201
|
Cancer Cachexia among Patients with Advanced Non-Small-Cell Lung Cancer on Immunotherapy: An Observational Study with Exploratory Gut Microbiota Analysis. Cancers (Basel) 2022; 14:cancers14215405. [PMID: 36358821 PMCID: PMC9658074 DOI: 10.3390/cancers14215405] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer cachexia exerts a negative clinical influence on patients with advanced non-small-cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICI). The prognostic impact of body weight change during ICI treatment remains unknown. The gut microbiota (GM) is a key contributor to the response to ICI therapy in cancer patients. However, the association between cancer cachexia and GM and their association with the response to ICIs remains unexplored. This study examined the association of cancer cachexia with GM composition and assessed the impact of GM on clinical outcomes in patients with NSCLC treated with ICIs. In this observational, prospective study, which included 113 Japanese patients with advanced NSCLC treated with ICIs, the prevalence of cachexia was 50.4% (57/113). The median progression-free survival (PFS) and overall survival (OS) were significantly shorter in the cachexia group than in the non-cachexia group (4.3 vs. 11.6 months (p = 0.003) and 12.0 months vs. not reached (p = 0.02), respectively). A multivariable analysis revealed that baseline cachexia was independently associated with a shorter PFS. Moreover, a gain in body weight from the baseline (reversible cachexia) was associated with a significantly longer PFS and OS compared to irreversible cachexia. Microbiome profiling with 16S rRNA analysis revealed that the cachexia group presented an overrepresentation of the commensal bacteria, Escherichia-Shigella and Hungatella, while the non-cachexia group had a preponderance of Anaerostipes, Blautia, and Eubacterium ventriosum. Anaerostipes and E. ventriosum were associated with longer PFS and OS. Moreover, a cachexia status correlated with the systemic inflammatory marker-derived-neutrophil-to-lymphocytes ratio (dNLR) and Lung Immune Prognostic Index (LIPI) indexes. Our study demonstrates that cachexia and longitudinal bodyweight change have a prognostic impact on patients with advanced NSCLC treated with ICI therapy. Moreover, our study demonstrates that bacteria associated with ICI resistance are also linked to cachexia. Targeted microbiota interventions may represent a new type of treatment to overcome cachexia in patients with NSCLC.
Collapse
|
202
|
Shen P, Jia Y, Shi S, Sun J, Han X. Analytical and biomedical applications of microfluidics in traditional Chinese medicine research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
203
|
Miller JC, Satheesh Babu AK, Petersen C, Wankhade UD, Robeson MS, Putich MN, Mueller JE, O'Farrell AS, Cho JM, Chintapalli SV, Jalili T, Symons JD, Anandh Babu PV. Gut Microbes Are Associated with the Vascular Beneficial Effects of Dietary Strawberry on Metabolic Syndrome-Induced Vascular Inflammation. Mol Nutr Food Res 2022; 66:e2200112. [PMID: 36112603 PMCID: PMC9691581 DOI: 10.1002/mnfr.202200112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/24/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Metabolic syndrome (MetS) alters the gut microbial ecology and increases the risk of cardiovascular disease. This study investigates whether strawberry consumption reduces vascular complications in an animal model of MetS and identifies whether this effect is associated with changes in the composition of gut microbes. METHODS AND RESULTS Seven-week-old male mice consume diets with 10% (C) or 60% kcal from fat (high-fat diet fed mice; HF) for 12 weeks and subgroups are fed a 2.35% freeze-dried strawberry supplemented diet (C+SB or HF+SB). This nutritional dose is equivalent to ≈160 g of strawberry. After 12 weeks treatment, vascular inflammation is enhanced in HF versus C mice as shown by an increased monocyte binding to vasculature, elevated serum chemokines, and increased mRNA expression of inflammatory molecules. However, strawberry supplementation suppresses vascular inflammation in HF+SB versus HF mice. Metabolic variables, blood pressure, and indices of vascular function were similar among the groups. Further, the abundance of opportunistic microbe is decreased in HF+SB. Importantly, circulating chemokines are positively associated with opportunistic microbes and negatively associated with the commensal microbes (Bifidobacterium and Facalibaculum). CONCLUSION Dietary strawberry decreases the abundance of opportunistic microbe and this is associated with a decrease in vascular inflammation resulting from MetS.
Collapse
Affiliation(s)
- James Coleman Miller
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | | | - Chrissa Petersen
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Michael S Robeson
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Madison Nicole Putich
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jennifer Ellen Mueller
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Aubrey Sarah O'Farrell
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jae Min Cho
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Endocrinology, Metabolism, and Diabetes; and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sree V Chintapalli
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Thunder Jalili
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| | - John David Symons
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Endocrinology, Metabolism, and Diabetes; and Molecular Medicine Program, University of Utah, Salt Lake City, UT, 84112, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
204
|
Lan Y, Li Y, Yu G, Zhang Z, Irshad I. Dynamic changes of gut fungal community in horse at different health states. Front Vet Sci 2022; 9:1047412. [PMID: 36387410 PMCID: PMC9650549 DOI: 10.3389/fvets.2022.1047412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022] Open
Abstract
Accumulating studies indicated that gut microbial changes played key roles in the progression of multiple diseases, which seriously threaten the host health. Gut microbial dysbiosis is closely associated with the development of diarrhea, but gut microbial composition and variability in diarrheic horses have not been well characterized. Here, we investigated gut fungal compositions and changes in healthy and diarrheic horses using amplicon sequencing. Results indicated that the alpha and beta diversities of gut fungal community in diarrheal horses changed significantly, accompanied by distinct changes in taxonomic compositions. The types of main fungal phyla (Neocallimastigomycota, Ascomycota, and Basidiomycota) in healthy and diarrheal horses were same but different in relative abundances. However, the species and abundances of dominant fungal genera in diarrheal horses changed significantly compared with healthy horses. Results of Metastats analysis indicated that all differential fungal phyla (Blastocladiomycota, Kickxellomycota, Rozellomycota, Ascomycota, Basidiomycota, Chytridiomycota, Mortierellomycota, Neocallimastigomycota, Glomeromycota, and Olpidiomycota) showed a decreasing trend during diarrhea. Moreover, a total of 175 differential fungal genera were identified for the gut fungal community between healthy and diarrheal horses, where 4 fungal genera increased significantly, 171 bacterial genera decreased dramatically during diarrhea. Among these decreased bacteria, 74 fungal genera even completely disappeared from the intestine. Moreover, this is the first comparative analysis of equine gut fungal community in different health states, which is beneficial to understand the important role of gut fungal community in equine health.
Collapse
Affiliation(s)
- Yanfang Lan
- School of Physical Education and International Equestrianism, Wuhan Business University, Wuhan, China
| | - Yaonan Li
- School of Physical Education and International Equestrianism, Wuhan Business University, Wuhan, China
- *Correspondence: Yaonan Li
| | - Gang Yu
- School of Physical Education and International Equestrianism, Wuhan Business University, Wuhan, China
| | - Zhengyi Zhang
- School of Physical Education and International Equestrianism, Wuhan Business University, Wuhan, China
| | - Irfan Irshad
- Pathobiology Section, Institute of Continuing Education and Extension, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
205
|
Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, Yano H, Parkhurst CN, Chu C, Zhou L, Putzel GG, Li TT, Jin WB, Zhou J, Hu H, Tsou AM, Guo CJ, Artis D. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 2022; 185:4170-4189.e20. [PMID: 36240781 PMCID: PMC9617796 DOI: 10.1016/j.cell.2022.09.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.
Collapse
Affiliation(s)
- Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jordan Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
206
|
Ni Y, Zheng L, Nan S, Ke L, Fu Z, Jin J. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1406-1420. [PMID: 36239349 PMCID: PMC9827797 DOI: 10.3724/abbs.2022140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
The role of gut-kidney crosstalk in the progression of diabetic nephropathy (DN) is receiving increasing concern. On one hand, the decline in renal function increases circulating uremic toxins and affects the composition and function of gut microbiota. On the other hand, intestinal dysbiosis destroys the epithelial barrier, leading to increased exposure to endotoxins, thereby exacerbating kidney damage by inducing systemic inflammation. Dietary inventions, such as higher fiber intake, prebiotics, probiotics, postbiotics, fecal microbial transplantation (FMT), and engineering bacteria and phages, are potential microbiota-based therapies for DN. Furthermore, novel diabetic agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-dependent glucose transporter-2 (SGLT-2) inhibitors, may affect the progression of DN partly through gut microbiota. In the current review, we mainly summarize the evidence concerning the gut-kidney axis in the advancement of DN and discuss therapies targeting the gut microbiota, expecting to provide new insight into the clinical treatment of DN.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Liujie Zheng
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Sujie Nan
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Lehui Ke
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Juan Jin
- Urology & Nephrology CenterDepartment of NephrologyZhejiang Provincial People’s Hospital (Affiliated People’s HospitalHangzhou Medical College)Hangzhou310014China
| |
Collapse
|
207
|
Zhang S, Xu M, Sun X, Shi H, Zhu J. Green tea extract alters gut microbiota and their metabolism of adults with metabolic syndrome in a host-free human colonic model. Food Res Int 2022; 160:111762. [PMID: 36076430 PMCID: PMC10324538 DOI: 10.1016/j.foodres.2022.111762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Metabolic syndrome (MetS) is a common metatoblic disorder that leads to various adverse health outcomes such as diabetes and cardiovascular diseases (CVDs). Recent studies suggested that MetS-associated gut dysbiosis could exacerbate MetS related diseases. Green tea, a popular beverage rich in polyphenols, has showed antioxidant and anti-inflammatory effects in treating MetS through gut modulation. OBJECTIVES This study aimed to understand the impact of green tea extract (GTE) on the composition and metabolism of gut microbiota from people with MetS. METHODS We utilized an in-vitro human colonic model (HCM) to specifically investigate the host-free interactions between GTE and gut microbiota of MetS adults. Fresh fecal samples donated by three adults with MetS were used as gut microbe inoculum in our HCM system. 16S ribosomal RNA sequencing and liquid-chromatography mass spectrometry (LC/MS) combined with QIIME 2, Compound Discoverer 3.1 and MetaboAnalyst 4.0 based data analyses were performed to show the regulating effects of GTE treatment on gut microbial composition and their metabolism. RESULTS Our data suggested that GTE treatment in HCM system modified composition of MetS gut microbiota at genus level and led to significant microbiota metabolic profile change. Bioinformatics analysis showed relative abundance of Escherichia and Klebsiella was commonly increased while Bacteroides, Citrobacter, and Clostridium were significantly reduced. All free fatty acids detected were significantly increased in different colon sections. Lipopolysaccharide biosynthesis, methane metabolism, pentose phosphate pathway, purine metabolism, and tyrosine metabolism were regulated by GTE in MetS gut microbiota. In addition, we identified significant associations between altered microbes and microbial metabolites. CONCLUSIONS Overall, our study revealed the impact of GTE treatment on gut microbiota composition and metabolism changes in MetS microbiota in vitro, which may provide information for further mechanistic investigation of GTE in modulating gut dysbiosis in MetS.
