201
|
Burtscher J, Ticinesi A, Millet GP, Burtscher M, Strasser B. Exercise-microbiota interactions in aging-related sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:775-780. [PMID: 35142446 PMCID: PMC8978000 DOI: 10.1002/jcsm.12942] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub (MRH), University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Parma University-Hospital, Parma, Italy
| | - Gregoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Barbara Strasser
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
- JPI-HDHL Knowledge Platform on Food, Diet, Intestinal Microbiomics and Human Health, The Netherlands Organisation for Health Research and Development, Amsterdam, The Netherlands
| |
Collapse
|
202
|
Silva JSC, Seguro CS, Naves MMV. Gut microbiota and physical exercise in obesity and diabetes - A systematic review. Nutr Metab Cardiovasc Dis 2022; 32:863-877. [PMID: 35227549 DOI: 10.1016/j.numecd.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIM The gut microbiota (GM) plays an essential role in maintaining health, and imbalance in its composition is associated with the physiopathogenesis of metabolic diseases, such as obesity and type 2 diabetes mellitus (T2DM). Diet and antibiotics are known modulators of GM, but the influence of physical exercise in modulating the diversity and abundance of hindgut bacteria is still poorly understood. The aim of this systematic review was to investigate the scientific evidence about the effect of physical exercise on GM modulation in subjects with obesity and T2DM. METHODS AND RESULTS A search in PubMed, Web of Science, Scopus, Cochrane and Embase databases using keywords related to gut microbiota, physical exercise and metabolic diseases was performed. Eight clinical studies met the inclusion criteria, six in subjects with obesity and two in individuals with T2DM. In three studies carried out in individuals with obesity, exercise was able to positively modulate the diversity of GM and the abundance of some species of bacteria, mostly by increasing the Bifidobacteriaceae family, and the Bacteroides and Akkermansia genera, and by decreasing the Proteobacteria phylum. The studies in subjects with T2DM found that physical exercise may reduce metabolic endotoxemia markers. CONCLUSIONS Physical exercise may be a beneficial modulation strategy of GM composition in metabolic diseases, specifically aerobic exercises carried out for at least 6 weeks with moderate or high intensity. Nevertheless, well-designed clinical trials are needed to clarify the role of physical exercise on GM in subjects with obesity and T2DM.
Collapse
Affiliation(s)
- John S C Silva
- Scholl of Nutrition, Federal University of Goiás, Goiânia, GO, Brazil
| | - Camila S Seguro
- Scholl of Nutrition, Federal University of Goiás, Goiânia, GO, Brazil
| | | |
Collapse
|
203
|
Fermented brown rice beverage distinctively modulates the gut microbiota in Okinawans with Metabolic Syndrome: a randomized controlled trial. Nutr Res 2022; 103:68-81. [DOI: 10.1016/j.nutres.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022]
|
204
|
Rodriguez J, Neyrinck AM, Van Kerckhoven M, Gianfrancesco MA, Renguet E, Bertrand L, Cani PD, Lanthier N, Cnop M, Paquot N, Thissen JP, Bindels LB, Delzenne NM. Physical activity enhances the improvement of body mass index and metabolism by inulin: a multicenter randomized placebo-controlled trial performed in obese individuals. BMC Med 2022; 20:110. [PMID: 35351144 PMCID: PMC8966292 DOI: 10.1186/s12916-022-02299-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Dietary interventions targeting the gut microbiota have been proposed as innovative strategies to improve obesity-associated metabolic disorders. Increasing physical activity (PA) is considered as a key behavioral change for improving health. We have tested the hypothesis that changing the PA status during a nutritional intervention based on prebiotic supplementation can alter or even change the metabolic response to the prebiotic. We confirm in obese subjects and in high-fat diet fed mice that performing PA in parallel to a prebiotic supplementation is necessary to observe metabolic improvements upon inulin. METHODS A randomized, single-blinded, multicentric, placebo-controlled trial was conducted in obese participants who received 16 g/day native inulin versus maltodextrin, coupled to dietary advice to consume inulin-rich versus -poor vegetables for 3 months, respectively, in addition to dietary caloric restriction. Primary outcomes concern the changes on the gut microbiota composition, and secondary outcomes are related to the measures of anthropometric and metabolic parameters, as well as the evaluation of PA. Among the 106 patients who completed the study, 61 patients filled a questionnaire for PA before and after intervention (placebo: n = 31, prebiotic: n = 30). Except the dietitian (who provided dietary advices and recipes book), all participants and research staff were blinded to the treatments and no advices related to PA were given to participants in order to change their habits. In parallel, a preclinical study was designed combining both inulin supplementation and voluntary exercise in a model of diet-induced obesity in mice. RESULTS Obese subjects who increased PA during a 3 months intervention with inulin-enriched diet exhibited several clinical improvements such as reduced BMI (- 1.6 kg/m2), decreased liver enzymes and plasma cholesterol, and improved glucose tolerance. Interestingly, the regulations of Bifidobacterium, Dialister, and Catenibacterium genera by inulin were only significant when participants exercised more. In obese mice, we highlighted a greater gut fermentation of inulin and improved glucose homeostasis when PA is combined with prebiotics. CONCLUSION We conclude that PA level is an important determinant of the success of a dietary intervention targeting the gut microbiota. TRIAL REGISTRATION ClinicalTrials.gov, NCT03852069 (February 22, 2019 retrospectively registered).
Collapse
Affiliation(s)
- Julie Rodriguez
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Van Kerckhoven
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marco A Gianfrancesco
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Edith Renguet
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.,WELBIO- Walloon Excellence in Life Sciences and BIOtechnology, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nicolas Lanthier
- Laboratory of Hepatogastroenterology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, and Division of Endocrinology, Erasmus Hospital, Brussels, Belgium
| | - Nicolas Paquot
- Laboratory of Diabetology, Nutrition and Metabolic Disease, Université de Liège, Liège, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetes and Nutrition, Institut de Recherche Expérimentale et Clinique, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
205
|
Zhang P, Kong L, Huang H, Pan Y, Zhang D, Jiang J, Shen Y, Xi C, Lai J, Ng CH, Hu S. Gut Microbiota – A Potential Contributor in the Pathogenesis of Bipolar Disorder. Front Neurosci 2022; 16:830748. [PMID: 35401095 PMCID: PMC8984199 DOI: 10.3389/fnins.2022.830748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/24/2022] Open
Abstract
Bipolar disorder (BD) is one of the major psychiatric disorders that is characterized by recurrent episodes of depression and mania (or hypomania), leading to seriously adverse outcomes with unclear pathogenesis. There is an underlying relationship between bacterial communities residing in the gut and brain function, which together form the gut-brain axis (GBA). Recent studies have shown that changes in the gut microbiota have been observed in a large number of BD patients, so the axis may play a role in the pathogenesis of BD. This review summarizes briefly the relationship between the GBA and brain function, the composition and changes of gut microbiota in patients with BD, and further explores the potential role of GBA-related pathway in the pathogenesis of BD as well as the limitations in this field at present in order to provide new ideas for the future etiology research and drug development.
Collapse
Affiliation(s)
- Peifen Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Lingzhuo Kong
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Huang
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Yanmeng Pan
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Shen
- Department of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
| | - Chee H. Ng
- Department of Psychiatry, The Melbourne Clinic and St Vincent’s Hospital, University of Melbourne, Richmond, VIC, Australia
- *Correspondence: Chee H. Ng,
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Shaohua Hu,
| |
Collapse
|
206
|
The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. BIOLOGY 2022; 11:biology11030479. [PMID: 35336852 PMCID: PMC8945171 DOI: 10.3390/biology11030479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary To date, the influence that physical activity (PA)/physical exercise (PE) can exert on the human gut microbiota (GM) is still poorly understood. Several issues arise in structuring research in this area, starting from the association between PA/PE and diet. Indeed, the diet of an individual is a key factor for the composition of the GM and those who regularly practice PA/PE, generally, have dietary patterns favorable to the creation of an ideal environment for the proliferation of a GM capable of contributing to the host’s health. It is therefore difficult to establish with certainty whether the effects generated on the GM are due to a PA protocol, the type of diet followed, or to both. In addition, most of the available studies use animal models to investigate a possible correlation between PA/PE and changes in the GM, which may be not necessarily applied to humans. Evidence suggests that aerobic PA/PE seems capable of producing significant changes in GM; training parameters, likewise, can differentially influence the GM in young or elderly people and these changes appear to be transient and reversible. Abstract Several studies have been conducted to find at least an association between physical activity (PA)/ physical exercise (PE) and the possibility to modulate the gut microbiome (GM). However, the specific effects produced on the human GM by different types of PA/PE, different training modalities, and their age-related effects are not yet fully understood. Therefore, this systematic review aims to evaluate and summarize the current scientific evidence investigating the bi-directional relationship between PA/PE and the human GM, with a specific focus on the different types/variables of PA/PE and age-related effects, in healthy and unhealthy people. A systematic search was conducted across four databases (Web of Science, Medline (PubMed), Google Scholar, and Cochrane Library). Information was extracted using the populations, exposure, intervention, comparison, outcomes (PICOS) format. The Oxford Quality Scoring System Scale, the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) tool, and the JBI Critical Appraisal Checklist for Analytical Cross-Sectional Studies were used as a qualitative measure of the review. The protocol was registered in PROSPERO (code: CRD42022302725). The following data items were extracted: author, year of publication, study design, number and age of participants, type of PA/PE carried out, protocol/workload and diet assessment, duration of intervention, measurement tools used, and main outcomes. Two team authors reviewed 694 abstracts for inclusion and at the end of the screening process, only 76 full texts were analyzed. Lastly, only 25 research articles met the eligibility criteria. The synthesis of these findings suggests that GM diversity is associated with aerobic exercise contrary to resistance training; abundance of Prevotella genus seems to be correlated with training duration; no significant change in GM richness and diversity are detected when exercising according to the minimum dose recommended by the World Health Organizations; intense and prolonged PE can induce a higher abundance of pro-inflammatory bacteria; PA does not lead to significant GM α/β-diversity in elderly people (60+ years). The heterogeneity of the training parameters used in the studies, diet control, and different sequencing methods are the main confounders. Thus, this systematic review can provide an in-depth overview of the relationship between PA/PE and the human intestinal microbiota and, at the same time, provide indications from the athletic and health perspective.
