201
|
Chemogenetic approach to model hypofrontality. Med Hypotheses 2016; 93:113-6. [PMID: 27372868 DOI: 10.1016/j.mehy.2016.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022]
Abstract
Clinical evidence suggests that the prefrontal cortex (PFC) is hypofunctional in disorders including schizophrenia, drug addiction, and attention-deficit/hyperactivity disorder (ADHD). In schizophrenia, hypofrontality has been further suggested to cause both the negative and cognitive symptoms, and overactivity of dopamine neurons that project to subcortical areas. The latter may contribute to the development of positive symptoms of the disorder. Nevertheless, what causes hypofrontality and how it alters dopamine transmission in subcortical structures remain unclear due, in part, to the difficulty in modeling hypofrontality using previous techniques (e.g. PFC lesioning, focal cooling, repeated treatment with psychotomimetic drugs). We propose that the use of designer receptors exclusively activated by designer drugs (DREADDs) chemogenetic technique will allow precise interrogations of PFC functions. Combined with electrophysiological recordings, we can investigate the effects of PFC hypofunction on activity of dopamine neurons. Importantly, from a drug target discovery perspective, the use of DREADDs will enable us to examine whether chemogenetically enhancing PFC activity will reverse the behavioral abnormalities associated with PFC hypofunction and dopamine neuron overactivity, and also explore druggable targets for the treatment of schizophrenia and other disorders associated with abnormalities via modulation of the G-protein coupled receptor signaling pathway. In conclusion, the use of the DREADDs technique has several advantages over other previously employed strategies to simulate PFC hypofunction not only in terms of disease modeling but also from the viewpoint of drug target discovery.
Collapse
|
202
|
Kremláček J, Kreegipuu K, Tales A, Astikainen P, Põldver N, Näätänen R, Stefanics G. Visual mismatch negativity (vMMN): A review and meta-analysis of studies in psychiatric and neurological disorders. Cortex 2016; 80:76-112. [DOI: 10.1016/j.cortex.2016.03.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/31/2016] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
|
203
|
Sigurdsson T. Neural circuit dysfunction in schizophrenia: Insights from animal models. Neuroscience 2016; 321:42-65. [DOI: 10.1016/j.neuroscience.2015.06.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/15/2015] [Accepted: 06/26/2015] [Indexed: 12/17/2022]
|
204
|
Davis RE, Correll CU. ITI-007 in the treatment of schizophrenia: from novel pharmacology to clinical outcomes. Expert Rev Neurother 2016; 16:601-14. [PMID: 27042868 DOI: 10.1080/14737175.2016.1174577] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ITI-007 is an investigational drug being developed for schizophrenia and other neuropsychiatric/neurodegenerative diseases. ITI-007 has a unique pharmacological profile, combining potent 5-HT2a receptor antagonism with cell-type-specific dopamine and glutamate receptor modulation, plus serotonin reuptake inhibition. At dopamine-D2 receptors, ITI-007 acts as a post-synaptic antagonist and pre-synaptic partial agonist. Additionally, ITI-007 stimulates phosphorylation of glutamatergic NMDA-NR2B receptors, downstream of dopamine-D1 receptor intracellular signaling. Based on a large, placebo and risperidone controlled, Phase-II trial, ITI-007 60 mg was shown to be effective in reducing symptoms in patients with acutely exacerbated schizophrenia. The antipsychotic efficacy of ITI-007 60 mg in this patient population was confirmed in a recently completed Phase III study. ITI-007 was associated with minimal safety risk compared to risperidone (Phase II study) or placebo (both studies) for neuromotor disturbances, prolactin changes, weight gain and metabolic abnormalities. A second 6-week, placebo and risperidone-controlled Phase-III trial in acutely exacerbated schizophrenia is ongoing.
Collapse
Affiliation(s)
- Robert E Davis
- a 3-D Pharmaceutical Consultants Inc ., San Diego , CA , USA
| | - Christoph U Correll
- b Department of Psychiatry , Northwell Health, The Zucker Hillside Hospital , Glen Oaks , NY , USA.,c Hofstra Northwell School of Medicine , Hempstead , NY , USA.,d The Feinstein Institute for Medical Research , Manhasset , NY , USA
| |
Collapse
|
205
|
Fan N, Xu K, Ning Y, Rosenheck R, Wang D, Ke X, Ding Y, Sun B, Zhou C, Deng X, Tang W, He H. Profiling the psychotic, depressive and anxiety symptoms in chronic ketamine users. Psychiatry Res 2016; 237:311-5. [PMID: 26805565 PMCID: PMC4906312 DOI: 10.1016/j.psychres.2016.01.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Although concern about chronic ketamine abuse has grown, the characteristic symptomatology of chronic ketamine users has yet to be examined. This study aims to measure the psychotic, depressive and anxiety symptoms in chronic ketamine users. METHODS A group of chronic ketamine users in Guangzhou, China were evaluated. The socio-demographic and drug use characteristics of subjects were documented. Symptoms of psychosis, depression, anxiety were evaluated by the Positive and Negative Syndrome Scale (PANSS), Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). The severity of the symptoms was identified by standard severity cutoffs. RESULTS The PANSS total score, positive symptom, negative symptom, general psychopathology subscale score were 45.3±8.4, 8.0±1.7, 13.2± 3.9 and 24.2± 4.9 respectively. BDI and BAI score was 13.1±6.5 and 15.7±9.6 respectively. 77.5% and 46.0% of the subjects showed moderate to severe depressive symptoms and anxiety symptoms respectively. The BDI score was positively correlated with ketamine use frequency. The BAI score was positively correlated with ketamine use frequency. CONCLUSIONS Depressive symptoms were commonly presented in chronic ketamine users. The higher ketamine use frequency and dosage were associated with more severe depressive symptoms.