Collapse
Affiliation(s)
- Shiqi Zhang
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mengyang Xu
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Xiaowei Sun
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
208
|
Malik J, Ahmed S, Yaseen Z, Alanazi M, Alharby TN, Alshammari HA, Anwar S. Association of SARS-CoV-2 and Polypharmacy with Gut-Lung Axis: From Pathogenesis to Treatment. ACS OMEGA 2022; 7:33651-33665. [PMID: 36164411 PMCID: PMC9491241 DOI: 10.1021/acsomega.2c02524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/29/2022] [Indexed: 06/12/2023]
Abstract
SARS-CoV-2 is a novel infectious contagion leading to COVID-19 disease. The virus has affected the lives of millions of people across the globe with a high mortality rate. It predominantly affects the lung (respiratory system), but it also affects other organs, including the cardiovascular, psychological, and gastrointestinal (GIT) systems. Moreover, elderly and comorbid patients with compromised organ functioning and pre-existing polypharmacy have worsened COVID-19-associated complications. Microbiota (MB) of the lung plays an important role in developing COVID-19. The extent of damage mainly depends on the predominance of opportunistic pathogens and, inversely, with the predominance of advantageous commensals. Changes in the gut MB are associated with a bidirectional shift in the interaction among the gut with a number of vital human organs, which leads to severe disease symptoms. This review focuses on dysbiosis in the gut-lung axis, COVID-19-induced worsening of comorbidities, and the influence of polypharmacy on MB.
Collapse
Affiliation(s)
- Jonaid
Ahmad Malik
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
- Department
of Biomedical Engineering, Indian Institute
of Technology Rupnagar 140001, India
| | - Sakeel Ahmed
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Zahid Yaseen
- Department
of Pharmaceutical Biotechnology, Delhi Pharmaceutical
Sciences and Research University, New Delhi, Delhi 110017, India
| | - Muteb Alanazi
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| | - Tareq Nafea Alharby
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| | | | - Sirajudheen Anwar
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| |
Collapse
|
209
|
Polyphenols in Metabolic Diseases. Molecules 2022; 27:molecules27196280. [PMID: 36234817 PMCID: PMC9570923 DOI: 10.3390/molecules27196280] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols (PPs) are a large group of phytochemicals containing phenolic rings with two or more hydroxyl groups. They possess powerful antioxidant properties, multiple therapeutic effects, and possible health benefits in vivo and in vitro, as well as reported clinical studies. Considering their free-radical scavenging and anti-inflammatory properties, these substances can be used to treat different kinds of conditions associated with metabolic disorders. Many symptoms of metabolic syndrome (MtS), including obesity, dyslipidemia, atherosclerosis, elevated blood sugar, accelerating aging, liver intoxication, hypertension, as well as cancer and neurodegenerative disorders, are substantially relieved by dietary PPs. The present study explores the bioprotective properties and associated underlying mechanisms of PPs. A detailed understanding of these natural compounds will open up new opportunities for producing unique natural PP-rich dietary and medicinal plans, ultimately affirming their health benefits.
Collapse
|
210
|
Wang S, Du Q, Meng X, Zhang Y. Natural polyphenols: a potential prevention and treatment strategy for metabolic syndrome. Food Funct 2022; 13:9734-9753. [PMID: 36134531 DOI: 10.1039/d2fo01552h] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Metabolic syndrome (MS) is the term for a combination of hypertension, dyslipidemia, insulin resistance, and central obesity as factors leading to cardiovascular and metabolic disease. Epidemiological investigation has shown that polyphenol intake is negatively correlated with the incidence of MS. Natural polyphenols are widely found in cocoa beans, tea, vegetables, fruits, and some Chinese herbal medicines; they are a class of plant compounds containing a variety of phenolic structural units, which are potent antioxidants and anti-inflammatory agents in plants. Polyphenols are composed of flavonoids (such as flavanols, anthocyanidins, anthocyanins, isoflavones, etc.) and non-flavonoids (such as phenolic acids, stilbenes, and lignans). Modern pharmacological studies have proved that polyphenols can reduce blood pressure, improve lipid metabolism, lower blood glucose, and reduce body weight, thereby preventing and improving MS. Due to the unique characteristics and potential development and application value of polyphenols, this review summarizes some natural polyphenols that could treat MS, including their chemical properties, plant sources, and pharmacological action against MS, to provide a basis for the further study of polyphenols in MS.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
211
|
Wang Y, Zhou P, Zhou X, Fu M, Wang T, Liu Z, Liu X, Wang Z, Liu B. Effect of host genetics and gut microbiome on fat deposition traits in pigs. Front Microbiol 2022; 13:925200. [PMID: 36204621 PMCID: PMC9530793 DOI: 10.3389/fmicb.2022.925200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fat deposition affects meat quality, flavor, and production in pigs. Fat deposition is influenced by both genetics and environment. Symbiotic microbe with the host is an important environmental factor to influence fat deposition. In this study, the fat deposition traits were measured in 239 individuals obtained from Tongcheng pigs × Large White pigs resource population. The interactions between genetics and gut microbiome in fat deposition traits were investigated through whole-genome sequencing and cecum microbial 16S ribosomal RNA sequencing. The results showed that the percentage of leaf fat (PL) and intramuscular fat content (IMF) were significantly influenced by host genetics–gut microbiome interaction. The effects of interactions between host genetics and gut microbiome on PL and IMF were 0.13 and 0.29, respectively. The heritability of PL and IMF was estimated as 0.71 and 0.89, respectively. The microbiability of PL and IMF was 0.20 and 0.26, respectively. Microbiome-wide association analysis (MWAS) revealed Anaeroplasma, Paraprevotella, Pasteurella, and Streptococcus were significantly associated with PL, and Sharpea and Helicobacter exhibited significant association with IMF (p < 0.05). Furthermore, Paraprevotella was also identified as a critical microbe affecting PL based on the divergent Wilcoxon rank-sum test. Overall, this study reveals the effect of host genetics and gut microbiome on pig fat deposition traits and provides a new perspective on the genetic improvement of pig fat deposition traits.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Ping Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ming Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Tengfei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zuhong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Bang Liu,
| |
Collapse
|
212
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Aloizos G, Tsagarakis A, Damaskos C, Garmpis N, Garmpi A, Papavassiliou AG, Karamouzis MV. Implication of gut microbiome in immunotherapy for colorectal cancer. World J Gastrointest Oncol 2022; 14:1665-1674. [PMID: 36187397 PMCID: PMC9516653 DOI: 10.4251/wjgo.v14.i9.1665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/09/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) constitutes the third most frequently reported malignancy in the male population and the second most common in women in the last two decades. Colon carcinogenesis is a complex, multifactorial event, resulting from genetic and epigenetic aberrations, the impact of environmental factors, as well as the disturbance of the gut microbial ecosystem. The relationship between the intestinal microbiome and carcinogenesis was relatively undervalued in the last decade. However, its remarkable effect on metabolic and immune functions on the host has been in the spotlight as of recent years. There is a strong relationship between gut microbiome dysbiosis, bowel pathogenicity and responsiveness to anti-cancer treatment; including immunotherapy. Modifications of bacteriome consistency are closely associated with the immunologic response to immunotherapeutic agents. This condition that implies the necessity of gut microbiome manipulation. Thus, creatingan optimal response for CRC patients to immunotherapeutic agents. In this paper, we will review the current literature observing how gut microbiota influence the response of immunotherapy on CRC patients.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolaos Papadopoulos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital of Athens, Athens 11521, Attica, Greece
| | - Georgios Aloizos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital of Athens, Athens 11521, Attica, Greece
| | | | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
213
|
Zhao L, Shen Y, Wang Y, Wang L, Zhang L, Zhao Z, Li S. Lactobacillus plantarum S9 alleviates lipid profile, insulin resistance, and inflammation in high-fat diet-induced metabolic syndrome rats. Sci Rep 2022; 12:15490. [PMID: 36109620 PMCID: PMC9478128 DOI: 10.1038/s41598-022-19839-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Probiotics are considered to play an crucial role in the treatment of high-fat diet (HFD)-induced lipid metabolic diseases, including metabolic syndrome (MS). This study aimed to investigate the effects of Lactobacillus plantarum S9 on MS in HFD-fed rats, and to explore the underlying role of probiotics in the treatment of MS. Sprague-Dawley rats were fed with HFD for 8 weeks, followed by the treatment of L. plantarum S9 for 6 weeks, and The body weight and blood glucose level of rats were detected on time. The results showed that L. plantarum S9 significantly decreased the body weight gain, Lee’s index, and liver index. Additionally, L. plantarum S9 reduced the levels of serum lipids and insulin resistance. L. plantarum S9 also decreased the levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in liver. Moreover, the serum levels of MS-related inflammatory signaling molecules, including lipopolysaccharide (LPS) and tumor necrosis factor-α (TNF-α), were significantly elevated. Western blot analysis showed that L. plantarum S9 inhibited the activation of nuclear factor-κB (NF-κB) pathway, decreased the expression level of Toll-like receptor 4 (TLR4), suppressed the activation of inflammatory signaling pathways, and reduced the expression levels of inflammatory factors in HFD-fed rats. Moreover, it further decreased the ratios of p-IκBα/IκBα, p-p65/NF-κB p65, and p-p38/p38. In summary, L. plantarum S9, as a potential functional strain, prevents or can prevent onset of MS.
