201
|
Biró O, Hajas O, Nagy-Baló E, Soltész B, Csanádi Z, Nagy B. Relationship between cardiovascular diseases and circulating cell-free nucleic acids in human plasma. Biomark Med 2018; 12:891-905. [DOI: 10.2217/bmm-2017-0386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the main cause of human morbidity and mortality worldwide. Early diagnosis could improve the efficiency of treatments. New biomarkers are needed for the identification of high-risk populations in order to make accurate diagnosis and therapy monitoring. Circulating cell-free nucleic acids (cf-NAs) offer a promising new noninvasive tool. These have a role in the regulation of normal physiological functions and in the development of pathological alterations. There is extended research on the clinical application and utilization of cell-free genomic DNA, mtDNA, mRNA, miRNA and long noncoding RNA in CVDs. These molecules could serve as components of new generation therapeutics. Our review focuses on the role of cf-NAs in the pathogenesis of CVDs and we are discussing also possible diagnostic applications and therapeutic implications.
Collapse
Affiliation(s)
- Orsolya Biró
- Department of Obstetrics & Gynecology, Semmelweis University, Budapest, Hungary
| | - Orsolya Hajas
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Edina Nagy-Baló
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Csanádi
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bálint Nagy
- Department of Obstetrics & Gynecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
202
|
Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy. J Mol Med (Berl) 2018; 96:845-856. [PMID: 30008018 DOI: 10.1007/s00109-018-1666-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
|
203
|
Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin 2018; 39:1110-1119. [PMID: 29698386 DOI: 10.1038/aps.2017.205] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/25/2017] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is a main threat to human lives worldwide. Early and accurate diagnoses warrant immediate medical care, which would reduce mortality and improve prognoses. Circulating non-coding RNAs have been demonstrated to serve as competent biomarkers for various diseases. Following the identification of cardiac-specific microRNA miR-208a in circulation, more non-coding RNAs (miR-1, miR-499 and miR-133) have been identified as biomarkers not only for the diagnosis of AMI but also for prognosis post infarction. Here, we summarized recent findings on non-coding RNAs as biomarkers for early diagnosis of ST-segment elevation myocardial infarction and for disease monitoring of myocardial infarction. In addition, the prognostic potential of non-coding RNAs in patients treated with percutaneous coronary intervention was also described. We also include studies based on biobanks, and build a miRNA release spectrum after AMI, which provides quantitative and time-lapse monitoring of AMI progress. With this spectrum, we are able to customize personal medical care, which prevents further damage. By constructing a network of circulating non-coding RNAs with high specificity and sensitivity, detailed diagnostic information was provided for personalized medicine. Unveiling the roles and kinetics of circulating non-coding RNAs may lead to a revolution in clinical diagnosis.
Collapse
|
204
|
Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, Cammann VL, Crea F, Galiuto L, Desmet W, Yoshida T, Manfredini R, Eitel I, Kosuge M, Nef HM, Deshmukh A, Lerman A, Bossone E, Citro R, Ueyama T, Corrado D, Kurisu S, Ruschitzka F, Winchester D, Lyon AR, Omerovic E, Bax JJ, Meimoun P, Tarantini G, Rihal C, Y.-Hassan S, Migliore F, Horowitz JD, Shimokawa H, Lüscher TF, Templin C. International Expert Consensus Document on Takotsubo Syndrome (Part II): Diagnostic Workup, Outcome, and Management. Eur Heart J 2018; 39:2047-2062. [PMID: 29850820 PMCID: PMC5991205 DOI: 10.1093/eurheartj/ehy077] [Citation(s) in RCA: 502] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/23/2017] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
The clinical expert consensus statement on takotsubo syndrome (TTS) part II focuses on the diagnostic workup, outcome, and management. The recommendations are based on interpretation of the limited clinical trial data currently available and experience of international TTS experts. It summarizes the diagnostic approach, which may facilitate correct and timely diagnosis. Furthermore, the document covers areas where controversies still exist in risk stratification and management of TTS. Based on available data the document provides recommendations on optimal care of such patients for practising physicians.
Collapse
Affiliation(s)
- Jelena-Rima Ghadri
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Ilan Shor Wittstein
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhiram Prasad
- Division of Cardiovascular Diseases Mayo Clinic, Rochester, MN, USA
| | - Scott Sharkey
- Cardiovascular Research Division, Minneapolis Heart Institute Foundation, Minneapolis, MN, USA
| | - Keigo Dote
- Department of Cardiology, Hiroshima City Asa Hospital, Hiroshima, Japan
| | - Yoshihiro John Akashi
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Victoria Lucia Cammann
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Filippo Crea
- Department of Cardiovascular Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Leonarda Galiuto
- Department of Cardiovascular Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Walter Desmet
- Department of Cardiovascular Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Tetsuro Yoshida
- Department of Cardiovascular Medicine, Onga Nakama Medical Association Onga Hospital, Fukuoka, Japan
| | - Roberto Manfredini
- Clinica Medica, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ingo Eitel
- University Heart Center Luebeck, Medical Clinic II, Department of Cardiology, Angiology and Intensive Care Medicine, University of Luebeck, Luebeck, Germany
| | - Masami Kosuge
- Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
| | - Holger M Nef
- Department of Cardiology, University Hospital Giessen, Giessen, Germany
| | | | - Amir Lerman
- Division of Cardiovascular Diseases Mayo Clinic, Rochester, MN, USA
| | - Eduardo Bossone
- Heart Department, University Hospital “San Giovanni di Dio e Ruggi d'Aragona”, Salerno, Italy
| | - Rodolfo Citro
- Heart Department, University Hospital “San Giovanni di Dio e Ruggi d'Aragona”, Salerno, Italy
| | - Takashi Ueyama
- Department of Anatomy and Cell Biology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Domenico Corrado
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua Medical School, Padova, Italy
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Frank Ruschitzka
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - David Winchester
- Division of Cardiovascular Disease, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Alexander R Lyon
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - Elmir Omerovic
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick Meimoun
- Department of Cardiology and Intensive Care, Centre Hospitalier de Compiegne, Compiegne, France
| | - Guiseppe Tarantini
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua Medical School, Padova, Italy
| | - Charanjit Rihal
- Division of Cardiovascular Diseases Mayo Clinic, Rochester, MN, USA
| | - Shams Y.-Hassan
- Department of Cardiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Federico Migliore
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua Medical School, Padova, Italy
| | - John D Horowitz
- Department of Cardiology, Basil Hetzel Institute, Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Thomas Felix Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of Zurich, Zurich, Switzerland
- Department of Cardiology, Royal Brompton & Harefield Hospital and Imperial College, London, UK
| | - Christian Templin
- University Heart Center, Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
205
|
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI
| | - Jennifer L Strande
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI .,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI.,Department of Medicine, Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
206
|
Liu G, Niu X, Meng X, Zhang Z. Sensitive miRNA markers for the detection and management of NSTEMI acute myocardial infarction patients. J Thorac Dis 2018; 10:3206-3215. [PMID: 30069316 DOI: 10.21037/jtd.2018.05.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background NSTEMI patients will benefit greatly with better biomarker screening to detect and prognose the disease. Using miRNAs, we evaluated the clinical utility in acute myocardial infarction (AMI) patients during disease onset and therapy. Methods A total of 145 NSTEMI patients and 30 healthy volunteers with no history of cardiovascular disease (CVD) were recruited. miRNA levels in plasma were measured during disease manifestation and serially during treatment phase. Levels of multiple candidates (miR-1, miR-133, miR-208, miR-499) were analysed. The miRNA levels were directly compared between NSTEMI and healthy volunteers. Results Cardiac related miRNAs levels demonstrated significant increase compared with healthy controls. miR-499 exhibited the highest elevation with more than 6.03-fold change compared with healthy participants. Conventional cTnT measurements were in good agreement to miRNA relative expressions. In serial measurements, miR-499 demonstrated large fluctuations and could be linked to the secondary complications. In contrast, miR-133 showed insignificant variations in mean levels during serial sampling. Conclusions miRNA is a potentially sensitive biomarker for NSTEMI AMI patients for disease detection and treatment monitoring. The sensitivities were comparable to cTnT for diagnostic accuracy and patients with sustained or higher levels were correlated to secondary complications.
Collapse
Affiliation(s)
- Guoyong Liu
- Heart Center, The First Affiliated Hospital of Lanzhou University, Lanzhou 730000, China.,The Cardiovascular Department, Qinghai Provincial People's Hospital, Xining 810007, China
| | - Xiaowei Niu
- Heart Center, The First Affiliated Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaoxue Meng
- Heart Center, The First Affiliated Hospital of Lanzhou University, Lanzhou 730000, China
| | - Zheng Zhang
- Heart Center, The First Affiliated Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
207
|
Kim JS, Pak K, Goh TS, Jeong DC, Han ME, Kim J, Oh SO, Kim CD, Kim YH. Prognostic Value of MicroRNAs in Coronary Artery Diseases: A Meta-Analysis. Yonsei Med J 2018; 59:495-500. [PMID: 29749132 PMCID: PMC5949291 DOI: 10.3349/ymj.2018.59.4.495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Coronary artery diseases (CADs) are the leading causes of death in the world. Recent studies have reported that differentially expressed microRNAs (miRNAs) are associated with prognosis or major adverse cardiac events (MACEs) in CAD patients. In a previous meta-analysis, the authors made serious mistakes that we aimed to correct through an updated systematic review and meta-analysis of the prognostic value of altered miRNAs in patients with CADs. MATERIALS AND METHODS We performed a systematic search of MEDLINE (from inception to May 2017) and EMBASE (from inception to May 2017) for English-language publications. Studies of CADs with results on miRNAs that reported survival data or MACEs were included. Data were extracted from each publication independently by two reviewers. RESULTS After reviewing 515 articles, a total eight studies were included in this study. We measured pooled hazard ratios (HRs) and 95% confidence intervals (CIs) of miRNA 133a with a fixed-effect model (pooled HR, 2.35; 95% CI, 1.56-3.55). High expression of miRNA 133a, 208b, 126, 197, 223, and 122-5p were associated with high mortality. Additionally, high levels of miRNA 208b, 499-5p, 134, 328, and 34a were related with MACEs. CONCLUSION The present study confirmed that miRNA 133a, which was associated with high mortality in CAD patients, holds prognostic value in CAD. More importantly, this study corrected issues raised against a prior meta-analysis and provides accurate information.
