201
|
Research progress in molecular mechanism of animal seasonal reproduction. YI CHUAN = HEREDITAS 2011; 33:695-706. [DOI: 10.3724/sp.j.1005.2011.00695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
202
|
Goodman RL, Holaskova I, Nestor CC, Connors JM, Billings HJ, Valent M, Lehman MN, Hileman SM. Evidence that the arcuate nucleus is an important site of progesterone negative feedback in the ewe. Endocrinology 2011; 152:3451-60. [PMID: 21693677 PMCID: PMC3159787 DOI: 10.1210/en.2011-0195] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is now considerable evidence that dynorphin neurons mediate the negative feedback actions of progesterone to inhibit GnRH and LH pulse frequency, but the specific neurons have yet to be identified. In ewes, dynorphin neurons in the arcuate nucleus (ARC) and preoptic area (POA) are likely candidates based on colocalization with progesterone receptors. These studies tested the hypothesis that progesterone negative feedback occurs in either the ARC or POA by determining whether microimplants of progesterone into either site would inhibit LH pulse frequency (study 1) and whether microimplants of the progesterone receptor antagonist, RU486, would disrupt the inhibitory effects of peripheral progesterone (study 2). Both studies were done in ovariectomized (OVX) and estradiol-treated OVX ewes. In study 1, no inhibitory effects of progesterone were observed during treatment in either area. In study 2, microimplants of RU486 into the ARC disrupted the negative-feedback actions of peripheral progesterone treatments on LH pulse frequency in both OVX and OVX+estradiol ewes. In contrast, microimplants of RU486 into the POA had no effect on the ability of systemic progesterone to inhibit LH pulse frequency. We thus conclude that the ARC is one important site of progesterone-negative feedback in the ewe. These data, which are the first evidence on the neural sites in which progesterone inhibits GnRH pulse frequency in any species, are consistent with the hypothesis that ARC dynorphin neurons mediate this action of progesterone.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology and Pharmacology, Robert C. Byrd Health Sciences Center, Morgantown, West Virginia 26506, USA.
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Lasaga M, Debeljuk L. Tachykinins and the hypothalamo-pituitary-gonadal axis: An update. Peptides 2011; 32:1972-8. [PMID: 21801774 DOI: 10.1016/j.peptides.2011.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/08/2011] [Accepted: 07/11/2011] [Indexed: 11/22/2022]
Abstract
Tachykinins play a critical role in neuroendocrine regulation of reproduction. The best known members of the family are substance P (SP), neurokinin A and neurokinin B. Tachykinins mediate their biological actions through three G protein-coupled receptors, named NK1, NK2, and NK3. SP was suggested to play an important role in the ovulatory process in mammals and humans. Recent findings suggest a role of tachykinins in the aging of the hypothalamo-pituitary-gonadal axis. A high presence of SP was found in the sheep pars tuberalis and evidence indicates that it may have some role in the control of prolactin secretion. The presence of SP was confirmed in Leydig cells of the rat testes of animals submitted to constant light or treated with estrogens. Tachykinins were found to increase the motility of human spermatozoa. Tachykinins were also found to be present in the mouse ovary and more specifically, in the granulose cells. It is possible that tachykinins may play an important role in the ovarian function. NKB has been implicated in the steroid feedback control of GnRH release. Human mutations in the gene encoding this peptide or its receptor (TACR3) lead to a defect in the control of GnRH. A specific subset of neurons in the arcuate nucleus of the hypothalamus, colocalized three neuropeptides, kisspeptin, NKB and dynorphin. This subpopulation of neurons mediates the gonadal hormone feedback control of GnRH secretion. NKB/NK3 signaling plays a role in puberty onset and fertility in humans. This minireview summarizes the recent data about the action of tachykinins on the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Mercedes Lasaga
- Research Institute for Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
204
|
Redmond JS, Baez-Sandoval GM, Spell KM, Spencer TE, Lents CA, Williams GL, Amstalden M. Developmental changes in hypothalamic Kiss1 expression during activation of the pulsatile release of luteinising hormone in maturing ewe lambs. J Neuroendocrinol 2011; 23:815-22. [PMID: 21679258 DOI: 10.1111/j.1365-2826.2011.02177.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Onset of puberty is characterised by a marked increase in the frequency of release of gonadotrophin-releasing hormone (GnRH) and luteinising hormone (LH). The Kiss1 gene plays a critical role in pubertal development, and its product, kisspeptin, stimulates GnRH and LH release. In the present study, we tested the hypothesis that Kiss1 gene expression in the preoptic area (POA) and hypothalamus increases during maturation of the reproductive neuroendocrine axis in association with increased LH pulsatility. Ovariectomised, oestradiol-replaced lambs were euthanised at 25, 30 and 35 weeks of age. Blood samples were collected before euthanasia to characterise the pattern of LH release. Kiss1 mRNA was detected in coronal sections of the POA and hypothalamus and Kiss1-expressing cells were identified on the basis of silver grain density. The mean number of Kiss1-expressing cells in the POA/periventricular (PeV) areas increased from 25 to 30 weeks of age. No further increase at 35 weeks of age was observed, and the changes in Kiss1 expression in the POA/PeV were independent of changes in LH pulse frequency. The mean number of Kiss1-expressing cells in the arcuate (ARC) nucleus did not differ among age groups, although it was greater in the middle ARC of lambs exhibiting increased frequency of LH release. The density of silver grains per cell did not differ among groups in any of the areas studied. The results obtained indicate that the Kiss1 gene is activated in the POA/PeV and ARC of ewe lambs during juvenile development, and that kisspeptin neurones in the middle ARC, in particular, are involved in the acceleration of pulsatile LH release during maturation of the reproductive neuroendocrine axis in ewe lambs.
Collapse
Affiliation(s)
- J S Redmond
- Department of Animal Science, Texas A&M University, College Station, TX 77843-241, USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Hileman SM, McManus CJ, Goodman RL, Jansen HT. Neurons of the lateral preoptic area/rostral anterior hypothalamic area are required for photoperiodic inhibition of estrous cyclicity in sheep. Biol Reprod 2011; 85:1057-65. [PMID: 21816852 DOI: 10.1095/biolreprod.111.092031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Photoperiod determines the timing of reproductive activity in many species, yet the neural pathways whereby day length is transduced to a signal influencing gonadotropin-releasing hormone (GnRH) release are not fully understood. Physical lesions of the lateral preoptic area (lPOA)/rostral anterior hypothalamic area (rAHA) in female sheep extend the period of estrous cyclicity during inhibitory photoperiods. In the present study we sought to determine whether destroying only neurons and not fibers of passage in this area would lead to similar resistance to photosuppression. Additionally, neural tract-tracing was used to map connectivity between the lPOA/rAHA and other hypothalamic areas implicated in photoperiodic regulation of reproduction. Progesterone secretion was monitored in six sheep to determine estrous cycles for 90 days during a short-day (permissive) photoperiod. Three sheep then received bilateral injections of the excitotoxic glutamate analog, n-methyl-aspartic acid, directed toward the lPOA/rAHA, whereas three others served as controls. All were then exposed to a long-day (suppressive) photoperiod for 120 days. Control sheep ceased cycling at 40 ± 10 days (mean ± SEM), whereas lesioned sheep continued cycling through the end of the study. The results of the tract-tracing study revealed both afferent and efferent projections to the medial POA, retrochiasmatic area, arcuate nucleus, and premammillary region. Furthermore, close proximal associations with GnRH neurons from efferent projections were observed. We conclude that neurons located within the lPOA/rAHA are important for timing cessation of estrous cycles during photosuppression and that this area communicates directly with GnRH neurons and other hypothalamic areas involved in the photoperiodic regulation of reproduction.
Collapse
Affiliation(s)
- Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | | | |
Collapse
|
206
|
Pierce A, Xu M, Bliesner B, Liu Z, Richards J, Tobet S, Wierman ME. Hypothalamic but not pituitary or ovarian defects underlie the reproductive abnormalities in Axl/Tyro3 null mice. Mol Cell Endocrinol 2011; 339:151-8. [PMID: 21539887 PMCID: PMC3124083 DOI: 10.1016/j.mce.2011.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/09/2011] [Accepted: 04/13/2011] [Indexed: 11/25/2022]
Abstract
AXL and TYRO3, members of the TYRO3, AXL and MER (TAM) family of tyrosine kinase receptors, modulate GnRH neuronal cell migration, survival and gene expression. Axl/Tyro3 null mice exhibit a selective loss of GnRH neurons, delayed sexual maturation and irregular estrous cycles. Here we determined whether the defects were due to direct ovarian defects, altered pituitary sensitivity to GnRH and/or an impaired LH surge mechanism. Ovarian histology and markers of folliculogenesis and atresia as well as corpora luteal development and ovarian response to superovulation were not impaired. Axl/Tryo3 null mice exhibited a robust LH response to exogenous GnRH, suggesting no altered pituitary sensitivity. Ovariectomized Axl/Tyro3 null mice, however, demonstrated an impaired ability to mount a steroid-induced LH surge. Loss of GnRH neurons in Axl/Tyro3 null mice impairs the sex hormone-induced gonadotropin surge resulting in estrous cycle abnormalities confirming that TAM family members contribute to normal female reproductive function.
Collapse
Affiliation(s)
- Angela Pierce
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Abstract
Gonadotrophin-releasing hormone (GnRH)-secreting neurones are the final output of the central nervous system driving fertility in all mammals. Although it has been known for decades that the efficiency of communication between the hypothalamus and the pituitary depends on the pulsatile profile of GnRH secretion, how GnRH neuronal activity is patterned to generate pulses at the median eminence is unknown. To date, the scattered distribution of the GnRH cell bodies remains the main limitation to assessing the cellular events that could lead to pulsatile GnRH secretion. Taking advantage of the unique developmental feature of GnRH neurones, the nasal explant model allows primary GnRH neurones to be maintained within a micro-network where pulsatile secretion is preserved and where individual cellular activity can be monitored simultaneously across the cell population. This review summarises the data obtained from work using this in vitro model, and brings some insights into GnRH cellular physiology.