Collapse
|
214
|
Yang J, Song J, Zhou J, Lin H, Wu Z, Liu N, Xie W, Guo H, Chi J. Functional components of Chinese rice wine can ameliorate diabetic cardiomyopathy through the modulation of autophagy, apoptosis, gut microbiota, and metabolites. Front Cardiovasc Med 2022; 9:940663. [PMID: 36186976 PMCID: PMC9515449 DOI: 10.3389/fcvm.2022.940663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Dietary polyphenols, polypeptides, and oligosaccharides modulate inflammation and immunity by altering the composition of gut microbiota. The polyphenols and polypeptides in Chinese rice wine have protective effects against cardiovascular disease. In this study, we hypothesized that the polyphenols, polypeptides, and oligosaccharides in Chinese rice wine can ameliorate diabetic cardiomyopathy (DCM) by altering gut microbiota and metabolites. Methods Mice with DCM and high glucose cells were treated with rice wine polyphenols (RWPH), rice wine polypeptides (RWPE), and rice wine oligosaccharides. Cardiac function was evaluated by echocardiography and detection of myocardial injury markers. We observed the pathological structures using hematoxylin and eosin staining, Masson's trichrome staining, and transmission electron microscopy. The expression levels of autophagy-related proteins and stubRFP-sensGFP-LC3 fluorescence were measured to evaluate autophagy. We performed TUNEL staining and measured the levels of Bax, Bcl-2, and p53 to assess apoptosis. To analyze the effects of the rice wine functional components on the gut microbiota and metabolites of DCM mice, we performed fecal 16S-rDNA gene sequencing and serum untargeted metabolomics. Results Our results showed an increase in cardiac and mitochondrial function, promotion of autophagy, and inhibition of cardiomyocyte apoptosis, which indicates that RWPH and RWPE can ameliorate DCM. The abundance of Akkermansia and Desulfovibrio were reduced by the presence of RWPH and RWPE. The growth of the Lachnospiraceae_NK4A136_group and Clostridiales-unclassified were promoted by the presence of RWPH. Tryptophan metabolism-associated metabolites were increased and phenylalanine levels were reduced by the presence of RWPH and RWPE. The biosynthesis of primary bile acids was enhanced by the presence of RWPH. Conclusion Both RWPH and RWPE provided a protective effect against DCM by promoting autophagy, inhibiting apoptosis, and reversing both gut microbiota dysbiosis and metabolic dysregulation.
Collapse
Affiliation(s)
- Jinjin Yang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jiaoying Song
- Medical College of Shaoxing University, Shaoxing, China
| | - Jiedong Zhou
- Medical College of Shaoxing University, Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhuonan Wu
- Medical College of Shaoxing University, Shaoxing, China
| | - Nan Liu
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqing Xie
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangyuan Guo
- Medical College of Shaoxing University, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- *Correspondence: Jufang Chi
| |
Collapse
|
215
|
Li X, Nian B, Li R, Cao X, Liu Y, Liu Y, Xu YJ. Fasting and metabolic syndrome: A systematic review and Meta-analyses. Crit Rev Food Sci Nutr 2022; 64:1836-1844. [PMID: 36069291 DOI: 10.1080/10408398.2022.2119362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective: Fasting is considered to be a food structure that can improve body health. Several randomized clinical trials (RCTs) have investigated the effects of fasting in patients with metabolic syndrome (MS). In this review, we performed a meta-analysis to assess the effects of fasting on patients with MS. Methods: Following PRISMA guidelines, a systematic literature search was conducted in PubMed, Embase, and Cochrane Central updated to September 2021. The quality evaluation and heterogeneity detection of the included research literature were carried out by Revman and Stata software through a random-effects model. Results: A total of 268 subjects were included. The pooled results revealed that fasting significantly reduced body weight (WMD: -2.48 kg, 95% CI: -3.22, -1.74), BMI (WMD = -2.72 cm; 95%CI: -4.04, -1.40 cm), body fat percent (WMD: -1.57%, 95%CI: -2.47, -0.68), insulin level (WMD: -2.45 mmol/L; 95%CI: -4.40, -0.49 mmol/L) and HOMA-IR (WMD:-0.65 mmol/L; 95%CI: -0.90, -0.41 mmol/L) in patients with MS, whereas had no effect on glucose, blood pressure and lipids profile. Conclusions: Our findings provide insights into the effect of fasting on the anthropometric outcomes, insulin resistance, and gut microbiota in MS.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Binbin Nian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Ruizhi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xinyu Cao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanjun Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
216
|
Huang YH, Tain YL, Hsu CN. Maternal Supplementation of Probiotics, Prebiotics or Postbiotics to Prevent Offspring Metabolic Syndrome: The Gap between Preclinical Results and Clinical Translation. Int J Mol Sci 2022; 23:10173. [PMID: 36077575 PMCID: PMC9456151 DOI: 10.3390/ijms231710173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Metabolic syndrome (MetS) is an extremely prevalent complex trait and it can originate in early life. This concept is now being termed the developmental origins of health and disease (DOHaD). Increasing evidence supports that disturbance of gut microbiota influences various risk factors of MetS. The DOHaD theory provides an innovative strategy to prevent MetS through early intervention (i.e., reprogramming). In this review, we summarize the existing literature that supports how environmental cues induced MetS of developmental origins and the interplay between gut microbiota and other fundamental underlying mechanisms. We also present an overview of experimental animal models addressing implementation of gut microbiota-targeted reprogramming interventions to avert the programming of MetS. Even with growing evidence from animal studies supporting the uses of gut microbiota-targeted therapies start before birth to protect against MetS of developmental origins, their effects on pregnant women are still unknown and these results require further clinical translation.
Collapse
Affiliation(s)
- Ying-Hua Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
217
|
ROLE OF GUT MICROBIOTA IN DEPRESSION: UNDERSTANDING MOLECULAR PATHWAYS, RECENT RESEARCH, AND FUTURE DIRECTION. Behav Brain Res 2022; 436:114081. [PMID: 36037843 DOI: 10.1016/j.bbr.2022.114081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Gut microbiota, also known as the "second brain" in humans because of the regulatory role it has on the central nervous system via neuronal, chemical and immune pathways. It has been proven that there exists a bidirectional communication between the gut and the brain. Increasing evidence supports that this crosstalk is linked to the etiology and treatment of depression. Reports suggest that the gut microbiota control the host epigenetic machinery in depression and gut dysbiosis causes negative epigenetic modifications via mechanisms like histone acetylation, DNA methylation and non-coding RNA mediated gene inhibition. The gut microbiome can be a promising approach for the management of depression. The diet and dietary metabolites like kynurenine, tryptophan, and propionic acid also greatly influence the microbiome composition and thereby, the physiological activities. This review gives a bird-eye view on the pathological updates and currently used treatment approaches targeting the gut microbiota in depression.
Collapse
|
218
|
Chen X, Yan Z, Liu L, Zhang R, Zhang X, Peng C, Geng Y, Zhou F, Han Y, Hou X. Characteristics of gut microbiota of term small gestational age infants within 1 week and their relationship with neurodevelopment at 6 months. Front Microbiol 2022; 13:912968. [PMID: 36090083 PMCID: PMC9449527 DOI: 10.3389/fmicb.2022.912968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Small for gestational age (SGA) infants are at a higher risk of neurodevelopmental delay than infants appropriate for gestational age (AGA). Previous studies have confirmed that gut microbiota in early life influences subsequent neurodevelopment. However, few studies have reported corresponding data in SGA populations. Objective We aimed to evaluate the characteristics of the gut microbiota of term SGA infants and the associations between the gut microbiota in SGA infants and neurodevelopmental outcomes at 6 months of age. Methods Fecal samples were collected on days 1, 3, 5, and 7 from term SGA and AGA infants born between June 2020 and June 2021 at the Peking University First Hospital. 16S ribosomal deoxyribonucleic acid amplicon sequencing was used to analyze the fecal microbiota. We followed up for 6 months and used the Ages and Stages Questionnaires-3 (ASQ-3) to evaluate the neurodevelopmental outcomes among SGA infants. Results A total of 162 neonates were enrolled, with 41 SGA infants (25.3%) in the study group and 121 AGA infants (74.7%) in the control group. The gut microbial diversity in the SGA group was lower than that in the AGA group on days 1, 3, 5, and 7. Non-metric multidimensional scaling and analysis of similarities showed significant differences between the two groups. The SGA group had increased relative abundances of Ralstonia (3, 5, and 7 days) and Clostridium (3 and 7 days). The dominant microorganisms of the SGA group were Ralstonia on day 1, Escherichia_Shigella on days 3 and 7, and Clostridia on day 5. We found that the gut microbial diversity of SGA infants with poor communication scores was higher than that of SGA infants with good communication scores on day 3. Fine motor scores were negatively correlated with the relative abundance of Bacteroides_fragilis on day 1. A negative correlation was observed between gross motor scores and relative abundance of Clostridium_saccharobutylicum on day 7. Bacteroidota, Bacteroidia, Bacteroides, and Bacteroides_fragilis were the dominant microorganisms in the good communication score group on day 7. Communication scores were positively correlated with the relative abundance of Bacteroidota, Bacteroides, and Bacteroides_fragilis on day 7. Conclusion The gut microbial diversity of term SGA infants was significantly lower in the first week of life than that of term AGA infants. Certain pathogenic and conditional pathogenic bacteria, such as Escherichia_Shigella, Ralstonia and Clostridium increased or formed the dominant microbiota in SGA infants. Alpha diversity, Bacteroidota, Bacteroides, Bacteroides_fragilis, and Clostridium_saccharobutylicum found in SGA infants may be associated with neurodevelopmental outcomes at 6 months of age, indicating possible therapeutic targets for clinical intervention.
Collapse
|
219
|
Egea MB, Pierce G, Park SH, Lee SI, Heger F, Shay N. Consumption of Antioxidant-Rich “Cerrado” Cashew Pseudofruit Affects Hepatic Gene Expression in Obese C57BL/6J High Fat-Fed Mice. Foods 2022; 11:foods11172543. [PMID: 36076729 PMCID: PMC9455023 DOI: 10.3390/foods11172543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The pseudofruit of A. othonianum Rizzini, “Cerrado” cashew pulp, has been described as rich in flavonoids, phenolic compounds, and vitamin C. The objective of this work was to evaluate the beneficial health effects seen with the addition of “Cerrado” cashew pulp (CP) to an obesogenic high fat diet provided to C57BL/6J male mice. In week 9, the HF-fed group had a significantly higher baseline glucose concentration than the LF- or HF+CP-fed groups. In RNAseq analysis, 4669 of 5520 genes were found to be differentially expressed. Among the genes most upregulated with the ingestion of the CP compared to HF were Ph1da1, SLc6a9, Clec4f, and Ica1 which are related to glucose homeostasis; Mt2 that may be involved steroid biosynthetic process; and Ciart which has a role in the regulation of circadian rhythm. Although “Cerrado” CP intake did not cause changes in the food intake or body weight of fed mice with HF diet, carbohydrate metabolism appeared to be improved based on the observed changes in gene expression.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute, Campus Rio Verde, Rio Verde 75901-970, Brazil
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Gavin Pierce
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Si-Hong Park
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Sang-In Lee
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
| | - Fabienne Heger
- Department of Flavor Chemistry, Institute of Food Science and Biotechnology, University of Hohenheim, Schloss Hohenheim 1, 70599 Stuttgart, Germany
| | - Neil Shay
- Departament of Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA
- Correspondence:
| |
Collapse
|
220
|
Hasavci D, Blank T. Age-dependent effects of gut microbiota metabolites on brain resident macrophages. Front Cell Neurosci 2022; 16:944526. [PMID: 36072564 PMCID: PMC9441744 DOI: 10.3389/fncel.2022.944526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, development of age-related diseases, such as Alzheimer's and Parkinson's disease, as well as other brain disorders, including anxiety, depression, and schizophrenia have been shown to be associated with changes in the gut microbiome. Several factors can induce an alteration in the bacterial composition of the host's gastrointestinal tract. Besides dietary changes and frequent use of antibiotics, the microbiome is also profoundly affected by aging. Levels of microbiota-derived metabolites are elevated in older individuals with age-associated diseases and cognitive defects compared to younger, healthy age groups. The identified metabolites with higher concentration in aged hosts, which include choline and trimethylamine, are known risk factors for age-related diseases. While the underlying mechanisms and pathways remain elusive for the most part, it has been shown, that these metabolites are able to trigger the innate immunity in the central nervous system by influencing development and activation status of brain-resident macrophages. The macrophages residing in the brain comprise parenchymal microglia and non-parenchymal macrophages located in the perivascular spaces, meninges, and the choroid plexus. In this review, we highlight the impact of age on the composition of the microbiome and microbiota-derived metabolites and their influence on age-associated diseases caused by dysfunctional brain-resident macrophages.