Collapse
Affiliation(s)
- Ji Suk Kim
- BEER, Busan Society of Evidence-based Mdicine and Research, Busan, Korea
- Department of Family Medicine, BHS Han Seo Hospital, Busan, Korea
| | - Kyoungjune Pak
- BEER, Busan Society of Evidence-based Mdicine and Research, Busan, Korea
- Department of Nuclear Medicine, Pusan National University Hospital, Busan, Korea
| | - Tae Sik Goh
- BEER, Busan Society of Evidence-based Mdicine and Research, Busan, Korea
- Department of Orthopaedic Surgery, Pusan National University Hospital, Busan, Korea
| | | | - Myoung Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jihyun Kim
- Department of Family Medicine, BHS Han Seo Hospital, Busan, Korea
| | - Sae Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yun Hak Kim
- BEER, Busan Society of Evidence-based Mdicine and Research, Busan, Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea.
| |
Collapse
|
208
|
Yuan H, Yuan M, Tang Y, Wang B, Zhan X. MicroRNA expression profiling in human acute organophosphorus poisoning and functional analysis of dysregulated miRNAs. Afr Health Sci 2018; 18:333-342. [PMID: 30602960 PMCID: PMC6306958 DOI: 10.4314/ahs.v18i2.18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Acute organophosphorus(OP) pesticide poisoning is associated with dysfunctions in multiple organs, especially skeletal muscles, the nervous system and the heart. However, little is known about the specific microRNA (miRNA) changes that control the pathophysiological processes of acute OP poisoning damage. We aimed to explore miRNA expression profiles and gain insight into molecular mechanisms of OP toxic effects. METHODS MicroRNA expression was analyzed by TaqMan Human MicroRNA Array analysis and subsequent validated with quantitive PCR. The targets of the significantly different miRNAs were predicted with miRNA prediction databases, and pathway analysis of the predicted target genes was performed using bioinformatics resources. RESULTS 37 miRNAs were significantly different in the sera of poisoned patients compared to the healthy controls, including 29 miRNAs that were up-regulated and 8 miRNAs that were down-regulated. Functional analysis indicated that many pathways potentially regulated by these miRNAs are involved in skeletal muscle, nervous system and heart disorders. CONCLUSION This study mapped changes in the serum miRNA expression profiles of poisoning patients and predicted functional links between miRNAs and their target genes in the regulation of acute OP poisoning. Our findings are an important resource for further understanding the role of these miRNAs in the regulation of OP-induced injury.
Collapse
Affiliation(s)
- Haijun Yuan
- The Second Affiliated Hospital, University Of South China, Department of Emergency
| | - Mei Yuan
- The second affiliated Hospital, University Of South China, Department of Neurology
| | - Yonghong Tang
- The second affiliated Hospital, University Of South China, Department of Neurology
| | - Biao Wang
- The Second Affiliated Hospital, University Of South China, Department of Emergency
| | - Xiangyang Zhan
- The Second Affiliated Hospital, University Of South China, Department of Emergency
| |
Collapse
|
209
|
Yuan Y, Du W, Liu J, Ma W, Zhang L, Du Z, Cai B. Stem Cell-Derived Exosome in Cardiovascular Diseases: Macro Roles of Micro Particles. Front Pharmacol 2018; 9:547. [PMID: 29904347 PMCID: PMC5991072 DOI: 10.3389/fphar.2018.00547] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Abstract
The stem cell-based therapy has emerged as the promising therapeutic strategies for cardiovascular diseases (CVDs). Recently, increasing evidence suggest stem cell-derived active exosomes are important communicators among cells in the heart via delivering specific substances to the adjacent/distant target cells. These exosomes and their contents such as certain proteins, miRNAs and lncRNAs exhibit huge beneficial effects on preventing heart damage and promoting cardiac repair. More importantly, stem cell-derived exosomes are more effective and safer than stem cell transplantation. Therefore, administration of stem cell-derived exosomes will expectantly be an alternative stem cell-based therapy for the treatment of CVDs. Furthermore, modification of stem cell-derived exosomes or artificial synthesis of exosomes will be the new therapeutic tools for CVDs in the future. In addition, stem cell-derived exosomes also have been implicated in the diagnosis and prognosis of CVDs. In this review, we summarize the current advances of stem cell-derived exosome-based treatment and prognosis for CVDs, including their potential benefits, underlying mechanisms and limitations, which will provide novel insights of exosomes as a new tool in clinical therapeutic translation in the future.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaqi Liu
- Department of Pharmacology, College of Pharmacy, Mudanjiang Medical University, Mudanjiang, China
| | - Wenya Ma
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lai Zhang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhimin Du
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Benzhi Cai
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
210
|
Ottaviani L, Sansonetti M, da Costa Martins PA. Myocardial cell-to-cell communication via microRNAs. Noncoding RNA Res 2018; 3:144-153. [PMID: 30175287 PMCID: PMC6114265 DOI: 10.1016/j.ncrna.2018.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lara Ottaviani
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Marida Sansonetti
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
211
|
Gui Y, Li D, Chen J, Wang Y, Hu J, Liao C, Deng L, Xiang Q, Yang T, Du X, Zhang S, Xu D. Soluble epoxide hydrolase inhibitors, t-AUCB, downregulated miR-133 in a mouse model of myocardial infarction. Lipids Health Dis 2018; 17:129. [PMID: 29843720 PMCID: PMC5975509 DOI: 10.1186/s12944-018-0780-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Background It has been demonstrated that soluble epoxide hydrolase inhibitors (sEHIs) are protective against ischemia-induced lethal arrhythmias, but the mechanisms involved are unknown. Previously, we showed that sEHIs might reduce the incidence of ischemic arrhythmias by suppressing microRNA-1 (miR-1) in the myocardium. As miR-1 and miR-133 have the same proarrhythmic effects in the heart, we assumed that the beneficial effects of sEHIs might also relate to the regulation of miR-133. Methods A mouse model of myocardial infarction (MI) was established by ligating the coronary artery. The sEHI t-AUCB (trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid) was administered daily for 7 days before MI. Myocardial infarct size and cardiac function was assessed at 24 h post-MI. The miRNA expression profiles of sham and MI mice treated with or without t-AUCB were determined by microarray and verified by real-time PCR. The incidence of arrhythmias was assessed by in vivo electrophysiologic studies. The mRNA levels of miR-133, its target genes (KCNQ1 [potassium voltage-gated channel subfamily Q member 1] and KCNH2 [potassium voltage-gated channel subfamily H member 2]), and serum response factor (SRF) were measured by real-time PCR; KCNQ1, KCNH2, and SRF protein levels were assessed by western blotting. Results We demonstrated that the treatment with sEHIs could reduce infarct size, improve cardia function, and prevent the development of cardiac arrhythmias in MI mice. The expression levels of 14 miRNAs differed between the sham and MI groups. t-AUCB treatment altered the expression of eight miRNAs: two were upregulated and six were downregulated. Of these, the muscle-specific miR-133 was downregulated in the ischemic myocardium. In line with this, up-regulation of miR-133 and down-regulation of KCNQ1 and KCNH2 mRNA/protein were observed in ischemic myocaridum, whereas administration of sEHIs produced an opposite effect. In addition, miR-133 overexpression inhibited expression of the target mRNA, whereas t-AUCB reversed the effects. Furthermore, SRF might participate in the negative regulation of miR-133 by t-AUCB. Conclusions In MI mice, sEHI t-AUCB can repress miR-133, consequently stimulating KCNQ1 and KCNH2 mRNA and protein expression, suggesting a possible mechanism for its potential therapeutic application in ischemic arrhythmias. Electronic supplementary material The online version of this article (10.1186/s12944-018-0780-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yajun Gui
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Da Li
- Department of Geratology, Internal Medicine, the Third Hospital of Changsha, Changsha, Hunan, 410011, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yating Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jiahui Hu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Caixiu Liao
- Department of Geratology, Internal Medicine, the Third Hospital of Changsha, Changsha, Hunan, 410011, China
| | - Limin Deng
- Center for Pulmonary Vascular Disease, FuWai Hospital & Cardiovascular Institute Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qunyan Xiang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Tao Yang
- Department of Cardiology, Internal Medicine, Changsha Central Hospital, Changsha, Hunan, 410011, China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shilan Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
212
|
Tong KL, Mahmood Zuhdi AS, Wan Ahmad WA, Vanhoutte PM, de Magalhaes JP, Mustafa MR, Wong PF. Circulating MicroRNAs in Young Patients with Acute Coronary Syndrome. Int J Mol Sci 2018; 19:ijms19051467. [PMID: 29762500 PMCID: PMC5983847 DOI: 10.3390/ijms19051467] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022] Open
Abstract
Circulating microRNAs (miRNAs) hold great potential as novel diagnostic markers for acute coronary syndrome (ACS). This study sought to identify plasma miRNAs that are differentially expressed in young ACS patients (mean age of 38.5 ± 4.3 years) and evaluate their diagnostic potentials. Small RNA sequencing (sRNA-seq) was used to profile plasma miRNAs. Discriminatory power of the miRNAs was determined using receiver operating characteristic (ROC) analysis. Thirteen up-regulated and 16 down-regulated miRNAs were identified in young ACS patients. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) validation showed miR-183-5p was significantly up-regulated (8-fold) in ACS patients with non-ST-segment elevated myocardial infarction (NSTEMI) whereas miR-134-5p, miR-15a-5p, and let-7i-5p were significantly down-regulated (5-fold, 7-fold and 3.5-fold, respectively) in patients with ST-segment elevated myocardial infarction (STEMI), compared to the healthy controls. MiR-183-5p had a high discriminatory power to differentiate NSTEMI patients from healthy controls (area under the curve (AUC) of ROC = 0.917). The discriminatory power for STEMI patients was highest with let-7i-5p (AUC = 0.833) followed by miR-134-5p and miR-15a-5p and this further improved (AUC = 0.935) with the three miRNAs combination. Plasma miR-183-5p, miR-134-5p, miR-15a-5p and let-7i-5p are deregulated in STEMI and NSTEMI and could be potentially used to discriminate the two ACS forms.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | - Wan Azman Wan Ahmad
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Joao Pedro de Magalhaes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
213
|
Lei Z, van Mil A, Xiao J, Metz CHG, van Eeuwijk ECM, Doevendans PA, Sluijter JPG. MMISH: Multicolor microRNA in situ hybridization for paraffin embedded samples. ACTA ACUST UNITED AC 2018; 18:e00255. [PMID: 29876304 PMCID: PMC5989586 DOI: 10.1016/j.btre.2018.e00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/19/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
A robust, sensitive and flexible multicolor miRNA in situ hybridization (MMISH) technique for paraffin embedded sections can be combined with both immunohistochemical and immunofluorescent staining. Usage of urea in our buffers which enhances the target-probe affinity by preventing intermolecular interaction within miRNAs or individual probes, and by reversing the EDC fixation induced epitope loss by denaturing the antigens, less toxic compared to toxic formamide. Second, it can be combined with immunofluorescent stainings, which allows one to analyze the expression and precise (sub)cellular location of the miRNA of interest.
