201
|
Dikker S, Michalareas G, Oostrik M, Serafimaki A, Kahraman HM, Struiksma ME, Poeppel D. Crowdsourcing neuroscience: Inter-brain coupling during face-to-face interactions outside the laboratory. Neuroimage 2020; 227:117436. [PMID: 33039619 DOI: 10.1016/j.neuroimage.2020.117436] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/24/2022] Open
Abstract
When we feel connected or engaged during social behavior, are our brains in fact "in sync" in a formal, quantifiable sense? Most studies addressing this question use highly controlled tasks with homogenous subject pools. In an effort to take a more naturalistic approach, we collaborated with art institutions to crowdsource neuroscience data: Over the course of 5 years, we collected electroencephalogram (EEG) data from thousands of museum and festival visitors who volunteered to engage in a 10-min face-to-face interaction. Pairs of participants with various levels of familiarity sat inside the Mutual Wave Machine-an artistic neurofeedback installation that translates real-time correlations of each pair's EEG activity into light patterns. Because such inter-participant EEG correlations are prone to noise contamination, in subsequent offline analyses we computed inter-brain coupling using Imaginary Coherence and Projected Power Correlations, two synchrony metrics that are largely immune to instantaneous, noise-driven correlations. When applying these methods to two subsets of recorded data with the most consistent protocols, we found that pairs' trait empathy, social closeness, engagement, and social behavior (joint action and eye contact) consistently predicted the extent to which their brain activity became synchronized, most prominently in low alpha (~7-10 Hz) and beta (~20-22 Hz) oscillations. These findings support an account where shared engagement and joint action drive coupled neural activity and behavior during dynamic, naturalistic social interactions. To our knowledge, this work constitutes a first demonstration that an interdisciplinary, real-world, crowdsourcing neuroscience approach may provide a promising method to collect large, rich datasets pertaining to real-life face-to-face interactions. Additionally, it is a demonstration of how the general public can participate and engage in the scientific process outside of the laboratory. Institutions such as museums, galleries, or any other organization where the public actively engages out of self-motivation, can help facilitate this type of citizen science research, and support the collection of large datasets under scientifically controlled experimental conditions. To further enhance the public interest for the out-of-the-lab experimental approach, the data and results of this study are disseminated through a website tailored to the general public (wp.nyu.edu/mutualwavemachine).
Collapse
Affiliation(s)
- Suzanne Dikker
- Max Planck - NYU Center for Language, Music and Emotion, New York, USA; Department of Psychology, New York University, New York, USA; Department of Clinical Psychology, Free University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | - Marijn E Struiksma
- Department of Language and Communication, Utrecht University, Utrecht, The Netherlands
| | - David Poeppel
- Max Planck - NYU Center for Language, Music and Emotion, New York, USA; Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany; Department of Psychology, New York University, New York, USA
| |
Collapse
|
202
|
Roxburgh AD, White DJ, Cornwell BR. Anxious arousal alters prefrontal cortical control of stopping. Eur J Neurosci 2020; 55:2529-2541. [PMID: 32949060 DOI: 10.1111/ejn.14976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/29/2022]
Abstract
Anxiety heightens vigilance and stimulus-driven attention to the environment, which may in turn disrupt cognitive control processes such as response inhibition. How this unfolds at the neural level is unclear. Previous evidence implicates the right inferior frontal gyrus (IFG) as an important cortical node in both stimulus-driven attention and inhibitory control. Here we used magnetoencephalography (MEG) to investigate the neural mechanisms involved in the relationship between threat-induced anxiety and stopping during a stop-signal task, where a visual go signal was occasionally followed by an auditory stop signal. Healthy individuals (N = 18) performed the task during the threat of unpredictable shocks and safety to modulate anxious arousal. Behaviorally, we observed that stopping was impaired during threat (i.e. slower estimated stop-signal reaction times), indicating that anxious arousal weakens inhibitory control. MEG source analyses revealed that bilateral IFG and right dorsal prefrontal cortex showed increased beta-band activity (14-30 Hz) to the stop signal that varied as a function of successful stopping during nonanxious (safe) conditions only. Moreover, peak beta-band responses from right IFG were inversely correlated with stopping efficiency during nonanxious conditions. These findings support theoretical claims that beta oscillations function to maintain the current sensorimotor state, and that the lack of differential beta-band activity in prefrontal cortices underlies anxiety-related deficits in inhibitory control. We specifically argue that altered right IFG functioning might directly link impaired cognitive control to heightened stimulus-driven responding in anxiety states.