Collapse
|
207
|
Williams CJ, Torquati L, Li Z, Lea RA, Croci I, Keating E, Little JP, Eynon N, Coombes JS. Oligofructose-Enriched Inulin Intake, Gut Microbiome Characteristics, and the V̇O2 Peak Response to High-Intensity Interval Training in Healthy Inactive Adults. J Nutr 2022; 152:680-689. [PMID: 34910161 DOI: 10.1093/jn/nxab426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/19/2021] [Accepted: 12/09/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The gut microbiome has been associated with cardiorespiratory fitness. OBJECTIVES To assess the effects of oligofructose (FOS)-enriched inulin supplementation on the gut microbiome and the peak oxygen uptake (V̇O2peak) response to high-intensity interval training (HIIT). METHODS The study was a randomized controlled trial. Forty sedentary and apparently healthy adults [n = 31 women; aged 31.8 ± 9.8 y, BMI (in kg⋅m-2) 25.9 ± 4.3] were randomly allocated to 1) 6 wk of supervised HIIT (4 × 4-min bouts at 85-95% peak heart rate, interspersed with 3 min of active recovery, 3·wk-1) + 12 g·d-1 of FOS-enriched inulin (HIIT-I) or 2) 6 wk of supervised HIIT (3·wk-1, 4 × 4-min bouts) + 12 g·d-1 of maltodextrin/placebo (HIIT-P). Each participant completed an incremental treadmill test to assess V̇O2peak and ventilatory thresholds (VTs), provided a stool and blood sample, and completed a 24-h diet recall questionnaire and FFQ before and after the intervention. Gut microbiome analyses were performed using metagenomic sequencing. Fecal short-chain fatty acids were measured by mass spectrometry. RESULTS There were no differences in the mean change in V̇O2peak response between groups (P = 0.58). HIIT-I had a greater improvement in VTs than HIIT-P [VT1 (lactate accumulation): mean difference + 4.3% and VT2 (lactate threshold): +4.2%, P < 0.05]. HIIT-I had a greater increase in the abundance of Bifidobacterium taxa [false discovery rate (FDR) < 0.05] and several metabolic processes related to exercise capacity (FDR < 0.05). Exploratory analysis of merged data found participants with a greater response to HIIT (V̇O2peak ≥3.5 mL⋅kg-1⋅min-1) had a 2.2-fold greater mean abundance of gellan degradation pathways (FDR < 0.05) and a greater, but not significant, abundance of Bifidobacterium uniformis species (P < 0.00023, FDR = 0.08). CONCLUSIONS FOS-enriched inulin supplementation did not potentiate HIIT-induced improvements in V̇O2peak but led to gut microbiome changes possibly associated with greater ventilatory threshold improvements in healthy inactive adults. Gellan degradation pathways and B. uniformis spp. were associated with greater V̇O2peak responses to HIIT.
Collapse
Affiliation(s)
- Camilla J Williams
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Luciana Torquati
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Zhixiu Li
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Brisbane, QLD, Australia
| | - Rodney A Lea
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences, Brisbane, QLD, Australia
| | - Ilaria Croci
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Sport, Movement and Health, University of Basel, Basel, Switzerland
| | - Eliza Keating
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Jeff S Coombes
- Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
208
|
Suryani D, Subhan Alfaqih M, Gunadi JW, Sylviana N, Goenawan H, Megantara I, Lesmana R. Type, Intensity, and Duration of Exercise as Regulator of Gut Microbiome Profile. Curr Sports Med Rep 2022; 21:84-91. [PMID: 35245243 DOI: 10.1249/jsr.0000000000000940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT Gut microbiome profile is related to individual health. In metabolic syndrome, there is a change in the gut microbiome profile, indicated by an increase in the ratio of Firmicutes to Bacteroidetes. Many studies have been conducted to determine the effect of exercise on modifying the gut microbiome profile. The effectiveness of exercise is influenced by its type, intensity, and duration. Aerobic training decreases splanchnic blood flow and shortens intestinal transit time. High-intensity exercise improves mitochondrial function and increases the essential bacteria in lactate metabolism and urease production. Meanwhile, exercise duration affects the hypothalamic-pituitary-adrenal axis. All of these mechanisms are related to each other in producing the effect of exercise on the gut microbiome profile.
Collapse
Affiliation(s)
| | | | - Julia Windi Gunadi
- Department of Physiology, Faculty of Medicine, Universitas Kristen Maranatha, Bandung, INDONESIA
| | | | | | | | | |
Collapse
|
209
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
210
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
211
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
212
|
Batista KS, Cintra VM, Lucena PAF, Manhães-de-Castro R, Toscano AE, Costa LP, Queiroz MEBS, de Andrade SM, Guzman-Quevedo O, Aquino JDS. The role of vitamin B12 in viral infections: a comprehensive review of its relationship with the muscle-gut-brain axis and implications for SARS-CoV-2 infection. Nutr Rev 2022; 80:561-578. [PMID: 34791425 PMCID: PMC8689946 DOI: 10.1093/nutrit/nuab092] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This comprehensive review establishes the role of vitamin B12 as adjunct therapy for viral infections in the treatment and persistent symptoms of COVID-19, focusing on symptoms related to the muscle-gut-brain axis. Vitamin B12 can help balance immune responses to better fight viral infections. Furthermore, data from randomized clinical trials and meta-analysis indicate that vitamin B12 in the forms of methylcobalamin and cyanocobalamin may increase serum vitamin B12 levels, and resulted in decreased serum methylmalonic acid and homocysteine concentrations, and decreased pain intensity, memory loss, and impaired concentration. Among studies, there is much variation in vitamin B12 doses, chemical forms, supplementation time, and administration routes. Larger randomized clinical trials of vitamin B12 supplementation and analysis of markers such as total vitamin B12, holotranscobalamin, total homocysteine and methylmalonic acid, total folic acid, and, if possible, polymorphisms and methylation of genes need to be conducted with people with and without COVID-19 or who have had COVID-19 to facilitate the proper vitamin B12 form to be administered in individual treatment.
Collapse
Affiliation(s)
- Kamila S Batista
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Vanessa M Cintra
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Paulo A F Lucena
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Raul Manhães-de-Castro
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Ana E Toscano
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Larissa P Costa
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Maria E B S Queiroz
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Suellen M de Andrade
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Omar Guzman-Quevedo
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| | - Jailane de S Aquino
- K.S. Batista and J.d.S. Aquino are with the Experimental Nutrition Laboratory, Department of Nutrition and Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, Paraíba, Brazil. V.M. Cintra and P.A.F Lucena are with the Department of Medicine, Faculty of Medical Sciences of Paraíba, and the Department of Nutrition, Integrated Colleges of Patos, Paraíba, Brazil. V.M. Cintra is with the the Multiprofessional Residence in Child Health of Secretariat of Health of the State of Paraíba, Brazil. P.A.F Lucena is with Coordination of Neurology Services, Hospital Metropolitano Dom José Maria Pires, Santa Rita, Paraíba and Emergency, Trauma Hospital Senador Humberto Lucena, João Pessoa, Paraíba, Brazil. R. Manhães-de-Castro is with the Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil. R. Manhães-de-Castro and A.E. Toscano are with the Post Graduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil. A.E. Toscano is with the Department of Nursing, CAV, Federal University of Pernambuco, Pernambuco, Brazil. A.E. Toscano and O. Guzman-Quevedo are with the Post Graduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Pernambuco, Brazil. L.P. Costa, M.E.B.S. Queirozj, and S.M. de Andrade are with the Ageing and Neuroscience Laboratory, Health Sciences Center, Federal University of Paraíba, Paraíba, Brazil. O. Guzman-Quevedo is with the Higher Technological Institute of Tacámbaro, Tacámbaro, Michoacán, Mexico. O. Guzman-Quevedo is with the Center for Biomedical Research of Michoacán, Mexican Institute of Social Security, Morelia, Michoacán, Mexico
| |
Collapse
|
213
|
Increased physical activity improves gut microbiota composition and reduces short-chain fatty acid concentrations in older adults with insomnia. Sci Rep 2022; 12:2265. [PMID: 35145140 PMCID: PMC8831598 DOI: 10.1038/s41598-022-05099-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Physical activity (PA) can improve functional abilities, well-being, and independence in older adults with insomnia. Studies have shown that PA may be linked to changes in the gut microbiota composition and its metabolites' concentrations. This association among older adults with insomnia, however, is yet to be determined. We explored the relationships between physical activity (PA) levels, gut microbiota composition, and short-chain fatty acid (SCFA) levels in this population. Forty-nine community-dwelling adults with insomnia symptoms, aged 65 and older, participated in this study. Their average daily step-count and sleep continuity measures over a two-week period were calculated based on Actigraphic recordings. Each participant provided fecal samples for the microbiome and SCFA analyses, anthropometric measures, and information via questionnaires on medical history and food consumption. The gut microbiota composition and SCFA concentrations were determined by next-generation sequencing and Gas chromatography-mass spectrometry, respectively. Participants were divided into two groups (more and less active) according to their median step/day count. We compared the microbiota abundance and SCFA concentrations between groups and performed correlation analysis between gut microbiota abundances and study variables. Different microbiota taxa in each PA group and increased SCFAs in feces of less active individuals were found. Changes in step counts were positively or negatively associated with the relative abundance of 19 ASVs, 3 microorganisms at the family level, and 11 microorganisms at the genus level. Furthermore, significant associations were discovered among physical activity, gut microbiota, SCFAs, and sleep parameters. Our findings provide new insights on the relationship between PA, gut microbiota composition, and primary metabolites in older adults with insomnia.