Collapse
Affiliation(s)
- S Constantin
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
208
|
Qiu J, Fang Y, Bosch MA, Rønnekleiv OK, Kelly MJ. Guinea pig kisspeptin neurons are depolarized by leptin via activation of TRPC channels. Endocrinology 2011; 152:1503-14. [PMID: 21285322 PMCID: PMC3078701 DOI: 10.1210/en.2010-1285] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/22/2010] [Indexed: 01/26/2023]
Abstract
Hypothalamic kisspeptin neurons are critical for driving reproductive function, but virtually nothing is known about their endogenous electrophysiological properties and the effects of leptin on their excitability. Therefore, we used the slice preparation from female guinea pigs to study the endogenous conductances and the effects of leptin on kisspeptin neurons. We targeted the arcuate kisspeptin neurons using visualized-patch whole-cell recording and identified kisspeptin neurons using immuocytochemical staining for kisspeptin or single cell RT-PCR. We also harvested dispersed arcuate neurons for analysis of expression of channel transcripts. Kisspeptin neurons exhibited a relatively negative resting membrane potential, and eighty percent of the neurons expressed a pacemaker current (h-current) and a T-type Ca(2+) current. Furthermore, the glutamate receptor agonist N-methyl D-aspartic acid depolarized and induced burst firing in kisspeptin neurons. Leptin activated an inward current that depolarized kisspeptin neurons and increased (burst) firing, but leptin hyperpolarized NPY neurons. Lanthanum, a TRPC-4,-5 channel activator, potentiated the leptin-induced inward current by 170%. The leptin-activated current reversed near -15 mV and was abrogated by the relatively selective TRPC channel blocker 2-APB. The leptin effects were also blocked by a Janus kinase inhibitor, a phosphatidylinositol 3 kinase inhibitor, and a phospholipase Cγ inhibitor. In addition, the majority of these neurons expressed TRPC1 and -5 and phospholipase Cγ1 based on single cell RT-PCR. Therefore, guinea pig kisspeptin neurons express endogenous pacemaker currents, and leptin excites these neurons via activation of TRPC channels. The leptin excitatory effects on kisspeptin neurons may be critical for governing the excitatory drive to GnRH neurons during different nutritional states.
Collapse
Affiliation(s)
- Jian Qiu
- Department of Physiology and Pharmacology, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | | | | | |
Collapse
|
209
|
Smith JT, Li Q, Yap KS, Shahab M, Roseweir AK, Millar RP, Clarke IJ. Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology 2011; 152:1001-12. [PMID: 21239443 DOI: 10.1210/en.2010-1225] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptins are the product of the Kiss1 gene and potently stimulate GnRH secretion. In sheep, Kiss1 mRNA-expressing cells are found in the arcuate nucleus (ARC) and dorsal-lateral preoptic area and both appear to mediate the positive feedback effect of estradiol to generate the preovulatory GnRH/LH surge. To determine the role of kisspeptin in transmitting estrogen-positive feedback in the hypothalamus, we administered the kisspeptin antagonist p-271 to ewes subjected to an estradiol benzoate-induced LH surge. Kisspeptin antagonist treatment significantly attenuated these LH surges. We further examined the response to kisspeptin treatment prior to the LH surge. Kisspeptin significantly stimulated GnRH secretion into the hypophysial portal system, but the response to kisspeptin was similar in luteal and late-follicular phase ewes. Kiss1r mRNA expression in GnRH neurons was also similar across the estrous cycle. To examine alternative pathways for kisspeptin stimulation of GnRH neurons, we examined the origin of kisspeptin neuronal fibers in the external zone of the median eminence (ME) using neuronal tracing and immunohistochemical techniques. ARC populations of kisspeptin neurons project fibers to the ME. Finally, we showed kisspeptin stimulates GnRH release from ovine ME-cultured explants. This suggests direct kisspeptin to GnRH terminal-to-terminal communication within the ME. Overall, these data indicate an essential role for kisspeptin in receiving stimulatory estrogen signals and generating the full positive feedback GnRH/LH surge. Kisspeptin neurons of the ARC project to the external zone of the ME and kisspeptin acts upon the GnRH fibers at this level.
Collapse
Affiliation(s)
- Jeremy T Smith
- Department of Physiology, Building 13F, Monash University, Clayton, Victoria 3880, Australia.
| | | | | | | | | | | | | |
Collapse
|
210
|
Matsuyama S, Ohkura S, Mogi K, Wakabayashi Y, Mori Y, Tsukamura H, Maeda KI, Ichikawa M, Okamura H. Morphological evidence for direct interaction between kisspeptin and gonadotropin-releasing hormone neurons at the median eminence of the male goat: an immunoelectron microscopic study. Neuroendocrinology 2011; 94:323-32. [PMID: 22116451 DOI: 10.1159/000331576] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022]
Abstract
Kisspeptin has been thought to play pivotal roles in the control of both pulse and surge modes of gonadotropin-releasing hormone (GnRH) secretion. To clarify loci of kisspeptin action on GnRH neurons, the present study examined the morphology of the kisspeptin system and the associations between kisspeptin and GnRH systems in gonadally intact and castrated male goats. Kisspeptin-immunoreactive (ir) and Kiss1-positive neurons were found in the medial preoptic area of intact but not castrated goats. Kisspeptin-ir cell bodies and fibers in the arcuate nucleus (ARC) and median eminence (ME) were fewer in intact male goats compared with castrated animals. Apposition of kisspeptin-ir fibers on GnRH-ir cell bodies was very rare in both intact and castrated goats, whereas the intimate association of kisspeptin-ir fibers with GnRH-ir nerve terminals was observed in the ME of castrated animals. Neurokinin B immunoreactivity colocalized not only in kisspeptin-ir cell bodies in the ARC but also in kisspeptin-ir fibers in the ME, suggesting that a majority of kisspeptin-ir fibers projecting to the ME originates from the ARC. A dual immunoelectron microscopic examination revealed that nerve terminals containing kisspeptin-ir vesicles made direct contact with GnRH-ir nerve terminals at the ME of castrated goats. There was no evidence for the existence of the typical synaptic structure between kisspeptin- and GnRH-ir fibers. The present results suggest that the ARC kisspeptin neurons act on GnRH neurons at the ME to control (possibly the pulse mode of) GnRH secretion in males.
Collapse
Affiliation(s)
- Shuichi Matsuyama
- Laboratory of Neurobiology, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Hrabovszky E, Molnár CS, Sipos MT, Vida B, Ciofi P, Borsay BA, Sarkadi L, Herczeg L, Bloom SR, Ghatei MA, Dhillo WS, Kalló I, Liposits Z. Sexual dimorphism of kisspeptin and neurokinin B immunoreactive neurons in the infundibular nucleus of aged men and women. Front Endocrinol (Lausanne) 2011; 2:80. [PMID: 22654828 PMCID: PMC3356022 DOI: 10.3389/fendo.2011.00080] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/08/2011] [Indexed: 12/02/2022] Open
Abstract
The secretory output of gonadotropin-releasing hormone (GnRH) neurons is critically influenced by peptidergic neurons synthesizing kisspeptins (KP) and neurokinin B (NKB) in the hypothalamic infundibular nucleus (Inf). These cells mediate negative feedback effects of sex steroids on the reproductive axis. While negative feedback is lost in postmenopausal women, it is partly preserved by the sustained testosterone secretion in aged men. We hypothesized that the different reproductive physiology of aged men and women is reflected in morphological differences of KP and NKB neurons. This sexual dimorphism was studied with immunohistochemistry in hypothalamic sections of aged human male (≥50 years) and female (>55 years) subjects. KP and NKB cell bodies of the Inf were larger in females. The number of KP cell bodies, the density of KP fibers, and the incidence of their contacts on GnRH neurons were much higher in aged women compared with men. The number of NKB cell bodies was only slightly higher in women and there was no sexual dimorphism in the regional density of NKB fibers and the incidence of their appositions onto GnRH cells. The incidences of NKB cell bodies, fibers, and appositions onto GnRH neurons exceeded several-fold those of KP-IR elements in men. More NKB than KP inputs to GnRH cells were also present in women. Immunofluorescent studies identified only partial overlap between KP and NKB axons. KP and NKB were colocalized in higher percentages of afferents to GnRH neurons in women compared with men. Most of these sex differences might be explained with the lack of estrogen negative feedback in aged women, whereas testosterone can continue to suppress KP, and to a lesser extent, NKB synthesis in men. Overall, sex differences in reproductive physiology of aged humans were reflected in the dramatic sexual dimorphism of the KP system, with significantly higher incidences of KP-IR neurons, fibers and inputs to GnRH neurons in aged females vs. males.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- *Correspondence: Erik Hrabovszky, Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary. e-mail:
| | - Csilla S. Molnár
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Máté T. Sipos
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | - Barbara Vida
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
| | | | - Beáta A. Borsay
- Department of Forensic Medicine, University of DebrecenDebrecen, Hungary
| | - László Sarkadi
- Department of Forensic Medicine, University of DebrecenDebrecen, Hungary
| | - László Herczeg
- Department of Forensic Medicine, University of DebrecenDebrecen, Hungary
| | - Stephen R. Bloom
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College LondonLondon, UK
| | - Mohammad A. Ghatei
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College LondonLondon, UK
| | - Waljit S. Dhillo
- Department of Investigative Medicine, Hammersmith Hospital, Imperial College LondonLondon, UK
| | - Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- Department of Neuroscience, Pázmány Péter Catholic UniversityBudapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of SciencesBudapest, Hungary
- Department of Neuroscience, Pázmány Péter Catholic UniversityBudapest, Hungary
| |
Collapse
|
212
|
Greives TJ, Long KL, Burns CMB, Demas GE. Response to exogenous kisspeptin varies according to sex and reproductive condition in Siberian hamsters (Phodopus sungorus). Gen Comp Endocrinol 2011; 170:172-9. [PMID: 20937279 PMCID: PMC3082704 DOI: 10.1016/j.ygcen.2010.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 09/28/2010] [Accepted: 10/04/2010] [Indexed: 01/09/2023]
Abstract
Most animals experience marked changes in reproductive status across development that are regulated by changes in the hypothalamo-pituitary-gonadal (HPG) axis. The upstream mechanisms regulating this axis remain less well understood. The neuropeptide kisspeptin serves as a positive regulator of reproduction; the precise actions of kisspeptin on the HPG axis in animals of differing developmental and seasonal reproductive states, however, remain unresolved. Further, sex differences in response to kisspeptin have not been fully explored. In Experiment 1, we investigated whether sensitivity to a broad range of kisspeptin doses differed in adult male and female Siberian hamsters held on reproductively inhibitory or stimulatory photoperiods. In Experiment 2, we asked whether the response to kisspeptin differed across stages of reproductive development. Males and females displayed elevated luteinizing hormone (LH) in response to kisspeptin; however, the sexes differed in this response, with males showing greater LH responses to kisspeptin than females. Hamsters responded to kisspeptin across all stages of reproductive development, although the magnitude of this response differed between animals of differental ages and between the sexes. Males showed significant increases in LH at an earlier developmental age than females; females also showed blunted LH responses during early adulthood whereas males remained relatively constant in their response to kisspeptin. These findings suggest that reproductively active and inactive hamsters are responsive to kisspeptin, but that the sexes differ in their responsiveness. Collectively, these data provide further insight into the basic actions of kisspeptin in the regulation of reproduction and provide a potential mechanism for the regulation of differential reproductive responses between the sexes.