Collapse
Affiliation(s)
- Ni Fan
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ke Xu
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Yuping Ning
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Robert Rosenheck
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510, USA
| | - Daping Wang
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xiaoyin Ke
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yi Ding
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Bin Sun
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Chao Zhou
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xuefeng Deng
- Guangzhou Baiyun Mental Hospital, 586 North of Baiyun Road, Baiyun District, Guangzhou, Guangdong 510440, China
| | - Waikwong Tang
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| | - Hongbo He
- Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
206
|
Venkatasubramanian G, Keshavan MS. Biomarkers in Psychiatry - A Critique. Ann Neurosci 2016; 23:3-5. [PMID: 27536015 PMCID: PMC4934408 DOI: 10.1159/000443549] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022] Open
|
207
|
Koh MT, Shao Y, Sherwood A, Smith DR. Impaired hippocampal-dependent memory and reduced parvalbumin-positive interneurons in a ketamine mouse model of schizophrenia. Schizophr Res 2016; 171:187-94. [PMID: 26811256 PMCID: PMC4762714 DOI: 10.1016/j.schres.2016.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 01/23/2023]
Abstract
The hippocampus of patients with schizophrenia displays aberrant excess neuronal activity which affects cognitive function. Animal models of the illness have recapitulated the overactivity in the hippocampus, with a corresponding regionally localized reduction of inhibitory interneurons, consistent with that observed in patients. To better understand whether cognitive function is similarly affected in these models of hippocampal overactivity, we tested a ketamine mouse model of schizophrenia for cognitive performance in hippocampal- and medial prefrontal cortex (mPFC)-dependent tasks. We found that adult mice exposed to ketamine during adolescence were impaired on a trace fear conditioning protocol that relies on the integrity of the hippocampus. Conversely, the performance of the mice was normal on a delayed response task that is sensitive to mPFC damage. We confirmed that ketamine-exposed mice had reduced parvalbumin-positive interneurons in the hippocampus, specifically in the CA1, but not in the mPFC in keeping with the behavioral findings. These results strengthened the utility of the ketamine model for preclinical investigations of hippocampal overactivity in schizophrenia.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | | | |
Collapse
|
208
|
Ketamine-induced brain activation in awake female nonhuman primates: a translational functional imaging model. Psychopharmacology (Berl) 2016; 233:961-72. [PMID: 26660447 PMCID: PMC4761287 DOI: 10.1007/s00213-015-4175-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/26/2015] [Indexed: 12/28/2022]
Abstract
RATIONALE There is significant interest in the NMDA receptor antagonist ketamine due to its efficacy in treating depressive disorders and its induction of psychotic-like symptoms that make it a useful tool for modeling psychosis. OBJECTIVE The present study extends the successful development of an apparatus and methodology to conduct pharmacological MRI studies in awake rhesus monkeys in order to evaluate the CNS effects of ketamine. METHODS Functional MRI scans were conducted in four awake adult female rhesus monkeys during sub-anesthetic intravenous (i.v.) infusions of ketamine (0.345 mg/kg bolus followed by 0.256 mg/kg/h constant infusion) with and without risperidone pretreatment (0.06 mg/kg). Statistical parametric maps of ketamine-induced blood oxygenation level-dependent (BOLD) activation were obtained with appropriate general linear regression models (GLMs) incorporating motion and hemodynamics of ketamine infusion. RESULTS Ketamine infusion induced and sustained robust BOLD activation in a number of cortical and subcortical regions, including the thalamus, cingulate gyrus, and supplementary motor area. Pretreatment with the antipsychotic drug risperidone markedly blunted ketamine-induced activation in many brain areas. CONCLUSIONS The results are remarkably similar to human imaging studies showing ketamine-induced BOLD activation in many of the same brain areas, and pretreatment with risperidone or another antipsychotic blunting the ketamine response to a similar extent. The strong concordance of the functional imaging data in humans with these results from nonhuman primates highlights the translational value of the model and provides an excellent avenue for future research examining the CNS effects of ketamine. This model may also be a useful tool for evaluating the efficacy of novel antipsychotic drugs.