Collapse
|
214
|
Mousa WK, Chehadeh F, Husband S. Recent Advances in Understanding the Structure and Function of the Human Microbiome. Front Microbiol 2022; 13:825338. [PMID: 35185849 PMCID: PMC8851206 DOI: 10.3389/fmicb.2022.825338] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022] Open
Abstract
Trillions of microbes live within our bodies in a deep symbiotic relationship. Microbial populations vary across body sites, driven by differences in the environment, immunological factors, and interactions between microbial species. Major advances in genome sequencing enable a better understanding of microbiome composition. However, most of the microbial taxa and species of the human microbiome are still unknown. Without revealing the identity of these microbes as a first step, we cannot appreciate their role in human health and diseases. A shift in the microbial balance, termed dysbiosis, is linked to a broad range of diseases from simple colitis and indigestion to cancer and dementia. The last decade has witnessed an explosion in microbiome research that led to a better understanding of the microbiome structure and function. This understanding leads to potential opportunities to develop next-generation microbiome-based drugs and diagnostic biomarkers. However, our understanding is limited given the highly personalized nature of the microbiome and its complex and multidirectional interactions with the host. In this review, we discuss: (1) our current knowledge of microbiome structure and factors that shape the microbial composition, (2) recent associations between microbiome dysbiosis and diseases, and (3) opportunities of new microbiome-based therapeutics. We analyze common themes, promises, gaps, and challenges of the microbiome research.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, United Arab Emirates
- Department of Biology, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Department of Biology, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Department of Biology, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
215
|
Analysis of colonic mucosa-associated microbiota using endoscopically collected lavage. Sci Rep 2022; 12:1758. [PMID: 35110685 PMCID: PMC8810796 DOI: 10.1038/s41598-022-05936-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
The bacterial composition of the gut lumen and mucosa is distinct and the mucosa-associated bacteria are thought to play a more critical role in interactions with the host immune system. However, limited studies of the gut mucosal microbiota in humans have been available due to methodological challenges. Here, we evaluated the potential use of colonic lavage samples for mucosal microbiota analysis in humans. Among the different types of colonic mucosal samples collected from healthy volunteers, the lavage samples contained a higher amount of bacterial DNA and were less contaminated with host DNA compared to mucosal brushing (brush) and biopsy. Although 16S gene amplicon sequencing showed that the bacterial composition of the lavage was intermediate between that of feces and biopsy, mucosal bacteria abundant in the biopsy were also enriched in lavage samples. Furthermore, differences in mucosal microbes between non-smokers and smokers were detectable in lavage samples. Our data emphasize that colonic lavage is suitable for analysis of the mucosal microbiota. Given its minimal invasiveness and high bacterial DNA content, the colonic lavage will promote research on the human mucosal microbiota, especially in gastrointestinal disorders.
Collapse
|
216
|
Torquati L, Gajanand T, Cox ER, Willis C, Zaugg J, Keating SE, Coombes JS. Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes. Eur J Sport Sci 2022; 23:530-541. [PMID: 35107058 DOI: 10.1080/17461391.2022.2035436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise is positively associated with higher microbial diversity, but there is limited information on exercise intensity's effect on gut microbiome composition and function in clinical populations. This study examines whether different intensities of exercise exert differential effects on gut microbiome composition and function in low active people with type 2 diabetes.This is a sub-study of the Exercise for Type 2 Diabetes Study, a single centre, prospective, randomised controlled trial. Participants (n=12) completed 8-weeks of combined aerobic and resistance moderate intensity continuous training (C-MICT) or combined aerobic and resistance high-intensity interval training (C-HIIT). Faecal samples were collected before and after intervention to measure gut microbiome composition and metabolic pathways (metagenome shotgun sequencing) and short-chain fatty acids.Post-exercise α-diversity was different between groups as was the relative abundance of specific taxa was (p<0.05). Post-exercise relative abundance of Bifidobacterium, A. municiphila, and butyrate-producers Lachnospira eligens, Enterococcus spp., and Clostridium Cluster IV were higher at lower exercise intensity. Other butyrate-producers (from Eryspelothrichales and Oscillospirales), and methane producer Methanobrevibacter smithii were higher at higher exercise intensity. Pyruvate metabolism (ko00620),COG 'Cell wall membrane envelope biogenesis' and 'Unknown function' pathways were significantly different between groups and higher in C-MICT post-exercise. Differential abundance analysis on KO showed higher expression of Two-component system in C-HIIT. Transcription factors and 'unknown metabolism' related pathways decreased in both groups. There were no significant between group changes in faecal short chain fatty acids.Exercise intensity had a distinct effect on gut microbiome abundance and metabolic function, without impacting short-chain fatty acid outputTrial registration: Australian New Zealand Clinical Trials Registry identifier: ACTRN12615000475549..
Collapse
Affiliation(s)
- L Torquati
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom
| | - T Gajanand
- Centre for Research on Exercise, Physical Activity and Health, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| | - E R Cox
- Centre for Research on Exercise, Physical Activity and Health, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| | - Crg Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom
| | - J Zaugg
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| | - S E Keating
- Centre for Research on Exercise, Physical Activity and Health, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| | - J S Coombes
- Centre for Research on Exercise, Physical Activity and Health, The University of Queensland, Brisbane, St Lucia campus 4072, Australia
| |
Collapse
|
217
|
Hou H, Chen D, Zhang K, Zhang W, Liu T, Wang S, Dai X, Wang B, Zhong W, Cao H. Gut microbiota-derived short-chain fatty acids and colorectal cancer: Ready for clinical translation? Cancer Lett 2022; 526:225-235. [PMID: 34843863 DOI: 10.1016/j.canlet.2021.11.027] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death worldwide. It involves the complex interactions between genetic factors, environmental exposure, and gut microbiota. Specific changes in the gut microbiome and metabolome have been described in CRC, supporting the critical role of gut microbiota dysbiosis and microbiota-related metabolites in the tumorigenesis process. Short-chain fatty acids (SCFAs), the principal metabolites generated from the gut microbial fermentation of insoluble dietary fiber, can directly activate G-protein-coupled receptors (GPCRs), inhibit histone deacetylases (HDACs), and serve as energy substrates to connect dietary patterns and gut microbiota, thereby improving the intestinal health. A significantly lower abundance of SCFAs and SCFA-producing bacteria has been demonstrated in CRC, and the supplementation of SCFA-producing probiotics can inhibit intestinal tumor development. SCFAs-guided modulation in both mouse and human CRC models augmented their responses to chemotherapy and immunotherapy. This review briefly summarizes the complex crosstalk between SCFAs and CRC, which might inspire new approaches for the diagnosis, treatment and prevention of CRC on the basis of gut microbiota-derived metabolites SCFAs.
Collapse
Affiliation(s)
- Huiqin Hou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Danfeng Chen
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China.
| |
Collapse
|
218
|
Jääskeläinen T, Kärkkäinen O, Heinonen S, Hanhineva K, Laivuori H. No association in maternal serum levels of TMAO and its precursors in pre-eclampsia and in non-complicated pregnancies. Pregnancy Hypertens 2022; 28:74-80. [DOI: 10.1016/j.preghy.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022]
|
219
|
Zheng C, Chen XK, Tian XY, Ma ACH, Wong SHS. Does the gut microbiota contribute to the antiobesity effect of exercise? A systematic review and meta-analysis. Obesity (Silver Spring) 2022; 30:407-423. [PMID: 35088557 DOI: 10.1002/oby.23345] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The aim of this study was to assess gut microbiota modifications after exercise in humans and animal models with obesity or type 2 diabetes and their role in exercise-induced weight loss. METHODS A systematic search of six databases was conducted on July 31, 2021. The extracted data on body fat or body weight from human and animal studies were analyzed using random-effects meta-analysis. RESULTS A total of 28 studies were included, with all studies reporting exercise-induced gut microbiota modifications; however, the modified taxa varied among studies. Proteobacteria was the only taxa reported to be altered by exercise in more than one human and one animal study. Taxa belonging to Firmicutes were the most responsive to exercise in humans and mice, whereas Proteobacteria taxa were the most responsive to exercise in rats. A meta-analysis was conducted to examine the weight-lowering effect of exercise based on data subgrouped by altered or unaltered α-diversity or β-diversity. The association between the weight-lowering effect of exercise and altered β-diversity was observed in humans with obesity but not in animals. CONCLUSIONS These findings suggest that gut microbiota modifications contribute to exercise-induced weight loss in obesity; however, their precise contributions, especially those of taxon-level variations, remain to be investigated.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Xiang-Ke Chen
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Stephen Heung-Sang Wong
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| |
Collapse
|
220
|
Mavropalias G, Sim M, Taaffe DR, Galvão DA, Spry N, Kraemer WJ, Häkkinen K, Newton RU. Exercise medicine for cancer cachexia: targeted exercise to counteract mechanisms and treatment side effects. J Cancer Res Clin Oncol 2022; 148:1389-1406. [PMID: 35088134 PMCID: PMC9114058 DOI: 10.1007/s00432-022-03927-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022]
Abstract
Purpose Cancer-induced muscle wasting (i.e., cancer cachexia, CC) is a common and devastating syndrome that results in the death of more than 1 in 5 patients. Although primarily a result of elevated inflammation, there are multiple mechanisms that complement and amplify one another. Research on the use of exercise to manage CC is still limited, while exercise for CC management has been recently discouraged. Moreover, there is a lack of understanding that exercise is not a single medicine, but mode, type, dosage, and timing (exercise prescription) have distinct health outcomes. The purpose of this review was to examine the effects of these modes and subtypes to identify the most optimal form and dosage of exercise therapy specific to each underlying mechanism of CC. Methods The relevant literatures from MEDLINE and Scopus databases were examined. Results Exercise can counteract the most prominent mechanisms and signs of CC including muscle wasting, increased protein turnover, systemic inflammation, reduced appetite and anorexia, increased energy expenditure and fat wasting, insulin resistance, metabolic dysregulation, gut dysbiosis, hypogonadism, impaired oxidative capacity, mitochondrial dysfunction, and cancer treatments side-effects. There are different modes of exercise, and each mode has different sub-types that induce vastly diverse changes when performed over multiple sessions. Choosing suboptimal exercise modes, types, or dosages can be counterproductive and could further contribute to the mechanisms of CC without impacting muscle growth. Conclusion Available evidence shows that patients with CC can safely undertake higher-intensity resistance exercise programs, and benefit from increases in body mass and muscle mass.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| | - Marc Sim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Institute for Nutrition Research, Edith Cowan University, Joondalup, Australia
- Medical School, University of Western Australia, Perth, Australia
| | - Dennis R Taaffe
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Daniel A Galvão
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Nigel Spry
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - William J Kraemer
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- Department of Human Sciences, Ohio State University, Columbus, USA
| | - Keijo Häkkinen
- Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyvaskyla, Finland
| | - Robert U Newton
- Exercise Medicine Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
221
|
Abstract
Identifying ways to deal with the challenges presented by aging is an urgent task, as we are facing an aging society. External factors such as diet, exercise and drug therapy have proven to be major elements in controlling healthy aging and prolonging life expectancy. More recently, the intestinal microbiota has also become a key factor in the anti-aging process. As the intestinal microbiota changes with aging, an imbalance in intestinal microorganisms can lead to many age-related degenerative diseases and unhealthy aging. This paper reviews recent research progress on the relationship between intestinal microorganisms and anti-aging effects, focusing on the changes and beneficial effects of intestinal microorganisms under dietary intervention, exercise and drug intervention. In addition, bacteriotherapy has been used to prevent frailty and unhealthy aging. Most of these anti-aging approaches improve the aging process and age-related diseases by regulating the homeostasis of intestinal flora and promoting a healthy intestinal environment. Intervention practices based on intestinal microorganisms show great potential in the field of anti-aging medicine.