Collapse
Affiliation(s)
| | | | | | - Gregory E. Demas
- Address Correspondence to: Gregory E. Demas, Department of Biology, Indiana University, 1001 E. 3 St., Bloomington, IN 47405, (812) 856-0158 - telephone, (812) 855-6705 – fax,
| |
Collapse
|
213
|
d'Anglemont de Tassigny X, Colledge WH. The role of kisspeptin signaling in reproduction. Physiology (Bethesda) 2010; 25:207-17. [PMID: 20699467 DOI: 10.1152/physiol.00009.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kisspeptins are a group of peptides that stimulate GnRH release and are required for puberty and maintenance of normal reproductive function. This review focuses on our understanding of the way in which kisspeptin signaling regulates mammalian fertility and how they act as central integrators of different hormonal and physiological signals.
Collapse
Affiliation(s)
- Xavier d'Anglemont de Tassigny
- Department of Physiology, Development and Neuroscience, Reproductive Physiology Group, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
214
|
Kirby HR, Maguire JJ, Colledge WH, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function. Pharmacol Rev 2010; 62:565-78. [PMID: 21079036 PMCID: PMC2993257 DOI: 10.1124/pr.110.002774] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kisspeptins are members of the Arg-Phe amide family of peptides, which have been identified as endogenous ligands for a G-protein-coupled receptor encoded by a gene originally called GPR54 (also known as AXOR12 or hOT7T175). After this pairing, the gene has been renamed KISS1R. The International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification recommends that the official name for the receptor is the kisspeptin receptor to follow the convention of naming the receptor protein after the endogenous ligand. The endogenous ligand was initially called metastin, after its role as a metastasis suppressor, and is now referred to as kisspeptin-54 (KP-54), a C-terminally amidated 54-amino acid peptide cleaved from the 145-amino acid gene product. Shorter C-terminal cleavage fragments [KP-14, KP-13 and KP-10 (the smallest active fragment)] are also biologically active. Both receptor and peptide are widely expressed in human, rat, and mouse; the receptor sequence shares more than 80% homology in these species. Activation of the kisspeptin receptor by kisspeptin is via coupling to G(q/11) and the phospholipase C pathway, causing Ca(2+) mobilization. Mutations in the KISS1R gene result in hypogonadotropic hypogonadotropism, and targeted disruption of Kiss1r in mice reproduces this phenotype, which led to the discovery of the remarkable ability of the kisspeptin receptor to act as a molecular switch for puberty. In addition to regulating the reproductive axis, the kisspeptin receptor is also implicated in cancer, placentation, diabetes, and the cardiovascular system.
Collapse
Affiliation(s)
- Helen R Kirby
- Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
215
|
Maeda KI, Ohkura S, Uenoyama Y, Wakabayashi Y, Oka Y, Tsukamura H, Okamura H. Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. Brain Res 2010; 1364:103-15. [DOI: 10.1016/j.brainres.2010.10.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 10/03/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
216
|
Cravo RM, Margatho LO, Osborne-Lawrence S, Donato J, Atkin S, Bookout AL, Rovinsky S, Frazão R, Lee CE, Gautron L, Zigman JM, Elias CF. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 2010; 173:37-56. [PMID: 21093546 DOI: 10.1016/j.neuroscience.2010.11.022] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Humans and mice with loss-of-function mutations of the genes encoding kisspeptins (Kiss1) or kisspeptin receptor (Kiss1r) are infertile due to hypogonadotropic hypogonadism. Within the hypothalamus, Kiss1 mRNA is expressed in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (Arc). In order to better study the different populations of kisspeptin cells we generated Kiss1-Cre transgenic mice. We obtained one line with Cre activity specifically within Kiss1 neurons (line J2-4), as assessed by generating mice with Cre-dependent expression of green fluorescent protein or β-galactosidase. Also, we demonstrated Kiss1 expression in the cerebral cortex and confirmed previous data showing Kiss1 mRNA in the medial nucleus of amygdala and anterodorsal preoptic nucleus. Kiss1 neurons were more concentrated towards the caudal levels of the Arc and higher leptin-responsivity was observed in the most caudal population of Arc Kiss1 neurons. No evidence for direct action of leptin in AVPV Kiss1 neurons was observed. Melanocortin fibers innervated subsets of Kiss1 neurons of the preoptic area and Arc, and both populations expressed melanocortin receptors type 4 (MC4R). Specifically in the preoptic area, 18-28% of Kiss1 neurons expressed MC4R. In the Arc, 90% of Kiss1 neurons were glutamatergic, 50% of which also were GABAergic. In the AVPV, 20% of Kiss1 neurons were glutamatergic whereas 75% were GABAergic. The differences observed between the Kiss1 neurons in the preoptic area and the Arc likely represent neuronal evidence for their differential roles in metabolism and reproduction.
Collapse
Affiliation(s)
- R M Cravo
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Anatomy of the kisspeptin neural network in mammals. Brain Res 2010; 1364:90-102. [PMID: 20858464 DOI: 10.1016/j.brainres.2010.09.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 01/17/2023]
Abstract
Kisspeptin has been recognized as a key regulator of GnRH secretion during puberty and adulthood, conveying the feedback influence of endogenous gonadal steroids onto the GnRH system. Understanding the functional roles of this peptide depends on knowledge of the anatomical framework in which it acts, including the location of kisspeptin-expressing cells in the brain and their connections. In this paper, we review current data on the anatomy of the kisspeptin neuronal network, including its colocalization with gonadal steroid hormone receptors, anatomical sites of interaction with the GnRH system, and recent evidence of neurochemical heterogeneity among different kisspeptin neuronal populations. Evidence to date suggests that kisspeptin cells in mammals comprise an interconnected network, with reciprocal connections both within and between separate cell populations, and with GnRH neurons. At the same time, there is more functional and anatomical heterogeneity in this system than originally thought, and many unanswered questions remain concerning anatomical relationships of kisspeptin neurons with other neuroendocrine and neural systems in the brain.
Collapse
|
218
|
Clarkson J, Han SK, Liu X, Lee K, Herbison AE. Neurobiological mechanisms underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Mol Cell Endocrinol 2010; 324:45-50. [PMID: 20109523 DOI: 10.1016/j.mce.2010.01.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 01/19/2023]
Abstract
Studies undertaken in many species indicate that kisspeptin-Gpr54 signaling is essential for the activation of gonadotropin-releasing hormone (GnRH) neurons to bring about puberty. Investigations in transgenic mouse models, in particular, have highlighted the importance of kisspeptin signaling at the level of the GnRH neuron itself in this process. This review aims to highlight current understanding of the neurobiological mechanisms underlying the kisspeptin activation of postnatal GnRH neurons. The three key features of the kisspeptin-Gpr54-GnRH neuron axis leading up to puberty are (i) the expression of adult-like levels of Gpr54 mRNA in GnRH neurons well in advance of puberty, (ii) a modest increase in the electrical response of GnRH neurons to Gpr54 activation across postnatal development and (iii), the "sudden" appearance of kisspeptin fibers surrounding GnRH neuron cell bodies/proximal dendrites just prior to puberty onset. These kisspeptin fibers are likely to originate from the kisspeptin population located in the rostral periventricular region of the third ventricle (RP3V). Together, available data suggest that the key step in the kisspeptin control of puberty lies in the control of kisspeptin synthesis within RP3V kisspeptin neurons that innervate GnRH neurons. This has recently been shown to be dependent upon circulating estradiol concentrations. As such, we propose that RP3V kisspeptin neurons represent a critical estradiol-dependent amplification mechanism brought into play relatively late in pubertal development to activate GnRH neurons and complete the process of puberty onset. Subsequently, in the adult female, this same circuitry is used to activate GnRH neurons to generate the cyclical preovulatory GnRH/LH surge.
Collapse
Affiliation(s)
- Jenny Clarkson
- Centre for Neuroendocrinology, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
219
|
Smith JT, Clarke IJ. Seasonal breeding as a neuroendocrine model for puberty in sheep. Mol Cell Endocrinol 2010; 324:102-9. [PMID: 20298744 DOI: 10.1016/j.mce.2010.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/28/2010] [Accepted: 03/03/2010] [Indexed: 11/24/2022]
Abstract
Puberty is defined as the awakening of the hypothalamic-pituitary gonadal axis. Sheep are seasonal breeders, experiencing an annual period of reproductive quiescence and renaissance that can be utilized as a model for the onset of puberty. Kisspeptin and gonadotropin-inhibitory hormone appear to be important for the seasonal shift in reproductive activity and the former is mandatory for puberty. The non-breeding season is characterized by an increase in the negative feedback effect of estrogen on GnRH and gonadotropin secretion, as is the case in the pre-pubertal period. This effect of estrogen may be transmitted by kisspeptin cells. Additionally, dopaminergic A14/A15 neurons facilitate the seasonal change in estrogen negative feedback. Integrated function of these three groups of neurons appears to modulate the annual shift in photoperiod to a physiological change in fertility. This review compares and contrasts seasonal cycles of reproduction with the mechanisms that relate to the onset of puberty.
