for cellular fatty acid combustion and an associated increase in whole-body lipid dissipation. The predominant target tissue in this regard is skeletal muscle, in which PPAR-delta activation regulates the oxidative capacity of the mitochondrial apparatus, switches fuel preference from glucose to fatty acids, and reduces triacylglycerol storage. These changes counter the characteristic derangements of insulin- resistant skeletal muscle but resemble the metabolic adaptation to regular physical exercise. Apart from effects on fuel turnover, there is evidence for direct antiatherogenic properties, because PPAR-delta activation increases cholesterol export and represses inflammatory gene expression in macrophages and atherosclerotic lesions. Whereas conclusions about the full potential of PPAR-delta as a drug target await the result of large scale clinical testing, ongoing investigation of this nuclear receptor has greatly improved our knowledge of the physiological regulation of whole-body fuel turnover and the interdependence of mitochondrial function and insulin sensitivity.
Collapse
Affiliation(s)
- C Fürnsinn
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
247
|
Sharma N, Okere IC, Duda MK, Chess DJ, O'Shea KM, Stanley WC. Potential impact of carbohydrate and fat intake on pathological left ventricular hypertrophy. Cardiovasc Res 2006; 73:257-68. [PMID: 17166490 PMCID: PMC2700717 DOI: 10.1016/j.cardiores.2006.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 01/11/2023] Open
Abstract
Currently, a high carbohydrate/low fat diet is recommended for patients with hypertension; however, the potentially important role that the composition of dietary fat and carbohydrate plays in hypertension and the development of pathological left ventricular hypertrophy (LVH) has not been well characterized. Recent studies demonstrate that LVH can also be triggered by activation of insulin signaling pathways, altered adipokine levels, or the activity of peroxisome proliferator-activated receptors (PPARs), suggesting that metabolic alterations play a role in the pathophysiology of LVH. Hypertensive patients with high plasma insulin or metabolic syndrome have a greater occurrence of LVH, which could be due to insulin activation of the serine-threonine kinase Akt and its downstream targets in the heart, resulting in cellular hypertrophy. PPARs also activate cardiac gene expression and growth and are stimulated by fatty acids and consumption of a high fat diet. Dietary intake of fats and carbohydrate and the resultant effects of plasma insulin, adipokine, and lipid concentrations may affect cardiomyocyte size and function, particularly in the setting of chronic hypertension. This review discusses potential mechanisms by which dietary carbohydrates and fats ca affect cardiac growth, metabolism, and function, mainly in the context of pressure overload-induced LVH.
Collapse
Affiliation(s)
- Naveen Sharma
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
248
|
Brunmair B, Staniek K, Dörig J, Szöcs Z, Stadlbauer K, Marian V, Gras F, Anderwald C, Nohl H, Waldhäusl W, Fürnsinn C. Activation of PPAR-delta in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids. Diabetologia 2006; 49:2713-22. [PMID: 16960684 DOI: 10.1007/s00125-006-0357-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS GW501516, an agonist of peroxisome proliferator-activated receptor-delta (PPAR-delta), increases lipid combustion and exerts antidiabetic action in animals, effects which are attributed mainly to direct effects on skeletal muscle. We explored such actions further in isolated rat skeletal muscle. MATERIALS AND METHODS Specimens of rat skeletal muscle were pretreated with GW501516 (0.01-30 mumol/l) for 0.5, 4 or 24 h and rates of fuel metabolism were then measured. In addition, effects on mitochondrial function were determined in isolated rat liver mitochondria. RESULTS At concentrations between 0.01 and 1 mumol/l, GW501516 dose-dependently increased fatty acid oxidation but reduced glucose utilisation in isolated muscle. Thus after 24 h of preincubation with 1 mumol/l GW501516, palmitate oxidation increased by +46+/-10%, and the following decreased as specified: glucose oxidation -46+/-8%, glycogen synthesis -42+/-6%, lactate release -20+/-2%, glucose transport -15+/-6% (all p<0.05). Reduction of glucose utilisation persisted independently of insulin stimulation or muscle fibre type, but depended on fatty acid availability (the effect on glucose transport in the absence of fatty acids was an increase of 30+/-9%, p<0.01), suggesting a role for the glucose-fatty acid cycle. At higher concentrations, GW501516 uncoupled oxidative phosphorylation by direct action on isolated mitochondria. CONCLUSIONS/INTERPRETATION GW501516-induced activation of PPAR-delta reduces glucose utilisation by skeletal muscle through a switch in mitochondrial substrate preference from carbohydrate to lipid. High concentrations of GW501516 induce mitochondrial uncoupling independently of PPAR-delta.
Collapse
Affiliation(s)
- B Brunmair
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Smith AG, Muscat GEO. Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 2006; 291:C203-17. [PMID: 16825600 DOI: 10.1152/ajpcell.00476.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for approximately 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (>16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.
Collapse
Affiliation(s)
- Aaron G Smith
- Institute for Molecular Bioscience, Univ. of Queensland, St. Lucia 4072, Queensland, Australia.
| | | |
Collapse
|
250
|
Ichihara S, Obata K, Yamada Y, Nagata K, Noda A, Ichihara G, Yamada A, Kato T, Izawa H, Murohara T, Yokota M. Attenuation of cardiac dysfunction by a PPAR-alpha agonist is associated with down-regulation of redox-regulated transcription factors. J Mol Cell Cardiol 2006; 41:318-29. [PMID: 16806263 DOI: 10.1016/j.yjmcc.2006.05.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 05/01/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Peroxisome proliferator-activated receptor-alpha (PPAR-alpha) is a key regulator of lipid and glucose metabolism and is implicated in inflammation. We investigated the effects of the PPAR-alpha activator fenofibrate on, as well as the role of redox-regulated transcription factors, in the development of left ventricular (LV) hypertrophy and heart failure in Dahl salt-sensitive (DS) rats. DS rats were fed a high-salt diet and treated with either fenofibrate (30 or 50 mg/kg per day) or vehicle from 7 weeks of age. Fenofibrate inhibited the development of compensated hypertensive LV hypertrophy, attenuated the LV relaxation abnormality and systolic dysfunction, and improved the survival rate in DS rats. It also prevented a decrease in the ratio of reduced to oxidized glutathione and inhibited up-regulation of the DNA binding activities of the redox-regulated transcription factors NF-kappaB, AP-1, Egr-1, SP1, and Ets-1 induced in the left ventricle by the high-salt diet. Expression of target genes for these transcription factors, including those for adhesion molecules (VCAM-1, ICAM-1), cytokines (MCP-1), growth factors (TGF-beta, PDGF-B), and osteopontin, was also increased by the high-salt diet in a manner sensitive to treatment with fenofibrate. Furthermore, the infiltration of macrophages and T lymphocytes into the left ventricle and the increase in the plasma concentration of C-reactive protein were inhibited by fenofibrate. The PPAR-alpha activator fenofibrate thus attenuated the progression of heart failure and improved the survival rate in this rat model. These effects were associated with inhibition of the inflammatory response and of activation of redox-regulated transcription factors in the left ventricle.
Collapse
Affiliation(s)
- Sahoko Ichihara
- Department of Cardiovascular Genome Science, Nagoya University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|