Collapse
Affiliation(s)
- Yanjiao Du
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yue Gao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,CONTACT Mingyao Yang Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan611130, P. R. China
| |
Collapse
|
222
|
Vijay A, Kouraki A, Gohir S, Turnbull J, Kelly A, Chapman V, Barrett DA, Bulsiewicz WJ, Valdes AM. The anti-inflammatory effect of bacterial short chain fatty acids is partially mediated by endocannabinoids. Gut Microbes 2022; 13:1997559. [PMID: 34787065 PMCID: PMC8604388 DOI: 10.1080/19490976.2021.1997559] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The endocannabinoid (EC) system has pleiotropic functions in the body. It plays a key role in energy homeostasis and the development of metabolic disorders being a mediator in the relationship between the gut microbiota and host metabolism. In the current study we explore the functional interactions between the endocannabinoid system and the gut microbiome in modulating inflammatory markers. Using data from a 6 week exercise intervention (treatment n = 38 control n = 40) and a cross sectional validation cohort (n = 35), we measured the associations of 2-arachidonoylglycerol (2-AG), anandamide (AEA), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) with gut microbiome composition, gut derived metabolites (SCFAs) and inflammatory markers both cross-sectionally and longitudinally. At baseline AEA and OEA were positively associated with alpha diversity (β(SE) = .32 (.06), P = .002; .44 (.04), P < .001) and with SCFA producing bacteria such as Bifidobacterium (2-AG β(SE) = .21 (.10), P < .01; PEA β(SE) = .23 (.08), P < .01), Coprococcus 3 and Faecalibacterium (PEA β(SE) = .29 (.11), P = .01; .25 (.09), P < .01) and negatively associated with Collinsella (AEA β(SE) = -.31 (.12), P = .004). Additionally, we found AEA to be positively associated with SCFA Butyrate (β(SE) = .34 (.15), P = .01). AEA, OEA and PEA all increased significantly with the exercise intervention but remained constant in the control group. Changes in AEA correlated with SCFA butyrate and increases in AEA and PEA correlated with decreases in TNF-ɑ and IL-6 statistically mediating one third of the effect of SCFAs on these cytokines. Our data show that the anti-inflammatory effects of SCFAs are partly mediated by the EC system suggesting that there may be other pathways involved in the modulation of the immune system via the gut microbiome.
Collapse
Affiliation(s)
- Amrita Vijay
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,CONTACT Amrita Vijay Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Afroditi Kouraki
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Sameer Gohir
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - James Turnbull
- Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,Arthritis Research Uk Pain Centre, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, UK
| | - Anthony Kelly
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Vicky Chapman
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Arthritis Research Uk Pain Centre, University of Nottingham, Medical School, Queen’s Medical Centre, Nottingham, UK
| | - David A Barrett
- Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK,DAB-Centre for Analytical Bioscience, Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Ana M Valdes
- Division of Rheumatology, Orthopedics and Dermatology, School of Medicine, University of Nottingham, Nottingham, UK,Nihr Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
223
|
Donati Zeppa S, Ferrini F, Agostini D, Amatori S, Barbieri E, Piccoli G, Sestili P, Stocchi V. Nutraceuticals and Physical Activity as Antidepressants: The Central Role of the Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11020236. [PMID: 35204119 PMCID: PMC8868311 DOI: 10.3390/antiox11020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental illness. Evidence suggests that the gut microbiota play an essential role in regulating brain functions and the pathogenesis of neuropsychiatric diseases, including MDD. There are numerous mechanisms through which the gut microbiota and brain can exchange information in a continuous, bidirectional communication. Current research emphasizes the interexchange of signals influenced by the gut microbiota that are detected and transduced in information from the gut to the nervous system involving neural, endocrine, and inflammatory mechanisms, suggesting a relationship between oxidative stress and the pathophysiology of MDD via the hyperactivation of inflammatory responses. Potential sources of inflammation in the plasma and hippocampus of depressed individuals could stem from increases in intestinal permeability. Some nutraceuticals, such as specific probiotics, namely psychobiotics, polyphenols, carotenoids, butyrate, and prebiotics, have been demonstrated to exert an antidepressant activity, but most of them need to be metabolized and activated by gut microorganisms. By inducing changes in the gut microbiota composition, physical exercise might also exert a role in alleviating depression-like symptoms. The mutual relationships among nutraceuticals, exercise, and depression will be discussed, and the potential role of the gut microbiota as a therapeutic target to treat depression will be explored.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
- Correspondence:
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | | |
Collapse
|
224
|
Gene-environment-gut interactions in Huntington's disease mice are associated with environmental modulation of the gut microbiome. iScience 2022; 25:103687. [PMID: 35059604 PMCID: PMC8760441 DOI: 10.1016/j.isci.2021.103687] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Gut dysbiosis in Huntington's disease (HD) has recently been reported using microbiome profiling in R6/1 HD mice and replicated in clinical HD. In HD mice, environmental enrichment (EE) and exercise (EX) were shown to have therapeutic impacts on the brain and associated symptoms. We hypothesize that these housing interventions modulate the gut microbiome, configuring one of the mechanisms that mediate their therapeutic effects observed in HD. We exposed R6/1 mice to a protocol of either EE or EX, relative to standard-housed control conditions, before the onset of gut dysbiosis and motor deficits. We characterized gut structure and function, as well as gut microbiome profiling using 16S rRNA sequencing. Multivariate analysis identified specific orders, namely Bacteroidales, Lachnospirales and Oscillospirales, as the main bacterial signatures that discriminate between housing conditions. Our findings suggest a promising role for the gut microbiome in mediating the effects of EE and EX exposures, and possibly other environmental interventions, in HD mice. Gastrointestinal structure and motility are intact at an early stage in a HD mouse model There is sexual dimorphism in the presentation of the HD gut dysbiosis phenotype Bacteroidales, Lachnospirales and Oscillospirales bacteria are affected by experience Environmental enrichment and exercise may modulate HD via the microbiota-gut-brain axis
Collapse
|
225
|
Dan W, Peng L, Yan B, Li Z, Pan F. Human Microbiota in Esophageal Adenocarcinoma: Pathogenesis, Diagnosis, Prognosis and Therapeutic Implications. Front Microbiol 2022; 12:791274. [PMID: 35126331 PMCID: PMC8815000 DOI: 10.3389/fmicb.2021.791274] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is one of the main subtypes of esophageal cancer. The incidence rate of EAC increased progressively while the 5-year relative survival rates were poor in the past two decades. The mechanism of EAC has been studied extensively in relation to genetic factors, but less so with respect to human microbiota. Currently, researches about the relationship between EAC and the human microbiota is a newly emerging field of study. Herein, we present the current state of knowledge linking human microbiota to esophageal adenocarcinoma and its precursor lesion—gastroesophageal reflux disease and Barrett’s esophagus. There are specific human bacterial alternations in the process of esophageal carcinogenesis. And bacterial dysbiosis plays an important role in the process of esophageal carcinogenesis via inflammation, microbial metabolism and genotoxicity. Based on the human microbiota alternation in the EAC cascade, it provides potential microbiome-based clinical application. This review is focused on novel targets in prevention, diagnosis, prognosis, and therapy for esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Wanyue Dan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Nankai University, Tianjin, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bin Yan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhengpeng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Fei Pan,
| |
Collapse
|
226
|
Fernández J, Fernández-Sanjurjo M, Iglesias-Gutiérrez E, Martínez-Camblor P, Villar CJ, Tomás-Zapico C, Fernández-García B, Lombó F. Resistance and Endurance Exercise Training Induce Differential Changes in Gut Microbiota Composition in Murine Models. Front Physiol 2022; 12:748854. [PMID: 35002754 PMCID: PMC8739997 DOI: 10.3389/fphys.2021.748854] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022] Open
Abstract
Background: The effect of resistance training on gut microbiota composition has not been explored, despite the evidence about endurance exercise. The aim of this study was to compare the effect of resistance and endurance training on gut microbiota composition in mice. Methods: Cecal samples were collected from 26 C57BL/6N mice, divided into three groups: sedentary (CTL), endurance training on a treadmill (END), and resistance training on a vertical ladder (RES). After 2 weeks of adaption, mice were trained for 4 weeks, 5 days/week. Maximal endurance and resistance capacity test were performed before and after training. Genomic DNA was extracted and 16S Ribosomal RNA sequenced for metagenomics analysis. The percentages for each phylum, class, order, family, or genus/species were obtained using an open-source bioinformatics pipeline. Results: END showed higher diversity and evenness. Significant differences among groups in microbiota composition were only observed at genera and species level. END showed a significantly higher relative abundance of Desulfovibrio and Desulfovibrio sp., while Clostridium and C. cocleatum where higher for RES. Trained mice showed significantly lower relative abundance of Ruminococcus gnavus and higher of the genus Parabacteroides compared to CTL. We explored the relationship between relative taxa abundance and maximal endurance and resistance capacities after the training period. Lachnospiraceae and Lactobacillaceae families were negatively associated with endurance performance, while several taxa, including Prevotellaceae family, Prevotella genus, and Akkermansia muciniphila, were positively correlated. About resistance performance, Desulfovibrio sp. was negatively correlated, while Alistipes showed a positive correlation. Conclusion: Resistance and endurance training differentially modify gut microbiota composition in mice, under a high-controlled environment. Interestingly, taxa associated with anti- and proinflammatory responses presented the same pattern after both models of exercise. Furthermore, the abundance of several taxa was differently related to maximal endurance or resistance performance, most of them did not respond to training.