Collapse
Affiliation(s)
| | - Thomas Blank
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
221
|
Ji X, Tian L, Niu S, Yao S, Qu C. Trimethylamine N-oxide promotes demyelination in spontaneous hypertension rats through enhancing pyroptosis of oligodendrocytes. Front Aging Neurosci 2022; 14:963876. [PMID: 36072486 PMCID: PMC9441869 DOI: 10.3389/fnagi.2022.963876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022] Open
Abstract
Background Hypertension is a leading risk factor for cerebral small vessel disease (CSVD), a brain microvessels dysfunction accompanied by white matter lesions (WML). Trimethylamine N-oxide (TMAO), a metabolite of intestinal flora, is correlated with cardiovascular and aging diseases. Here, we explored the effect of TMAO on the demyelination of WML. Methods Spontaneous hypertension rats (SHRs) and primary oligodendrocytes were used to explore the effect of TMAO on demyelination in vivo and in vitro. T2-weighted magnetic resonance imaging (MRI) was applied to characterize the white matter hyperintensities (WMH) in rats. TMAO level was evaluated using LC-MS/MS assay. The histopathological changes of corpus callosum were measured by hematoxylin-eosin and luxol fast blue staining. And the related markers were detected by IHC, IF and western blot assay. Mito Tracker Red probe, DCFH-DA assay, flow cytometry based on JC-1 staining and Annexin V-FITC/PI double staining were conducted to evaluate the mitochondrial function, intracellular ROS levels and cell apoptosis. Results SHRs exhibited stronger WMH signals and a higher TMAO level than age-matched normotensive Wistar-kyoto rats (WKY). The corpus callosum region of SHR showed decreased volumes and enhanced demyelination when treated with TMAO. Furthermore, TMAO significantly elevated ROS production and induced NLRP3 inflammasome and impairment of mitochondrial function of oligodendrocytes. More importantly, TMAO enhanced the pyroptosis-related inflammatory death of oligodendrocytes. Conclusion TMAO could cross the blood-brain barrier (BBB) and promote oligodendrocytes pyroptosis via ROS/NLRP3 inflammasome signaling and mitochondrial dysfunction to promote demyelination, revealing a new diagnostic marker for WML under hypertension.
Collapse
Affiliation(s)
- Xiaotan Ji
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Jining No. 1 People’s Hospital, Jining, China
| | - Long Tian
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shenna Niu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shumei Yao
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Chuanqiang Qu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Chuanqiang Qu,
| |
Collapse
|
222
|
Nutrigenetic Interaction of Spontaneously Hypertensive Rat Chromosome 20 Segment and High-Sucrose Diet Sensitizes to Metabolic Syndrome. Nutrients 2022; 14:nu14163428. [PMID: 36014934 PMCID: PMC9416443 DOI: 10.3390/nu14163428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances.
Collapse
|
223
|
Fu Q, Huang H, Ding A, Yu Z, Huang Y, Fu G, Huang Y, Huang X. Portulaca oleracea polysaccharides reduce serum lipid levels in aging rats by modulating intestinal microbiota and metabolites. Front Nutr 2022; 9:965653. [PMID: 35983485 PMCID: PMC9378863 DOI: 10.3389/fnut.2022.965653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic diseases characterized by dyslipidemia are common health problems for elderly populations. Dietary fiber intake is inversely associated with the risk of dyslipidemia. This study investigated the effects of Portulaca oleracea polysaccharide (POP) on the intestinal microbiota and its metabolites in aging rats using 16S rRNA sequencing and metabolomics techniques. Our results showed that POPs reduced the ratio of Firmicutes/Bacteroidetes (F/B), relative abundance of Fusobacteria, and levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), alanine aminotransferase (ALT), and gamma-glutamyl transferase (γ-GT) in the serum of aging rats. POP supplementation also reduced 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol, and vaccenic acid concentrations in lipids and lipoid-like molecules, while soyasapogenol E and monoacylglycerol (MG) (24:0/0:0/0:0) levels increased. This study demonstrated that POP’s beneficial effects on lipid levels in aging rats might be partially attributable to the modification of gut microbiota and related metabolites.
Collapse
Affiliation(s)
- Qiang Fu
- College of Medicine, Jinggangshan University, Ji'an, China.,Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
| | - Hui Huang
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Aiwen Ding
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Ziqi Yu
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Yuping Huang
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, China
| | - Guiping Fu
- College of Medicine, Jinggangshan University, Ji'an, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoliu Huang
- College of Medicine, Jinggangshan University, Ji'an, China.,Institute of Spinal Diseases, Jinggangshan University, Ji'an, China
| |
Collapse
|
224
|
Chen R, Ruan M, Chen S, Tian Y, Wang H, Li N, Zhang J, Yu X, Liu Z. Circadian dysregulation disrupts gut microbe-related bile acid metabolism. Food Nutr Res 2022. [DOI: 10.29219/fnr.v66.7653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Disturbance of circadian rhythm leads to abnormalities in bile acid (BA) and lipid metabolism, and it is of great significance to explore the relationship between them. This study explored the effects of circadian dysregulation on the rhythms of intestinal BA metabolism.
Method: Period circadian clock 1/period circadian clock 2 (Per1/Per2) double gene knockout (DKO) and wild-type (WT) male C57BL/6 mice were fed with a control or high-fat diet for 16 weeks. We measure plasma parameters of mice. Pathological changes including those in liver and intestine were detected by hematoxylin and eosin (H&E) and oil O staining. Western blot was used to detect the intestinal core rhythm protein clock circadian regulator (CLOCK), nuclear receptor subfamily 1, group D, member 1 (REV-ERBα), Farnesoid X receptor (FXR), Small heterodimer partner (SHP), and Fibroblast growth factor 15 (FGF15) expressions. We analyzed the bile acid and intestinal flora profile in the mice intestine tissues by BA-targeted metabolomics detection and high-throughput sequencing.
Results: Rhythmic chaos affected lipid metabolism and lipid accumulation in mice liver and intestine, and diurnal fluctuations of plasma triglycerides (TGs) were absent in normal-feeding DKO mice. The normal circadian fluctuations of the CLOCK and REV-ERBα observed in wild mice disappeared (normal diet) or were reversed (high-fat diet) in DKO mice. In WT mice intestine, total BA and conjugated BA were affected by circadian rhythm under both normal and high-fat diets, while these circadian fluctuations disappeared in DKO mice. Unconjugated BA seemed to be affected exclusively by diet (significantly increased in the high-fat group) without obvious fluctuations associated with circadian rhythm. Correlation analysis showed that the ratio of conjugated/unconjugated BA was positively correlated with the presence of Bacteroidetes and displayed a circadian rhythm. The expression levels of BA receptor pathway protein FXR, SHP, and FGF15 were affected by the ratio of conjugated/unconjugated BA.
Conclusion: Bacteroidetes-related diurnal changes to intestinal ratios of conjugated/unconjugated BA have the potential to regulate diurnal fluctuations in liver BA synthesis via FXR-FGF15. The inverted intestinal circadian rhythm observed in DKO mice fed with a high-fat diet may be an important reason for their abnormal circadian plasma TG rhythms and their susceptibility to lipid metabolism disorders.
Collapse
|
225
|
Wang Z, You L, Ren Y, Zhu X, Mao X, Liang X, Wang T, Guo Y, Liu T, Xue J. Finasteride Alleviates High Fat Associated Protein-Overload Nephropathy by Inhibiting Trimethylamine N-Oxide Synthesis and Regulating Gut Microbiota. Front Physiol 2022; 13:900961. [PMID: 36045744 PMCID: PMC9420981 DOI: 10.3389/fphys.2022.900961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Unhealthy diet especially high-fat diet (HFD) is the major cause of hyperlipidemia leading to deterioration of chronic kidney diseases (CKD) in patients. Trimethylamine N-oxide (TMAO) is a gut-derived uremic toxin. Our previous clinical study demonstrated that the elevation of TMAO was positively correlated with CKD progression. Finasteride, a competitive and specific inhibitor of type II 5a-reductase, has been reported recently to be able to downregulate plasma TMAO level thus preventing the onset of atherosclerosis by our research group. In this study, we established a protein-overload nephropathy CKD mouse model by bovine serum albumin (BSA) injection to investigate whether hyperlipidemia could accelerate CKD progression and the underlying mechanisms. Finasteride was administrated to explore its potential therapeutic effects. The results of biochemical analyses and pathological examination showed that HFD-induced hyperlipidemia led to aggravated protein-overload nephropathy in mice along with an elevated level of circulating TMAO, which can be alleviated by finasteride treatment possibly through inhibition of Fmo3 in liver. The 16 S rRNA sequencing results indicated that HFD feeding altered the composition and distribution of gut microbiota in CKD mice contributing to the enhanced level of TMAO precursor TMA, while finasteride could exert beneficial effects via promoting the abundance of Alistipes_senegalensis and Akkermansia_muciniphila. Immunofluorescence staining (IF) and qRT-PCR results demonstrated the disruption of intestinal barrier by decreased expression of tight junction proteins including Claudin-1 and Zo-1 in HFD-fed CKD mice, which can be rescued by finasteride treatment. Cytokine arrays and redox status analyses revealed an upregulated inflammatory level and oxidative stress after HFD feeding in CKO mice, and finasteride-treatment could alleviate these lesions. To summarize, our study suggested that finasteride could alleviate HFD-associated deterioration of protein-overload nephropathy in mice by inhibition of TMAO synthesis and regulation of gut microbiota.