Collapse
Affiliation(s)
- Ariel D Roxburgh
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Vic., Australia
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Vic., Australia
| | - Brian R Cornwell
- Centre for Mental Health, Swinburne University of Technology, Hawthorn, Vic., Australia
| |
Collapse
|
203
|
García-Monge A, Rodríguez-Navarro H, González-Calvo G, Bores-García D. Brain Activity during Different Throwing Games: EEG Exploratory Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6796. [PMID: 32957731 PMCID: PMC7559334 DOI: 10.3390/ijerph17186796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/16/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this study is to explore the differences in brain activity in various types of throwing games by making encephalographic records. Three conditions of throwing games were compared looking for significant differences (simple throwing, throwing to a goal, and simultaneous throwing with another player). After signal processing, power spectral densities were compared through variance analysis (p ≤ 0.001). Significant differences were found especially in high-beta oscillations (22-30 Hz). "Goal" and "Simultaneous" throwing conditions show significantly higher values than those shown for throws without opponent. This can be explained by the higher demand for motor control and the higher arousal in competition situations. On the other hand, the high-beta records of the "Goal" condition are significantly higher than those of the "Simultaneous" throwing, which could be understood from the association of the beta waves with decision-making processes. These results support the difference in brain activity during similar games. This has several implications: opening up a path to study the effects of each specific game on brain activity and calling into question the transfer of research findings on animal play to all types of human play.
Collapse
Affiliation(s)
- Alfonso García-Monge
- Department of Didactics of Musical, Artistic and Body Expression, Faculty of Education of Valladolid, University of Valladolid, 47011 Valladolid, Spain;
| | - Henar Rodríguez-Navarro
- Department of Pedagogy, Faculty of Education of Valladolid, University of Valladolid, 47011 Valladolid, Spain;
| | - Gustavo González-Calvo
- Department of Didactics of Musical, Artistic and Body Expression, Faculty of Education of Palencia, University of Valladolid, 34004 Palencia, Spain;
| | - Daniel Bores-García
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, 28922 Madrid, Spain
| |
Collapse
|
204
|
Nested oscillations and brain connectivity during sequential stages of feature-based attention. Neuroimage 2020; 223:117354. [PMID: 32916284 DOI: 10.1016/j.neuroimage.2020.117354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
Brain mechanisms of visual selective attention involve both local and network-level activity changes at specific oscillatory rhythms, but their interplay remains poorly explored. Here, we investigate anticipatory and reactive effects of feature-based attention using separate fMRI and EEG recordings, while participants attended to one of two spatially overlapping visual features (motion and orientation). We focused on EEG source analysis of local neuronal rhythms and nested oscillations and on graph analysis of connectivity changes in a network of fMRI-defined regions of interest, and characterized a cascade of attentional effects at multiple spatial scales. We discuss how the results may reconcile several theories of selective attention, by showing how β rhythms support anticipatory information routing through increased network efficiency, while reactive α-band desynchronization patterns and increased α-γ coupling in task-specific sensory areas mediate stimulus-evoked processing of task-relevant signals.
Collapse
|
205
|
Arnts H, van Erp WS, Boon LI, Bosman CA, Admiraal MM, Schrantee A, Pennartz CMA, Schuurman R, Stam CJ, van Rootselaar AF, Hillebrand A, van den Munckhof P. Awakening after a sleeping pill: Restoring functional brain networks after severe brain injury. Cortex 2020; 132:135-146. [PMID: 32979847 DOI: 10.1016/j.cortex.2020.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
Some patients with severe brain injury show short-term neurological improvements, such as recovery of consciousness, motor function, or speech after administering zolpidem, a GABA receptor agonist. The working mechanism of this paradoxical phenomenon remains unknown. In this study, we used electroencephalography and magnetoencephalography to investigate a spectacular zolpidem-induced awakening, including the recovery of functional communication and the ability to walk in a patient with severe hypoxic-ischemic brain injury. We show that cognitive deficits, speech loss, and motor impairments after severe brain injury are associated with stronger beta band connectivity throughout the brain and suggest that neurological recovery after zolpidem occurs with the restoration of beta band connectivity. This exploratory work proposes an essential role for beta rhythms in goal-directed behavior and cognition. It advocates further fundamental and clinical research on the role of increased beta band connectivity in the development of neurological deficits after severe brain injury.