Collapse
Affiliation(s)
- Javier Fernández
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Manuel Fernández-Sanjurjo
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Eduardo Iglesias-Gutiérrez
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Pablo Martínez-Camblor
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Claudio J Villar
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Cristina Tomás-Zapico
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Functional Biology, Physiology, University of Oviedo, Oviedo, Spain
| | - Benjamin Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Department of Morphology and Cell Biology, Anatomy, University of Oviedo, Oviedo, Spain
| | - Felipe Lombó
- Department of Functional Biology, Microbiology, University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
227
|
Bock JM, Vungarala S, Covassin N, Somers VK. Sleep Duration and Hypertension: Epidemiological Evidence and Underlying Mechanisms. Am J Hypertens 2022; 35:3-11. [PMID: 34536276 DOI: 10.1093/ajh/hpab146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
While the contribution of several physiological systems to arterial blood pressure regulation has been studied extensively, the role of normal and disrupted sleep as a modifiable determinant of blood pressure control, and in the pathophysiology of hypertension, has only recently emerged. Several sleep disorders, including sleep apnea and insomnia, are thought to contribute to the development of hypertension, although less attention is paid to the relationship between sleep duration and blood pressure independent of sleep disorders per se. Accordingly, this review focuses principally on the physiology of sleep and the consequences of abnormal sleep duration both experimentally and at the population level. Clinical implications for patients with insomnia who may or may not have abbreviated sleep duration are explored. As a corollary, we further review studies of the effects of sleep extension on blood pressure regulation. We also discuss epidemiological evidence suggesting that long sleep may also be associated with hypertension and describe the parabolic relationship between total sleep time and blood pressure. We conclude by highlighting gaps in the literature regarding the potential role of gut microbial health in the cross-communication of lifestyle patterns (exercise, diet, and sleep) with blood pressure regulation. Additionally, we discuss populations at increased risk of short sleep, and specifically the need to understand mechanisms and therapeutic opportunities in women, pregnancy, the elderly, and in African Americans.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Soumya Vungarala
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Naima Covassin
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
228
|
Matsushita M, Fujita K, Hatano K, De Velasco MA, Uemura H, Nonomura N. Connecting the Dots Between the Gut-IGF-1-Prostate Axis: A Role of IGF-1 in Prostate Carcinogenesis. Front Endocrinol (Lausanne) 2022; 13:852382. [PMID: 35370981 PMCID: PMC8965097 DOI: 10.3389/fendo.2022.852382] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men worldwide, thus developing effective prevention strategies remain a critical challenge. Insulin-like growth factor 1 (IGF-1) is produced mainly in the liver by growth hormone signaling and is necessary for normal physical growth. However, several studies have shown an association between increased levels of circulating IGF-1 and the risk of developing solid malignancies, including PCa. Because the IGF-1 receptor is overexpressed in PCa, IGF-1 can accelerate PCa growth by activating phosphoinositide 3-kinase and mitogen-activated protein kinase, or increasing sex hormone sensitivity. Short-chain fatty acids (SCFAs) are beneficial gut microbial metabolites, mainly because of their anti-inflammatory effects. However, we have demonstrated that gut microbiota-derived SCFAs increase the production of IGF-1 in the liver and prostate. This promotes the progression of PCa by the activation of IGF-1 receptor downstream signaling. In addition, the relative abundance of SCFA-producing bacteria, such as Alistipes, are increased in gut microbiomes of patients with high-grade PCa. IGF-1 production is therefore affected by the gut microbiome, dietary habits, and genetic background, and may play a central role in prostate carcinogenesis. The pro-tumor effects of bacteria and diet-derived metabolites might be potentially countered through dietary regimens and supplements. The specific diets or supplements that are effective are unclear. Further research into the "Gut-IGF-1-Prostate Axis" may help discover optimal diets and nutritional supplements that could be implemented for prevention of PCa.
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
- *Correspondence: Kazutoshi Fujita,
| | - Koji Hatano
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Marco A. De Velasco
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
- Department of Genome Biology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Hirotsugu Uemura
- Department of Urology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
229
|
Zhang M, Hu R, Huang Y, Zhou F, Li F, Liu Z, Geng Y, Dong H, Ma W, Song K, Song Y. Present and Future: Crosstalks Between Polycystic Ovary Syndrome and Gut Metabolites Relating to Gut Microbiota. Front Endocrinol (Lausanne) 2022; 13:933110. [PMID: 35928893 PMCID: PMC9343597 DOI: 10.3389/fendo.2022.933110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common disease, affecting 8%-13% of the females of reproductive age, thereby compromising their fertility and long-term health. However, the pathogenesis of PCOS is still unclear. It is not only a reproductive endocrine disease, dominated by hyperandrogenemia, but also is accompanied by different degrees of metabolic abnormalities and insulin resistance. With a deeper understanding of its pathogenesis, more small metabolic molecules, such as bile acids, amino acids, and short-chain fatty acids, have been reported to be involved in the pathological process of PCOS. Recently, the critical role of gut microbiota in metabolism has been focused on. The gut microbiota-related metabolic pathways can significantly affect inflammation levels, insulin signaling, glucose metabolism, lipid metabolism, and hormonal secretions. Although the abnormalities in gut microbiota and metabolites might not be the initial factors of PCOS, they may have a significant role in the pathological process of PCOS. The dysbiosis of gut microbiota and disturbance of gut metabolites can affect the progression of PCOS. Meanwhile, PCOS itself can adversely affect the function of gut, thereby contributing to the aggravation of the disease. Inhibiting this vicious cycle might alleviate the symptoms of PCOS. However, the role of gut microbiota in PCOS has not been fully explored yet. This review aims to summarize the potential effects and modulative mechanisms of the gut metabolites on PCOS and suggests its potential intervention targets, thus providing more possible treatment options for PCOS in the future.
Collapse
Affiliation(s)
- Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fanru Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yufan Song,
| |
Collapse
|
230
|
Exercise. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
231
|
Liu L, Zhang J, Cheng Y, Zhu M, Xiao Z, Ruan G, Wei Y. Gut microbiota: A new target for T2DM prevention and treatment. Front Endocrinol (Lausanne) 2022; 13:958218. [PMID: 36034447 PMCID: PMC9402911 DOI: 10.3389/fendo.2022.958218] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM), one of the fastest growing metabolic diseases, has been characterized by metabolic disorders including hyperglycemia, hyperlipidemia and insulin resistance (IR). In recent years, T2DM has become the fastest growing metabolic disease in the world. Studies have indicated that patients with T2DM are often associated with intestinal flora disorders and dysfunction involving multiple organs. Metabolites of the intestinal flora, such as bile acids (BAs), short-chain fatty acids (SCFAs) and amino acids (AAs)may influence to some extent the decreased insulin sensitivity associated with T2DM dysfunction and regulate metabolic as well as immune homeostasis. In this paper, we review the changes in the gut flora in T2DM and the mechanisms by which the gut microbiota modulates metabolites affecting T2DM, which may provide a basis for the early identification of T2DM-susceptible individuals and guide targeted interventions. Finally, we also highlight gut microecological therapeutic strategies focused on shaping the gut flora to inform the improvement of T2DM progression.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiheng Zhang
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Cheng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Meng Zhu
- Department of Plastic and Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhifeng Xiao
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guangcong Ruan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| | - Yanling Wei
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Yanling Wei, ; Guangcong Ruan,
| |
Collapse
|
232
|
Abstract
Cardiovascular disease is the leading cause of death globally The past few decades have shown that especially low- and middle-income countries have undergone rapid industrialization, urbanization, economic development and market globalization. Although these developments led to many positive changes in health outcomes and increased life expectancies, they all also caused inappropriate dietary patterns, physical inactivity and obesity. Evidence shows that a large proportion of the cardiovascular disease burden can be explained by behavioural factors such as low physical activity, unhealthy diet and smoking. Controlling these risk factors from early ages is important for maintaining cardiovascular health. Even in patients with genetic susceptibility to cardiovascular disease, risk factor modification is beneficial.Despite the tremendous advances in the medical treatment of cardiovascular risk factors to reduce overall cardiovascular risk, the modern lifestyle which has led to greater sedentary time, lower participation in active transport and time spent in leisure or purposeful physical activity, unhealthy diets and increased exposure to stress, noise and pollution have diminished the beneficial effects of contemporary medical cardiovascular prevention strategies. Therefore attenuating or eliminating these health risk behaviours and risk factors is imperative in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| | - Vedat Hekimsoy
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Giuseppina Costabile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilaria Calabrese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
233
|
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2021; 12:biom12010056. [PMID: 35053205 PMCID: PMC8774162 DOI: 10.3390/biom12010056] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.