To understand and assess the roles of miRNAs, visualization of the expression patterns of specific miRNAs is needed at the cellular level in a wide variety of different tissue types. Although miRNA in situ hybridization techniques have been greatly improved in recent years, they remain difficult to routinely perform due to the complexity of the procedure. In addition, as it is crucial to define which tissues or cells are expressing a particular miRNA in order to elucidate the biological function of the miRNA, incorporation of additional stainings for different cellular markers is necessary. Here, we describe a robust and flexible multicolor miRNA in situ hybridization (MMISH) technique for paraffin embedded sections. We show that the miRNA in situ protocol is sensitive and highly specific and can successfully be combined with both immunohistochemical and immunofluorescent stainings.
Collapse
Affiliation(s)
- Zhiyong Lei
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alain van Mil
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht 3584CT, The Netherlands
| | - Junjie Xiao
- Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, China
| | - Corina H G Metz
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht 3584CT, The Netherlands
| | - Esther C M van Eeuwijk
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,Netherlands Heart Institute (ICIN), Utrecht, The Netherlands.,Central Military Hospital, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht 3584CT, The Netherlands
| |
Collapse
|
214
|
Jung S, Bohan A. Genome-wide sequencing and quantification of circulating microRNAs for dogs with congestive heart failure secondary to myxomatous mitral valve degeneration. Am J Vet Res 2018; 79:163-169. [PMID: 29359980 DOI: 10.2460/ajvr.79.2.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize expression profiles of circulating microRNAs via genome-wide sequencing for dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve degeneration (MMVD). ANIMALS 9 healthy client-owned dogs and 8 age-matched client-owned dogs with CHF secondary to MMVD. PROCEDURES Blood samples were collected before administering cardiac medications for the management of CHF. Isolated microRNAs from plasma were classified into microRNA libraries and subjected to next-generation sequencing (NGS) for genome-wide sequencing analysis and quantification of circulating microRNAs. Quantitative reverse transcription PCR (qRT-PCR) assays were used to validate expression profiles of differentially expressed circulating microRNAs identified from NGS analysis of dogs with CHF. RESULTS 326 microRNAs were identified with NGS analysis. Hierarchical analysis revealed distinct expression patterns of circulating microRNAs between healthy dogs and dogs with CHF. Results of qRT-PCR assays confirmed upregulation of 4 microRNAs (miR-133, miR-1, miR-let-7e, and miR-125) and downregulation of 4 selected microRNAs (miR-30c, miR-128, miR-142, and miR-423). Results of qRT-PCR assays were highly correlated with NGS data and supported the specificity of circulating microRNA expression profiles in dogs with CHF secondary to MMVD. CONCLUSIONS AND CLINICAL RELEVANCE These results suggested that circulating microRNA expression patterns were unique and could serve as molecular biomarkers of CHF in dogs with MMVD.
Collapse
|
215
|
Schmitz B, Rolfes F, Schelleckes K, Mewes M, Thorwesten L, Krüger M, Klose A, Brand SM. Longer Work/Rest Intervals During High-Intensity Interval Training (HIIT) Lead to Elevated Levels of miR-222 and miR-29c. Front Physiol 2018; 9:395. [PMID: 29719514 PMCID: PMC5913345 DOI: 10.3389/fphys.2018.00395] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
Aim: MicroRNA-222 (miR-222) and miR-29c have been identified as important modulators of cardiac growth and may protect against pathological cardiac remodeling. miR-222 and -29c may thus serve as functional biomarkers for exercise-induced cardiac adaptations. This investigation compared the effect of two workload-matched high-intensity interval training (HIIT) protocols with different recovery periods on miR-222 and -29c levels. Methods: Sixty-three moderately trained females and males (22.0 ± 1.7 years) fulfilled the eligibility criteria and were randomized into two HIIT groups using sex and exercise capacity. During a controlled 4-week intervention (two sessions/week) a 4 × 30 HIIT group performed 4 × 30 s runs (all-out, 30 s active recovery) and a 8 × 15 HIIT group performed 8 × 15 s runs (all-out, 15 s active recovery). miR-222 and -29c as well as transforming growth factor-beta1 (TGF-beta1) mRNA levels were determined during high-intensity running as well as aerobic exercise using capillary blood from earlobes. Performance parameters were assessed using an incremental continuous running test (ICRT) protocol with blood lactate diagnostic and heart rate (HR) monitoring to determine HR recovery and power output at individual anaerobic threshold (IAT). Results: At baseline, acute exercise miR-222 and -29c levels were increased only in the 4 × 30 HIIT group (both p < 0.01, pre- vs. post-exercise). After the intervention, acute exercise miR-222 levels were still increased in the 4 × 30 HIIT group (p < 0.01, pre- vs. post-exercise) while in the 8 × 15 HIIT group again no acute effect was observed. However, both HIIT interventions resulted in elevated resting miR-222 and -29c levels (all p < 0.001, pre- vs. post-intervention). Neither of the two miRNAs were elevated at any ICRT speed level at baseline nor follow-up. While HR recovery was improved by >24% in both HIIT groups (both p ≤ 0.0002) speed at IAT was improved by 3.6% only in the 4 × 30 HIIT group (p < 0.0132). Correlation analysis suggested an association between both miRNAs and TGF-beta1 mRNA (all p ≤ 0.006, r ≥ 0.74) as well as change in speed at IAT and change in miR-222 levels (p = 0.024, r = 0.46). Conclusions: HIIT can induce increased circulating levels of cardiac growth-associated miR-222 and -29c. miR-222 and miR-29c could be useful markers to monitor HIIT response in general and to identify optimal work/rest combinations.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Florian Rolfes
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Katrin Schelleckes
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Mirja Mewes
- Internal Medicine D, Nephrology, Hypertension and Rheumatology, University Hospital Muenster, Muenster, Germany
| | - Lothar Thorwesten
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Michael Krüger
- Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Andreas Klose
- Department of Physical Education and Sports History, University of Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
216
|
Arroyo AB, de Los Reyes-García AM, Teruel-Montoya R, Vicente V, González-Conejero R, Martínez C. microRNAs in the haemostatic system: More than witnesses of thromboembolic diseases? Thromb Res 2018; 166:1-9. [PMID: 29649766 DOI: 10.1016/j.thromres.2018.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that post-transcriptionally regulate gene expression. In the last few years, these molecules have been implicated in the regulation of haemostasis, and an increasing number of studies have investigated their relationship with the development of thrombosis. In this review, we discuss the latest developments regarding the role of miRNAs in the regulation of platelet function and secondary haemostasis. We also discuss the genetic and environmental factors that regulate miRNAs. Finally, we address the potential use of miRNAs as prognostic and diagnostic tools in thrombosis.
Collapse
Affiliation(s)
- Ana B Arroyo
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Ascensión M de Los Reyes-García
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Raúl Teruel-Montoya
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain; Red CIBERER CB15/00055, Murcia, Spain
| | - Vicente Vicente
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain; Red CIBERER CB15/00055, Murcia, Spain
| | - Rocío González-Conejero
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Constantino Martínez
- Department of Hematology and Medical Oncology, Morales Meseguer University Hospital, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| |
Collapse
|
217
|
Plasma microRNAs reflecting cardiac and inflammatory injury in coronary artery bypass grafting surgery. J Surg Res 2018; 224:58-63. [DOI: 10.1016/j.jss.2017.11.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/30/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022]
|
218
|
Barile L, Moccetti T, Marbán E, Vassalli G. Roles of exosomes in cardioprotection. Eur Heart J 2018; 38:1372-1379. [PMID: 27443883 DOI: 10.1093/eurheartj/ehw304] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/16/2016] [Indexed: 12/16/2022] Open
Abstract
Exosomes are extracellular vesicles of endosomal origin which have emerged as key mediators of intercellular communication. All major cardiac cell types-including cardiomyocytes, endothelial cells, and fibroblasts-release exosomes that modulate cellular functions. Exosomes released from human cardiac progenitor cells (CPCs) are cardioprotective and improve cardiac function after myocardial infarction to an extent comparable with that achieved by their parent cells. Cardiac progenitor cell-derived exosomes are enriched in cardioprotective microRNAs, particularly miR-146a-3p. Circulating exosomes mediate remote ischaemic preconditioning. Moreover, they currently are being investigated as diagnostic markers. The discovery that cell-derived extracellular signalling organelles mediate the paracrine effects of stem cells suggests that cell-free strategies could supplant cell transplantation. This review discusses emerging roles of exosomes in cardiovascular physiology, with a focus on cardioprotective activities of CPC-derived exosomes.