Collapse
Affiliation(s)
- Jeremy T Smith
- Dept Physiology, PO Box 13F, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
220
|
Lehman MN, Coolen LM, Goodman RL. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 2010; 151:3479-89. [PMID: 20501670 PMCID: PMC2940527 DOI: 10.1210/en.2010-0022] [Citation(s) in RCA: 549] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recently, a subset of neurons was identified in the arcuate nucleus of the hypothalamus that colocalize three neuropeptides, kisspeptin, neurokinin B, and dynorphin, each of which has been shown to play a critical role in the central control of reproduction. Growing evidence suggests that these neurons, abbreviated as the KNDy subpopulation, are strongly conserved across a range of species from rodents to humans and play a key role in the physiological regulation of GnRH neurons. KNDy cells are a major target for steroid hormones, form a reciprocally interconnected network, and have direct projections to GnRH cell bodies and terminals, features that position them well to convey steroid feedback control to GnRH neurons and potentially serve as a component of the GnRH pulse generator. In addition, recent work suggests that alterations in KNDy cell peptides may underlie neuroendocrine defects seen in clinical reproductive disorders such as polycystic ovarian syndrome. Taken together, this evidence suggests a key role for the KNDy subpopulation as a focal point in the control of reproductive function in health and disease.
Collapse
Affiliation(s)
- Michael N Lehman
- Department of Anatomy and Cell Biology, Medical Sciences Building, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
221
|
Billings HJ, Connors JM, Altman SN, Hileman SM, Holaskova I, Lehman MN, McManus CJ, Nestor CC, Jacobs BH, Goodman RL. Neurokinin B acts via the neurokinin-3 receptor in the retrochiasmatic area to stimulate luteinizing hormone secretion in sheep. Endocrinology 2010; 151:3836-46. [PMID: 20519368 PMCID: PMC2940514 DOI: 10.1210/en.2010-0174] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent data have demonstrated that mutations in the receptor for neurokinin B (NKB), the NK-3 receptor (NK3R), produce hypogonadotropic hypogonadism in humans. These data, together with reports that NKB expression increases after ovariectomy and in postmenopausal women, have led to the hypothesis that this tachykinin is an important stimulator of GnRH secretion. However, the NK3R agonist, senktide, inhibited LH secretion in rats and mice. In this study, we report that senktide stimulates LH secretion in ewes. A dramatic increase in LH concentrations to levels close to those observed during the preovulatory LH surge was observed after injection of 1 nmol senktide into the third ventricle during the follicular, but not in the luteal, phase. Similar increases in LH secretion occurred after insertion of microimplants containing this agonist into the retrochiasmatic area (RCh) in anestrous or follicular phase ewes. A low-dose microinjection (3 pmol) of senktide into the RCh produced a smaller but significant increase in LH concentrations in anestrous ewes. Moreover, NK3R immunoreactivity was clearly evident in the RCh, although it was not found in A15 dopaminergic cell bodies in this region. These data provide evidence that NKB stimulates LH (and presumably GnRH) secretion in ewes and point to the RCh as one important site of action. Based on these data, and the effects of NK3R mutations in humans, we hypothesize that NKB plays an important stimulatory role in the control of GnRH and LH secretion in nonrodent species.
Collapse
Affiliation(s)
- Heather J Billings
- Department of Neurobiology and Anatomy, West Virginia University, Health Sciences Center, Morgantown, West Virginia 26506-9128, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Bliss SP, Navratil AM, Xie J, Roberson MS. GnRH signaling, the gonadotrope and endocrine control of fertility. Front Neuroendocrinol 2010; 31:322-40. [PMID: 20451543 PMCID: PMC2923852 DOI: 10.1016/j.yfrne.2010.04.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 04/26/2010] [Accepted: 04/30/2010] [Indexed: 11/28/2022]
Abstract
Mammalian reproductive cycles are controlled by an intricate interplay between the hypothalamus, pituitary and gonads. Central to the function of this axis is the ability of the pituitary gonadotrope to appropriately respond to stimulation by gonadotropin-releasing hormone (GnRH). This review focuses on the role of cell signaling and in particular, mitogen-activated protein kinase (MAPK) activities regulated by GnRH that are necessary for normal fertility. Recently, new mouse models making use of conditional gene deletion have shed new light on the relationships between GnRH signaling and fertility in both male and female mice. Within the reproductive axis, GnRH signaling is initiated through discrete membrane compartments in which the receptor resides leading to the activation of the extracellular signal-regulated kinases (ERKs 1/2). As defined by gonadotrope-derived cellular models, the ERKs appear to play a central role in the regulation of a cohort of immediate early genes that regulate the expression of late genes that, in part, define the differentiated character of the gonadotrope. Recent data would suggest that in vivo, conditional, pituitary-specific disruption of ERK signaling by GnRH leads to a gender-specific perturbation of fertility. Double ERK knockout in the anterior pituitary leads to female infertility due to LH biosynthesis deficiency and a failure in ovulation. In contrast, male mice are modestly LH deficient; however, this does not have an appreciable impact on fertility.
Collapse
Affiliation(s)
- Stuart P Bliss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
223
|
Tsutsui K, Bentley GE, Kriegsfeld LJ, Osugi T, Seong JY, Vaudry H. Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction. J Neuroendocrinol 2010; 22:716-27. [PMID: 20456604 PMCID: PMC2909878 DOI: 10.1111/j.1365-2826.2010.02018.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gonadotrophin-releasing hormone (GnRH) is the primary hypothalamic factor responsible for the control of gonadotrophin secretion in vertebrates. However, within the last decade, two other hypothalamic neuropeptides have been found to play key roles in the control of reproductive functions: gonadotrophin-inhibitory hormone (GnIH) and kisspeptin. In 2000, we discovered GnIH in the quail hypothalamus. GnIH inhibits gonadotrophin synthesis and release in birds through actions on GnRH neurones and gonadotrophs, mediated via GPR147. Subsequently, GnIH orthologues were identified in other vertebrate species from fish to humans. As in birds, mammalian and fish GnIH orthologues inhibit gonadotrophin release, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal axis across species. Subsequent to the discovery of GnIH, kisspeptin, encoded by the KiSS-1 gene, was discovered in mammals. By contrast to GnIH, kisspeptin has a direct stimulatory effect on GnRH neurones via GPR54. GPR54 is also expressed in pituitary cells, but whether gonadotrophs are targets for kisspeptin remains unresolved. The KiSS-1 gene is also highly conserved and has been identified in mammals, amphibians and fish. We have recently found a second isoform of KiSS-1, designated KiSS-2, in several vertebrates, but not birds, rodents or primates. In this review, we highlight the discovery, mechanisms of action, and functional significance of these two chief regulators of the reproductive axis.
Collapse
Affiliation(s)
- K Tsutsui
- Department of Biology, Waseda University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
224
|
Smith JT, Shahab M, Pereira A, Pau KYF, Clarke IJ. Hypothalamic expression of KISS1 and gonadotropin inhibitory hormone genes during the menstrual cycle of a non-human primate. Biol Reprod 2010; 83:568-77. [PMID: 20574054 DOI: 10.1095/biolreprod.110.085407] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kisspeptin, the product of the KISS1 gene, stimulates gonadotropin-releasing hormone (GnRH) secretion; gonadotropin inhibitory hormone (GnIH), encoded by the RF-amide-related peptide (RFRP) or NPVF gene, inhibits the reproductive axis. In sheep, kisspeptin neurons are found in the lateral preoptic area (POA) and the arcuate nucleus (ARC) and may be important for initiating the preovulatory GnRH/luteinizing hormone (LH) surge. GnIH cells are located in the ovine dorsomedial hypothalamic nucleus (DMN) and paraventricular nucleus (PVN), with similar distribution in the primate. KISS1 cells are found in the primate POA and ARC, but the function that kisspeptin and GnIH play in primates has not been elucidated. We examined KISS1 and NPVF mRNA throughout the menstrual cycle of a female primate, rhesus macaque (Macaca mulatta), using in situ hybridization. KISS1-expressing cells were found in the POA and ARC, and NPVF-expressing cells were located in the PVN/DMN. KISS1 expression in the caudal ARC and POA was higher in the late follicular phase of the cycle (just before the GnRH/LH surge) than in the luteal phase. NPVF expression was also higher in the late follicular phase. We ascertained whether kisspeptin and/or GnIH cells project to GnRH neurons in the primate. Close appositions of kisspeptin and GnIH fibers were found on GnRH neurons, with no change across the menstrual cycle. These data suggest a role for kisspeptin in the stimulation of GnRH cells before the preovulatory GnRH/LH surge in non-human primates. The role of GnIH is less clear, with paradoxical up-regulation of gene expression in the late follicular phase of the menstrual cycle.
Collapse
Affiliation(s)
- Jeremy T Smith
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | |
Collapse
|
225
|
Neurokinin B and dynorphin A in kisspeptin neurons of the arcuate nucleus participate in generation of periodic oscillation of neural activity driving pulsatile gonadotropin-releasing hormone secretion in the goat. J Neurosci 2010; 30:3124-32. [PMID: 20181609 DOI: 10.1523/jneurosci.5848-09.2010] [Citation(s) in RCA: 443] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses. Using double and triple labeling, we confirmed that all three neuropeptides are coexpressed in the same population of neurons. Using electrophysiological techniques to record multiple-unit activity (MUA) in the medial basal hypothalamus, we found that bursts of MUA occurred at regular intervals in ovariectomized animals and that these repetitive bursts (volleys) were invariably associated with discrete pulses of luteinizing hormone (LH) (and by inference GnRH). Moreover, the frequency of MUA volleys was reduced by gonadal steroids, suggesting that the volleys reflect the rhythmic discharge of steroid-sensitive neurons that regulate GnRH secretion. Finally, we observed that central administration of Dyn-inhibit MUA volleys and pulsatile LH secretion, whereas NKB induced MUA volleys. These observations are consistent with the hypothesis that kisspeptin neurons in the ARC drive pulsatile GnRH and LH secretion, and suggest that NKB and Dyn expressed in those neurons are involved in the process of generating the rhythmic discharge of kisspeptin.