Collapse
|
234
|
Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021; 14:nu14010052. [PMID: 35010928 PMCID: PMC8746908 DOI: 10.3390/nu14010052] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Sarcopenia is one of the main issues associated with the process of aging. Characterized by muscle mass loss, it is triggered by several conditions, including sedentary habits and negative net protein balance. According to World Health Organization, it is expected a 38% increase in older individuals by 2025. Therefore, it is noteworthy to establish recommendations to prevent sarcopenia and several events and comorbidities associated with this health issue condition. In this review, we discuss the role of these factors, prevention strategies, and recommendations, with a focus on protein intake and exercise.
Collapse
|
235
|
Donati Zeppa S, Amatori S, Sisti D, Gervasi M, Agostini D, Piccoli G, Pazienza V, Gobbi P, Rocchi MBL, Sestili P, Stocchi V. Nine weeks of high-intensity indoor cycling training induced changes in the microbiota composition in non-athlete healthy male college students. J Int Soc Sports Nutr 2021; 18:74. [PMID: 34922581 PMCID: PMC8684107 DOI: 10.1186/s12970-021-00471-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background The gut microbiota constitutes a dynamic microbial system constantly challenged by environmental conditions, including physical exercise. Limited human studies suggest that exercise could play a beneficial role for gut health, increasing microbial diversity, even if the effects of exercise on gut microbial microorganisms depends on its intensity and duration. This study aimed to investigate the effects of nine weeks of high-intensity interval exercise on gut microbiota composition in healthy young adults. Methods The gut microbiota composition of seventeen healthy male college students was analysed before and after nine weeks of high-intensity interval cycling training by 16S rRNA amplicon sequencing. PERMANOVA for repeated measures was used to test pre-post differences in the relative abundance of all taxonomic levels, and correlations between variations in microbial composition and physical and dietary features were also assessed. Results Physical exercise induced changes in microbiota composition, at all taxonomic levels analysed (phyla: F [1, 32]=3.97, p=0.029; classes: F [1, 32]=3.39, p=0.033, orders: F [1, 32]=3.17, p=0.044, families: F [1, 32]=1.54, p=0.037, genera: F [1, 32]=1.46, p=0.015, species: F [1, 32]=1.38, p=0.007). Conversely, no differences were found between pre and post-training conditions for microbial community richness (Chao1: V=105, p=0.06) or diversity (Shannon index: V=62, p=0.52; Simpson index: V=59, p=0.43). Changes in the relative abundance of eighteen genera were correlated to changes of twenty environmental factors grouped in physical features, sport-related features, and dietary features. Conclusions Nine weeks of high-intensity exercise induced modifications in gut microbiota composition in healthy male college students, shifting the gut microbial population towards a healthier microbiome with benefit to human health in general. Supplementary Information The online version contains supplementary material available at 10.1186/s12970-021-00471-z.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy.
| | - Marco Gervasi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Valerio Pazienza
- Division of Gastroenterology "Casa Sollievo della Sofferenza" Hospital, 71013, San Giovanni Rotondo, Italy
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Marco B L Rocchi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 7, 61029, Urbino, Italy
| | | |
Collapse
|
236
|
Nutrition and Physical Activity-Induced Changes in Gut Microbiota: Possible Implications for Human Health and Athletic Performance. Foods 2021; 10:foods10123075. [PMID: 34945630 PMCID: PMC8700881 DOI: 10.3390/foods10123075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a complex heterogeneous microbial community modulated by endogenous and exogenous factors. Among the external causes, nutrition as well as physical activity appear to be potential drivers of microbial diversity, both at the taxonomic and functional level, likely also influencing endocrine system, and acting as endocrine organ itself. To date, clear-cut data regarding which microbial populations are modified, and by which mechanisms are lacking. Moreover, the relationship between the microbial shifts and the metabolic practical potential of the gut microbiota is still unclear. Further research by longitudinal and well-designed studies is needed to investigate whether microbiome manipulation may be an effective tool for improving human health and, also, performance in athletes, and whether these effects may be then extended to the overall health promotion of general populations. In this review, we evaluate and summarize the current knowledge regarding the interaction and cross-talks among hormonal modifications, physical performance, and microbiota content and function.
Collapse
|
237
|
Houttu V, Boulund U, Nicolaou M, Holleboom AG, Grefhorst A, Galenkamp H, van den Born BJ, Zwinderman K, Nieuwdorp M. Physical Activity and Dietary Composition Relate to Differences in Gut Microbial Patterns in a Multi-Ethnic Cohort-The HELIUS Study. Metabolites 2021; 11:metabo11120858. [PMID: 34940616 PMCID: PMC8707449 DOI: 10.3390/metabo11120858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Physical activity (PA) at recommended levels contributes to the prevention of non-communicable diseases, such as atherosclerotic cardiovascular disease (asCVD) and type 2 diabetes mellitus (T2DM). Since the composition of the gut microbiota is strongly intertwined with dietary intake, the specific effect of exercise on the gut microbiota is not known. Moreover, multiple other factors, such as ethnicity, influence the composition of the gut microbiota, and this may be derived by distinct diet as well as PA patterns. Here we aim to untangle the associations between PA and the gut microbiota in a sample (n = 1334) from the Healthy Life In an Urban Setting (HELIUS) multi-ethnic cohort. The associations of different food groups and gut microbiota were also analyzed. PA was monitored using subjective (n = 1309) and objective (n = 162) methods, and dietary intake was assessed with ethnic-specific food frequency questionnaire (FFQ). The gut microbiota was profiled using 16S rRNA gene amplicon sequencing, and the functional composition was generated with the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2). Associations were assessed using multivariable and machine learning models. In this cohort, a distinct gut microbiota composition was associated with meeting the Dutch PA norm as well as with dietary intake, e.g., grains. PA related parameters such as muscle strength and calf circumference correlated with gut microbiota diversity. Furthermore, gut microbial functionality differed between active and sedentary groups. Differential representation of ethnicities in active and sedentary groups in both monitor methods hampered the detection of ethnic-specific effects. In conclusion, both PA and dietary intake were associated with gut microbiota composition in our multi-ethnic cohort. Future studies should further elucidate the role of ethnicity and diet in this association.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Mary Nicolaou
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Adriaan Georgius Holleboom
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Henrike Galenkamp
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Bert-Jan van den Born
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Public and Occupational Health, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (H.G.)
| | - Koos Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (V.H.); (U.B.); (A.G.H.); (A.G.); (B.-J.v.d.B.)
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-(0)20-5665-737
| |
Collapse
|
238
|
Wang G, Cong D, Ju H, Sun J, Li C, Zhang Z, Chu Y, Wu X. Community intervention study of viscera massage in overweight/obese type 2 diabetes high-risk population. Medicine (Baltimore) 2021; 100:e27932. [PMID: 35049196 PMCID: PMC9191379 DOI: 10.1097/md.0000000000027932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Prediabetes is an intermediate metabolic state between normoglycemia and diabetes. Without intervention, prediabetes often progresses to diabetes and prediabetes is associated with increased risk of cardiovascular disease, cancer, renal disease, and dementia. Lifestyle modification play a major role in controlling prediabetes. But lifestyle interventions are often with poor compliance and side effects of drugs are often be dislike by people. As a non-invasive therapy with no side effects, abdominal massage (AM), also called viscera massage in China, has been used to treat prediabetes and obesity-associated diseases. The gut microbiota has been recognized as an important factor in the development of metabolic diseases. Individuals with prediabetes have aberrant intestinal microbiota character. Colonic transport time and stool consistency are strongly associated with gut microbiota. Viscera massage can ease constipation by reducing colonic transport time and promoting intestinal motility. We can infer that viscera massage can modulate composition of gut microbiota affects human metabolism. So, in this trial, we will explore the mechanism of viscera massage on prediabetes from the perspective of intestinal microbiota. METHODS AND DESIGN Eighty prediabetes individuals will be recruited for this study. Eighty prediabetes individuals will be divided into lifestyle intervention group and viscera massage + lifestyle intervention group by a simple random method. Each group will have 40 individuals. The manipulation of the viscera massage + lifestyle intervention group will be mainly carried out through rubbing the abdomen, kneading abdomen, vibrating abdomen, and pressing the abdomen, 30 minutes per time, once a day, with 2 days off every 5 days. Lifestyle interventions will be performed by combining pushing healthy lifestyle guidance information through Wechat application and giving face-to-face advice together daily. The lifestyle intervention group will receive healthy lifestyle intervention only. All the intervention will be conducted for 4 weeks. Weight, body mass index (BMI), waist circumference, waist-to-hip ratio, and waist-to-height ratio will be measured at the last day of every week. Triglycerides, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, fasting blood-glucose, 2-hour post-meal blood glucose (2hPG) and glycosylated hemoglobin, fasting insulin and insulin resistance index will be tested at the first day and last day of the intervention course. The fecal samples of subjects will be gathered at the first day and last day of the intervention course and will be performed 16S rRNA gene sequencing and metagenomic detection. Finally, the effect and potential mechanism of viscera massage on prediabetes will be discussed in combination with all the results. DISCUSSION The results of this study will be used to verify the effect of AM on prediabetes and explore the mechanism of AM on prediabetes from the perspective of gut microbiota.