Collapse
Affiliation(s)
- Lucio Barile
- Fondazione Cardiocentro Ticino and Swiss Institute for Regenerative Medicine, via Tesserete 48, Lugano 6900, Switzerland
| | - Tiziano Moccetti
- Fondazione Cardiocentro Ticino and Swiss Institute for Regenerative Medicine, via Tesserete 48, Lugano 6900, Switzerland
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, Los Angeles, CA 90048, USA
| | - Giuseppe Vassalli
- Fondazione Cardiocentro Ticino and Swiss Institute for Regenerative Medicine, via Tesserete 48, Lugano 6900, Switzerland.,University of Lausanne Medical Center, Lausanne 1011, Switzerland
| |
Collapse
|
219
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting mRNAs for degradation or translational repression. MiRNAs can be expressed tissue specifically and are altered in response to various physiological conditions. It has recently been shown that miRNAs are released into the circulation, potentially for the purpose of communicating with distant tissues. This manuscript discusses miRNA alterations in cardiac muscle and the circulation during heart failure, a prevalent and costly public health issue. A potential mechanism for how skeletal muscle maladaptations during heart failure could be mediated by myocardium-derived miRNAs released to the circulation is presented. An overview of miRNA alterations in skeletal muscle during the ubiquitous process of aging and perspectives on miRNA interactions during heart failure are also provided.
Collapse
Affiliation(s)
- Kevin A Murach
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA
- Department of Rehabilitation Sciences, College of Health Sciences, University of Kentucky, Lexington, KY, 40536, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
220
|
Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:113-125. [PMID: 29520164 PMCID: PMC5840070 DOI: 10.4196/kjpp.2018.22.2.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 01/27/2018] [Indexed: 01/07/2023]
Abstract
Exosomes are membranous vesicles of 30-150 nm in diameter that are derived from the exocytosis of the intraluminal vesicles of many cell types including immune cells, stem cells, cardiovascular cells and tumor cells. Exosomes participate in intercellular communication by delivering their contents to recipient cells, with or without direct contact between cells, and thereby influence physiological and pathological processes. They are present in various body fluids and contain proteins, nucleic acids, lipids, and microRNAs that can be transported to surrounding cells. Theragnosis is a concept in next-generation medicine that simultaneously combines accurate diagnostics with therapeutic effects. Molecular components in exosomes have been found to be related to certain diseases and treatment responses, indicating that they may have applications in diagnosis via molecular imaging and biomarker detection. In addition, recent studies have reported that exosomes have immunotherapeutic applications or can act as a drug delivery system for targeted therapies with drugs and biomolecules. In this review, we describe the formation, structure, and physiological roles of exosomes. We also discuss their roles in the pathogenesis and progression of diseases including neurodegenerative diseases, cardiovascular diseases, and cancer. The potential applications of exosomes for theragnostic purposes in various diseases are also discussed. This review summarizes the current knowledge about the physiological and pathological roles of exosomes as well as their diagnostic and therapeutic uses, including emerging exosome-based therapies that could not be applied until now.
Collapse
Affiliation(s)
- Yong-Seok Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul 04763, Korea
| | - Jae-Sung Ahn
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Semi Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hyun-Jin Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Shin-Hee Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ju-Seop Kang
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
221
|
Circulating miR-1 as a potential biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients. Oncotarget 2018; 8:6994-7002. [PMID: 28052002 PMCID: PMC5351685 DOI: 10.18632/oncotarget.14355] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Cardiotoxicity is associated with the chronic use of doxorubicin leading to cardiomyopathy and heart failure. Identification of cardiotoxicity-specific miRNA biomarkers could provide clinicians with a valuable prognostic tool. The aim of the study was to evaluate circulating levels of miRNAs in breast cancer patients receiving doxorubicin treatment and to correlate with cardiac function. This is an ancillary study from “Carvedilol Effect on Chemotherapy-induced Cardiotoxicity” (CECCY trial), which included 56 female patients (49.9±3.3 years of age) from the placebo arm. Enrolled patients were treated with doxorubicin followed by taxanes. cTnI, LVEF, and miRNAs were measured periodically. Circulating levels of miR-1, -133b, -146a, and -423-5p increased during the treatment whereas miR-208a and -208b were undetectable. cTnI increased from 6.6±0.3 to 46.7±5.5 pg/mL (p<0.001), while overall LVEF tended to decrease from 65.3±0.5 to 63.8±0.9 (p=0.053) over 12 months. Ten patients (17.9%) developed cardiotoxicity showing a decrease in LVEF from 67.2±1.0 to 58.8±2.7 (p=0.005). miR-1 was associated with changes in LVEF (r=-0.531, p<0.001). In a ROC curve analysis miR-1 showed an AUC greater than cTnI to discriminate between patients who did and did not develop cardiotoxicity (AUC = 0.851 and 0.544, p= 0.0016). Our data suggest that circulating miR-1 might be a potential new biomarker of doxorubicin-induced cardiotoxicity in breast cancer patients.
Collapse
|
222
|
Functional Association between Regulatory RNAs and the Annexins. Int J Mol Sci 2018; 19:ijms19020591. [PMID: 29462943 PMCID: PMC5855813 DOI: 10.3390/ijms19020591] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
Cells respond to pathophysiological states by activation of stress-induced signalling. Regulatory non-coding microRNAs (miRNAs) often form stable feed-forward loops which ensure prolongation of the signal, contributing to sustained activation. Members of the annexin protein family act as sensors for Ca2+, pH, and lipid second messengers, and regulate various signalling pathways. Recently, annexins were reported to participate in feedback loops, suppressing miRNA synthesis and attenuating stress-induced dysregulation of gene expression. They can directly or indirectly associate with RNAs, and are transferred between the cells in exosomes and shed microvesicles. The ability of annexins to recruit other proteins and miRNAs into exosomes implicates them in control of cell–cell interactions, affecting the adaptive responses and remodelling processes during disease. The studies summarized in this Review point to an emerging role of annexins in influencing the synthesis, localisation, and transfer of regulatory RNAs.
Collapse
|
223
|
Exosomes: Outlook for Future Cell-Free Cardiovascular Disease Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 998:285-307. [PMID: 28936747 DOI: 10.1007/978-981-10-4397-0_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are the number one cause of death globally with an estimated 7.4 million people dying from coronary heart disease. Studies have been conducted to identify the therapeutic utility of exosomes in many diseases, including cardiovascular diseases. It has been demonstrated that exosomes are immune modulators, can be used to treat cardiac ischemic injury, pulmonary hypertension and many other diseases, including cancers. Exosomes can be used as a biomarker for disease and cell-free drug delivery system for targeting the cells. Many studies suggest that exosomes can be used as a cell-free vaccine for many diseases. In this chapter, we explore the possibility of future therapeutic potential of exosomes in various cardiovascular diseases.
Collapse
|
224
|
Serum Exosomes Attenuate H 2O 2-Induced Apoptosis in Rat H9C2 Cardiomyocytes via ERK1/2. J Cardiovasc Transl Res 2018; 12:37-44. [PMID: 29404859 DOI: 10.1007/s12265-018-9791-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022]
Abstract
Exosomes are small-sized vesicles that can be released from cells into the serum. Exosomes play important roles in regulating many biological processes including cell proliferation, apoptosis, cell cycle, and metabolism. However, the roles and mechanisms of plasma exosomes in the apoptosis of rat H9C2 cardiomyocytes are largely unknown. In this study, we isolated plasma exosomes as confirmed by the marker protein CD63. Using flow cytometry and western blot analysis, we found that exosomes attenuated hydrogen peroxide (H2O2)-induced apoptosis and improved survival of rat H9C2 cardiomyocytes. Furthermore, the anti-apoptosis effects of serum exosomes in rat H9C2 cardiomyocytes were mediated by the activation of ERK1/2 signaling pathway. These data indicated that plasma exosomes had the protective effects against cardiomyocyte apoptosis and might be a novel therapy strategy for myocardial injury.
Collapse
|
225
|
Abstract
Platelets play a vital role in normal hemostasis to stem blood loss at sites of vascular injury by tethering and adhering to sites of injury, recruiting other platelets and blood cells to the developing clot, releasing vasoactive small molecules and proteins, and assembling and activating plasma coagulation proteins in a tightly regulated temporal and spatial manner. In synchrony with specific end products of coagulation, primarily cross-linked fibrin, a stable thrombus quickly forms. Far beyond physiological hemostasis and pathological thrombosis, emerging evidence supports platelets playing a pivotal role in vascular homeostasis, inflammation, cellular repair, regeneration, and wide range of autocrine and paracrine functions. In essence, platelets play both structural and functional roles as reporters, messengers, and active transporters surveying the vasculature for cues of environmental or developmental stimuli and participating as first responders.1 In this review, we will provide a contemporary perspective of platelet physiology, including fundamental, translational, and clinical constructs that apply directly to human health and disease.
Collapse
Affiliation(s)
- Richard C Becker
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine.
| | - Travis Sexton
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| | - Susan S Smyth
- From the Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, OH (R.C.B.); and Gill Heart and Vascular Institute (T.S., S.S.S.) and Lexington VA Medical Center (T.S., S.S.S.), University of Kentucky School of Medicine
| |
Collapse
|
226
|
Boriachek K, Islam MN, Möller A, Salomon C, Nguyen NT, Hossain MSA, Yamauchi Y, Shiddiky MJA. Biological Functions and Current Advances in Isolation and Detection Strategies for Exosome Nanovesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702153. [PMID: 29282861 DOI: 10.1002/smll.201702153] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/26/2017] [Indexed: 05/20/2023]
Abstract
Exosomes are nanoscale (≈30-150 nm) extracellular vesicles of endocytic origin that are shed by most types of cells and circulate in bodily fluids. Exosomes carry a specific composition of proteins, lipids, RNA, and DNA and can work as cargo to transfer this information to recipient cells. Recent studies on exosomes have shown that they play an important role in various biological processes, such as intercellular signaling, coagulation, inflammation, and cellular homeostasis. These functional roles are attributed to their ability to transfer RNA, proteins, enzymes, and lipids, thereby affecting the physiological and pathological conditions in various diseases, including cancer and neurodegenerative, infectious, and autoimmune diseases (e.g., cancer initiation, progression, and metastasis). Due to these unique characteristics, exosomes are considered promising biomarkers for the diagnosis and prognosis of various diseases via noninvasive or minimally invasive procedures. Over the last decade, a plethora of methodologies have been developed for analyzing disease-specific exosomes using optical and nonoptical tools. Here, the major biological functions, significance, and potential role of exosomes as biomarkers and therapeutics are discussed. Furthermore, an overview of the most commonly used techniques for exosome analysis, highlighting the major technical challenges and limitations of existing techniques, is presented.