Collapse
|
226
|
Backholer K, Smith JT, Rao A, Pereira A, Iqbal J, Ogawa S, Li Q, Clarke IJ. Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology 2010; 151:2233-43. [PMID: 20207832 DOI: 10.1210/en.2009-1190] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin stimulates reproduction, and kisspeptin cells in the arcuate nucleus (ARC) express Ob-Rb in the mouse. Herein we report studies in ewes to determine whether kisspeptin cells express Ob-Rb and respond to leptin and whether reciprocal connections exist between kisspeptin cells and proopiomelanocortin (POMC) or neuropeptide Y (NPY) cells to modulate reproduction and metabolic function. Kiss1 mRNA was measured by in situ hybridization in ovariectomized ewes that were normal body weight, lean, or lean with leptin treatment by intracerebroventricular (icv) infusion (4 microg/h, 3 d). Kiss1 expression in the ARC and the preoptic area was lower in hypogonadotropic lean animals than animals of normal weight, and icv infusion of leptin partially restored Kiss1 expression in lean animals. Single-cell laser capture microdissection coupled with real-time PCR showed that Kiss1 cells in the preoptic area and ARC express Ob-Rb. Double-label fluorescent immunohistochemistry showed that reciprocal connections exist between kisspeptin cells and NPY and POMC cells. Accordingly, we treated ovariectomized ewes with kisspeptin (5 microg/h, icv) or vehicle for 20 h and examined POMC and NPY gene expression by in situ hybridization. Kisspeptin treatment reduced POMC and increased NPY gene expression. Thus, kisspeptin neurons respond to leptin and expression of Kiss1 mRNA is affected by leptin status. Kisspeptin cells communicate with NPY and POMC cells, altering expression of the relevant genes in the target cells; reciprocal connections also exist. This network between the three cell types could coordinate brain control of reproduction and metabolic homeostatic systems.
Collapse
Affiliation(s)
- Kathryn Backholer
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Ansel L, Bolborea M, Bentsen A, Klosen P, Mikkelsen J, Simonneaux V. Differential Regulation of Kiss1 Expression by Melatonin and Gonadal Hormones in Male and Female Syrian Hamsters. J Biol Rhythms 2010; 25:81-91. [DOI: 10.1177/0748730410361918] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In seasonal breeders, reproduction is synchronized to seasons by day length via the pineal hormone melatonin. Recently, we have demonstrated that Kiss1, a key activator of the reproductive function, is down-regulated in sexually inactive hamsters maintained in inhibitory short days (SDs). In rodents, Kiss1 is expressed in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus (ARC). Because both the duration of the nocturnal peak of melatonin and circulating sex steroid levels vary with photoperiod, the aim of this study was to determine whether melatonin and sex steroids differentially regulate Kiss1 expression in the ARC and the AVPV. Kiss1 expression was examined by in situ hybridization in both male and female hamsters kept in various experimental conditions, and we observed that 1) SD exposure markedly reduced Kiss1 expression in the ARC and AVPV of male and female hamsters as compared to LD animals, 2) sex steroid treatment in SD-adapted male and female hamsters increased the number of Kiss1 neurons in the AVPV but decreased it in the ARC, 3) melatonin administration to LD-adapted hamsters decreased Kiss1 mRNA level in both the AVPV and the ARC in intact animals, whereas in castrated hamsters, melatonin rapidly inhibited Kiss1 expression in the ARC but not in the AVPV, and 4) pinealectomy of male or female SD-adapted hamsters increased the number of Kiss1 neurons in the ARC but not in the AVPV. In conclusion, our data demonstrate that Kiss1 expression in the Syrian hamster hypothalamus is down-regulated in SD via different mechanisms. In the ARC, melatonin inhibits Kiss1 via a direct effect on the hypothalamus, and this effect is probably sex steroid dependent, whereas in the AVPV, the decrease in Kiss1 expression appears to be secondary to the melatonin-driven reduction of sex steroid levels. Taken together, our data support the hypothesis that ARC Kiss1 neurons mediate melatonin effects on the gonadotropic axis of the Syrian hamster.
Collapse
Affiliation(s)
- L. Ansel
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
| | - M. Bolborea
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
| | - A.H. Bentsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - P. Klosen
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
| | - J.D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - V. Simonneaux
- Département de Neurobiologie des Rythmes, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France,
| |
Collapse
|
228
|
Analysis on DNA sequence of KiSS-1 gene and its association with litter size in goats. Mol Biol Rep 2010; 37:3921-9. [PMID: 20306231 DOI: 10.1007/s11033-010-0049-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
Three pairs of primers were designed to clone the goat KiSS-1 and scan polymorphisms and four pairs to detect polymorphisms in sexual precocious and sexual late-maturing goat breeds. A 4118 bp DNA fragment was obtained, which contains an ORF of 408 bp and encodes 135 amino acids, having a high homology with other mammals. The protein was predicted containing a signal peptide of 17 amino acids. There are two mutations (G3433A [A86T] and C3688A) in exon 3, three mutations (G296C, G454T and T505A) in intron 1 and a 18 bp deletion (-)/insertion (+) (1960-1977) in intron 2 and no mutations in exon 2. The genotype distribution didn't show obvious difference between sexual precocious and sexual late-maturing goat breeds and no consistency within the sexual late-maturing breeds. For the 296 locus, the Jining Grey goats with genotype CC had 0.80 (P < 0.01) or 0.77 (P < 0.01) kids more than those with genotype GG or GC, respectively. No significant difference (P > 0.05) was found in litter size between GG and GC. For the 1960-1977 locus, the Jining Grey goat does with genotype -/- had 0.77 (P < 0.01) or 0.73 (P < 0.01) kids more than those with +/+ or +/-, respectively. No significant difference (P > 0.05) was found in litter size between +/+ and +/- genotypes. For the other four loci, no significant difference (P > 0.05) was found in litter size between different genotypes in Jining Grey goats. The present study preliminarily indicated an association between allele C of the 296 locus and allele (-) of the 1960-1977 locus in KiSS-1 and high litter size in Jining Grey goats.
Collapse
|
229
|
Krajewski SJ, Burke MC, Anderson MJ, McMullen NT, Rance NE. Forebrain projections of arcuate neurokinin B neurons demonstrated by anterograde tract-tracing and monosodium glutamate lesions in the rat. Neuroscience 2010; 166:680-97. [PMID: 20038444 PMCID: PMC2823949 DOI: 10.1016/j.neuroscience.2009.12.053] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/08/2009] [Accepted: 12/21/2009] [Indexed: 11/19/2022]
Abstract
Neurokinin B (NKB) and kisspeptin receptor signaling are essential components of the reproductive axis. A population of neurons resides within the arcuate nucleus of the rat that expresses NKB, kisspeptin, dynorphin, NK3 receptors and estrogen receptor alpha (ERalpha). Here we investigate the projections of these neurons using NKB-immunocytochemistry as a marker. First, the loss of NKB-immunoreactive (ir) somata and fibers was characterized after ablation of the arcuate nucleus by neonatal injections of monosodium glutamate. Second, biotinylated dextran amine was injected into the arcuate nucleus and anterogradely labeled NKB-ir fibers were identified using dual-labeled immunofluorescence. Four major projection pathways are described: (1) local projections within the arcuate nucleus bilaterally, (2) projections to the median eminence including the lateral palisade zone, (3) projections to a periventricular pathway extending rostrally to multiple hypothalamic nuclei, the septal region and BNST and dorsally to the dorsomedial nucleus and (4) Projections to a ventral hypothalamic tract to the lateral hypothalamus and medial forebrain bundle. The diverse projections provide evidence that NKB/kisspeptin/dynorphin neurons could integrate the reproductive axis with multiple homeostatic, behavioral and neuroendocrine processes. Interestingly, anterograde tract-tracing revealed NKB-ir axons originating from arcuate neurons terminating on other NKB-ir somata within the arcuate nucleus. Combined with previous studies, these experiments reveal a bilateral interconnected network of sex-steroid responsive neurons in the arcuate nucleus of the rat that express NKB, kisspeptin, dynorphin, NK3 receptors and ERalpha and project to GnRH terminals in the median eminence. This circuitry provides a mechanism for bilateral synchronization of arcuate NKB/kisspeptin/dynorphin neurons to modulate the pulsatile secretion of GnRH.
Collapse
Affiliation(s)
- Sally J. Krajewski
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Michelle C. Burke
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Miranda J. Anderson
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Nathaniel T. McMullen
- Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, AZ USA
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ USA
| | - Naomi E. Rance
- Department of Pathology, University of Arizona College of Medicine, Tucson, AZ USA
- Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, AZ USA
- Department of Neurology, University of Arizona College of Medicine, Tucson, AZ USA
- Evelyn F. McKnight Brain Institute, University of Arizona College of Medicine, Tucson, AZ USA
| |
Collapse
|
230
|
Chalivoix S, Bagnolini A, Caraty A, Cognié J, Malpaux B, Dufourny L. Effects of photoperiod on kisspeptin neuronal populations of the ewe diencephalon in connection with reproductive function. J Neuroendocrinol 2010; 22:110-8. [PMID: 20002963 DOI: 10.1111/j.1365-2826.2009.01939.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Kisspeptin (Kiss) is a key regulator of reproductive function in both prepubertal and adult mammals. Its expression appears to vary throughout the year in seasonal species. We aimed to determine the impact of a change of photoperiod on the size of Kiss neuronal populations found in the preoptic area (POA) and arcuate nucleus (ARC) of the ewe brain. Using immunocytochemistry, we first examined the proportion of neurones expressing Kiss, using HuC/D as a neuronal marker, at different time-points after transition from long days (LD; 16 : 8 h light/dark cycle) to short days (SD; 8 : 16 h light/dark cycle). Luteinising hormone (LH) secretion was measured in ovariectomised oestradiol replaced ewes from the month preceding the transition to SD until the sacrifice of the animals at days 0, 45 and 112 from this photoperiodic transition. High LH levels were only observed in animals killed at day 112. The number of Kiss neurones/mm(2) doubled in the caudal ARC at day 112. The percentage of neurones showing Kiss immunoreactivity increased significantly in both the POA and ARC in the day 112 group. In a second experiment, ewes kept in LD received an i.c.v. injection of colchicine 20 h before sacrifice. Colchicine treatment increased the number and the percentage of neurones with Kiss in both the POA and caudal ARC. The data obtained suggest that the increase in Kiss neurones detected in the POA and caudal ARC after transition to SD stemmed from an increase in Kiss synthesis. This up-regulation of Kiss content under the shorter day condition appears to be a late event within the cascade activated by a longer secretion of melatonin, which is a critical factor in switching gonadotrophin-releasing hormone secretion to a breeding season profile.