Collapse
Affiliation(s)
- Hisse Arnts
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - Willemijn S van Erp
- Department of Primary and Community Care, Centre for Family Medicine, Geriatric Care and Public Health, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Lennard I Boon
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Conrado A Bosman
- Cognitive and Systems Neuroscience Group, Swammerdam Institute, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Marjolein M Admiraal
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Amsterdam UMC, University of Amsterdam, Department of Radiology and Nuclear Medicine, Amsterdam, the Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Rick Schuurman
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Anne-Fleur van Rootselaar
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Pepijn van den Munckhof
- Amsterdam UMC, University of Amsterdam, Department of Neurosurgery, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
206
|
Noguchi Y, Kakigi R. Temporal codes of visual working memory in the human cerebral cortex: Brain rhythms associated with high memory capacity. Neuroimage 2020; 222:117294. [PMID: 32835818 DOI: 10.1016/j.neuroimage.2020.117294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Visual working memory (vWM) is an important ability required for various cognitive tasks although its neural underpinnings remain unclear. While many studies have focused on theta (4-7 Hz) and gamma (> 30 Hz) rhythms as a substrate of vWM, here we show that temporal signals embedded in alpha (8-12 Hz) and beta (13-30 Hz) bands can be a good predictor of vWM capacity. Neural activity of healthy human participants was recorded with magnetoencephalography when they performed a classical vWM task (change detection). We analyzed changes in inter-peak intervals (IPIs) of oscillatory signals along with an increase in WM load (a number of to-be-memorized items, 1-6). Results showed a load-dependent reduction of IPIs in the parietal and frontal regions, indicating that alpha/beta rhythms became faster when multiple items were stored in vWM. Furthermore, this reduction in IPIs was positively correlated with individual vWM capacity, especially in the frontal cortex. Those results indicate that vWM is represented as a change in oscillation frequency in the human cerebral cortex.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| |
Collapse
|
207
|
Tatti E, Ricci S, Nelson AB, Mathew D, Chen H, Quartarone A, Cirelli C, Tononi G, Ghilardi MF. Prior Practice Affects Movement-Related Beta Modulation and Quiet Wake Restores It to Baseline. Front Syst Neurosci 2020; 14:61. [PMID: 33013332 PMCID: PMC7462015 DOI: 10.3389/fnsys.2020.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
Beta oscillations (13.5−25 Hz) over the sensorimotor areas are characterized by a power decrease during movement execution (event-related desynchronization, ERD) and a sharp rebound after the movement end (event-related synchronization, ERS). In previous studies, we demonstrated that movement-related beta modulation depth (peak ERS-ERD) during reaching increases within 1-h practice. This increase may represent plasticity processes within the sensorimotor network. If so, beta modulation during a reaching test should be affected by previous learning activity that engages the sensorimotor system but not by learning involving other systems. We thus recorded high-density EEG activity in a group of healthy subjects performing three 45-min blocks of motor adaptation task to a visually rotated display (ROT) and in another performing three blocks of visual sequence-learning (VSEQ). Each block of either ROT or VSEQ was followed by a simple reaching test (mov) without rotation. We found that beta modulation depth increased with practice across mov tests. However, such an increase was greater in the group performing ROT over both the left and frontal areas previously involved in ROT. Importantly, beta modulation values returned to baseline values after a 90-min of either nap or quiet wake. These results show that previous practice leaves a trace in movement-related beta modulation and therefore such increases are cumulative. Furthermore, as sleep is not necessary to bring beta modulation values to baseline, they could reflect local increases of neuronal activity and decrease of energy and supplies.