Collapse
Affiliation(s)
- Zuoyuan Wang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Li You
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan Ren
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoye Zhu
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoyi Mao
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaowan Liang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Tingting Wang
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
| | - Yumeng Guo
- Institute of Digestive Disease, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yumeng Guo, ; Te Liu, ; Jun Xue,
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yumeng Guo, ; Te Liu, ; Jun Xue,
| | - Jun Xue
- Division of Nephrology of Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yumeng Guo, ; Te Liu, ; Jun Xue,
| |
Collapse
|
226
|
Hsu LN, Hu JC, Chen PY, Lee WC, Chuang YC. Metabolic Syndrome and Overactive Bladder Syndrome May Share Common Pathophysiologies. Biomedicines 2022; 10:1957. [PMID: 36009505 PMCID: PMC9405560 DOI: 10.3390/biomedicines10081957] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic syndrome (MetS) is defined by a group of cardiovascular risk factors, including impaired glucose tolerance, central obesity, hypertension, and dyslipidemia. Overactive bladder (OAB) syndrome consists of symptoms such as urinary urgency, frequency, and nocturia with or without urge incontinence. The high prevalences of metabolic syndrome (MetS) and overactive bladder (OAB) worldwide affect quality of life and cause profound negative impacts on the social economy. Accumulated evidence suggests that MetS might contribute to the underlying mechanisms for developing OAB, and MetS-associated OAB could be a subtype of OAB. However, how could these two syndromes interact with each other? Based on results of animal studies and observations in epidemiological studies, we summarized the common pathophysiologies existing between MetS and OAB, including autonomic and peripheral neuropathies, chronic ischemia, proinflammatory status, dysregulation of nutrient-sensing pathways (e.g., insulin resistance at the bladder mucosa and excessive succinate intake), and the probable role of dysbiosis. Since the MetS-associated OAB is a subtype of OAB with distinctive pathophysiologies, the regular and non-specific medications, such as antimuscarinics, beta-3 agonist, and botulinum toxin injection, might lead to unsatisfying results. Understanding the pathophysiologies of MetS-associated OAB might benefit future studies exploring novel biomarkers for diagnosis and therapeutic targets on both MetS and OAB.
Collapse
Affiliation(s)
- Lin-Nei Hsu
- Department of Urology, An Nan Hospital, China Medical University, Tainan City 833, Taiwan
| | - Ju-Chuan Hu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Po-Yen Chen
- Division of Urology, Yunlin Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Yunlin 638, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 807, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 807, Taiwan
| |
Collapse
|
227
|
Wang Y, Xiao H, Liu Y, Tong Q, Yu Y, Qi B, Bu X, Pan T, Xing Y. Effects of Bu Shen Hua Zhuo formula on the LPS/TLR4 pathway and gut microbiota in rats with letrozole-induced polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:891297. [PMID: 36017323 PMCID: PMC9396283 DOI: 10.3389/fendo.2022.891297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in gynecology. Traditional Chinese medicine (TCM) is widely used for the treatment of PCOS in China. The Bu Shen Hua Zhuo formula (BSHZF), a TCM decoction, has shown great therapeutic efficacy in clinical practice. However, the mechanism underlying the BSHZF function in PCOS remains unclear. This study aimed to identify the potential mechanisms of action of BSHZF in the treatment of PCOS. PCOS-model rats treated with letrozole were administered different doses of BSHZF, metformin, and 1% carboxymethylcellulose. Serum sex hormones, fasting blood glucose, and fasting insulin levels were measured, and the morphology of the ovaries was observed in each group, including the normal group. The structure and abundance of the gut microbiota in rats were measured using 16S ribosomal RNA gene sequencing. Toll-like receptor 4 (TLR4) and phospho-NF-κB p65 levels in the ovarian tissue of the rats were detected using Western blotting. Furthermore, the levels of lipopolysaccharide (LPS) and inflammatory cytokines TNF-α, IL-6, and IL-8 in the serum of rats were detected by ELISA. The results showed that BSHZF administration was associated with a decrease in body weight, fasting blood glucose, fasting insulin, and testosterone and changes in ovarian morphology in PCOS-model rats. Moreover, BSHZF was associated with an increase in the α-diversity of gut microbiota, decrease in the relative abundance of Firmicutes, and increase in Lactobacillus and short chain fatty acid-producing bacteria (Allobaculum, Bacteroides, Ruminococcaceae_UCG-014). Furthermore, BSHZF may promote carbohydrate and protein metabolism. In addition, BSHZF was associated with a decrease in the serum level of LPS and TLR4 expression, thereby inhibiting the activation of the NF-κB signaling-mediated inflammatory response in ovarian tissue. Therefore, the beneficial effects of BSHZF on PCOS pathogenesis are associated with its ability to normalize gut microbiota function and inhibit PCOS-related inflammation.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxia Liu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Tong
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Yu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Qi
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoling Bu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyuan Pan
- Department of General Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yu Xing
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
228
|
Ma F, Luo Y, Liu Y, Zhang M, Wu J, Chen L, Zhang G. The disruption on gut microbiome of Decabromodiphenyl ethane exposure in the simulator of the human intestinal microbial ecosystem (SHIME). Toxicol Appl Pharmacol 2022; 452:116194. [PMID: 35961412 DOI: 10.1016/j.taap.2022.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
The health risks of Decabromodiphenyl ethane (DBDPE) with its cardiovascular toxicity, liver toxicity and cytotoxicity had been generally acknowledged. However, the influence on gut microbiome and short-chain fatty acids (SCFAs) metabolism caused by DBDPE exposure remained unknown. In this study, three exposure groups (5, 50, 500 mg/L) and control group were used to investigate the effect of DBDPE by using simulator of the human intestinal microbial ecosystem (SHIME). 16S rRNA gene high-throughput sequencing illustrated that high dose DBDPE exposure increased the α-diversity of gut microbiota, while reduced the abundance of Firmicutes and Proteobacteria. In addition, the low dose (5 mg/L) DBDPE inhibited the increasing of SCFAs, but the medium and high dose (50 and 500 mg/L) DBDPE promoted the advancement, especially in ascending colon. Notably, DBDPE exposure lead a similar changing of acetic acid and butyric acid contents in different sections of the colon. This study confirmed the alternation of composition and metabolic function in gut microbial community due to DBDPE exposure, indicating an intestinal damage and appealing for more attention concentrated on the health effects of DBDPE exposure.
Collapse
Affiliation(s)
- Fengmin Ma
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China
| | - Yasong Luo
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China
| | - Yuqi Liu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China
| | - Mai Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China
| | - Jiguo Wu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Lingyun Chen
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Guoxia Zhang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, PR China.
| |
Collapse
|
229
|
Evaluation of Normalization Approaches for Quantitative Analysis of Bile Acids in Human Feces. Metabolites 2022; 12:metabo12080723. [PMID: 36005595 PMCID: PMC9416035 DOI: 10.3390/metabo12080723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Quantitative analysis of bile acids in human feces can potentially help to better understand the influence of the gut microbiome and diet on human health. Feces is a highly heterogeneous sample matrix, mainly consisting of water and indigestible solid material (as plant fibers) that show high inter-individual variability. To compare bile acid concentrations among different individuals, a reliable normalization approach is needed. Here, we compared the impact of three normalization approaches, namely sample wet weight, dry weight, and protein concentration, on the absolute concentrations of fecal bile acids. Bile acid concentrations were determined in 70 feces samples from healthy humans. Our data show that bile acid concentrations normalized by the three different approaches are substantially different for each individual sample. Fecal bile acid concentrations normalized by wet weight show the narrowest distribution. Therefore, our analysis will provide the basis for the selection of a suitable normalization approach for the quantitative analysis of bile acids in feces.
Collapse
|
230
|
Roach LA, Meyer BJ, Fitton JH, Winberg P. Improved Plasma Lipids, Anti-Inflammatory Activity, and Microbiome Shifts in Overweight Participants: Two Clinical Studies on Oral Supplementation with Algal Sulfated Polysaccharide. Mar Drugs 2022; 20:md20080500. [PMID: 36005503 PMCID: PMC9410082 DOI: 10.3390/md20080500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Seaweed polysaccharides in the diet may influence both inflammation and the gut microbiome. Here we describe two clinical studies with an Ulva sp. 84-derived sulfated polysaccharide—“xylorhamnoglucuronan” (SXRG84)—on metabolic markers, inflammation, and gut flora composition. The first study was a double-blind, randomized placebo-controlled trial with placebo, and either 2 g/day or 4 g/day of SXRG84 daily for six weeks in 64 overweight or obese participants (median age 55 years, median body mass index (BMI) 29 kg/m2). The second study was a randomized double-blind placebo-controlled crossover trial with 64 participants (median BMI 29 kg/m2, average age 52) on placebo for six weeks and then 2 g/day of SXRG84 treatment for six weeks, or vice versa. In Study 1, the 2 g/day dose exhibited a significant reduction in non-HDL (high-density lipoprotein) cholesterol (−10% or −0.37 mmol/L, p = 0.02) and in the atherogenic index (−50%, p = 0.05), and two-hour insulin (−12% or −4.83 mU/L) showed trends for reduction in overweight participants. CRP (C-reactive protein) was significantly reduced (−27% or −0.78 mg/L, p = 0.03) with the 4 g/day dose in overweight participants. Significant gut flora shifts included increases in Bifidobacteria, Akkermansia, Pseudobutyrivibrio, and Clostridium and a decrease in Bilophila. In Study 2, no significant differences in lipid measures were observed, but inflammatory cytokines were improved. At twelve weeks after the SXRG84 treatment, plasma cytokine concentrations were significantly lower than at six weeks post placebo for IFN-γ (3.4 vs. 7.3 pg/mL), IL-1β (16.2 vs. 23.2 pg/mL), TNF-α (9.3 vs. 12.6 pg/mL), and IL-10 (1.6 vs. 2.1 pg/mL) (p < 0.05). Gut microbiota abundance and composition did not significantly differ between groups (p > 0.05). Together, the studies illustrate improvements in plasma lipids and an anti-inflammatory effect of dietary SXRG84 that is participant specific.