Collapse
Affiliation(s)
- S Chalivoix
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
231
|
Tena-Sempere M. Kisspeptin signaling in the brain: recent developments and future challenges. Mol Cell Endocrinol 2010; 314:164-9. [PMID: 19464345 DOI: 10.1016/j.mce.2009.05.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 05/13/2009] [Indexed: 11/26/2022]
Abstract
Kisspeptins, a family of peptides encoded by the KISS1 gene which binds GPR54 (or KISS1 receptor), have recently emerged as essential neuropeptide regulators of key aspects of reproductive maturation and function, including puberty onset, neuroendocrine control of ovulation and metabolic regulation of fertility. Yet, while the neuroanatomy of kisspeptin system has begun to be deciphered, and the involvement of kisspeptins in the above phenomena has been experimentally documented in recent years, precise information on the signaling events underlying these functions has remained scarce. Similarly, the nature and mechanisms of action of most of the regulatory signals of KISS1 expression in the brain are largely unknown. In this review, we will comprehensively summarize some of the recent developments in these areas of kisspeptin physiology, with the ultimate aim to delineate unresolved questions and future pathways for the progression of this active field of Neuroendocrinology.
Collapse
Affiliation(s)
- Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
232
|
Dufour S, Sebert ME, Weltzien FA, Rousseau K, Pasqualini C. Neuroendocrine control by dopamine of teleost reproduction. JOURNAL OF FISH BIOLOGY 2010; 76:129-160. [PMID: 20738703 DOI: 10.1111/j.1095-8649.2009.02499.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
While gonadotropin-releasing hormone (GnRH) is considered as the major hypothalamic factor controlling pituitary gonadotrophins in mammals and most other vertebrates, its stimulatory actions may be opposed by the potent inhibitory actions of dopamine (DA) in teleosts. This dual neuroendocrine control of reproduction by GnRH and DA has been demonstrated in various, but not all, adult teleosts, where DA participates in an inhibitory role in the neuroendocrine regulation of the last steps of gametogenesis (final oocyte maturation and ovulation in females and spermiation in males). This has major implications for inducing spawning in aquaculture. In addition, DA may also play an inhibitory role during the early steps of gametogenesis in some teleost species, and thus interact with GnRH in the control of puberty. Various neuroanatomical investigations have shown that DA neurones responsible for the inhibitory control of reproduction originate in a specific nucleus of the preoptic area (NPOav) and project directly to the region of the pituitary where gonadotrophic cells are located. Pharmacological studies showed that the inhibitory effects of DA on pituitary gonadotrophin production are mediated by DA-D2 type receptors. DA-D2 receptors have now been sequenced in several teleosts, and the coexistence of several DA-D2 subtypes has been demonstrated in a few species. Hypophysiotropic DA activity varies with development and reproductive cycle and probably is controlled by environmental cues as well as endogenous signals. Sex steroids have been shown to regulate dopaminergic systems in several teleost species, affecting both DA synthesis and DA-D2 receptor expression. This demonstrates that sex steroid feedbacks target DA hypophysiotropic system, as well as the other components of the brain-pituitary gonadotrophic axis, GnRH and gonadotrophins. Recent studies have revealed that melatonin modulates the activity of DA systems in some teleosts, making the melatonin-DA pathway a prominent relay between environmental cues and control of reproduction. The recruitment of DA neurons for the neuroendocrine control of reproduction provides an additional brain pathway for the integration of various internal and environmental cues. The plasticity of the DA neuroendocrine role observed in teleosts may have contributed to their large diversity of reproductive cycles.
Collapse
Affiliation(s)
- S Dufour
- Muséum National d'Histoire Naturelle, UMR Biologie des Organismes et Ecosystèmes Aquatiques" MNHN-CNRS-IRD-UPMC, 7 rue Cuvier, CP 32, 75231 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
233
|
Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: sex differences and effects of prenatal testosterone in sheep. Endocrinology 2010; 151:301-11. [PMID: 19880810 PMCID: PMC2803147 DOI: 10.1210/en.2009-0541] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent work in sheep has identified a neuronal subpopulation in the arcuate nucleus that coexpresses kisspeptin, neurokinin B, and dynorphin (referred to here as KNDy cells) and that mediate the negative feedback influence of progesterone on GnRH secretion. We hypothesized that sex differences in progesterone negative feedback are due to sexual dimorphism of KNDy cells and compared neuropeptide and progesterone receptor immunoreactivity in this subpopulation between male and female sheep. In addition, because sex differences in progesterone negative feedback and neurokinin B are due to the influence of testosterone (T) during fetal life, we determined whether prenatal T exposure would mimic sex differences in KNDy cells. Adult rams had nearly half the number of kisspeptin, neurokinin B, dynorphin, and progesterone receptor-positive cells in the arcuate nucleus as did females, but the percentage of KNDy cells colocalizing progesterone receptors remained high in both sexes. Prenatal T treatment also reduced the number of dynorphin, neurokinin B, and progesterone receptor-positive cells in the female arcuate nucleus; however, the number of kisspeptin cells remained high and at levels comparable to control females. Thus, sex differences in kisspeptin in the arcuate nucleus, unlike that of dynorphin and neurokinin B, are not due solely to exposure to prenatal T, suggesting the existence of different critical periods for multiple peptides coexpressed within the same neuron. In addition, the imbalance between inhibitory (dynorphin) and stimulatory (kisspeptin) neuropeptides in this subpopulation provides a potential explanation for the decreased ability of progesterone to inhibit GnRH neurons in prenatal T-treated ewes.
Collapse
Affiliation(s)
- Guanliang Cheng
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
234
|
Robinson JE, Grindrod J, Jeurissen S, Taylor JA, Unsworth WP. Prenatal Exposure of the Ovine Fetus to Androgens Reduces the Proportion of Neurons in the Ventromedial and Arcuate Nucleus that Are Activated by Short-Term Exposure to Estrogen1. Biol Reprod 2010; 82:163-70. [DOI: 10.1095/biolreprod.109.079004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
235
|
Hiney JK, Srivastava VK, Les Dees W. Insulin-like growth factor-1 stimulation of hypothalamic KiSS-1 gene expression is mediated by Akt: effect of alcohol. Neuroscience 2009; 166:625-32. [PMID: 20034543 DOI: 10.1016/j.neuroscience.2009.12.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/01/2009] [Accepted: 12/10/2009] [Indexed: 02/06/2023]
Abstract
Kisspeptin, as well as insulin-like growth factor-1 (IGF-1), act centrally to stimulate luteinizing hormone-releasing hormone (LHRH) secretion at puberty. IGF-1 can induce KiSS-1 gene expression as an early pubertal event; however, the signaling pathway mediating this effect is not known. Since alcohol (ALC) blocks IGF-1 induced LHRH release acutely, we assessed whether this drug could affect IGF-1 stimulated prepubertal KiSS-1 gene expression following a binge type of exposure. Immature female rats were administered either ALC (3 g/kg) or water via gastric gavage at 07.30 h. At 09.00 h the ALC and control groups were subdivided where half received either saline or IGF-1 (200 ng) into the third ventricle. A second dose of ALC (1.5, 2 and 3 g/kg) or water was administered at 11.30 h. These regimens produced moderate blood alcohol concentrations of 77, 89 and 117 mg/dl, respectively, over the time course of the experiment. Rats were sacrificed 6 h after the IGF-1 injection and tissues containing the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei were collected. IGF-1 stimulated (P<0.01) KiSS-1 gene expression in the AVPV nucleus at 6 h, but did not affect expression of the kisspeptin receptor, GPR54. While ALC did not alter basal expression of either gene, its dose dependently blocked IGF-1-induced KiSS-1 gene expression in the AVPV nucleus. No changes were observed in the ARC nucleus. Assessment of IGF-1 signaling indicated that the acute administration of IGF-1, ALC, or both did not alter the basal expression of IGF-1 receptor protein. However, IGF-1 stimulated (P<0.05) phosphorylated Akt protein over basal levels, an action blocked by ALC. Our results indicate that the IGF-1 induction of KiSS-1 gene expression is mediated by Akt activation, and that ALC alters this important prepubertal action of IGF-1.
Collapse
Affiliation(s)
- J K Hiney
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A and M University College Station, TX 77843-4458, USA.
| | | | | |
Collapse
|
236
|
Backholer K, Smith J, Clarke IJ. Melanocortins may stimulate reproduction by activating orexin neurons in the dorsomedial hypothalamus and kisspeptin neurons in the preoptic area of the ewe. Endocrinology 2009; 150:5488-97. [PMID: 19819961 DOI: 10.1210/en.2009-0604] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To further test the hypothesis that melanocortins stimulate the reproductive axis, we treated ewes with melanocortin agonist (MTII) in the luteal phase of the estrous cycle and during seasonal anestrus. Lateral ventricular infusion of MTII (10 microg/h) during the luteal phase increased LH secretion. Retrograde neuronal tracing in the brain showed few proopiomelanocortin or kisspeptin cells in the arcuate nucleus, but more than 70% of kisspeptin cells in the dorsolateral preoptic area (POA), projecting to the ventromedial POA in which GnRH cells are located. MTII infusion (20 h) was repeated in luteal phase ewes and brains were harvested to measure gene expression of preproorexin and kisspeptin. Expression of orexin in the dorsomedial hypothalamus and kisspeptin in the POA was up-regulated by MTII treatment and Kiss1 in the arcuate nucleus was down-regulated. Seasonally anestrous ewes were progesterone primed and then treated (lateral ventricular) with MTII (10 microg/h) or vehicle for 30 h, and blood samples were collected every 2 h from 4 h before infusion until 6 h afterward to monitor acute response in terms of LH levels. A rise in basal LH levels was seen, but samples collected around the time of the predicted LH surge did not indicate that an ovulatory event occurred. We conclude that melanocortins are positive regulators of the reproductive neuroendocrine system, but treatment with melanocortins does not fully overcome seasonal acyclicity. The stimulatory effect of melanocortin in the luteal phase of the estrous cycle may be via the activation of kisspeptin cells in the POA and/or orexin cells in the dorsomedial hypothalamus.