Collapse
Affiliation(s)
- Elisa Tatti
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Serena Ricci
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Aaron B Nelson
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Dave Mathew
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Henry Chen
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| | - Angelo Quartarone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Maria Felice Ghilardi
- CUNY School of Medicine, The City University of New York, New York, NY, United States
| |
Collapse
|
208
|
Nguyen LT, Marini F, Shende SA, Llano DA, Mudar RA. Investigating EEG theta and alpha oscillations as measures of value-directed strategic processing in cognitively normal younger and older adults. Behav Brain Res 2020; 391:112702. [PMID: 32461134 DOI: 10.1016/j.bbr.2020.112702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/10/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Value-directed strategic processing is an ability that appears to be relatively preserved with aging, but the neurophysiological mechanisms underlying strategic processing in older adults are not well understood. The current study examined age-related spectral power differences in EEG oscillations linked to processing of high-value versus low-value information in a value-directed strategic processing task in 24 younger adults (mean age: 22.4 ± 1.2 years) and 24 older adults (mean age: 63.2 ± 6.4 years). Both groups exhibited comparable strategic processing ability behaviorally with preferential recall of high- compared to low-value words. Both groups exhibited comparable theta band power with greater synchronization for low- compared to high-value words, but age-related differences in processing were noted in alpha band power. Older adults showed more prolonged alpha desynchronization for high- compared to low-value words relative to younger adults. This neurophysiological modulation in the alpha band in older adults might reflect a compensatory neural mechanism or increased effort linked to selective engagement of neural resources, allowing them to perform similarly to younger adults behaviorally on a value-directed strategic processing task.
Collapse
Affiliation(s)
- Lydia T Nguyen
- Neuroscience Program, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States
| | - Francesco Marini
- Swartz Center for Computational Neuroscience, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Shraddha A Shende
- Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, IL 61820, United States
| | - Daniel A Llano
- Neuroscience Program, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 South Goodwin Avenue, Urbana, IL 61801, United States; Beckman Institute for Advanced Science and Technology, 405 North Mathews Avenue, Urbana, IL 61801, United States
| | - Raksha A Mudar
- Neuroscience Program, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, 901 South 6th Street, Champaign, IL 61820, United States.
| |
Collapse
|
209
|
Abstract
Abstract
Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception–action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de)compositional meaning. The model's architecture—a multidimensional coordinate system based on neurophysiological models of sensory processing—proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations, and moves toward unifying basic insights from linguistics and psycholinguistics with the currency of neural computation.
Collapse
Affiliation(s)
- Andrea E. Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
210
|
Forschack N, Nierhaus T, Müller MM, Villringer A. Dissociable neural correlates of stimulation intensity and detection in somatosensation. Neuroimage 2020; 217:116908. [DOI: 10.1016/j.neuroimage.2020.116908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/19/2022] Open
|
211
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
212
|
Capizzi M, Ambrosini E, Arbula S, Vallesi A. Brain oscillatory activity associated with switch and mixing costs during reactive control. Psychophysiology 2020; 57:e13642. [DOI: 10.1111/psyp.13642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/26/2022]
Affiliation(s)
| | - Ettore Ambrosini
- Department of Neuroscience & Padova Neuroscience Center University of Padova Padova Italy
- Department of General Psychology University of Padova Padova Italy
| | | | - Antonino Vallesi
- Department of Neuroscience & Padova Neuroscience Center University of Padova Padova Italy
- Brain Imaging and Neural Dynamics Research Group IRCCS San Camillo Hospital Venice Italy
| |
Collapse
|
213
|
Maksimenko VA, Kuc A, Frolov NS, Khramova MV, Pisarchik AN, Hramov AE. Dissociating Cognitive Processes During Ambiguous Information Processing in Perceptual Decision-Making. Front Behav Neurosci 2020; 14:95. [PMID: 32754018 PMCID: PMC7370842 DOI: 10.3389/fnbeh.2020.00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Decision-making requires the accumulation of sensory evidence. However, in everyday life, sensory information is often ambiguous and contains decision-irrelevant features. This means that the brain must disambiguate sensory input and extract decision-relevant features. Sensory information processing and decision-making represent two subsequent stages of the perceptual decision-making process. While sensory processing relies on occipito-parietal neuronal activity during the earlier time window, decision-making lasts for a prolonged time, involving parietal and frontal areas. Although perceptual decision-making is being actively studied, its neuronal mechanisms under ambiguous sensory evidence lack detailed consideration. Here, we analyzed the brain activity of subjects accomplishing a perceptual decision-making task involving the classification of ambiguous stimuli. We demonstrated that ambiguity induced high frontal θ-band power for 0.15 s post-stimulus onset, indicating increased reliance on top-down processes, such as expectations and memory. Ambiguous processing also caused high occipito-parietal β-band power for 0.2 s and high fronto-parietal β-power for 0.35–0.42 s post-stimulus onset. We supposed that the former component reflected the disambiguation process while the latter reflected the decision-making phase. Our findings complemented existing knowledge about ambiguous perception by providing additional information regarding the temporal discrepancy between the different cognitive processes during perceptual decision-making.