Collapse
Affiliation(s)
- Lauren A. Roach
- Molecular Horizons, Illawarra Health and Medical Research Institute, School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (L.A.R.); (B.J.M.); (P.W.)
| | - Barbara J. Meyer
- Molecular Horizons, Illawarra Health and Medical Research Institute, School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (L.A.R.); (B.J.M.); (P.W.)
| | | | - Pia Winberg
- Venus Shell Systems Pty Ltd., Nowra, NSW 2540, Australia
- Correspondence: (L.A.R.); (B.J.M.); (P.W.)
| |
Collapse
|
231
|
Lu Y, Ma X, Pan J, Ma R, Jiang Y. Management of dyslipidemia after allogeneic hematopoietic stem cell transplantation. Lipids Health Dis 2022; 21:65. [PMID: 35918766 PMCID: PMC9344644 DOI: 10.1186/s12944-022-01665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is one of the complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and it is often underestimated and undertreated. Dyslipidemia in allo-HSCT recipients has been confirmed to be associated with endocrine dysfunction, acute and chronic graft-versus-host disease (aGVHD and cGVHD), immunosuppressive agent application, etc. However, few studies have illustrated the accurate molecular signaling pathways involved in dyslipidemia, and there are no standard guidelines for dyslipidemia management after HSCT. This review will discuss the pathogenesis of dyslipidemia, especially the association with aGVHD and/or cGVHD. Comprehensive treatment methods for dyslipidemia after HSCT will also be summarized.
Collapse
Affiliation(s)
- Yingxue Lu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaojing Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Pan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rongqiang Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
232
|
Ionita Radu F, Sirbu CA, Docu Axelerad A, Stefan I. Gut microbiota and obesity. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.3.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Worldwide, adults and childhood obesity are increasing alarmingly, being a major health problem. Obesity is correlated with an increased incidence of various systemic diseases including cancer, heart diseases, and diabetes mellitus type 2. Risk factors for obesity are dysbiosis, genetic, socioeconomic, behavioural and environmental. The gut microbiota has beneficial effects on human health, like host immune system stimulation, being influenced by pH, or nutrient intake. Studies performed on humans and animal models reported differences regarding microbiota at lean and obese individuals. The consumption of probiotics and prebiotics may balance the microbiota with positive effects in obesity. The main aim of this review is to reveal the interaction between dysbiosis and obesity
Collapse
|
233
|
Riu F, Ruda A, Ibba R, Sestito S, Lupinu I, Piras S, Widmalm G, Carta A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals (Basel) 2022; 15:942. [PMID: 36015090 PMCID: PMC9414505 DOI: 10.3390/ph15080942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Certain bacteria constitute a threat to humans due to their ability to escape host defenses as they easily develop drug resistance. Bacteria are classified into gram-positive and gram-negative according to the composition of the cell membrane structure. Gram-negative bacteria have an additional outer membrane (OM) that is not present in their gram-positive counterpart; the latter instead hold a thicker peptidoglycan (PG) layer. This review covers the main structural and functional properties of cell wall polysaccharides (CWPs) and PG. Drugs targeting CWPs are discussed, both noncarbohydrate-related (β-lactams, fosfomycin, and lipopeptides) and carbohydrate-related (glycopeptides and lipoglycopeptides). Bacterial resistance to these drugs continues to evolve, which calls for novel antibacterial approaches to be developed. The use of carbohydrate-based vaccines as a valid strategy to prevent bacterial infections is also addressed.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Ilenia Lupinu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| |
Collapse
|
234
|
Zhang Q, Jin K, Chen B, Liu R, Cheng S, Zhang Y, Lu J. Overnutrition Induced Cognitive Impairment: Insulin Resistance, Gut-Brain Axis, and Neuroinflammation. Front Neurosci 2022; 16:884579. [PMID: 35873818 PMCID: PMC9298971 DOI: 10.3389/fnins.2022.884579] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/02/2022] [Indexed: 12/11/2022] Open
Abstract
Overnutrition-related obesity has become a worldwide epidemic, and its prevalence is expected to steadily rise in the future. It is widely recognized that obesity exerts negative impacts on metabolic disorders such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases. However, relatively fewer reports exist on the impairment of brain structure and function, in the form of memory and executive dysfunction, as well as neurogenerative diseases. Emerging evidence indicates that besides obesity, overnutrition diets independently induce cognitive impairments via multiple mechanisms. In this study, we reviewed the clinical and preclinical literature about the detrimental effects of obesity or high-nutrition diets on cognitive performance and cerebral structure. We mainly focused on the role of brain insulin resistance (IR), microbiota-gut-brain axis, and neuroinflammation. We concluded that before the onset of obesity, short-term exposure to high-nutrition diets already blunted central responses to insulin, altered gut microbiome composition, and activated inflammatory mediators. Overnutrition is linked with the changes in protein expression in brain insulin signaling, leading to pathological features in the brain. Microbiome alteration, bacterial endotoxin release, and gut barrier hyperpermeability also occur to trigger mental and neuronal diseases. In addition, obesity or high-nutrition diets cause chronic and low-grade systematic inflammation, which eventually spreads from the peripheral tissue to the central nervous system (CNS). Altogether, a large number of unknown but potential routes interact and contribute to obesity or diet-induced cognitive impairment. The challenge for future research is to identify effective interventions involving dietary shifts and personalized therapy targeting the underlying mechanisms to prevent and improve cognition deficits.
Collapse
Affiliation(s)
- Qin Zhang
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ripeng Liu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shangping Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| |
Collapse
|
235
|
Unlocking the Potential of the Human Microbiome for Identifying Disease Diagnostic Biomarkers. Diagnostics (Basel) 2022; 12:diagnostics12071742. [PMID: 35885645 PMCID: PMC9315466 DOI: 10.3390/diagnostics12071742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
The human microbiome encodes more than three million genes, outnumbering human genes by more than 100 times, while microbial cells in the human microbiota outnumber human cells by 10 times. Thus, the human microbiota and related microbiome constitute a vast source for identifying disease biomarkers and therapeutic drug targets. Herein, we review the evidence backing the exploitation of the human microbiome for identifying diagnostic biomarkers for human disease. We describe the importance of the human microbiome in health and disease and detail the use of the human microbiome and microbiota metabolites as potential diagnostic biomarkers for multiple diseases, including cancer, as well as inflammatory, neurological, and metabolic diseases. Thus, the human microbiota has enormous potential to pave the road for a new era in biomarker research for diagnostic and therapeutic purposes. The scientific community needs to collaborate to overcome current challenges in microbiome research concerning the lack of standardization of research methods and the lack of understanding of causal relationships between microbiota and human disease.
Collapse
|
236
|
Shi M, Lu Y, Wu J, Zheng Z, Lv C, Ye J, Qin S, Zeng C. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. Int J Mol Sci 2022; 23:7595. [PMID: 35886943 PMCID: PMC9317877 DOI: 10.3390/ijms23147595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many natural foods and herbs rich in phytochemicals have been proposed as health supplements for patients with metabolic syndrome (MetS). Theaflavins (TFs) are a polyphenol hydroxyl substance with the structure of diphenol ketone, and they have the potential to prevent and treat a wide range of MetS. However, the stability and bioavailability of TFs are poor. TFs have the marvelous ability to alleviate MetS through antiobesity and lipid-lowering (AMPK-FoxO3A-MnSOD, PPAR, AMPK, PI3K/Akt), hypoglycemic (IRS-1/Akt/GLUT4, Ca2+/CaMKK2-AMPK, SGLT1), and uric-acid-lowering (XO, GLUT9, OAT) effects, and the modulation of the gut microbiota (increasing beneficial gut microbiota such as Akkermansia and Prevotella). This paper summarizes and updates the bioavailability of TFs, and the available signaling pathways and molecular evidence on the functionalities of TFs against metabolic abnormalities in vitro and in vivo, representing a promising opportunity to prevent MetS in the future with the utilization of TFs.
Collapse
Affiliation(s)
- Meng Shi
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Yuting Lu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Junling Wu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Zhibing Zheng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chenghao Lv
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chaoxi Zeng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| |
Collapse
|
237
|
Li M, Liu T, Yang T, Zhu J, Zhou Y, Wang M, Wang Q. Gut microbiota dysbiosis involves in host non-alcoholic fatty liver disease upon pyrethroid pesticide exposure. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 11:100185. [PMID: 36158756 PMCID: PMC9488005 DOI: 10.1016/j.ese.2022.100185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 05/26/2023]
Abstract
A growing body of evidence has demonstrated the significance of the gut microbiota in host health, while the association between gut microbiota dysbiosis and multiple diseases is yet elusive in the scenario of exposure to widely used pesticides. Here, we show that gut microbiota dysbiosis involves in host's abnormal lipid metabolism and consequently the non-alcoholic fatty liver disease in Xenopus laevis upon exposure to cis-bifenthrin, one of the most prevalent pyrethroid insecticides in the world. With the guidance of gut microbiota analysis, we found that cis-bifenthrin exposure significantly perturbed the gut microbial community, and the specific taxa that served as biomarkers were identified. Metabolomics profiling and association analysis further showed that a significant change of intestinal metabolites involved in lipid metabolic pathways were induced along with the microbiota dysbiosis upon exposure to cis-bifenthrin. Detailed investigation showed an altered functional regulation of lipids in the liver after cis-bifenthrin exposure and the accumulation of lipid droplets in hepatocytes. Specifically, a change in deoxycholic acid alters bile acid hepatoenteral circulation, which affects lipid metabolism in the liver and ultimately causes the development of fatty liver disease. Collectively, these findings provide novel insight into the gut microbiota dysbiosis upon pesticide exposure and their potential implication in the development of chronic host diseases related to liver metabolic syndrome.
Collapse
Affiliation(s)
- Meng Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Tingting Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Teng Yang
- Agricultural Technical Institute, The Ohio State University, Wooster, OH, 44691, USA
| | - Jiaping Zhu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Yunqian Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Qiangwei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
238
|
The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice. mSystems 2022; 7:e0018022. [PMID: 35695433 PMCID: PMC9238388 DOI: 10.1128/msystems.00180-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Early-life stress (ELS) leads to increased vulnerability for mental and metabolic disorders. We have previously shown that a low dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Due to the importance of the gut microbiota as a determinant of long-term health, we here study the impact of ELS and dietary PUFAs on the gut microbiota and how this relates to the previously described cognitive, metabolic, and fatty acid profiles. Male mice were exposed to ELS via the limited bedding and nesting paradigm (postnatal day (P)2 to P9 and to an early diet (P2 to P42) with an either high (15) or low (1) ω-6 linoleic acid to ω-3 alpha-linolenic acid ratio. 16S rRNA was sequenced and analyzed from fecal samples at P21, P42, and P180. Age impacted α- and β-diversity. ELS and diet together predicted variance in microbiota composition and affected the relative abundance of bacterial groups at several taxonomic levels in the short and long term. For example, age increased the abundance of the phyla Bacteroidetes, while it decreased Actinobacteria and Verrucomicrobia; ELS reduced the genera RC9 gut group and Rikenella, and the low ω-6/ω-3 diet reduced the abundance of the Firmicutes Erysipelotrichia. At P42, species abundance correlated with body fat mass and circulating leptin (e.g., Bacteroidetes and Proteobacteria taxa) and fatty acid profiles (e.g., Firmicutes taxa). This study gives novel insights into the impact of age, ELS, and dietary PUFAs on microbiota composition, providing potential targets for noninvasive (nutritional) modulation of ELS-induced deficits. IMPORTANCE Early-life stress (ELS) leads to increased vulnerability to develop mental and metabolic disorders; however, the biological mechanisms leading to such programming are not fully clear. Increased attention has been given to the importance of the gut microbiota as a determinant of long-term health and as a potential target for noninvasive nutritional strategies to protect against the negative impact of ELS. Here, we give novel insights into the complex interaction between ELS, early dietary ω-3 availability, and the gut microbiota across ages and provide new potential targets for (nutritional) modulation of the long-term effects of the early-life environment via the microbiota.