Collapse
Affiliation(s)
- Kseniia Boriachek
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Nazmul Islam
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, QLD 4029, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW, 2519, Australia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, Innovation Campus, North Wollongong, NSW, 2519, Australia
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, 305-0044, Japan
| | - Muhammad J A Shiddiky
- School of Natural Sciences, Griffith University, Nathan Campus, QLD 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
227
|
Engler A, Dreja F, Köberle S, Thielmann M, Peters J, Frey UH. Establishment of an easy and straight forward heparinase protocol to analyse circulating and myocardial tissue micro-RNA during coronary artery-bypass-graft surgery. Sci Rep 2018; 8:1361. [PMID: 29358658 PMCID: PMC5778083 DOI: 10.1038/s41598-018-19748-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023] Open
Abstract
Coronary artery-bypass-graft (CABG) surgery is associated with myocardial damage and increased blood concentrations of circulating microRNAs (miRNA). However, whether and to what extent these miRNAs relate to cardiac tissue miRNA expression have not yet been explored. Since plasma miRNA quantification in samples from cardiopulmonary bypass (CPB) patients is severely hampered by heparin, we established and validated successfully a protocol to reliably measure miRNA in 49 heparinized patients undergoing CABG so as to investigate the relationship between circulating and right atrial miRNAs. Plasma and right atrial expression of miR-1, miR-133a, miR-423-5p, and miR-499 were measured before and after CPB, as well as miRNAs in plasma 24 h thereafter. All plasma miRNAs increased significantly with surgery while cardiac tissue expression of only miR-133a (1.4-fold; p = 0.003) and miR-423-5p (1.3 fold; p = 0.025) increased as well. Right atrial and plasma miR-133a expression correlated positively before CPB (r = 0.288, p = 0.045) but miR-499 expression inversely (r = −0.484, p = 0.0004). There was a strong association between plasma miR-133a and miR-499 concentrations and postoperative troponin I concentrations, the marker for myocardial damage. Increased myocardial miR-133a and miR-423-5p expression together with unchanged miR-1 and miR-499 expression might suggest active release of these miRNAs rather than their origin from damaged cells.
Collapse
Affiliation(s)
- Andrea Engler
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, 45147, Germany.
| | - Florian Dreja
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, 45147, Germany
| | - Sarah Köberle
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, 45147, Germany
| | - Matthias Thielmann
- Klinik für Thorax- und kardiovaskuläre Chirurgie, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, 45147, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, 45147, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, 45147, Germany
| |
Collapse
|
228
|
De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP. Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Front Endocrinol (Lausanne) 2018; 9:2. [PMID: 29387042 PMCID: PMC5776102 DOI: 10.3389/fendo.2018.00002] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a common metabolic disorder predisposing to diabetic cardiomyopathy and atherosclerotic cardiovascular disease (CVD), which could lead to heart failure through a variety of mechanisms, including myocardial infarction and chronic pressure overload. Pathogenetic mechanisms, mainly linked to hyperglycemia and chronic sustained hyperinsulinemia, include changes in metabolic profiles, intracellular signaling pathways, energy production, redox status, increased susceptibility to ischemia, and extracellular matrix remodeling. The close relationship between type 2 DM and CVD has led to the common soil hypothesis, postulating that both conditions share common genetic and environmental factors influencing this association. However, although the common risk factors of both CVD and type 2 DM, such as obesity, insulin resistance, dyslipidemia, inflammation, and thrombophilia, can be identified in the majority of affected patients, less is known about how these factors influence both conditions, so that efforts are still needed for a more comprehensive understanding of this relationship. The genetic, epigenetic, and environmental backgrounds of both type 2 DM and CVD have been more recently studied and updated. However, the underlying pathogenetic mechanisms have seldom been investigated within the broader shared background, but rather studied in the specific context of type 2 DM or CVD, separately. As the precise pathophysiological links between type 2 DM and CVD are not entirely understood and many aspects still require elucidation, an integrated description of the genetic, epigenetic, and environmental influences involved in the concomitant development of both diseases is of paramount importance to shed new light on the interlinks between type 2 DM and CVD. This review addresses the current knowledge of overlapping genetic and epigenetic aspects in type 2 DM and CVD, including microRNAs and long non-coding RNAs, whose abnormal regulation has been implicated in both disease conditions, either etiologically or as cause for their progression. Understanding the links between these disorders may help to drive future research toward an integrated pathophysiological approach and to provide future directions in the field.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Biagio Arcidiacono
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| | - Daniela P. Foti
- Department of Health Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Brunetti, ; Ciro Indolfi, ; Daniela P. Foti,
| |
Collapse
|
229
|
Duan L, Liu C, Hu J, Liu Y, Wang J, Chen G, Li Z, Chen H. Epigenetic mechanisms in coronary artery disease: The current state and prospects. Trends Cardiovasc Med 2017; 28:311-319. [PMID: 29366539 DOI: 10.1016/j.tcm.2017.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 12/12/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of morbidity and mortality. CAD has both genetic and environmental causes. In the past two decades, the understanding of epigenetics has advanced swiftly and vigorously. It has been demonstrated that epigenetic modifications are associated with the onset and progression of CAD. This review aims to improve the understanding of the epigenetic mechanisms closely related to CAD and to provide a novel perspective on the onset and development of CAD. Epigenetic changes include DNA methylation, histone modification, microRNA and lncRNA, which are interrelated with critical genes and influence the expression of those genes. In addition, miRNA plays a diverse role in the pathological process of CAD. Numerous studies have found that some cardiac-specific miRNAs have potential as certain diagnostic biomarkers and treatment targets for CAD. In this review, the aberrant epigenetic mechanisms that contribute to CAD will be discussed. We will also provide novel insight into the epigenetic mechanisms that target CAD.
Collapse
Affiliation(s)
- Lian Duan
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Chao Liu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Junyuan Hu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China.
| | - Guang Chen
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China; Beijing University of Traditional Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, China
| | - Zhaoling Li
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang' an men Hospital, No. 5 Beixiange, Xicheng District, Beijing, China
| |
Collapse
|
230
|
Zhu J, Lu K, Zhang N, Zhao Y, Ma Q, Shen J, Lin Y, Xiang P, Tang Y, Hu X, Chen J, Zhu W, Webster KA, Wang J, Yu H. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1659-1670. [PMID: 29141446 DOI: 10.1080/21691401.2017.1388249] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypoxia treatment enhances paracrine effect of mesenchymal stem cells (MSCs). The aim of this study was to investigate whether exosomes from hypoxia-treated MSCs (ExoH) are superior to those from normoxia-treated MSCs (ExoN) for myocardial repair. Mouse bone marrow-derived MSCs were cultured under hypoxia or normoxia for 24 h, and exosomes from conditioned media were intramyocardially injected into infarcted heart of C57BL/6 mouse. ExoH resulted in significantly higher survival, smaller scar size and better cardiac functions recovery. ExoH conferred increased vascular density, lower cardiomyocytes (CMs) apoptosis, reduced fibrosis and increased recruitment of cardiac progenitor cells in the infarcted heart relative to ExoN. MicroRNA analysis revealed significantly higher levels of microRNA-210 (miR-210) in ExoH compared with ExoN. Transfection of a miR-210 mimic into endothelial cells (ECs) and CMs conferred similar biological effects as ExoH. Hypoxia treatment of MSCs increased the expression of neutral sphingomyelinase 2 (nSMase2) which is crucial for exosome secretion. Blocking the activity of nSMase2 resulted in reduced miR-210 secretion and abrogated the beneficial effects of ExoH. In conclusion, hypoxic culture augments miR-210 and nSMase2 activities in MSCs and their secreted exosomes, and this is responsible at least in part for the enhanced cardioprotective actions of exosomes derived from hypoxia-treated cells.
Collapse
Affiliation(s)
- Jinyun Zhu
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Kai Lu
- b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China.,c Department of Cardiology , The First People's Hospital of Huzhou , Huzhou , PR China
| | - Ning Zhang
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Yun Zhao
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Qunchao Ma
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Jian Shen
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Yinuo Lin
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Pingping Xiang
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Yaoliang Tang
- d Vascular Biology Center, Department of Medicine , Medical College of Georgia/Georgia Regents University , Augusta , GA , USA
| | - Xinyang Hu
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Jinghai Chen
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Wei Zhu
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Keith A Webster
- e Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine , University of Miami , Miami , FL , USA
| | - Jian'an Wang
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| | - Hong Yu
- a Department of Cardiology, Second Affiliated Hospital, College of Medicine , Zhejiang University , Hangzhou , PR China.,b Department of Cardiology , Cardiovascular Key Laboratory of Zhejiang Province , Hangzhou , PR China
| |
Collapse
|
231
|
Differential Expression of miR-93 and miR-21 in Granulosa Cells and Follicular Fluid of Polycystic Ovary Syndrome Associating with Different Phenotypes. Sci Rep 2017; 7:14671. [PMID: 29116087 PMCID: PMC5676684 DOI: 10.1038/s41598-017-13250-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
The heterogeneous and multifactorial essence of polycystic ovary syndrome (PCOS) renders a remarkable significance to microRNAs (miRNAs). Normo-androgenic (NA) and hyperandrogenic (HA) PCOS patients were compared with matched healthy women. Expression of miRNAs and TGFβ signaling genes was studied by qRT-PCR and western blotting. Effect of androgen on expression of miR-93 and miR-21 and involvement of androgen receptor were appraised. In granulosa cells (GCs), miR-93 and miR-21 showed significantly increased levels in HA patients compared to NA patients. On the contrary, follicular fluid (FF) levels of both miRNAs were significantly decreased in HA group compared to control women. No significant change in the expression of miRNAs in serum samples was detected. Furthermore, mRNA levels of SMAD7 and TGFBR2 were significantly downregulated in GCs of HA group compared to NA and control subjects. TGFBR2 protein level was significantly decreased in HA patients compared to controls. Free testosterone and free androgen index were positively correlated with expression of miR-93 and miR-21 in GCs of PCOS group. Our findings show distinct molecular signature of different subtypes of PCOS. Intermediary position of miRNAs as androgen responsive factors may play critical role in the pathogenesis of PCOS in hyperandrogenic condition.