Collapse
Affiliation(s)
- Gaofeng Wang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Department of Health Management, Baicheng Medical College, Baicheng, Jilin, China
| | - Deyu Cong
- Department of Tuina, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongyu Ju
- Department of Endocrine and Metabolic Diseases, Baicheng Municipal Hospital, Baicheng, Jilin, China
| | - Jiabao Sun
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Chaozheng Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zepeng Zhang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yunjie Chu
- Department of Tuina, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xingquan Wu
- Department of Tuina, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
239
|
Santarossa S, Sitarik AR, Johnson CC, Li J, Lynch SV, Ownby DR, Ramirez A, Yong GLM, Cassidy-Bushrow AE. Associations of physical activity with gut microbiota in pre-adolescent children. Phys Act Nutr 2021; 25:24-37. [PMID: 35152621 PMCID: PMC8843867 DOI: 10.20463/pan.2021.0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To determine whether physical activity (PA), primarily the recommended 60 minutes of moderate-to-vigorous PA, is associated with gut bacterial microbiota in 10-year-old children. METHODS The Block Physical Activity Screener, which provides minutes/day PA variables, was used to determine whether the child met the PA recommendations. 16S rRNA sequencing was performed on stool samples from the children to profile the composition of their gut bacterial microbiota. Differences in alpha diversity metrics (richness, Pielou's evenness, and Faith's phylogenetic diversity) by PA were determined using linear regression, whereas beta diversity (unweighted and weighted UniFrac) relationships were assessed using PERMANOVA. Taxon relative abundance differentials were determined using DESeq2. RESULTS The analytic sample included 321 children with both PA and 16S rRNA sequencing data (mean age [SD] =10.2 [0.8] years; 54.2% male; 62.9% African American), where 189 (58.9%) met the PA recommendations. After adjusting for covariates, meeting the PA recommendations as well as minutes/day PA variables were not significantly associated with gut richness, evenness, or diversity (p ≥ 0.19). However, meeting the PA recommendations (weighted UniFrac R2 = 0.014, p = 0.001) was significantly associated with distinct gut bacterial composition. These compositional differences were partly characterized by increased abundance of Megamonas and Anaerovorax as well as specific Christensenellaceae_R-7_group taxa in children with higher PA. CONCLUSION Children who met the recommendations of PA had altered gut microbiota compositions. Whether this translates to a reduced risk of obesity or associated metabolic diseases is still unclear.
Collapse
Affiliation(s)
- Sara Santarossa
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | | | | | - Jia Li
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
| | - Susan V. Lynch
- Department of Medicine, University of California, California, USA
| | - Dennis R. Ownby
- Department of Pediatrics, Georgia Regents University, Georgia, USA
| | - Alex Ramirez
- Department of Public Health Sciences, Henry Ford Health System, Michigan, USA
- Wayne State University School of Medicine Detroit, Michigan, USA
| | | | | |
Collapse
|
240
|
Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr 2021; 12:2190-2215. [PMID: 34229348 PMCID: PMC8634498 DOI: 10.1093/advances/nmab077] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The athlete's goal is to optimize their performance. Towards this end, nutrition has been used to improve the health of athletes' brains, bones, muscles, and cardiovascular system. However, recent research suggests that the gut and its resident microbiota may also play a role in athlete health and performance. Therefore, athletes should consider dietary strategies in the context of their potential effects on the gut microbiota, including the impact of sports-centric dietary strategies (e.g., protein supplements, carbohydrate loading) on the gut microbiota as well as the effects of gut-centric dietary strategies (e.g., probiotics, prebiotics) on performance. This review provides an overview of the interaction between diet, exercise, and the gut microbiota, focusing on dietary strategies that may impact both the gut microbiota and athletic performance. Current evidence suggests that the gut microbiota could, in theory, contribute to the effects of dietary intake on athletic performance by influencing microbial metabolite production, gastrointestinal physiology, and immune modulation. Common dietary strategies such as high protein and simple carbohydrate intake, low fiber intake, and food avoidance may adversely impact the gut microbiota and, in turn, performance. Conversely, intake of adequate dietary fiber, a variety of protein sources, and emphasis on unsaturated fats, especially omega-3 (ɷ-3) fatty acids, in addition to consumption of prebiotics, probiotics, and synbiotics, have shown promising results in optimizing athlete health and performance. Ultimately, while this is an emerging and promising area of research, more studies are needed that incorporate, control, and manipulate all 3 of these elements (i.e., diet, exercise, and gut microbiome) to provide recommendations for athletes on how to "fuel their microbes."
Collapse
Affiliation(s)
- Riley L Hughes
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutrition Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
241
|
Liu XL, Zhao YC, Zhu HY, Wu M, Zheng YN, Yang M, Cheng ZQ, Ding CB, Liu WC. Taxifolin retards the D-galactose-induced aging process through inhibiting Nrf2-mediated oxidative stress and regulating the gut microbiota in mice. Food Funct 2021; 12:12142-12158. [PMID: 34788354 DOI: 10.1039/d1fo01349a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aging and aging-related metabolic complications are global problems that seriously threaten public health. Taxifolin (TAX) is a novel health food and has been widely proved to have a variety of biological activities used in food and medicine. However, the delayed effect of TAX on the aging process has not been investigated. The purpose of this study is to explore the role of TAX as a natural active substance on aging brain tissue induced by D-galactose (D-Gal) and to determine the effect of supplementing TAX on the metabolism of the intestinal flora in aging bodies. The aging model was established by intraperitoneal injection of D-Gal (800 mg kg-1) once per 3 days for 12 weeks, and TAX (20 and 40 mg kg-1) was administered daily by oral gavage after 6 weeks of induction with D-Gal. After testing aging mice in an eight-arm maze, the results showed that TAX treatment significantly restored spatial learning and memory impairment. Moreover, long-term D-Gal treatment incited cholinergic dysfunction of aging mice, and H&E staining revealed obvious histopathological damage and structural disorder in the hippocampus of mouse brain tissue, while TAX treatment significantly reversed these changes. Importantly, supplementing with TAX significantly mitigated oxidative stress injury by alleviating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) while increasing antioxidant enzymes. Furthermore, TAX decreased the apoptosis of the aging brain by regulating the phosphorylation levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and activating nuclear factor-erythroid 2-related factor 2 (Nrf2), nuclear heme oxygenase-1 (HO-1), and NADH dehydrogenase quinone 1 (NQO1) to maximally moderate the oxidative stress injury that occurred after D-Gal induction. In addition, 16S rDNA analysis revealed that TAX treatment decelerated the D-gal-induced aging process by regulating the composition of the intestinal flora and abundance of beneficial bacteria, including Enterorhabdus, Clostridium, Bifidobacterium, and Parvibacter. In conclusion, the results of this study demonstrated that TAX alleviated oxidative stress injury in mice aged by D-Gal and also confirmed that TAX improved the aging process by regulating intestinal microbes, which provides the possibility of prevention and treatment for aging and metabolic disorders through the potential food health factors.
Collapse
Affiliation(s)
- Xing-Long Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ying-Chun Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Hong-Yan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Ming Wu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Min Yang
- College of Traditional Chinese Medicine, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Zhi-Qiang Cheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Chuan-Bo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| | - Wen-Cong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China. .,State Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun 130118, China
| |
Collapse
|
242
|
Marfil-Sánchez A, Seelbinder B, Ni Y, Varga J, Berta J, Hollosi V, Dome B, Megyesfalvi Z, Dulka E, Galffy G, Weiss GJ, Panagiotou G, Lohinai Z. Gut microbiome functionality might be associated with exercise tolerance and recurrence of resected early-stage lung cancer patients. PLoS One 2021; 16:e0259898. [PMID: 34793492 PMCID: PMC8601557 DOI: 10.1371/journal.pone.0259898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Impaired exercise tolerance and lung function is a marker for increased mortality in lung cancer patients undergoing lung resection surgery. Recent data suggest that the gut-lung axis regulates systemic metabolic and immune functions, and microbiota might alter exercise tolerance. Here, we aimed to evaluate the associations between gut microbiota and outcomes in lung cancer patients who underwent lung resection surgery. We analysed stool samples, from 15 early-stage lung cancer patients, collected before and after surgical resection using shotgun metagenomic and Internal Transcribed Spacer (ITS) sequencing. We analysed microbiome and mycobiome associations with post-surgery lung function and cardiopulmonary exercise testing (CPET) to assess the maximum level of work achieved. There was a significant difference, between pre- and post-surgical resection samples, in microbial community functional profiles and several species from Alistipes and Bacteroides genus, associated with the production of SCFAs, increased significantly in abundance. Interestingly, an increase in VO2 coincides with an increase in certain species and the "GABA shunt" pathway, suggesting that treatment outcome might improve by enriching butyrate-producing species. Here, we revealed associations between specific gut bacteria, fungi, and their metabolic pathways with the recovery of lung function and exercise capacity.