Collapse
Affiliation(s)
- Kathryn Backholer
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | |
Collapse
|
237
|
Felip A, Zanuy S, Pineda R, Pinilla L, Carrillo M, Tena-Sempere M, Gómez A. Evidence for two distinct KiSS genes in non-placental vertebrates that encode kisspeptins with different gonadotropin-releasing activities in fish and mammals. Mol Cell Endocrinol 2009; 312:61-71. [PMID: 19084576 DOI: 10.1016/j.mce.2008.11.017] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 11/15/2022]
Abstract
Kisspeptins, the products of KiSS-1 gene, have recently emerged as fundamental regulators of reproductive function in different mammalian and, presumably, non-mammalian species. To date, a single form of KiSS-1 has been described in mammals, and recently, in several fish species and Xenopus. We report herein the cloning and characterization of two distinct KiSS-like genes, namely, KiSS-1 and KiSS-2, in the teleost sea bass. While KiSS-1 encodes a peptide identical to rodent kisspeptin-10, the predicted KiSS-2 decapeptide diverges at 4 amino acids (FNFNPFGLRF). Genome database searches showed that both genes are present in non-placental vertebrate genomes. Indeed, phylogenetic and genome mapping analyses suggest that KiSS-1 and KiSS-2 are paralogous genes that originated by duplication of an ancestral gene, although KiSS-2 is lost in placental mammals. KiSS-1 and KiSS-2 mRNAs are present in brain and gonads of sea bass, medaka and zebrafish. Comparative functional studies demonstrated that KiSS-2 decapeptide was significantly more potent than KiSS-1 peptide in inducing LH and FSH secretion in sea bass. In contrast, KiSS-2 decapeptide only weakly elicited LH secretion in rats, whereas KiSS-1 peptide was maximally effective. Our data are the first to provide conclusive evidence for the existence of a second KiSS gene, KiSS-2, in non-placental vertebrates, whose product is likely to play a dominant stimulatory role in the regulation of the gonadotropic axis at least in teleosts.
Collapse
Affiliation(s)
- Alicia Felip
- Consejo Superior de Investigaciones Científicas, Instituto de Acuicultura de Torre de la Sal, Ribera de Cabanes, 12595 Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
238
|
Pereira A, Rawson J, Jakubowska A, Clarke IJ. Estradiol-17beta-responsive A1 and A2 noradrenergic cells of the brain stem project to the bed nucleus of the stria terminalis in the ewe brain: a possible route for regulation of gonadotropin releasing hormone cells. Neuroscience 2009; 165:758-73. [PMID: 19857554 DOI: 10.1016/j.neuroscience.2009.10.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/16/2022]
Abstract
We have studied brain stem cells in the ewe brain that project to the bed nucleus of the stria terminalis (BNST) and determined if these cells are activated by estradiol-17beta. This would predicate an indirect role in the estradiol-17beta regulation of gonadotropin releasing hormone (GnRH) cells, since these receive input from the BNST. Ovariectomized ewes received 50 mug estradiol-17beta benzoate (i.m.) 1 h prior to brain collection, so that activated cells could be identified by Fos immunohistochemistry. Retrograde tracer (FluoroGold; FG), was injected into the three divisions of the BNST and labeled cells were mapped to the A1 and A2 regions and the parabrachial nucleus (PBN) of the brain stem. With FG injection into the dorsal and lateral BNST, all FG-containing cells in the caudal A1 and 45% of those in A2 stained for dopamine-beta-hydroxylase (DBH), indicating noradrenergic type. No FG-labelled cells in the PBN were DBH-positive. In A1 and A2 respectively, 42% and 46% of FG-labelled cells were Fos-positive, with no double-labeling in cells of the PBN. In ewes receiving FG injections into the ventral BNST, estrogen receptor (ER)alpha-immunoreactive nuclei were found in 82% of A1-FG labeled and 38% of A2-FG labeled cells. No FG-labelled cells of the PBN were ERalpha-positive. Anterograde tracing from A1 with microruby injection identified projections to the PBN, BNST and preoptic area (POA). Thus, A1 and A2 noradrenergic neurons project to the BNST in the ewe brain, express ERalpha and are activated by estradiol-17beta. These noradrenergic, estrogen-responsive cells may provide indirect input to GnRH cells, via the BNST.
Collapse
Affiliation(s)
- A Pereira
- Department of Physiology, Building 13F, Monash University, Clayton, VIC 3800, Australia
| | | | | | | |
Collapse
|
239
|
Tomikawa J, Homma T, Tajima S, Shibata T, Inamoto Y, Takase K, Inoue N, Ohkura S, Uenoyama Y, Maeda KI, Tsukamura H. Molecular characterization and estrogen regulation of hypothalamic KISS1 gene in the pig. Biol Reprod 2009; 82:313-9. [PMID: 19828777 DOI: 10.1095/biolreprod.109.079863] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Kisspeptin-GPR54 signaling plays an essential role in normal reproduction in mammals via stimulation of gonadotropin secretion. Here, we cloned the porcine KISS1 cDNA from the hypothalamic tissue and investigated the effect of estrogen on the distribution and numbers of KISS1 mRNA-expressing cells in the porcine hypothalamus. The full length of the cDNA was 857 bp encoding the kisspeptin of 54 amino acids, with the C-terminal active motif designated kisspeptin-10 being identical to that of mouse, rat, cattle, and sheep. In situ hybridization analysis revealed that KISS1-positive cell populations were mainly distributed in the hypothalamic periventricular nucleus (PeN) and arcuate nucleus (ARC). KISS1 expression in the PeN of ovariectomized (OVX) pigs was significantly upregulated by estradiol benzoate (EB) treatment. On the other hand, KISS1-expressing cells were abundantly distributed throughout the ARC in both OVX and OVX with EB animals. The number of KISS1-expressing neurons was significantly lowered by EB treatment only in the most caudal part of the ARC, but other ARC populations were not affected. The present study thus suggests that the PeN kisspeptin neurons could be responsible for the estrogen positive feedback regulation to induce gonadotropin-releasing hormone/luteinizing hormone (GnRH/LH) surge in the pig. In addition, the caudal ARC kisspeptin neurons could be involved in the estrogen negative feedback regulation of GnRH/LH release. This is the first report of identification of porcine KISS1 gene and of estrogen regulation of KISS1 expression in the porcine brain, which may be helpful for better understanding of the role of kisspeptin in reproduction of the pig.
Collapse
Affiliation(s)
- Junko Tomikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function.
Collapse
Affiliation(s)
- Amy E Oakley
- Department of Physiology and Biophysics, University of Washington, Box 356460, 1705 NE Pacific Street, Health Sciences Building Room BB604, Seattle, Washington 98195-6460, USA.
| | | | | |
Collapse
|
241
|
Shahed A, Young KA. Differential ovarian expression of KiSS-1 and GPR-54 during the estrous cycle and photoperiod induced recrudescence in Siberian hamsters (Phodopus sungorus). Mol Reprod Dev 2009; 76:444-52. [PMID: 18937338 DOI: 10.1002/mrd.20972] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Kisspeptins, coded by the KiSS-1 gene, regulate aspects of the reproductive axis by stimulating GnRH release via the G protein coupled receptor, GPR54. Recent reports show that KiSS/GPR54 may be key mediators in photoperiod-controlled reproduction in seasonal breeders, and that KiSS-1/GPR54 are expressed in the hypothalamus, ovaries, placenta, and pancreas. This study examined the expression of KiSS-1/GPR54 mRNA and protein in ovaries of Siberian hamsters (Phodopus sungorus). Ovaries from cycling hamsters were collected during proestrus (P), estrus (E), diestrus I (DI), and diestrus II (DII). To examine KiSS-1/GPR54 during stimulated recrudescence, additional hamsters were maintained either in long day (LD 16L:8D, control) or short day (SD 8L:16D) for 14 weeks and then transferred to LD for 0-8 weeks. Staining of KiSS-1/GPR54 protein was detected by immunohistochemistry in steroidogenic cells of pre-antral and antral follicles, and corpora lutea. Immunostaining peaked in P and E, but decreased in the diestrus stages (P < 0.05). In recrudescing ovaries, KiSS-1/GPR54 immunostaining was low after 14 weeks of SD exposure (post-transfer [PT] week 0), and increased during the early weeks of recrudescence. Expression of KiSS-1/GPR54 mRNA was low with short day exposure, but increased during recrudescence and was higher at PT week 8 as compared to PT weeks 0 and 2 (P < 0.05). The elevated KiSS-1/GPR54 expression during P and E suggests a potential role in ovulation in Siberian hamsters. Transient increases in KiSS-1/GPR54 expression following LD stimulation are also suggestive of possible involvement in ovulation and/or restoration of ovarian function.
Collapse
Affiliation(s)
- Asha Shahed
- Department of Biological Sciences, California State University Long Beach, Long Beach, California 90840-3702, USA
| | | |
Collapse
|
242
|
Clarkson J, d'Anglemont de Tassigny X, Colledge WH, Caraty A, Herbison AE. Distribution of kisspeptin neurones in the adult female mouse brain. J Neuroendocrinol 2009; 21:673-82. [PMID: 19515163 DOI: 10.1111/j.1365-2826.2009.01892.x] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kisspeptin-GPR54 signalling is essential for normal reproductive functioning. However, the distribution of kisspeptin neuronal cell bodies and their projections is not well established. The present study aimed to provide a detailed account of kisspeptin neuroanatomy in the mouse brain. Using a polyclonal rabbit antibody AC566, directed towards the final ten C-terminal amino acids of murine kisspeptin, three populations of kisspeptin-expressing cell bodies were identified in the adult female mouse brain. One exists as a dense periventricular continuum of cells within the rostral part of the third ventricle, another is found within the arcuate nucleus, and another is identified as a low-density group of scattered cells within the dorsomedial nucleus and posterior hypothalamus. Kisspeptin-immunoreactive fibres were abundant within the ventral aspect of the lateral septum and within the hypothalamus running in periventricular and ventral retrochiasmatic pathways. Notable exclusions from the kisspeptin fibre innervation were the suprachiasmatic and ventromedial nuclei. Outside of the hypothalamus, a small number of kisspeptin fibres were identified in the bed nucleus of the stria terminalis, subfornical organ, medial amygdala, paraventricular thalamus, periaqueductal grey and locus coerulus. All kisspeptin cell body and fibre immunoreactivity was absent in brain tissue from Kiss1 knockout mice. These observations provide a map of kisspeptin neurones in the mouse brain and indicate that a limited number of mostly medial hypothalamic and lateral septal brain regions are innervated by the three hypothalamic kisspeptin cell populations; the functions of these projections remain to be established.