Collapse
|
209
|
Abstract
This work explores a feature of brain dynamics, metastability, by which transients are observed in functional brain data. Metastability is a balance between static (stable) and dynamic (unstable) tendencies in electrophysiological brain activity. Furthermore, metastability is a theoretical mechanism underlying the rapid synchronization of cell assemblies that serve as neural substrates for cognitive states, and it has been associated with cognitive flexibility. While much previous research has sought to characterize metastability in the adult human brain, few studies have examined metastability in early development, in part because of the challenges of acquiring adequate, noise free continuous data in young children. To accomplish this endeavor, we studied a new method for characterizing the stability of EEG frequency in early childhood, as inspired by prior approaches for describing cortical phase resets in the scalp EEG of healthy adults. Specifically, we quantified the variance of the rate of change of the signal phase (i.e., frequency) as a proxy for phase resets (signal instability), given that phase resets occur almost simultaneously across large portions of the scalp. We tested our method in a cohort of 39 preschool age children (age =53 ± 13.6 months). We found that our outcome variable of interest, frequency variance, was a promising marker of signal stability, as it increased with the number of phase resets in surrogate (artificial) signals. In our cohort of children, frequency variance decreased cross-sectionally with age (r = -0.47, p = 0.0028). EEG signal stability, as quantified by frequency variance, increases with age in preschool age children. Future studies will relate this biomarker with the development of executive function and cognitive flexibility in children, with the overarching goal of understanding metastability in atypical development.
Collapse
|
210
|
The effects of a 5-HT5A receptor antagonist in a ketamine-based rat model of cognitive dysfunction and the negative symptoms of schizophrenia. Neuropharmacology 2016; 105:351-360. [PMID: 26826431 DOI: 10.1016/j.neuropharm.2016.01.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/04/2016] [Accepted: 01/26/2016] [Indexed: 11/21/2022]
Abstract
Serotonin (5-HT) receptors still represent promising targets for the development of novel multireceptor or stand-alone antipsychotic drugs with a potential to ameliorate cognitive impairments and negative symptoms in schizophrenia. The 5-HT5A receptor, one of the least known members of the serotonin receptor family, has also drawn attention in this regard. Although the antipsychotic efficacy of 5-HT5A antagonists is still equivocal, recent experimental data suggest the cognitive-enhancing activity of this strategy. The aim of the present study was to evaluate pro-cognitive and pro-social efficacies of the 5-HT5A receptor antagonist in a rat pharmacological model of schizophrenia employing the administration of the NMDA receptor antagonist, ketamine. The ability of SB-699551 to reverse ketamine-induced cognitive deficits in the attentional set-shifting task (ASST) and novel object recognition task (NORT) was examined. The compound's efficacy against ketamine-induced social withdrawal was assessed in the social interaction test (SIT) and in the social choice test (SCT). The results demonstrated the efficacy of SB-699551 in ameliorating ketamine-induced impairments on the ASST and NORT. Moreover, the tested compound also enhanced set-shifting performance in cognitively unimpaired control rats and improved object recognition memory in conditions of delay-induced natural forgetting. The pro-social activity of SB-699551 was demonstrated on both employed paradigms, the SIT and SCT. The present study suggests the preclinical efficacy of a strategy based on the blockade of 5-HT5A receptors against schizophrenia-like cognitive deficits and negative symptoms. The utility of this receptor as a target for improvement of cognitive and social dysfunctions warrants further studies.
Collapse
|
211
|
Sigurdsson T, Duvarci S. Hippocampal-Prefrontal Interactions in Cognition, Behavior and Psychiatric Disease. Front Syst Neurosci 2016; 9:190. [PMID: 26858612 PMCID: PMC4727104 DOI: 10.3389/fnsys.2015.00190] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 12/22/2022] Open
Abstract
The hippocampus and prefrontal cortex (PFC) have long been known to play a central role in various behavioral and cognitive functions. More recently, electrophysiological and functional imaging studies have begun to examine how interactions between the two structures contribute to behavior during various tasks. At the same time, it has become clear that hippocampal-prefrontal interactions are disrupted in psychiatric disease and may contribute to their pathophysiology. These impairments have most frequently been observed in schizophrenia, a disease that has long been associated with hippocampal and prefrontal dysfunction. Studies in animal models of the illness have also begun to relate disruptions in hippocampal-prefrontal interactions to the various risk factors and pathophysiological mechanisms of the illness. The goal of this review is to summarize what is known about the role of hippocampal-prefrontal interactions in normal brain function and compare how these interactions are disrupted in schizophrenia patients and animal models of the disease. Outstanding questions for future research on the role of hippocampal-prefrontal interactions in both healthy brain function and disease states are also discussed.