Collapse
|
239
|
Menopause Is Associated with an Altered Gut Microbiome and Estrobolome, with Implications for Adverse Cardiometabolic Risk in the Hispanic Community Health Study/Study of Latinos. mSystems 2022; 7:e0027322. [PMID: 35675542 PMCID: PMC9239235 DOI: 10.1128/msystems.00273-22] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Menopause is a pivotal period during which loss of ovarian hormones increases cardiometabolic risk and may also influence the gut microbiome. However, the menopause-microbiome relationship has not been examined in a large study, and its implications for cardiometabolic disease are unknown. In the Hispanic Community Health Study/Study of Latinos, a population with high burden of cardiometabolic risk factors, shotgun metagenomic sequencing was performed on stool from 2,300 participants (295 premenopausal women, 1,027 postmenopausal women, and 978 men), and serum metabolomics was available on a subset. Postmenopausal women trended toward lower gut microbiome diversity and altered overall composition compared to premenopausal women, while differing less from men, in models adjusted for age and other demographic/behavioral covariates. Differentially abundant taxa for post- versus premenopausal women included Bacteroides sp. strain Ga6A1, Prevotella marshii, and Sutterella wadsworthensis (enriched in postmenopause) and Escherichia coli-Shigella spp., Oscillibacter sp. strain KLE1745, Akkermansia muciniphila, Clostridium lactatifermentans, Parabacteroides johnsonii, and Veillonella seminalis (depleted in postmenopause); these taxa similarly differed between men and women. Postmenopausal women had higher abundance of the microbial sulfate transport system and decreased abundance of microbial β-glucuronidase; these functions correlated with serum progestin metabolites, suggesting involvement of postmenopausal gut microbes in sex hormone retention. In postmenopausal women, menopause-related microbiome alterations were associated with adverse cardiometabolic profiles. In summary, in a large U.S. Hispanic/Latino population, menopause is associated with a gut microbiome more similar to that of men, perhaps related to the common condition of a low estrogen/progesterone state. Future work should examine similarity of results in other racial/ethnic groups. IMPORTANCE The menopausal transition, marked by declining ovarian hormones, is recognized as a pivotal period of cardiometabolic risk. Gut microbiota metabolically interact with sex hormones, but large population studies associating menopause with the gut microbiome are lacking. Our results from a large study of Hispanic/Latino women and men suggest that the postmenopausal gut microbiome in women is slightly more similar to the gut microbiome in men and that menopause depletes specific gut pathogens and decreases the hormone-related metabolic potential of the gut microbiome. At the same time, gut microbes may participate in sex hormone reactivation and retention in postmenopausal women. Menopause-related gut microbiome changes were associated with adverse cardiometabolic risk in postmenopausal women, indicating that the gut microbiome contributes to changes in cardiometabolic health during menopause.
Collapse
|
240
|
Markowitz RHG, LaBella AL, Shi M, Rokas A, Capra JA, Ferguson JF, Mosley JD, Bordenstein SR. Microbiome-associated human genetic variants impact phenome-wide disease risk. Proc Natl Acad Sci U S A 2022; 119:e2200551119. [PMID: 35749358 PMCID: PMC9245617 DOI: 10.1073/pnas.2200551119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/29/2022] [Indexed: 12/26/2022] Open
Abstract
Human genetic variation associates with the composition of the gut microbiome, yet its influence on clinical traits remains largely unknown. We analyzed the consequences of nearly a thousand gut microbiome-associated variants (MAVs) on phenotypes reported in electronic health records from tens of thousands of individuals. We discovered and replicated associations of MAVs with neurological, metabolic, digestive, and circulatory diseases. Five significant MAVs in these categories correlate with the relative abundance of microbes down to the strain level. We also demonstrate that these relationships are independently observed and concordant with microbe by disease associations reported in case-control studies. Moreover, a selective sweep and population differentiation impacted some disease-linked MAVs. Combined, these findings establish triad relationships among the human genome, microbiome, and disease. Consequently, human genetic influences may offer opportunities for precision diagnostics of microbiome-associated diseases but also highlight the relevance of genetic background for microbiome modulation and therapeutics.
Collapse
Affiliation(s)
- Robert H. George Markowitz
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN 37232
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | | | - Mingjian Shi
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
| | - John A. Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143
| | - Jane F. Ferguson
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN 37232
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonathan D. Mosley
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Seth R. Bordenstein
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, TN 37232
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
241
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
242
|
Zhao F, Wang K, Wen Y, Chen X, Liu H, Qi F, Fu Y, Zhu J, Guan S, Liu Z. Contribution of hippocampal BDNF/CREB signaling pathway and gut microbiota to emotional behavior impairment induced by chronic unpredictable mild stress during pregnancy in rats offspring. PeerJ 2022; 10:e13605. [PMID: 35769142 PMCID: PMC9235812 DOI: 10.7717/peerj.13605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/26/2022] [Indexed: 01/17/2023] Open
Abstract
Background Numerous studies have shown that exposure to prenatal maternal stress (PMS) is associated with various psychopathological outcomes of offspring. The accumulating evidence linking bacteria in the gut and neurons in the brain (the microbiota-gut-brain axis) has been aconsensus; however, there is a lack of research on the involvement mechanism of gut microbiota in the regulation of the BDNF/CREB signaling pathway in the hippocampus of prenatally stressed offspring. Methods Pregnant rats were subjected to chronic unpredictable mild stress (CUMS) to establish the prenatal maternal stress model. The body weight was measured and the behavioral changes were recorded. Offspring were tested to determine emotional state using sucrose preference test (SPT), open-field test (OFT) and suspended tail test (STT). Gut microbiota was evaluated by sequencing the microbial 16S rRNA V3-V4 region, and the interactive analysis of bacterial community structure and diversity was carried out. The expression of hippocampal BDNF, TrkB and CREB mRNA and proteins were respectively measured using RT-PCR and Western blotting. Results Prenatal maternal stress increased maternal plasma corticosterone levels, slowed maternal weight gain and caused depression-like behaviors (all P < 0.05). In offspring, prenatal maternal stress increased plasma corticosterone levels (P < 0.05) and emotional behavior changes (depression-like state) were observed (P < 0.05). The species abundance, diversity and composition of the offspring's gut microbiota changed after the maternal stress during pregnancy (P < 0.05). Compared with the control group's offspring, the species abundance of Lactobacillaceae was dropped, while the abundance of the Muribaculaceae species abundance was risen. Concurrent, changes in the hippocampal structure of the offspring and decreases in expression of BDNF/CREB signaling were noted (P < 0.05). Conclusions Prenatal maternal stress leads to high corticosterone status and abnormal emotion behavior of offspring, which may be associated with the abnormal BDNF/CREB signaling in hippocampus of offspring caused by the change of gut microbiota composition.
Collapse
Affiliation(s)
- Feng Zhao
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health, Chongqing Medical University, Chongqing, China, Chongqing Medical University, Chongqing, China
| | - Kai Wang
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yujun Wen
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaohui Chen
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongya Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Faqiu Qi
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Youjuan Fu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jiashu Zhu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Suzhen Guan
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhihong Liu
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
- School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
243
|
Human Blood Bacteriome: Eubiotic and Dysbiotic States in Health and Diseases. Cells 2022; 11:cells11132015. [PMID: 35805098 PMCID: PMC9265464 DOI: 10.3390/cells11132015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
The human gut microbiome is acknowledged as being associated with homeostasis and the pathogenesis of several diseases. Conventional culture techniques are limited in that they cannot culture the commensals; however, next-generation sequencing has facilitated the discovery of the diverse and delicate microbial relationship in body sites and blood. Increasing evidence regarding the blood microbiome has revolutionized the concept of sterility and germ theory in circulation. Among the types of microbial communities in the blood, bacteriomes associated with many health conditions have been thoroughly investigated. Blood bacterial profiles in healthy subjects are identified as the eubiotic blood bacteriome, whereas the dysbiotic blood bacteriome represents the change in bacterial characteristics in subjects with diseases showing deviations from the eubiotic profiles. The blood bacterial characteristics in each study are heterogeneous; thus, the association between eubiotic and dysbiotic blood bacteriomes and health and disease is still debatable. Thereby, this review aims to summarize and discuss the evidence concerning eubiotic and dysbiotic blood bacteriomes characterized by next-generation sequencing in human studies. Knowledge pertaining to the blood bacteriome will transform the concepts around health and disease in humans, facilitating clinical implementation in the near future.
Collapse
|
244
|
Gut virome profiling identifies a widespread bacteriophage family associated with metabolic syndrome. Nat Commun 2022; 13:3594. [PMID: 35739117 PMCID: PMC9226167 DOI: 10.1038/s41467-022-31390-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
There is significant interest in altering the course of cardiometabolic disease development via gut microbiomes. Nevertheless, the highly abundant phage members of the complex gut ecosystem -which impact gut bacteria- remain understudied. Here, we show gut virome changes associated with metabolic syndrome (MetS), a highly prevalent clinical condition preceding cardiometabolic disease, in 196 participants by combined sequencing of bulk whole genome and virus like particle communities. MetS gut viromes exhibit decreased richness and diversity. They are enriched in phages infecting Streptococcaceae and Bacteroidaceae and depleted in those infecting Bifidobacteriaceae. Differential abundance analysis identifies eighteen viral clusters (VCs) as significantly associated with either MetS or healthy viromes. Among these are a MetS-associated Roseburia VC that is related to healthy control-associated Faecalibacterium and Oscillibacter VCs. Further analysis of these VCs revealed the Candidatus Heliusviridae, a highly widespread gut phage lineage found in 90+% of participants. The identification of the temperate Ca. Heliusviridae provides a starting point to studies of phage effects on gut bacteria and the role that this plays in MetS.