Collapse
|
232
|
Tan DB, Armitage J, Teo TH, Ong NE, Shin H, Moodley YP. Elevated levels of circulating exosome in COPD patients are associated with systemic inflammation. Respir Med 2017; 132:261-264. [DOI: 10.1016/j.rmed.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
|
233
|
Naji M, Nekoonam S, Aleyasin A, Arefian E, Mahdian R, Azizi E, Shabani Nashtaei M, Amidi F. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). Arch Gynecol Obstet 2017; 297:221-231. [PMID: 29071578 DOI: 10.1007/s00404-017-4570-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies that affects women in reproductive age. MicroRNAs (miRNAs) play crucial roles in normal function of female reproductive system and folliculogenesis. Deregulated expression of miRNAs in PCOS condition may be significantly implicated in the pathogenesis of PCOS. We determined relative expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells (GLCs), follicular fluid (FF), and serum of PCOS patients. METHODS Human subjects were divided into PCOS (n = 20) and control (n = 21) groups. GLCs, FF, and serum were isolated and stored. RNA isolation was performed and cDNA was reversely transcribed using specific stem-loop RT primers. Relative expression of miRNAs was calculated after normalization against U6 expression. Correlation of miRNAs' expression level with basic clinical features and predictive value of miRNAs in FF and serum were appraised. RESULTS Relative expression of miR-145 and miR-182 in GLCs was significantly decreased in PCOS, but miR-182 in FF of PCOS patients revealed up-regulated levels. Significant correlations between level of miRNAs in FF and serum and hormonal profile of subjects were observed. MiR-182 in FF showed a significant predictive value with AUC of 0.73, 76.4% sensitivity, and 70.5% specificity which was improved after combination of miR-182 and miR-145. CONCLUSIONS A significant dysregulation of miR-145 and miR-182 in GLCs of PCOS may indicate their involvement in pathogenesis of PCOS. Differential up-regulation of miR-182 in FF of PCOS patients with its promising predictive values for discrimination of PCOS reinforced the importance of studying miRNAs' profile in FF.
Collapse
Affiliation(s)
- Mohammad Naji
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Aleyasin
- Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Azizi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
234
|
Potential Role of Exosomes in Mending a Broken Heart: Nanoshuttles Propelling Future Clinical Therapeutics Forward. Stem Cells Int 2017; 2017:5785436. [PMID: 29163642 PMCID: PMC5662033 DOI: 10.1155/2017/5785436] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell transplantation therapy is a promising adjunct for regenerating damaged heart tissue; however, only modest improvements in cardiac function have been observed due to poor survival of transplanted cells in the ischemic heart. Therefore, there remains an unmet need for therapies that can aid in attenuating cardiac damage. Recent studies have demonstrated that exosomes released by stem cells could serve as a potential cell-free therapeutic for cardiac repair. These exosomes/nanoshuttles, once thought to be merely a method of waste disposal, have been shown to play a crucial role in physiological functions including short- and long-distance intercellular communication. In this review, we have summarized studies demonstrating the potential role of exosomes in improving cardiac function, attenuating cardiac fibrosis, stimulating angiogenesis, and modulating miRNA expression. Furthermore, exosomes carry an important cargo of miRNAs and proteins that could play an important role as a diagnostic marker for cardiovascular disease post-myocardial infarction. Although there is promising evidence from preclinical studies that exosomes released by stem cells could serve as a potential cell-free therapeutic for myocardial repair, there are several challenges that need to be addressed before exosomes could be fully utilized as off-the-shelf therapeutics for cardiac repair.
Collapse
|
235
|
Hathaway QA, Pinti MV, Durr AJ, Waris S, Shepherd DL, Hollander JM. Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. Am J Physiol Heart Circ Physiol 2017; 314:H293-H310. [PMID: 28986361 DOI: 10.1152/ajpheart.00520.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus is a major risk factor for cardiovascular disease and mortality. Uncontrolled type 2 diabetes mellitus results in a systemic milieu of increased circulating glucose and fatty acids. The development of insulin resistance in cardiac tissue decreases cellular glucose import and enhances mitochondrial fatty acid uptake. While triacylglycerol and cytotoxic lipid species begin to accumulate in the cardiomyocyte, the energy substrate utilization ratio of free fatty acids to glucose changes to almost entirely free fatty acids. Accumulating evidence suggests a role of miRNA in mediating this metabolic transition. Energy substrate metabolism, apoptosis, and the production and response to excess reactive oxygen species are regulated by miRNA expression. The current momentum for understanding the dynamics of miRNA expression is limited by a lack of understanding of how miRNA expression is controlled. While miRNAs are important regulators in both normal and pathological states, an additional layer of complexity is added when regulation of miRNA regulators is considered. miRNA expression is known to be regulated through a number of mechanisms, which include, but are not limited to, epigenetics, exosomal transport, processing, and posttranscriptional sequestration. The purpose of this review is to outline how mitochondrial processes are regulated by miRNAs in the diabetic heart. Furthermore, we will highlight the regulatory mechanisms, such as epigenetics, exosomal transport, miRNA processing, and posttranslational sequestration, that participate as regulators of miRNA expression. Additionally, current and future treatment strategies targeting dysfunctional mitochondrial processes in the diseased myocardium, as well as emerging miRNA-based therapies, will be summarized.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Mark V Pinti
- Division of Pharmaceutical and Pharmacological Sciences, West Virginia School of Pharmacy , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Shanawar Waris
- Department of Biomedical Engineering, West Virginia College of Engineering , Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia.,Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia.,Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
236
|
Bei Y, Das S, Rodosthenous RS, Holvoet P, Vanhaverbeke M, Monteiro MC, Monteiro VVS, Radosinska J, Bartekova M, Jansen F, Li Q, Rajasingh J, Xiao J. Extracellular Vesicles in Cardiovascular Theranostics. Am J Cancer Res 2017; 7:4168-4182. [PMID: 29158817 PMCID: PMC5695004 DOI: 10.7150/thno.21274] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine.
Collapse
|
237
|
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Biomarcadores epigenéticos y enfermedad cardiovascular: los microARN circulantes. Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2017.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
238
|
Xuan L, Sun L, Zhang Y, Huang Y, Hou Y, Li Q, Guo Y, Feng B, Cui L, Wang X, Wang Z, Tian Y, Yu B, Wang S, Xu C, Zhang M, Du Z, Lu Y, Yang BF. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J Cell Mol Med 2017; 21:1803-1814. [PMID: 28296001 PMCID: PMC5571539 DOI: 10.1111/jcmm.13101] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 12/26/2016] [Indexed: 12/13/2022] Open
Abstract
This study sought to evaluate the potential of circulating long non-coding RNAs (lncRNAs) as biomarkers for heart failure (HF). We measured the circulating levels of 13 individual lncRNAs which are known to be relevant to cardiovascular disease in the plasma samples from 72 HF patients and 60 non-HF control participants using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) methods. We found that out of the 13 lncRNAs tested, non-coding repressor of NFAT (NRON) and myosin heavy-chain-associated RNA transcripts (MHRT) had significantly higher plasma levels in HF than in non-HF subjects: 3.17 ± 0.30 versus 1.0 ± 0.07 for NRON (P < 0.0001) and 1.66 ± 0.14 versus 1.0 ± 0.12 for MHRT (P < 0.0001). The area under the ROC curve was 0.865 for NRON and 0.702 for MHRT. Univariate and multivariate analyses identified NRON and MHRT as independent predictors for HF. Spearman's rank correlation analysis showed that NRON was negatively correlated with HDL and positively correlated with LDH, whereas MHRT was positively correlated with AST and LDH. Hence, elevation of circulating NRON and MHRT predicts HF and may be considered as novel biomarkers of HF.
Collapse
Affiliation(s)
- Lina Xuan
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Lihua Sun
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Ying Zhang
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Yuechao Huang
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Yan Hou
- Department of Epidemiology and BiostatisticsPublic Health SchoolHarbin Medical UniversityHarbinHeilongjiangChina
| | - Qingqi Li
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Ying Guo
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Bingbing Feng
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Lina Cui
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Xiaoxue Wang
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Zhiguo Wang
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Ye Tian
- Department of Cardiologythe First Affiliated HospitalHarbin Medical UniversityHarbinHeilongjiangChina
- Division of Pathophysiology (the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China and the Key Laboratory of Cardiovascular Research, Ministry of Education)Harbin Medical UniversityHarbinHeilongjiangChina
| | - Bo Yu
- Department of Cardiologythe Second Affiliated HospitalHarbin Medical UniversityHarbinHeilongjiangChina
| | - Shu Wang
- Department of Cardiologythe First Affiliated HospitalHarbin Medical UniversityHarbinHeilongjiangChina
| | - Chaoqian Xu
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Mingyu Zhang
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Zhimin Du
- Institute of Clinical Pharmacologythe Second Affiliated HospitalHarbin Medical UniversityHarbinHeilongjiangChina
| | - Yanjie Lu
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
| | - Bao Feng Yang
- Department of Pharmacology(the State‐Province Key Laboratories of Biomedicine‐Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinHeilongjiangChina
- Department of Pharmacology and TherapeuticsMelbourne School of Biomedical SciencesFaculty of MedicineDentistry and Health SciencesUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
239
|
Lu S, Wang S, Zhao J, Sun J, Yang X. Fluorescence Light-Up Biosensor for MicroRNA Based on the Distance-Dependent Photoinduced Electron Transfer. Anal Chem 2017; 89:8429-8436. [DOI: 10.1021/acs.analchem.7b01900] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Shasha Lu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiahui Zhao
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sun
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
240
|
Lai CTM, Ng EKO, Chow PC, Kwong A, Cheung YF. Circulating MicroRNA in patients with repaired tetralogy of Fallot. Eur J Clin Invest 2017; 47:574-582. [PMID: 28664568 DOI: 10.1111/eci.12778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging data suggest that heart-related microRNAs (miRs) may serve as circulating biomarkers of myocardial injury. We aimed to determine the circulating profile of miRs in patients with volume-overloaded right ventricles after repair of tetralogy (TOF). MATERIALS AND METHODS A total of 104 TOF patients and 70 controls were recruited. The study was conducted in two phases: (1) determination of circulating heart-related miRs described in left heart diseases (miR-1, miR-133a, miR-208a, miR-208b and miR423-5p) by quantitative real-time PCR in 49 patients and 30 controls and followed by validation in an independent cohort of 55 patients and 40 controls; (2) expression profiling of serum samples from eight patients and eight controls, followed by validation. Alteration in circulating miRNA expression was related to cardiac functional indices as assessed by 2D speckle tracking and 3D echocardiography. RESULTS No significant differences in serum levels of left heart-associated miRNAs were found between patients and controls. Of the candidate 19 miRNAs identified by profiling, upregulation of miR-99b and down-regulation of miR-766 were validated. However, no correlations were found between miRs levels and echo indices. CONCLUSION In young adults with repaired TOF and volume-overloaded right ventricles, circulating levels of miR-99b and miR-766, but not left heart-associated miRNAs, were significantly altered.