Collapse
Affiliation(s)
- Torfi Sigurdsson
- Institute of Neurophysiology, Neuroscience Center, Goethe University FrankfurtFrankfurt, Germany
| | - Sevil Duvarci
- Institute of Neurophysiology, Neuroscience Center, Goethe University FrankfurtFrankfurt, Germany
| |
Collapse
|
212
|
Fan N, Luo Y, Xu K, Zhang M, Ke X, Huang X, Ding Y, Wang D, Ning Y, Deng X, He H. Relationship of serum levels of TNF-α, IL-6 and IL-18 and schizophrenia-like symptoms in chronic ketamine abusers. Schizophr Res 2015; 169:10-15. [PMID: 26589393 PMCID: PMC4888966 DOI: 10.1016/j.schres.2015.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposing to NMDAR receptor antagonists, such as ketamine, produces schizophrenia-like symptoms in humans and deteriorates symptoms in schizophrenia patients. Meanwhile, schizophrenia is associated with alterations of cytokines in the immune system. This study aims to examine the serum TNF-α, IL-6 and IL-18 levels in chronic human ketamine users as compared to healthy subjects. The correlations between the serum cytokines levels with the demographic, ketamine use characteristics and psychiatric symptoms were also assessed. METHODS 155 subjects who fulfilled the criteria of ketamine dependence and 80 healthy control subjects were recruited. Serum TNF-α, IL-6 and IL-18 levels were measured using an enzyme-linked immunosorbent assay (ELISA). The psychiatric symptoms of the ketamine abusers were assessed using the Positive and Negative Syndrome Scale (PANSS). RESULTS Serum IL-6 and IL-18 levels were significantly higher, while serum TNF-α level was significantly lower among ketamine users than among healthy controls (p<0.05). Serum TNF-α levels showed a significant negative association with PANSS total score (r=-0.210, p<0.01) and negative subscore (r=-0.300, p<0.01). No significant association was found between PANSS score and serum levels of IL-6 and IL-18. CONCLUSIONS Serum levels of TNF-α, IL-6 and IL-18 were altered in chronic ketamine abusers which may play a role in schizophrenia-like symptoms in chronic ketamine abusers.
Collapse
Affiliation(s)
- Ni Fan
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| | - Yayan Luo
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, 300 George St, New Haven, CT, USA
| | - Minling Zhang
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xiaoyin Ke
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China,Shenzhen Mental Health Center, 1080 Cuizhu Rd., Luohu District, Shenzhen, Guangdong 518020, China
| | - Xini Huang
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yi Ding
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Daping Wang
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yuping Ning
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Xuefeng Deng
- Guangzhou Baiyun Voluntary Drug Rehabilitation Hospital, 586 North of Baiyun Road, Baiyun District, Guangzhou, Guangdong 510440, China
| | - Hongbo He
- Guangzhou Brain Hospital (Guangzhou Huiai Hospital, the Affiliated Brain Hospital of Guangzhou Medical University), 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| |
Collapse
|
213
|
PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Psychopharmacology (Berl) 2015; 232:4085-97. [PMID: 25943167 DOI: 10.1007/s00213-015-3946-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/22/2015] [Indexed: 02/06/2023]
Abstract
RATIONALE N-methyl-D-aspartate receptor (NMDA-R) hypofunction has been proposed to account for the pathophysiology of schizophrenia. Thus, NMDA-R blockade has been used to model schizophrenia in experimental animals. Acute and repeated treatments have been successfully tested; however, long-term exposure to NMDA-R antagonists more likely resembles the core symptoms of the illness. OBJECTIVES To explore whether schizophrenia-related behaviors are differentially induced by acute and subchronic phencyclidine (PCP) treatment in mice and to examine the neurobiological bases of these differences. RESULTS Subchronic PCP induced a sensitization of acute locomotor effects. Spontaneous alternation in a T-maze and novel object recognition performance were impaired after subchronic but not acute PCP, suggesting a deficit in working memory. On the contrary, reversal learning and immobility in the tail suspension test were unaffected. Subchronic PCP significantly reduced basal dopamine but not serotonin output in medial prefrontal cortex (mPFC) and markedly decreased the expression of tyrosine hydroxylase in the ventral tegmental area. Finally, acute and subchronic PCP treatments evoked a different pattern of c-fos expression. At 1 h post-treatment, acute PCP increased c-fos expression in many cortical regions, striatum, thalamus, hippocampus, and dorsal raphe. However, the increased c-fos expression produced by subchronic PCP was restricted to the retrosplenial cortex, thalamus, hippocampus, and supramammillary nucleus. Four days after the last PCP injection, c-fos expression was still increased in the hippocampus of subchronic PCP-treated mice. CONCLUSIONS Acute and subchronic PCP administration differently affects neuronal activity in brain regions relevant to schizophrenia, which could account for their different behavioral effects.