Collapse
Affiliation(s)
- Vladimir A Maksimenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Center for Technologies in Robotics and Mechatronics Component, Innopolis University, Innopolis, Russia
| | - Alexander Kuc
- Center for Technologies in Robotics and Mechatronics Component, Innopolis University, Innopolis, Russia
| | - Nikita S Frolov
- Center for Technologies in Robotics and Mechatronics Component, Innopolis University, Innopolis, Russia
| | - Marina V Khramova
- Faculty of Information Technologies, Saratov State University, Saratov, Russia
| | - Alexander N Pisarchik
- Center for Technologies in Robotics and Mechatronics Component, Innopolis University, Innopolis, Russia.,Center for Biomedical Technology, Technical University of Madrid, Madrid, Spain
| | - Alexander E Hramov
- Center for Technologies in Robotics and Mechatronics Component, Innopolis University, Innopolis, Russia
| |
Collapse
|
214
|
Guan Y, Keil A, Farrar MJ. Electrophysiological dynamics of false belief understanding and complementation syntax in school-aged children: Oscillatory brain activity and event-related potentials. J Exp Child Psychol 2020; 198:104905. [PMID: 32623146 DOI: 10.1016/j.jecp.2020.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 10/23/2022]
Abstract
A large body of research in developmental psychology has been devoted to the ongoing debate over which aspects of language are fundamental to false belief understanding (FBU). A key proposal from de Villiers and colleagues proposes the essential role of complementation syntax in FBU development. The current study, using scalp electroencephalography (EEG), addressed one opposing hypothesis purporting that complementation is redundant to FBU by characterizing the electrophysiological correlates of FBU and complementation syntax in school-age children. Time-frequency decomposition showed robust parieto-occipital low beta (12-16 Hz) power reduction in the belief versus complementation conditions. This divergence was also supported by event-related potentials (ERPs), with parieto-occipital late slow waves around 600 to 900 ms distinguishing belief and complementation conditions. The false belief condition generated the lowest behavioral response accuracy, suggesting that it is the most challenging condition. Together, the current findings provide evidence showing that complementation is not redundant to FBU.
Collapse
Affiliation(s)
- Yao Guan
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA.
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - M Jeffrey Farrar
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
215
|
Fellner MC, Waldhauser GT, Axmacher N. Tracking Selective Rehearsal and Active Inhibition of Memory Traces in Directed Forgetting. Curr Biol 2020; 30:2638-2644.e4. [DOI: 10.1016/j.cub.2020.04.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
|
216
|
Ortiz-Mantilla S, Realpe-Bonilla T, Benasich AA. Early Interactive Acoustic Experience with Non-speech Generalizes to Speech and Confers a Syllabic Processing Advantage at 9 Months. Cereb Cortex 2020; 29:1789-1801. [PMID: 30722000 PMCID: PMC6418390 DOI: 10.1093/cercor/bhz001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
During early development, the infant brain is highly plastic and sensory experiences modulate emerging cortical maps, enhancing processing efficiency as infants set up key linguistic precursors. Early interactive acoustic experience (IAE) with spectrotemporally-modulated non-speech has been shown to facilitate optimal acoustic processing and generalizes to novel non-speech sounds at 7-months-of-age. Here we demonstrate that effects of non-speech IAE endure well beyond the immediate training period and robustly generalize to speech processing. Infants who received non-speech IAE differed at 9-months-of-age from both naïve controls and those with only passive acoustic exposure, demonstrating broad modulation of oscillatory dynamics. For the standard syllable, increased high-gamma (>70 Hz) power within auditory cortices indicates that IAE fosters native speech processing, facilitating establishment of phonemic representations. The higher left beta power seen may reflect increased linking of sensory information and corresponding articulatory patterns, while bilateral decreases in theta power suggest more mature automatized speech processing, as less neuronal resources were allocated to process syllabic information. For the deviant syllable, left-lateralized gamma (<70 Hz) enhancement suggests IAE promotes phonemic-related discrimination abilities. Theta power increases in right auditory cortex, known for favoring slow-rate decoding, implies IAE facilitates the more demanding processing of the sporadic deviant syllable.