Collapse
Affiliation(s)
- Clare T M Lai
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Enders K O Ng
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Pak-Cheong Chow
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yiu-Fai Cheung
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
241
|
Xu JY, Chen GH, Yang YJ. Exosomes: A Rising Star in Falling Hearts. Front Physiol 2017; 8:494. [PMID: 28751864 PMCID: PMC5508217 DOI: 10.3389/fphys.2017.00494] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022] Open
Abstract
Although exosomes were previously recognized as a mechanism for discharging useless cellular components, growing evidence has elucidated their roles in conveying information between cells. They contribute to cell-cell communication by carrying nucleic acids, proteins and lipids that can, in turn, regulate behavior of the target cells. Recent research suggested that exosomes extensively participate in progression of diverse cardiovascular diseases (CVDs), such as myocardial infarction, cardiomyopathy, pulmonary arterial hypertension and others. Here, we summarize effects of exosome-derived molecules (mainly microRNAs and proteins) on cardiac function, to examine their potential applications as biomarkers or therapeutics in CVDs.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
242
|
Arias Sosa LA. [Use of microRNAs in heart failure management]. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2017; 87:205-224. [PMID: 28292573 DOI: 10.1016/j.acmx.2017.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022] Open
Abstract
Heart failure (HF) is a high impact disease that affects all human populations, demanding the development of new strategies and methods to manage this pathology. That's why microRNAs, small noncoding RNAs that regulate gene expression, appear as an important option in the diagnosis, prognosis and treatment of this disease. MiRNAs seems to have a future on HF handling, because can be isolated from body fluids such as blood, and changes in its levels can be associated with the presence, stage and specific disease features, which makes them an interesting option as biomarkers. Also, due to the important role of these molecules on regulation of gene expression and cell homeostasis, it has been explored its potential use as a therapeutic method to prevent or treat HF. That is why this review seeks to show the importance of biomedical research involving the use of miRNAs as a method to approach the HF, showing the impact of disease in the world, aspects of miRNAs biology, and their use as biomarkers and as important therapeutic targets.
Collapse
Affiliation(s)
- Luis Alejandro Arias Sosa
- Grupo de Investigación en Ciencias Biomédicas UPTC, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
| |
Collapse
|
243
|
Grabmaier U, Clauss S, Gross L, Klier I, Franz WM, Steinbeck G, Wakili R, Theiss HD, Brenner C. Diagnostic and prognostic value of miR-1 and miR-29b on adverse ventricular remodeling after acute myocardial infarction - The SITAGRAMI-miR analysis. Int J Cardiol 2017; 244:30-36. [PMID: 28663047 DOI: 10.1016/j.ijcard.2017.06.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/22/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND MicroRNAs (miRs) have shown to exert fibrotic and anti-fibrotic effects in preclinical models of acute myocardial infarction (AMI). The aim of this study was to evaluate miR-1, miR-21, miR-29b and miR-92a as circulating biomarkers for adverse ventricular remodeling (AVR) in post-AMI patients. METHODS Plasma levels of miR-1, miR-21, miR-29b and miR-92a were measured in 44 patients of the SITAGRAMI trial population at day 4, day 9 and 6month after AMI and in 18 matched controls (CTL). MiR expression patterns were correlated with magnetic resonance imaging (MRI) parameters for AVR (absolute change (Δ) in infarct volume (IV), left ventricular ejection fraction (LVEF) and left ventricular end-diastolic volume (LVEDV) between day 4 and 6months after AMI) and a combined cardiovascular endpoint. RESULTS Expression of miR-1, miR-21 and miR-29b but not miR-92a was increased in AMI vs. CTL cohort showing highest miR levels at d9. However, only miR-1 and miR-29b levels significantly correlated with ΔIV and showed a trend for correlation with ΔLVEF. Only miR-29b levels at day 9 correlated with ΔLVEDV at 6-month follow-up. There was no correlation of miR levels with an adverse outcome. CONCLUSION Mir-1 and miR-29b plasma levels post-AMI correlate with IV changes. In addition, miR-29b levels are associated with changes of LVEDV over time. These results provide insights into the role of miRs as diagnostic AVR surrogate markers. Further large scale clinical trials will be needed to evaluate the real prognostic relevance of these miRs with respect to a clinical implication in the future.
Collapse
Affiliation(s)
- U Grabmaier
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - S Clauss
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - L Gross
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - I Klier
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - W M Franz
- Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria
| | - G Steinbeck
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - R Wakili
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - H D Theiss
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - C Brenner
- Department of Internal Medicine I, Klinikum Grosshadern, Ludwig-Maximilians-University, Munich, Germany; Department of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, Innsbruck, Austria; Department of Cardiology, REHA Zentrum Muenster, Tyrol, Austria.
| |
Collapse
|
244
|
Daniel R, Wu Q, Williams V, Clark G, Guruli G, Zehner Z. A Panel of MicroRNAs as Diagnostic Biomarkers for the Identification of Prostate Cancer. Int J Mol Sci 2017. [PMID: 28621736 PMCID: PMC5486103 DOI: 10.3390/ijms18061281] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the most common non-cutaneous cancer among men; yet, current diagnostic methods are insufficient, and more reliable diagnostic markers need to be developed. One answer that can bridge this gap may lie in microRNAs. These small RNA molecules impact protein expression at the translational level, regulating important cellular pathways, the dysregulation of which can exert tumorigenic effects contributing to cancer. In this study, high throughput sequencing of small RNAs extracted from blood from 28 prostate cancer patients at initial stages of diagnosis and prior to treatment was used to identify microRNAs that could be utilized as diagnostic biomarkers for prostate cancer compared to 12 healthy controls. In addition, a group of four microRNAs (miR-1468-3p, miR-146a-5p, miR-1538 and miR-197-3p) was identified as normalization standards for subsequent qRT-PCR confirmation. qRT-PCR analysis corroborated microRNA sequencing results for the seven top dysregulated microRNAs. The abundance of four microRNAs (miR-127-3p, miR-204-5p, miR-329-3p and miR-487b-3p) was upregulated in blood, whereas the levels of three microRNAs (miR-32-5p, miR-20a-5p and miR-454-3p) were downregulated. Data analysis of the receiver operating curves for these selected microRNAs exhibited a better correlation with prostate cancer than PSA (prostate-specific antigen), the current gold standard for prostate cancer detection. In summary, a panel of seven microRNAs is proposed, many of which have prostate-specific targets, which may represent a significant improvement over current testing methods.
Collapse
Affiliation(s)
- Rhonda Daniel
- Department of Biochemistry and Molecular Biology, VCU Medical Center and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614, USA.
| | - Qianni Wu
- Department of Biochemistry and Molecular Biology, VCU Medical Center and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614, USA.
| | - Vernell Williams
- Molecular Diagnostic Laboratory, Department of Pathology, VCU Health System, Virginia Commonwealth University, Richmond, VA 23298-0248, USA.
| | - Gene Clark
- Department of Biochemistry and Molecular Biology, VCU Medical Center and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614, USA.
| | - Georgi Guruli
- Division of Urology, VCU Medical Center and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0037, USA.
| | - Zendra Zehner
- Department of Biochemistry and Molecular Biology, VCU Medical Center and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614, USA.