Collapse
|
214
|
Ingason A, Giegling I, Hartmann AM, Genius J, Konte B, Friedl M, Ripke S, Sullivan PF, St. Clair D, Collier DA, O'Donovan MC, Mirnics K, Rujescu D. Expression analysis in a rat psychosis model identifies novel candidate genes validated in a large case-control sample of schizophrenia. Transl Psychiatry 2015; 5:e656. [PMID: 26460480 PMCID: PMC4930128 DOI: 10.1038/tp.2015.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/16/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
Antagonists of the N-methyl-D-aspartate (NMDA)-type glutamate receptor induce psychosis in healthy individuals and exacerbate schizophrenia symptoms in patients. In this study we have produced an animal model of NMDA receptor hypofunction by chronically treating rats with low doses of the NMDA receptor antagonist MK-801. Subsequently, we performed an expression study and identified 20 genes showing altered expression in the brain of these rats compared with untreated animals. We then explored whether the human orthologs of these genes are associated with schizophrenia in the largest schizophrenia genome-wide association study published to date, and found evidence for association for 4 out of the 20 genes: SF3B1, FOXP1, DLG2 and VGLL4. Interestingly, three of these genes, FOXP1, SF3B1 and DLG2, have previously been implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- A Ingason
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - I Giegling
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - A M Hartmann
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - J Genius
- Department of Psychiatry, Ludwig-Maximilians-University, Munich, Germany
| | - B Konte
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | - M Friedl
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany
| | | | - S Ripke
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - P F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D St. Clair
- Department of Mental Health, University of Aberdeen, Aberdeen, UK
| | - D A Collier
- King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, UK
| | - M C O'Donovan
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - K Mirnics
- Department of Psychiatry, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| | - D Rujescu
- Department of Psychiatry, University of Halle-Wittenberg, Halle, Germany,Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Julius-Kühn-Strasse 7, Halle 06112, Germany. E-mail:
| |
Collapse
|
215
|
Nagy LR, Featherstone RE, Hahn CG, Siegel SJ. Delayed emergence of behavioral and electrophysiological effects following juvenile ketamine exposure in mice. Transl Psychiatry 2015; 5:e635. [PMID: 26371763 PMCID: PMC5068812 DOI: 10.1038/tp.2015.111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/05/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022] Open
Abstract
Frequent ketamine abuse in adulthood correlates with increased risk of psychosis, as well as cognitive deficits, including disruption of higher-order executive function and memory formation. Although the primary abusers of ketamine are adolescents and young adults, few studies have evaluated its effects on juvenile cognition. Therefore, the current study analyzes the effect of adolescent ketamine exposure on cognitive development. Juvenile mice (4 weeks of age) were exposed to chronic ketamine (20 mg kg(-1), i.p. daily) for 14 days. Mice were tested immediately after exposure in the juvenile period (7 weeks of age) and again as adults (12 weeks of age). Measures included electroencephalography (EEG) in response to auditory stimulation, the social choice test, and a 6-arm radial water maze task. Outcome measures include low-frequency EEG responses, event-related potential (ERP) amplitudes, indices of social behavior and indices of spatial working memory. Juvenile exposure to ketamine was associated with electrophysiological abnormalities in adulthood, particularly in induced theta power and the P80 ERP. The social choice test revealed that ketamine-exposed mice failed to exhibit the same age-related decrease in social interaction time as controls. Ketamine-exposed mice outperformed control mice as juveniles on the radial water maze task, but did not show the same age-related improvement as adult controls. These data support the hypothesis that juvenile exposure to ketamine produces long-lasting changes in brain function that are characterized by a failure to progress along normal developmental trajectories.
Collapse
Affiliation(s)
- L R Nagy
- Department of Psychiatry, Translational Neuroscience Program, University of Pennsylvania, Philadelphia, PA, USA
| | - R E Featherstone
- Department of Psychiatry, Translational Neuroscience Program, University of Pennsylvania, Philadelphia, PA, USA
| | - C G Hahn
- Department of Psychiatry, Translational Neuroscience Program, University of Pennsylvania, Philadelphia, PA, USA
| | - S J Siegel
- Department of Psychiatry, Translational Neuroscience Program, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
216
|
Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 2015; 167:98-107. [PMID: 25583246 PMCID: PMC4724170 DOI: 10.1016/j.schres.2014.12.026] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
While the dopamine hypothesis has dominated schizophrenia research for several decades, more recent studies have highlighted the role of fast synaptic transmitters and their receptors in schizophrenia etiology. Here we review evidence that schizophrenia is associated with a reduction in N-methyl-d-aspartate receptor (NMDAR) function. By highlighting postmortem, neuroimaging and electrophysiological studies, we provide evidence for preferential disruption of GABAergic circuits in the context of NMDAR hypo-activity states. The functional relationship between NMDARs and GABAergic neurons is realized at the molecular, cellular, microcircuit and systems levels. A synthesis of findings across these levels explains how NMDA-mediated inhibitory dysfunction may lead to aberrant interactions among brain regions, accounting for key clinical features of schizophrenia. This synthesis of schizophrenia unifies observations from diverse fields and may help chart pathways for developing novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Samuel M. Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Richard W. Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Donald C. Goff
- Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Michael M. Halassa
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
,Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,To whom correspondence should be addressed:
| |
Collapse
|
217
|
Hill XL, Richeri A, Scorza C. Measure of anxiety-related behaviors and hippocampal BDNF levels associated to the amnesic effect induced by MK-801 evaluated in the modified elevated plus-maze in rats. Physiol Behav 2015; 147:359-63. [DOI: 10.1016/j.physbeh.2015.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 05/04/2015] [Accepted: 05/15/2015] [Indexed: 11/26/2022]
|
218
|
Ketamine amplifies induced gamma frequency oscillations in the human cerebral cortex. Eur Neuropsychopharmacol 2015; 25:1136-46. [PMID: 26123243 DOI: 10.1016/j.euroneuro.2015.04.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/06/2015] [Accepted: 04/10/2015] [Indexed: 12/19/2022]
Abstract
At subanaesthetic doses, ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, has demonstrated remarkable and rapid antidepressant efficacy in patients with treatment-resistant depression. The mechanism of action of ketamine is complex and not fully understood, with altered glutamatergic function and alterations of high-frequency oscillatory power (Wood et al., 2012) noted in animal studies. Here we used magnetoencephalography (MEG) in a single blind, crossover study to assess the neuronal effects of 0.5mg/kg intravenous ketamine on task-related high-frequency oscillatory activity in visual and motor cortices. Consistent with animal findings, ketamine increased beta amplitudes, decreased peak gamma frequency in visual cortex and significantly amplified gamma-band amplitudes in motor and visual cortices. The amplification of gamma-band activity has previously been linked in animal studies to cortical pyramidal cell disinhibition. This study provides direct translatable evidence of this hypothesis in humans, which may underlie the anti-depressant actions of ketamine.
Collapse
|
219
|
Cordon I, Nicolás MJ, Arrieta S, Lopetegui E, López-Azcárate J, Alegre M, Artieda J, Valencia M. Coupling in the cortico-basal ganglia circuit is aberrant in the ketamine model of schizophrenia. Eur Neuropsychopharmacol 2015; 25:1375-87. [PMID: 25910422 DOI: 10.1016/j.euroneuro.2015.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/06/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022]
Abstract
Recent studies have suggested the implication of the basal ganglia in the pathogenesis of schizophrenia. To investigate this hypothesis, here we have used the ketamine model of schizophrenia to determine the oscillatory abnormalities induced in the rat motor circuit of the basal ganglia. The activity of free moving rats was recorded in different structures of the cortico-basal ganglia circuit before and after an injection of a subanesthesic dose of ketamine (10mg/kg). Spectral estimates of the oscillatory activity, phase-amplitude cross-frequency coupling interactions (CFC) and imaginary event-related coherence together with animals׳ behavior were analyzed. Oscillatory patterns in the cortico-basal ganglia circuit were highly altered by the effect of ketamine. CFC between the phases of low-frequency activities (delta, 1-4; theta 4-8Hz) and the amplitude of high-gamma (~80Hz) and high-frequency oscillations (HFO) (~150Hz) increased dramatically and correlated with the movement increment shown by the animals. Between-structure analyses revealed that ketamine had also a massive effect in the low-frequency mediated synchronization of the HFO's across the whole circuit. Our findings suggest that ketamine administration results in an aberrant hypersynchronization of the whole cortico-basal circuit where the tandem theta/HFO seems to act as the main actor in the hyperlocomotion shown by the animals. Here we stress the importance of the basal ganglia circuitry in the ketamine model of schizophrenia and leave the door open to further investigations devoted to elucidate to what extent these abnormalities also reflect the prominent neurophysiological deficits observed in schizophrenic patients.
Collapse
Affiliation(s)
- Ivan Cordon
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain
| | - María Jesús Nicolás
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Sandra Arrieta
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Eneko Lopetegui
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Jon López-Azcárate
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Manuel Alegre
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain; Neurophysiology Service, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Julio Artieda
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain; Neurophysiology Service, Clínica Universidad de Navarra, Universidad de Navarra, Pamplona, Spain.
| | - Miguel Valencia
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
220
|
Lodge D, Mercier MS. Ketamine and phencyclidine: the good, the bad and the unexpected. Br J Pharmacol 2015; 172:4254-76. [PMID: 26075331 DOI: 10.1111/bph.13222] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022] Open
Abstract
The history of ketamine and phencyclidine from their development as potential clinical anaesthetics through drugs of abuse and animal models of schizophrenia to potential rapidly acting antidepressants is reviewed. The discovery in 1983 of the NMDA receptor antagonist property of ketamine and phencyclidine was a key step to understanding their pharmacology, including their psychotomimetic effects in man. This review describes the historical context and the course of that discovery and its expansion into other hallucinatory drugs. The relevance of these findings to modern hypotheses of schizophrenia and the implications for drug discovery are reviewed. The findings of the rapidly acting antidepressant effects of ketamine in man are discussed in relation to other glutamatergic mechanisms.