Collapse
|
245
|
Hamade H, Stamps JT, Stamps DT, More SK, Thomas LS, Blackwood AY, Lahcene NL, Castanon SL, Salumbides BC, Shimodaira Y, Goodridge HS, Targan SR, Michelsen KS. BATF3 Protects Against Metabolic Syndrome and Maintains Intestinal Epithelial Homeostasis. Front Immunol 2022; 13:841065. [PMID: 35812447 PMCID: PMC9257242 DOI: 10.3389/fimmu.2022.841065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
The intestinal immune system and microbiota are emerging as important contributors to the development of metabolic syndrome, but the role of intestinal dendritic cells (DCs) in this context is incompletely understood. BATF3 is a transcription factor essential in the development of mucosal conventional DCs type 1 (cDC1). We show that Batf3-/- mice developed metabolic syndrome and have altered localization of tight junction proteins in intestinal epithelial cells leading to increased intestinal permeability. Treatment with the glycolysis inhibitor 2-deoxy-D-glucose reduced intestinal inflammation and restored barrier function in obese Batf3-/- mice. High-fat diet further enhanced the metabolic phenotype and susceptibility to dextran sulfate sodium colitis in Batf3-/- mice. Antibiotic treatment of Batf3-/- mice prevented metabolic syndrome and impaired intestinal barrier function. Batf3-/- mice have altered IgA-coating of fecal bacteria and displayed microbial dysbiosis marked by decreased obesity protective Akkermansia muciniphila, and Bifidobacterium. Thus, BATF3 protects against metabolic syndrome and preserves intestinal epithelial barrier by maintaining beneficial microbiota.
Collapse
Affiliation(s)
- Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jasmine T. Stamps
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dalton T. Stamps
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shyam K. More
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lisa S. Thomas
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Anna Y. Blackwood
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nawele L. Lahcene
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sofi L. Castanon
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Brenda C. Salumbides
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosuke Shimodaira
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S. Goodridge
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kathrin S. Michelsen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
246
|
Zheng L, Ji YY, Wen XL, Duan SL. Fecal microbiota transplantation in the metabolic diseases: Current status and perspectives. World J Gastroenterol 2022; 28:2546-2560. [PMID: 35949351 PMCID: PMC9254144 DOI: 10.3748/wjg.v28.i23.2546] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
With the development of microbiology and metabolomics, the relationship between the intestinal microbiome and intestinal diseases has been revealed. Fecal microbiota transplantation (FMT), as a new treatment method, can affect the course of many chronic diseases such as metabolic syndrome, malignant tumor, autoimmune disease and nervous system disease. Although the mechanism of action of FMT is now well understood, there is some controversy in metabolic diseases, so its clinical application may be limited. Microflora transplantation is recommended by clinical medical guidelines and consensus for the treatment of recurrent or refractory Clostridium difficile infection, and has been gradually promoted for the treatment of other intestinal and extraintestinal diseases. However, the initial results are varied, suggesting that the heterogeneity of the donor stools may affect the efficacy of FMT. The success of FMT depends on the microbial diversity and composition of donor feces. Therefore, clinical trials may fail due to the selection of ineffective donors, and not to faulty indication selection for FMT. A new understanding is that FMT not only improves insulin sensitivity, but may also alter the natural course of type 1 diabetes by modulating autoimmunity. In this review, we focus on the main mechanisms and deficiencies of FMT, and explore the optimal design of FMT research, especially in the field of cardiometabolic diseases.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Yong-Yi Ji
- Department of Neurology, Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
247
|
Yang B, Liu C, Huang Y, Wu Q, Xiong Y, Yang X, Hu S, Jiang Z, Wang L, Yi H. The Responses of Lactobacillus reuteri LR1 or Antibiotic on Intestinal Barrier Function and Microbiota in the Cecum of Pigs. Front Microbiol 2022; 13:877297. [PMID: 35722272 PMCID: PMC9201390 DOI: 10.3389/fmicb.2022.877297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022] Open
Abstract
This study aimed to investigate responses of the Lactobacillus reuteri or an antibiotic on cecal microbiota and intestinal barrier function in different stages of pigs. A total of 144 weaned pigs (Duroc × Landrace × Yorkshire, 21 days of age) were randomly assigned to the control group (CON, fed with a basal diet), the antibiotic group (AO, fed with basal diet plus 100 mg/kg olaquindox and 75 mg/kg aureomycin), and the L. reuteri group (LR, fed with the basal diet + 5 × 1010 CFU/kg L. reuteri LR1) throughout the 164-d experiment. A total of 45 cecal content samples (5 samples per group) from different periods (14th, 42th, and 164th days) were collected for 16S rRNA gene amplification. The results revealed that although LR and AO did not change the diversity of cecal microbiota in pigs, the abundance of some bacteria at the genus level was changed with age. The proportion of Lactobacillus was increased by LR in early life, whereas it was decreased by AO compared with the control group. The relative abundance of Ruminococcaceae was increased along with age. In addition, the gas chromatography results showed that age, not AO or LR, has significant effects on the concentrations of SCFAs in the cecum of pigs (P < 0.05). However, the mRNA expression of tight junction proteins zonula occluden-1 (ZO-1) and occludin were increased by AO in the cecum of pigs on day 14, while LR increased the mRNA expression of intestinal barrier-related proteins ZO-1, occludin, mucin-1, mucin-2, PG1-5, and pBD2 in the cecum of pigs on days 14 and 164 (P < 0.05). In conclusion, LR and AO have different effects on the intestinal barrier function of the cecum, and neither LR nor AO damaged the intestinal barrier function of pig cecum. In addition, LR and AO have little effects on cecal microflora in different stages of the pigs. The microflora and their metabolite SCFAs were significantly changed along with age. These findings provide important information to understand the homeostasis of the cecum of pigs after antibiotic or probiotic treatment.
Collapse
Affiliation(s)
- Bijing Yang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chunyan Liu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanna Huang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
248
|
Li K, Liu J, Qin X. Research progress of gut microbiota in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24512. [PMID: 35719048 PMCID: PMC9279976 DOI: 10.1002/jcla.24512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common cancer and the fourth leading cause of cancer-related death in the world. A number of challenges remain for the early detection and effective treatment of HCC. In recent years, microbiota have been proven to be associated with the development of HCC. Many studies have explored the pathogenesis, diagnostic marker, and therapeutic target potential of microbiota in hepatocellular carcinoma. Therefore, we aimed to introduce the research methods and achievements of gut microbiota in hepatocellular carcinoma and discuss the value of gut microbiota in the pathogenesis, diagnosis, and treatment of hepatocellular carcinoma. METHODS Keywords are used to search relevant articles which were mainly published from 2010 to 2021, and we further selected targeted articles and read the full text. RESULTS Gut microbiota involved in promoting the formation and development of hepatocellular carcinoma, and differential gut microbiota and microbial metabolites have the potential to be the biomarkers of hepatocellular carcinoma. Purposefully regulated gut microbiota can improve the prognosis of patients, which is expected to be used in hepatocellular carcinoma. CONCLUSION The study of gut microbiota in hepatocellular carcinoma is definitely worthy of study. In-depth and elaborate research design is crucial for the study of the mechanism of gut microbiota involved in hepatocellular carcinoma, which can provide new directions and targets for the diagnosis, treatment, and prognosis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Keliu Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.,Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
249
|
Webberley TS, Masetti G, Bevan RJ, Kerry-Smith J, Jack AA, Michael DR, Thomas S, Glymenaki M, Li J, McDonald JAK, John D, Morgan JE, Marchesi JR, Good MA, Plummer SF, Hughes TR. The Impact of Probiotic Supplementation on Cognitive, Pathological and Metabolic Markers in a Transgenic Mouse Model of Alzheimer's Disease. Front Neurosci 2022; 16:843105. [PMID: 35685773 PMCID: PMC9172594 DOI: 10.3389/fnins.2022.843105] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Brain degenerative disorders such as Alzheimer’s disease (AD) can be exacerbated by aberrant metabolism. Supplementation with probiotic bacteria is emerging as a promising preventative strategy for both neurodegeneration and metabolic syndrome. In this study, we assess the impact of the Lab4b probiotic consortium on (i) cognitive and pathological markers of AD progression and (ii) metabolic status in 3xTg-AD mice subjected to metabolic challenge with a high fat diet. The group receiving the probiotic performed better in the novel object recognition test and displayed higher hippocampal neuronal spine density than the control group at the end of the 12 weeks intervention period. These changes were accompanied by differences in localised (brain) and systemic anti-inflammatory responses that favoured the Probiotic group together with the prevention of diet induced weight gain and hypercholesterolaemia and the modulation of liver function. Compositional differences between the faecal microbiotas of the study groups included a lower Firmicutes:Bacteroidetes ratio and less numbers of viable yeast in the Probiotic group compared to the Control. The results illustrate the potential of the Lab4b probiotic as a neuroprotective agent and encourage further studies with human participants.
Collapse
Affiliation(s)
- Thomas S Webberley
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Cultech Ltd., Port Talbot, United Kingdom
| | | | - Ryan J Bevan
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | - Maria Glymenaki
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jia Li
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Julie A K McDonald
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark A Good
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
250
|
Kim R, Wang Y, Sims CE, Allbritton NL. A Platform for Co-Culture of Primary Human Colonic Epithelium With Anaerobic Probiotic Bacteria. Front Bioeng Biotechnol 2022; 10:890396. [PMID: 35757791 PMCID: PMC9213686 DOI: 10.3389/fbioe.2022.890396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
An in vitro platform was designed and optimized for the co-culture of probiotic anaerobic bacteria with a primary human colonic epithelium having a goal of assessing the anti-inflammatory impact of the probiotic bacteria. The device maintained a luminal O2 concentration at <1% while also supporting an oxygenated basal compartment at 10% for at least 72 h. Measurement of the transepithelial resistance of a confluent colonic epithelium showed high monolayer integrity while fluorescence assays demonstrated that the monolayer was comprised primarily of goblet cells and colonocytes, the two major differentiated cell subtypes of the colonic epithelium. High monolayer barrier function and viability were maintained during co-culture of the epithelium with the probiotic obligate anaerobe Anaerobutyricum hallii (A. hallii). Importantly the device supported a static co-culture of microbes and colonic epithelium mimicking the largely static or low flow conditions within the colonic lumen. A model inflamed colonic epithelium was generated by the addition of tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) to the basal and luminal epithelium sides, respectively. Co-culture of A. hallii with the LPS/TNF-α treated intestine diminished IL-8 secretion by ≥40% which could be mimicked by co-culture with the A. hallii metabolite butyrate. In contrast, co-culture of the inflamed epithelium with two strains of lactic acid-producing bacteria, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium adolescentis (B. adolescentis), did not diminish epithelial IL-8 secretion. Co-culture with colonic epithelial cells from different donors demonstrated a consistent anti-inflammatory effect by A. hallii, but distinct responses to co-culture with LGG and B. adolescentis. The demonstrated system offers a simple and easily adopted platform for examining the physiologic impact of alterations in the intestinal epithelium that occur in the presence of probiotic bacteria and their metabolites.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Christopher E. Sims
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|