| |
Collapse
|
245
|
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Epigenetic Biomarkers and Cardiovascular Disease: Circulating MicroRNAs. ACTA ACUST UNITED AC 2017. [PMID: 28623159 DOI: 10.1016/j.rec.2017.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA (20-25 nucleotides) involved in gene regulation. In recent years, miRNAs have emerged as a key epigenetic mechanism in the development and physiology of the cardiovascular system. These molecular species regulate basic functions in virtually all cell types, and are therefore directly associated with the pathophysiology of a large number of cardiovascular diseases. Since their relatively recent discovery in extracellular fluids, miRNAs have been studied as potential biomarkers of disease. A wide array of studies have proposed miRNAs as circulating biomarkers of different cardiovascular pathologies (eg, myocardial infarction, coronary heart disease, and heart failure, among others), which may have superior physicochemical and biochemical properties than the conventional protein indicators currently used in clinical practice. In the present review, we provide a brief introduction to the field of miRNAs, paying special attention to their potential clinical application. This includes their possible role as new diagnostic or prognostic biomarkers in cardiovascular disease.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Grupo de Lípidos y Patología Cardiovascular, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Vicenta Llorente-Cortés
- Grupo de Lípidos y Patología Cardiovascular, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas de Barcelona (IibB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
246
|
Wang Q, Ma J, Jiang Z, Wu F, Ping J, Ming L. Identification of microRNAs as diagnostic biomarkers for acute myocardial infarction in Asian populations: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e7173. [PMID: 28614255 PMCID: PMC5478340 DOI: 10.1097/md.0000000000007173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the leading causes of mortality and morbidity worldwide. Recently, several studies have revealed the diagnostic value of circulating microRNAs (miRNAs) for AMI detection. However, the diagnostic capacity of miRNAs for AMI is still controversial due to the inconsistent results among studies. METHODS A systematic literature search was conducted to retrieve relevant articles in PubMed and other databases up to February 2017. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under the curve (AUC) were used to assess the overall test performance of miRNAs. Subgroup analysis was conducted to explore the potential sources of heterogeneity. We evaluated the publication bias by the Deeks' funnel plot asymmetry test and all statistical analyses were performed using Meta-disc 1.4 and Stata software. RESULTS A total of 26 articles comprising 1973 AMI patients and 1236 healthy controls were included in this meta-analysis. The overall pooled diagnostic data was as follows: the pooled sensitivity of 0.76 (95% confidence interval [CI]: 0.75-0.78), the pooled specificity of 0.82 (95% CI: 0.81-0.84), the pooled PLR of 4.68 (95% CI: 3.92-5.59), the pooled NLR of 0.28 (95% CI: 0.25-0.32), and the pooled DOR of 18.66 (95% CI: 14.11-24.68). The AUC value was 0.8661 in the overall summary receiver operator characteristic curve. Subgroup analysis indicated that miRNA-499 had better diagnostic accuracy over other miRNAs. CONCLUSION MiRNAs may serve as promising diagnostic biomarkers in the early diagnosis of AMI. Further studies were needed to evaluate the diagnostic value of miRNAs for AMI before clinical application.
Collapse
Affiliation(s)
- Qian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Junfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Zhiyun Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Fan Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Jiedan Ping
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory of Laboratory Medicine of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
247
|
Abstract
Exosomes are small, extracellular membrane-bound particles that mediate intercellular transport of a cytosolic cargo. Exosomal transfer of micro-RNA can modify gene expression in targeted cells. Exosome-based endocrine/paracrine signaling has been shown to be involved in a wide range of physiological processes including those associated with cardiovascular injury and disease, but remains relatively poorly understood. Exosomes offer great potential to the clinical field, with applications in both diagnostics and therapeutics. A stable, circulating form of micro-RNA exists in blood protected from endogenous nucleases. This population of micro-RNA, which includes both exosomal and non-exosomal fractions, may be isolated from blood and exploited as a novel disease biomarker with the potential to deliver increased specificity and rapid diagnosis compared to conventional biomarkers. Exosomes also offer a natural drug-delivery vehicle, providing immune evasion and specific targeting through engineering of surface-displayed ligands. Much of the cardioprotective and regenerative benefits of stem-cell grafts are now thought to derive from paracrine signaling rather than direct tissue incorporation and therefore stem cell-derived exosomes offer the potential for a convenient cell-free therapeutic option, eliminating many of the risks and variability associated with stem-cell therapy. In this review, we consider the potential applications of this emerging field to cardiovascular medicine, taking myocardial infarction as our primary example.
Collapse
Affiliation(s)
- Iain M Dykes
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
248
|
Viereck J, Thum T. Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. Circ Res 2017; 120:381-399. [PMID: 28104771 DOI: 10.1161/circresaha.116.308434] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/26/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022]
Abstract
The discovery of thousands of noncoding RNAs (ncRNAs) has expanded our view on mammalian genomes and transcriptomes, as well as their organization and regulation. Accumulating evidence on aberrantly regulated ncRNAs, including short microRNAs, long ncRNAs and circular RNAs, across various heart diseases indicates that ncRNAs are critical contributors to cardiovascular pathophysiology. In addition, ncRNAs are released into the circulation where they are present in concentration levels that differ between healthy subjects and diseased patients. Although little is known about the origin and function of such circulating ncRNAs, these molecules are increasingly recognized as noninvasive and readily accessible biomarker for risk stratification, diagnosis and prognosis of cardiac injury, and multiple forms of cardiovascular disease. In this review, we summarize recent findings on biological characteristics of circulating ncRNAs and highlight their value as potential biomarker in selected pathologies of cardiovascular disease.
Collapse
Affiliation(s)
- Janika Viereck
- From the Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx (J.V., T.T.), and Excellence Cluster REBIRTH (T.T.), Hannover Medical School, Germany; and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.)
| | - Thomas Thum
- From the Institute of Molecular and Translational Therapeutic Strategies, IFB-Tx (J.V., T.T.), and Excellence Cluster REBIRTH (T.T.), Hannover Medical School, Germany; and National Heart and Lung Institute, Imperial College London, United Kingdom (T.T.).
| |
Collapse
|
249
|
Iguchi T, Niino N, Tamai S, Sakurai K, Mori K. Comprehensive Analysis of Circulating microRNA Specific to the Liver, Heart, and Skeletal Muscle of Cynomolgus Monkeys. Int J Toxicol 2017; 36:220-228. [DOI: 10.1177/1091581817704975] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circulating microRNAs (miRNAs) could represent sensitive and specific biomarkers for tissue injury. However, their utility as biomarkers in nonclinical toxicological studies using nonhuman primates is limited by a lack of information on their organ specificity and circulating levels under resting condition of the animals. Herein, liver, heart, and skeletal muscle-specific expression patterns of miRNAs were determined in 27 tissues/organs from male and female monkeys (n =2/sex) by next-generation sequencing (NGS) analysis. This analysis revealed organ-specific miRNAs in the liver (miR-122), heart (miR-208a and miR-499a), and skeletal muscle (miR-206). Next, plasma was collected from conscious-naive male and female cynomolgus monkeys (n = 25/sex) to better understand the expressions of organ-specific circulating miRNAs. The absolute values of circulating miRNAs were quantified using a Taqman microRNA assay. MiR-1, miR-133a, and miR-208b showed preferential expression in the heart and skeletal muscles, whereas miR-192 was abundant in the liver, stomach, small intestine, and kidney. These miRNAs had identical sequences to their human counterparts. Six organ-specific miRNAs (miR-1, miR-122, miR-133a, miR-192, miR-206, and miR-499a) could be evaluated quantitatively by quantitative real-time reverse transcription polymerase chain reaction with or without preamplification. No significant sex differences were noted for these circulating miRNAs. For their circulation levels, miR-133a showed more than 900-fold interindividual variation, whereas miR-122 showed only a 20-fold variation. In conclusion, we profiled circulating organ-specific miRNAs for the liver, heart, and skeletal muscle of cynomolgus monkeys.
Collapse
Affiliation(s)
- Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Noriyo Niino
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Satoshi Tamai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Ken Sakurai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co, Ltd, Tokyo, Japan
| |
Collapse
|
250
|
Koyama S, Kuragaichi T, Sato Y, Kuwabara Y, Usami S, Horie T, Baba O, Hakuno D, Nakashima Y, Nishino T, Nishiga M, Nakao T, Arai H, Kimura T, Ono K. Dynamic changes of serum microRNA-122-5p through therapeutic courses indicates amelioration of acute liver injury accompanied by acute cardiac decompensation. ESC Heart Fail 2017; 4:112-121. [PMID: 28451447 PMCID: PMC5396046 DOI: 10.1002/ehf2.12123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/28/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
AIMS Recent studies have shown that serum microRNA (miR) abundance is informative for the diagnosis or prognosis of heart failure. However, the dynamics and kinetics of miRs in acute heart failure are largely unknown. Serial measurement and analysis of serum miRs changes in individuals along their therapeutic course could reduce inter-individual variation and should detect potentially important serum miRs related to disease mechanisms. Based on this concept, we profiled serum miR signatures of blood samples that were obtained sequentially on the day of admission and on hospital Day 7. METHODS AND RESULTS This prospective, observational study included 42 consecutive acute heart failure patients (74 ± 1 years old, 24 male). From admission to Day 7, most of the patients showed clinical improvement. In such a cohort, we detected several fluctuations of serum miRs by two distinct screening methods (quantitative PCR and high-throughput sequencing). One of these fluctuating serum miRs, miR-122-5p, decreased significantly from Day 1 to Day 7 [median arbitrary unit (1st:3rd quantile value); 4.62 [2.39:12.3] to 3.07 [1.67:5.39], P = 0.007]. This fluctuation was significantly correlated with changes in serum liver function markers (estimated coefficient and 95% confidence interval; vs change in aspartate aminotransferase 1.69, 0.890-2.484, P < 0.001 and r = 0.560, vs change in alanine aminotransferase 1.09, 0.406-1.771, P = 0.007 and r = 0.428). CONCLUSIONS The serum miR signature of patients with acute heart failure might indicate the severity of the disease or patients' response to therapeutic intervention. Notably, serum miR-122-5p levels reflect liver damage in this condition.
Collapse
Affiliation(s)
- Satoshi Koyama
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Takashi Kuragaichi
- Department of Cardiovascular MedicineHyogo Prefectural Amagasaki General Medical Center2‐17‐77 Higashinaniwa‐choAmagasakiHyogo660‐8550Japan
| | - Yukihito Sato
- Department of Cardiovascular MedicineHyogo Prefectural Amagasaki General Medical Center2‐17‐77 Higashinaniwa‐choAmagasakiHyogo660‐8550Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Shunsuke Usami
- Department of Cardiovascular MedicineNational Cerebral and Cardiovascular Center5‐7‐1 Fujishiro‐daiSuitaOsaka565‐8565Japan
| | - Takahiro Horie
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Daihiko Hakuno
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Yasuhiro Nakashima
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Tomohiro Nishino
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Masataka Nishiga
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Tetsushi Nakao
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Hidenori Arai
- Center for Gerontology and Social ScienceNational Center for Geriatrics and Gerontology7‐430 Morioka‐choOhfuAichi474‐8511Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of MedicineKyoto University54 Shogoinkawahara‐cho, Sakyo‐kuKyoto606‐8507Japan
| |
Collapse
|