Collapse
Affiliation(s)
- D Lodge
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - M S Mercier
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| |
Collapse
|
221
|
Kandratavicius L, Balista PA, Wolf DC, Abrao J, Evora PR, Rodrigues AJ, Chaves C, Maia-de-Oliveira JP, Leite JP, Dursun SM, Baker GB, Guimaraes FS, Hallak JEC. Effects of nitric oxide-related compounds in the acute ketamine animal model of schizophrenia. BMC Neurosci 2015; 16:9. [PMID: 25887360 PMCID: PMC4354998 DOI: 10.1186/s12868-015-0149-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/25/2015] [Indexed: 01/22/2023] Open
Abstract
Background Better treatments for schizophrenia are urgently needed. The therapeutic use of the nitric oxide (NO)-donor sodium nitroprusside (SNP) in patients with schizophrenia has shown promising results. The role of NO in schizophrenia is still unclear, and NO modulation is unexplored in ketamine (KET) animal models to date. In the present study, we compared the behavioral effects of pre- and post-treatment with SNP, glyceryl trinitrate (GTN), and methylene blue (MB) in the acute KET animal model of schizophrenia. The present study was designed to test whether acute SNP, GTN, and MB treatment taken after (therapeutic effect) or before (preventive effect) a single KET injection would influence the behavior of rats in the sucrose preference test, object recognition task and open field. Results The results showed that KET induced cognitive deficits and hyperlocomotion. Long- term memory improvement was seen with the therapeutic GTN and SNP treatment, but not with the preventive one. MB pretreatment resulted in long-term memory recovery. GTN pre-, but not post-treatment, tended to increase vertical and horizontal activity in the KET model. Therapeutic and preventive SNP treatment consistently decreased KET-induced hyperlocomotion. Conclusion NO donors – especially SNP – are promising new pharmacological candidates in the treatment of schizophrenia. In addition, we showed that the potential impact of NO-related compounds on KET-induced behavioral changes may depend on the temporal window of drug administration.
Collapse
Affiliation(s)
- Ludmyla Kandratavicius
- Department of Neurosciences and Behavior, Ribeirao Preto School of Medicine, University of Sao Paulo, Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil.
| | - Priscila Alves Balista
- Department of Neurosciences and Behavior, Ribeirao Preto School of Medicine, University of Sao Paulo, Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, Brazil.
| | - Daniele Cristina Wolf
- Department of Neurosciences and Behavior, Ribeirao Preto School of Medicine, University of Sao Paulo, Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, Brazil.
| | - Joao Abrao
- Department of Biomechanics, Ribeirao Preto School of Medicine, Medicine and Rehabilitation, USP, Ribeirao Preto, Brazil.
| | - Paulo Roberto Evora
- Department of Surgery and Anatomy, Ribeirao Preto School of Medicine, USP, Ribeirao Preto, Brazil.
| | - Alfredo Jose Rodrigues
- Department of Surgery and Anatomy, Ribeirao Preto School of Medicine, USP, Ribeirao Preto, Brazil.
| | - Cristiano Chaves
- Department of Neurosciences and Behavior, Ribeirao Preto School of Medicine, University of Sao Paulo, Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, Brazil.
| | | | - Joao Pereira Leite
- Department of Neurosciences and Behavior, Ribeirao Preto School of Medicine, University of Sao Paulo, Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil.
| | - Serdar Murat Dursun
- Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta, Canada.
| | - Glen Bryan Baker
- Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta, Canada.
| | | | - Jaime Eduardo Cecilio Hallak
- Department of Neurosciences and Behavior, Ribeirao Preto School of Medicine, University of Sao Paulo, Av Bandeirantes 3900, CEP 14049-900, Ribeirao Preto, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), USP, Ribeirao Preto, Brazil. .,National Institute of Science and Technology in Translational Medicine (INCT-TM - CNPq), Ribeirao Preto, Brazil.
| |
Collapse
|
222
|
Abstract
Over 100 loci are now associated with schizophrenia risk as identified by single nucleotide polymorphisms (SNPs) in genome-wide association studies. These findings mean that 'genes for schizophrenia' have unquestionably been found. However, many questions remain unanswered, including several which affect their therapeutic significance. The SNPs individually have minor effects, and even cumulatively explain only a modest fraction of the genetic predisposition. The remainder likely results from many more loci, from rare variants, and from gene-gene and gene-environment interactions. The risk SNPs are almost all non-coding, meaning that their biological significance is unclear; probably their effects are mediated via an influence on gene regulation, and emerging evidence suggests that some key molecular events occur during early brain development. The loci include novel genes of unknown function as well as genes and pathways previously implicated in the pathophysiology of schizophrenia, e.g. NMDA receptor signalling. Genes in the latter category have the clearer therapeutic potential, although even this will be a challenging process because of the many complexities concerning the genetic architecture and mediating mechanisms. This review summarises recent schizophrenia genetic findings and some key issues they raise, particularly with regard to their implications for identifying and validating novel drug targets.