Collapse
Affiliation(s)
- J Clarkson
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
243
|
Srivastava VK, Hiney JK, Dees WL. Short-term alcohol administration alters KiSS-1 gene expression in the reproductive hypothalamus of prepubertal female rats. Alcohol Clin Exp Res 2009; 33:1605-14. [PMID: 19519717 DOI: 10.1111/j.1530-0277.2009.00992.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Kisspeptins bind to the G-protein-coupled receptor (GPR54) to activate hypothalamic luteinizing hormone releasing hormone (LHRH) secretion at the time of puberty. Alcohol (ALC) causes depressed prepubertal LHRH release, resulting in depressed luteinizing hormone (LH) secretion and delayed puberty. Because KiSS-1 and GPR54 are important to the onset of puberty, we assessed the effects of chronic ALC administration on basal expression of these puberty-related genes within the reproductive hypothalamus, as well as hormones and transduction signaling pathways contributing to their activity. METHODS Immature female rats were fed a liquid diet containing ALC for 6 days beginning when 27 days old. Controls received either companion isocaloric liquid diet or rat chow and water. Animals were decapitated on day 33, in the late juvenile stage of development. Blood was collected for the assessment of serum hormone levels. Brain tissues containing the anteroventral periventricular (AVPV) and arcuate (ARC) nuclei were obtained for assessing expression of specific puberty-related genes and proteins. RESULTS KiSS-1 mRNA levels in the AVPV and ARC nuclei were suppressed (p < 0.001) in the ALC-treated rats. GPR54 gene and protein expressions were both modestly increased (p < 0.05) in AVPV nucleus, but not in ARC nucleus. Alcohol exposure also resulted in suppressed serum levels of insulin-like growth factor-1 (IGF-1), LH, and estradiol (E(2)). As IGF-1, in the presence of E(2), can induce expression of the KiSS-1 gene, we assessed the potential for ALC to alter IGF-1 signaling in the reproductive hypothalamus. IGF-1 receptor gene and protein expressions were not altered. However, protein expression of phosphorylated Akt, a transduction signal used by IGF-1, was suppressed in the AVPV (p < 0.05) and ARC (p < 0.01) nuclei. CONCLUSIONS Alcohol causes suppressed KiSS-1 gene expression in the reproductive hypothalamus; hence, contributing to this drug's ability to cause suppressed LHRH secretion and disruption of the pubertal process. We suggest that this action, at least in part, is through altered IGF-1 signaling.
Collapse
Affiliation(s)
- Vinod K Srivastava
- Department of Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | |
Collapse
|
244
|
Magee C, Foradori CD, Bruemmer JE, Arreguin-Arevalo JA, McCue PM, Handa RJ, Squires EL, Clay CM. Biological and anatomical evidence for kisspeptin regulation of the hypothalamic-pituitary-gonadal axis of estrous horse mares. Endocrinology 2009; 150:2813-21. [PMID: 19228887 DOI: 10.1210/en.2008-1698] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The purpose of the present study was to evaluate the effects of kisspeptin (KiSS) on LH and FSH secretion in the seasonally estrous mare and to examine the distribution and connectivity of GnRH and KiSS neurons in the equine preoptic area (POA) and hypothalamus. The diestrous mare has a threshold serum gonadotropin response to iv rodent KiSS decapeptide (rKP-10) administration between 1.0 and 500 microg. Administration of 500 microg and 1.0 mg rKP-10 elicited peak, mean, and area under the curve LH and FSH responses indistinguishable to that of 25 microg GnRH iv, although a single iv injection of 1.0 mg rKP-10 was insufficient to induce ovulation in the estrous mare. GnRH and KiSS-immunoreactive (ir) cells were identified in the POA and hypothalamus of the diestrous mare. In addition, KiSS-ir fibers were identified in close association with 33.7% of GnRH-ir soma, suggesting a direct action of KiSS on GnRH neurons in the mare. In conclusion, we are the first to reveal a physiological role for KiSS in the diestrous mare with direct anatomic evidence by demonstrating a threshold-like gonadotropin response to KiSS administration and characterizing KiSS and GnRH-ir in the POA and hypothalamus of the diestrous horse mare.
Collapse
Affiliation(s)
- Christianne Magee
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Tillet Y, Picard S, Franceschini I. Les neuropeptides hypothalamiques dans le contrôle des neurones à GnRH. Étude neuroanatomique chez la brebis. ACTA ACUST UNITED AC 2009; 203:19-28. [DOI: 10.1051/jbio:2009003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
246
|
Colledge WH. Kisspeptins and GnRH neuronal signalling. Trends Endocrinol Metab 2009; 20:115-21. [PMID: 19097915 DOI: 10.1016/j.tem.2008.10.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 11/28/2022]
Abstract
Kisspeptin binding to its G-protein-coupled receptor KISS1R (also known as GPR54), which is expressed by gonadotropin-releasing hormone (GnRH) neurons, stimulates GnRH release and activation of the mammalian reproductive axis. Kisspeptin neurons make close contact with GnRH neurons acting at both the cell body and the nerve terminals. Kisspeptin can act directly on GnRH neurons and/or indirectly via synaptic input from other neurons to inhibit inwardly rectifying potassium channels and activate non-specific cation channels, with the effect of long-lasting depolarization and increased action potential firing rate. This review covers the recent advances in the molecular consequences of kisspeptin action on GnRH neurons and how these neuronal circuits are integrated in different species. These studies provide insight into the mechanism by which kisspeptin regulates the reproductive axis.
Collapse
Affiliation(s)
- William H Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| |
Collapse
|
247
|
Benoit AM, Molina JR, Lkhagvadorj S, Anderson LL. Prolactin secretion after hypothalamic deafferentation in beef calves: Response to haloperidol, α-methyl-ρ-tyrosine, thyrotropin-releasing hormone and ovariectomy. Anim Reprod Sci 2009; 111:54-68. [DOI: 10.1016/j.anireprosci.2008.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/08/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
|
248
|
Abstract
Ovulation is central to mammalian fertility, yet the precise mechanism through which oestrogen triggers the gonadotrophin-releasing hormone (GnRH) surge that generates the pre-ovulatory luteinising hormone (LH) surge has remained elusive. The recent discovery that kisspeptin-GPR54 signalling is an essential regulator of the neuroendocrine axis at puberty has led investigators to evaluate the role of kisspeptin in the pre-ovulatory GnRH surge mechanism. Kisspeptin neurones are known to express oestrogen and progesterone receptors and have their cell bodies located in brain regions implicated in the positive-feedback mechanism in several mammalian species. In rodents, kisspeptin neurones located in the rostral periventricular area of the third ventricle (RP3V) are positively regulated by oestrogen and most likely are activated by oestrogen at the time of positive feedback. A similar scenario appears to exist for a sub-population of kisspeptin neurones located in the mediobasal hypothalamus of sheep and primates. The majority of GnRH neurones express GPR54, and kisspeptin causes an intense electrical activation of these cells. In concordance with this, kisspeptin administration in vivo results in an abrupt and prolonged release of LH in all mammalian species examined to date. Functional evidence from immunoneutralisation and knockout studies suggests that RP3V kisspeptin neurones projecting to GnRH neurones are an essential component of the surge mechanism in rodents. Taken together, the studies undertaken to date provide substantial evidence in support of a key role of kisspeptin-GPR54 signalling in the generation of the oestrogen-induced pre-ovulatory surge mechanism in mammals.
Collapse
Affiliation(s)
- J Clarkson
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
249
|
Abstract
In mammals and humans, reproductive capacity is attained at puberty as the end-point of a complex series of developmental and neuroendocrine events that lead to true sexual maturity. As for humans, sexual precocity looks like a pathologic status. While for some animals, sexual precocity may be a valuable quantitative character. For some species, the character of sexual precocity was developed in the evolutionary process and stably transmitted to future generations. Sexual precocity is a complex character determined by polygenes. This review introduced the association between KiSS-1, GPR54, LHR, FSHR, CYP, ER, TGFa, IGF-, GNAS1, HSD3B2, SHBG, VDR genes and sexual precocity in mammals.
Collapse
|
250
|
Roa J, Castellano JM, Navarro VM, Handelsman DJ, Pinilla L, Tena-Sempere M. Kisspeptins and the control of gonadotropin secretion in male and female rodents. Peptides 2009; 30:57-66. [PMID: 18793689 DOI: 10.1016/j.peptides.2008.08.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Kisspeptins, the products of KiSS-1 gene acting via G protein-coupled receptor 54 (GPR54), have recently emerged as fundamental gatekeepers of gonadal function by virtue of their ability to stimulate gonadotropin secretion. Indeed, since the original disclosure of the reproductive facet of the KiSS-1/GPR54 system, an ever-growing number of studies have substantiated the extraordinary potency of kisspeptins to elicit gonadotropin secretion in different mammalian species, under different physiologic and experimental conditions, and through different routes of administration. In this context, studies conducted in laboratory rodents have been enormously instrumental to characterize: (i) the primary mechanisms of action of kisspeptins in the control of gonadotropin secretion; (ii) the pharmacological consequences of acute vs. continuous activation of GPR54; (iii) the roles of specific populations of kisspeptin-producing neurons at the hypothalamus in mediating the feedback effects of sex steroids; (v) the function of kisspeptins in the generation of the pre-ovulatory surge of gonadotropins; and (iv) the influence of sex steroids on GnRH/gonadotropin responsiveness to kisspeptins. While some of those aspects of kisspeptin function will be covered elsewhere in this Special Issue, we summarize herein the most salient data, obtained in laboratory rodents, that have helped to define the physiologic roles and putative pharmacological implications of kisspeptins in the control of male and female gonadotropic axis.
Collapse
Affiliation(s)
- J Roa
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
| | | | | | | | | | | |
Collapse
|