Collapse
Affiliation(s)
- Andrea Marfil-Sánchez
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Bastian Seelbinder
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Yueqiong Ni
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Janos Varga
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Berta
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Virag Hollosi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Balazs Dome
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | | | - Glen J. Weiss
- MiRanostics Consulting, Oro Valley, Arizona, United States of America
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- * E-mail:
| | - Zoltan Lohinai
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| |
Collapse
|
243
|
Yadav M, Chauhan NS. Microbiome therapeutics: exploring the present scenario and challenges. Gastroenterol Rep (Oxf) 2021; 10:goab046. [PMID: 35382166 PMCID: PMC8972995 DOI: 10.1093/gastro/goab046] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/11/2022] Open
Abstract
Human gut-microbiome explorations have enriched our understanding of microbial colonization, maturation, and dysbiosis in health-and-disease subsets. The enormous metabolic potential of gut microbes and their role in the maintenance of human health is emerging, with new avenues to use them as therapeutic agents to overcome human disorders. Microbiome therapeutics are aimed at engineering the gut microbiome using additive, subtractive, or modulatory therapy with an application of native or engineered microbes, antibiotics, bacteriophages, and bacteriocins. This approach could overcome the limitation of conventional therapeutics by providing personalized, harmonized, reliable, and sustainable treatment. Its huge economic potential has been shown in the global therapeutics market. Despite the therapeutic and economical potential, microbiome therapeutics is still in the developing stage and is facing various technical and administrative issues that require research attention. This review aims to address the current knowledge and landscape of microbiome therapeutics, provides an overview of existing health-and-disease applications, and discusses the potential future directions of microbiome modulations.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
244
|
Aragón-Vela J, Solis-Urra P, Ruiz-Ojeda FJ, Álvarez-Mercado AI, Olivares-Arancibia J, Plaza-Diaz J. Impact of Exercise on Gut Microbiota in Obesity. Nutrients 2021; 13:nu13113999. [PMID: 34836254 PMCID: PMC8624603 DOI: 10.3390/nu13113999] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Physical activity, exercise, or physical fitness are being studied as helpful nonpharmacological therapies to reduce signaling pathways related to inflammation. Studies describing changes in intestinal microbiota have stated that physical activity could increase the microbial variance and enhance the ratio of Firmicutes/Bacteroidetes, and both actions could neutralize the obesity progression and diminish body weight. The aim of this review is to provide an overview of the literature describing the relationship between physical activity profiles and gut microbiota and in obesity and some associated comorbidities. Promoting physical activity could support as a treatment to maintain the gut microbiota composition or to restore the balance toward an improvement of dysbiosis in obesity; however, these mechanisms need to be studied in more detail. The opportunity to control the microbiota by physical activity to improve health results and decrease obesity and related comorbidities is very attractive. Nevertheless, several incompletely answered questions need to be addressed before this strategy can be implemented.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Physiology, School of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
- Correspondence: (J.A.-V.); (J.P.-D.); Tel.: +34-958220319 (J.A.-V.); +34-958241599 (J.P.-D.)
| | - Patricio Solis-Urra
- PROFITH “PROmoting FITness and Health through Physical Activity” Research Group, Department of Physical Education and Sports, Faculty of Sports Science, University of Granada, 18071 Granada, Spain;
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile
| | - Francisco Javier Ruiz-Ojeda
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Neuherberg, 85764 Munich, Germany
| | - Ana Isabel Álvarez-Mercado
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Granada, Spain; (F.J.R.-O.); (A.I.Á.-M.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jorge Olivares-Arancibia
- Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile;
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Correspondence: (J.A.-V.); (J.P.-D.); Tel.: +34-958220319 (J.A.-V.); +34-958241599 (J.P.-D.)
| |
Collapse
|
245
|
The Relationship among Physical Activity, Intestinal Flora, and Cardiovascular Disease. Cardiovasc Ther 2021; 2021:3364418. [PMID: 34729078 PMCID: PMC8526197 DOI: 10.1155/2021/3364418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs), which are associated with high morbidity and mortality worldwide, include atherosclerosis (AS), hypertension, heart failure (HF), atrial fibrillation, and myocardial fibrosis. CVDs are influenced by the diversity, distribution, and metabolites of intestinal microflora, and their risk can be reduced through physical activity (PA) such as regular exercise. PA benefits the metabolic changes that occur in the gut microbiota (GM). The major metabolites of the GM influence pathogenesis of CVDs through various pathways. However, the relationship between PA and GM is less well understood. In this review, we discuss the impacts of different types of PA on intestinal microflora including the diversity, distribution, metabolites, and intestinal barrier function including intestinal permeability, with a focus on the mechanisms by which PA affects GM. We also discuss how GM influences CVDs. Finally, we summarize current research and knowledge on the effects of PA on CVD via regulation of the GM and intestinal function. More understanding of relevant relationship between PA and GM may provide hope for the prevention or treatment of CVDs. Furthermore, a better understanding of regulation of the GM and intestinal function may lead to novel diagnostic and therapeutic strategies, improving the clinical care of CVD patients.
Collapse
|
246
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
247
|
Moore TM, Terrazas A, Strumwasser AR, Lin AJ, Zhu X, Anand ATS, Nguyen CQ, Stiles L, Norheim F, Lang JM, Hui ST, Turcotte LP, Zhou Z. Effect of voluntary exercise upon the metabolic syndrome and gut microbiome composition in mice. Physiol Rep 2021; 9:e15068. [PMID: 34755487 PMCID: PMC8578881 DOI: 10.14814/phy2.15068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022] Open
Abstract
The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.
Collapse
Affiliation(s)
- Timothy M. Moore
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Anthony Terrazas
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Xiaopeng Zhu
- Division of Pediatric EndocrinologyDepartment of Pediatrics UCLA Children's Discovery and Innovation InstituteDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of Endocrinology and Metabolism. Zhongshan HospitalFudan UniversityShanghaiP.R.China
| | - Akshay T. S. Anand
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Frode Norheim
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Present address:
Department of NutritionFaculty of MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Jennifer M. Lang
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Simon T. Hui
- Division of CardiologyDepartment of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
248
|
Pohl A, Schünemann F, Bersiner K, Gehlert S. The Impact of Vegan and Vegetarian Diets on Physical Performance and Molecular Signaling in Skeletal Muscle. Nutrients 2021; 13:3884. [PMID: 34836139 PMCID: PMC8623732 DOI: 10.3390/nu13113884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Muscular adaptations can be triggered by exercise and diet. As vegan and vegetarian diets differ in nutrient composition compared to an omnivorous diet, a change in dietary regimen might alter physiological responses to physical exercise and influence physical performance. Mitochondria abundance, muscle capillary density, hemoglobin concentration, endothelial function, functional heart morphology and availability of carbohydrates affect endurance performance and can be influenced by diet. Based on these factors, a vegan and vegetarian diet possesses potentially advantageous properties for endurance performance. Properties of the contractile elements, muscle protein synthesis, the neuromuscular system and phosphagen availability affect strength performance and can also be influenced by diet. However, a vegan and vegetarian diet possesses potentially disadvantageous properties for strength performance. Current research has failed to demonstrate consistent differences of performance between diets but a trend towards improved performance after vegetarian and vegan diets for both endurance and strength exercise has been shown. Importantly, diet alters molecular signaling via leucine, creatine, DHA and EPA that directly modulates skeletal muscle adaptation. By changing the gut microbiome, diet can modulate signaling through the production of SFCA.
Collapse
Affiliation(s)
- Alexander Pohl
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Frederik Schünemann
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Käthe Bersiner
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
| | - Sebastian Gehlert
- Department of Biosciences of Sport Science, Institute of Sport Science, University of Hildesheim, 31141 Hildesheim, Germany; (F.S.); (K.B.); (S.G.)
- Department for Molecular and Cellular Sports Medicine, German Sports University Cologne, 50933 Cologne, Germany
| |
Collapse
|
249
|
Mehmood K, Moin A, Hussain T, Rizvi SMD, Gowda DV, Shakil S, Kamal MA. Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management? Folia Microbiol (Praha) 2021; 66:897-916. [PMID: 34699042 DOI: 10.1007/s12223-021-00926-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023]
Abstract
Recent advancement in manipulation techniques of gut microbiota either ex vivo or in situ has broadened its plausible applicability for treating various diseases including cardiovascular disease. Several reports suggested that altering gut microbiota composition is an effective way to deal with issues associated with managing cardiovascular diseases. However, actual translation of gut microbiota manipulation-based techniques into cardiovascular-therapeutic approach is still questionable. This review summarized the evidence on challenges, opportunities, recent development, and future prospects of gut microbiota manipulation for targeting cardiovascular diseases. Initially, issues associated with current cardiovascular diseases treatment strategy, association of gut microbiota with cardiovascular disease, and its influence on cardiovascular drugs were discussed, followed by applicability of gut microbiota manipulation as a cardiovascular disease intervention strategy along with its challenges and future prospects. Despite the fact that the gut microbiota is rugged, interventions like probiotics, prebiotics, synbiotics, fecal microbiota transplantation, fecal virome transplantation, antibiotics, diet changes, and exercises could manipulate it. Advanced techniques like administration of engineered bacteriophages and bacteria could also be employed. Intensive exploration revealed that if sufficiently controlled approach and proper monitoring were applied, gut microbiota could provide a compelling answer for cardiovascular therapy.
Collapse
Affiliation(s)
- Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia.,Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia.
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics 7 Peterlee Place, NSW, 2770, Hebersham, Australia.,Novel Global Community, Educational Foundation, Hebersham, Australia
| |
Collapse
|
250
|
Zhou M, Johnston LJ, Wu C, Ma X. Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34698581 DOI: 10.1080/10408398.2021.1986466] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the incidence of obesity keeps increasing in both adults and children worldwide, obesity and its complications remain major threatens to human health. Over the past decades, accumulating evidence has demonstrated the importance of microorganisms and their metabolites in the pathogenesis of obesity and related diseases. There also is a significant body of evidence validating the efficacy of microbial based therapies for managing various diseases. In this review, we collected the key information pertinent to obesity-related bacteria, fermentation substrates and major metabolites generated by studies involving humans and/or mice. We then briefly described the possible molecular mechanisms by which microorganisms cause or inhibit obesity with a focus on microbial metabolites. Lastly, we summarized the advantages and disadvantages of the utilization of probiotics, plant extracts, and exercise in controlling obesity. We speculated that new targets and combined approaches (e.g. diet combined with exercise) could lead to more precise prevention and/or alleviation of obesity in future clinical research implications.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|