Collapse
Affiliation(s)
- Paul J Harrison
- University Department of Psychiatry, Warneford Hospital, Oxford, UK
| |
Collapse
|
223
|
Abstract
Components of human executive function, like rule generation and selection in response to stimuli (attention set-shifting) or overcoming a habit (reversal learning), can be reliably modelled in rodents. The rodent paradigms are based upon tasks that assess cognitive flexibility in clinical populations and have been effective in distinguishing the neurobiological substrates and the underlying neurotransmitter systems relevant to executive function. A review of the literature on the attentional set-shifting task highlights a prominent role for the medial region of the prefrontal cortex in the ability to adapt to a new rule (extradimensional shift) while the orbitofrontal cortex has been associated with the reversal learning component of the task. In other paradigms specifically developed to examine reversal learning in rodents, the orbitofrontal cortex also plays a prominent role. Modulation of dopamine, serotonin, and glutamatergic receptors can disrupt executive function, a feature commonly exploited to develop concepts underlying psychiatric disorders. While these paradigms do have excellent translational construct validity, they have been less effective as predictive preclinical models for cognitive enhancers, especially for cognition in health subjects. Accordingly, a more diverse battery of tasks may be necessary to model normal human executive function in the rodent for drug development.
Collapse
Affiliation(s)
- John Talpos
- Janssen R&D, Janssen Pharmaceutical Companies of Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | | |
Collapse
|
224
|
Johnson JW, Glasgow NG, Povysheva NV. Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol 2014; 20:54-63. [PMID: 25462293 DOI: 10.1016/j.coph.2014.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 01/21/2023]
Abstract
The clinical benefits of the glutamate receptor antagonists memantine and ketamine have helped sustain optimism that glutamate receptors represent viable targets for development of therapeutic drugs. Both memantine and ketamine antagonize N-methyl-D-aspartate receptors (NMDARs), a glutamate receptor subfamily, by blocking the receptor-associated ion channel. Although many of the basic characteristics of NMDAR inhibition by memantine and ketamine appear similar, their effects on humans and to a lesser extent on rodents are strongly divergent. Some recent research suggests that preferential inhibition by memantine and ketamine of distinct NMDAR subpopulations may contribute to the drugs' differential clinical effects. Here we review studies that shed light on possible explanations for differences between the effects of memantine and ketamine.
Collapse
Affiliation(s)
- Jon W Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Nathan G Glasgow
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nadezhda V Povysheva
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
225
|
Chronic administration of antipsychotics attenuates ongoing and ketamine-induced increases in cortical γ oscillations. Int J Neuropsychopharmacol 2014; 17:1895-904. [PMID: 24964190 DOI: 10.1017/s1461145714000959] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Noncompetitive N-methyl-d-aspartate receptor (NMDAr) antagonists can elicit many of the symptoms observed in schizophrenia in healthy humans, and induce a behavioural phenotype in animals relevant to psychosis. These compounds also elevate the power and synchrony of gamma (γ) frequency (30-80 Hz) neural oscillations. Acute doses of antipsychotic medications have been shown to reduce ongoing γ power and to inhibit NMDAr antagonist-mediated psychosis-like behaviour in rodents. This study aimed to investigate how a chronic antipsychotic dosing regimen affects ongoing cortical γ oscillations, and the electrophysiological and behavioural responses induced by the NMDAr antagonist ketamine. Male Wistar rats were chronically treated with haloperidol (0.25 mg/kg/d), clozapine (5 mg/kg/d), LY379268 (0.3 mg/kg/d) or vehicle for 28 d, delivered by subcutaneous (s.c.) osmotic pumps. Weekly electrocorticogram (ECoG) recordings were acquired. On day 26, ketamine (5 mg/kg, s.c.) was administered, and ECoG and locomotor activity were simultaneously measured. These results were compared with data generated previously following acute treatment with these antipsychotics. Sustained and significant decreases in ongoing γ power were observed during chronic administration of haloperidol (64%) or clozapine (43%), but not of LY379268 (2% increase), compared with vehicle. Acute ketamine injection concurrently increased γ power and locomotor activity in vehicle-treated rats, and these effects were attenuated in rats chronically treated with all three antipsychotics. The ability of haloperidol or clozapine to inhibit ketamine-induced elevation in γ power was not observed following acute administration of these drugs. These results indicate that modulation of γ power may be a useful biomarker of chronic antipsychotic efficacy.
Collapse
|
226
|
Pinault D. N-Methyl D-Aspartate Receptor Antagonists Amplify Network Baseline Gamma Frequency (30–80 Hz) Oscillations: Noise and Signal. AIMS Neurosci 2014. [DOI: 10.3934/neuroscience.2014.2.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|