Collapse
Affiliation(s)
- Silvia Ortiz-Mantilla
- Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, USA
| | - Teresa Realpe-Bonilla
- Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, USA
| | - April A Benasich
- Center for Molecular & Behavioral Neuroscience, Rutgers University-Newark, 197 University Avenue, Newark, NJ, USA
| |
Collapse
|
217
|
Brain dynamics for confidence-weighted learning. PLoS Comput Biol 2020; 16:e1007935. [PMID: 32484806 PMCID: PMC7292419 DOI: 10.1371/journal.pcbi.1007935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/12/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Learning in a changing, uncertain environment is a difficult problem. A popular solution is to predict future observations and then use surprising outcomes to update those predictions. However, humans also have a sense of confidence that characterizes the precision of their predictions. Bayesian models use a confidence-weighting principle to regulate learning: for a given surprise, the update is smaller when the confidence about the prediction was higher. Prior behavioral evidence indicates that human learning adheres to this confidence-weighting principle. Here, we explored the human brain dynamics sub-tending the confidence-weighting of learning using magneto-encephalography (MEG). During our volatile probability learning task, subjects’ confidence reports conformed with Bayesian inference. MEG revealed several stimulus-evoked brain responses whose amplitude reflected surprise, and some of them were further shaped by confidence: surprise amplified the stimulus-evoked response whereas confidence dampened it. Confidence about predictions also modulated several aspects of the brain state: pupil-linked arousal and beta-range (15–30 Hz) oscillations. The brain state in turn modulated specific stimulus-evoked surprise responses following the confidence-weighting principle. Our results thus indicate that there exist, in the human brain, signals reflecting surprise that are dampened by confidence in a way that is appropriate for learning according to Bayesian inference. They also suggest a mechanism for confidence-weighted learning: confidence about predictions would modulate intrinsic properties of the brain state to amplify or dampen surprise responses evoked by discrepant observations. Learning in a changing and uncertain world is difficult. In this context, facing a discrepancy between my current belief and new observations may reflect random fluctuations (e.g. my commute train is unexpectedly late, but it happens sometimes), if so, I should ignore this discrepancy and not change erratically my belief. However, this discrepancy could also denote a profound change (e.g. the train company changed and is less reliable), in this case, I should promptly revise my current belief. Human learning is adaptive: we change how much we learn from new observations, in particular, we promote flexibility when facing profound changes. A mathematical analysis of the problem shows that we should increase flexibility when the confidence about our current belief is low, which occurs when a change is suspected. Here, I show that human learners entertain rational confidence levels during the learning of changing probabilities. This confidence modulates intrinsic properties of the brain state (oscillatory activity and neuromodulation) which in turn amplifies or reduces, depending on whether confidence is low or high, the neural responses to discrepant observations. This confidence-weighting mechanism could underpin adaptive learning.
Collapse
|
218
|
Alzueta E, Melcón M, Jensen O, Capilla A. The 'Narcissus Effect': Top-down alpha-beta band modulation of face-related brain areas during self-face processing. Neuroimage 2020; 213:116754. [PMID: 32194280 PMCID: PMC7181170 DOI: 10.1016/j.neuroimage.2020.116754] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022] Open
Abstract
Self-related information, such as one's own face, is prioritized by our cognitive system. Whilst recent theoretical developments suggest that this is achieved by an interplay between bottom-up and top-down attentional mechanisms, their underlying neural dynamics are still poorly understood. Furthermore, it is still matter of discussion as to whether these attentional mechanisms are truly self-specific or instead driven by face familiarity. To address these questions, we used EEG to record the brain activity of twenty-five healthy participants whilst identifying their own face, a friend's face and a stranger's face. Time-frequency analysis revealed a greater sustained power decrease in the alpha and beta frequency bands for the self-face, which emerged at late latencies and was maintained even when the face was no longer present. Critically, source analysis showed that this activity was generated in key brain regions for self-face recognition, such as the fusiform gyrus. As in the Myth of Narcissus, our results indicate that one's own face might have the potential to hijack attention. We suggest that this effect is specific to the self and driven by a top-down attentional control mechanism, which might facilitate further processing of personally relevant events.
Collapse
Affiliation(s)
- Elisabet Alzueta
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain.
| | - María Melcón
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Almudena Capilla
- Departamento de Psicología Biológica y de la Salud, Facultad de Psicología, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
219
|
Al‐Ozzi TM, Botero-Posada LF, Lopez Rios AL, Hutchison WD. Single unit and beta oscillatory activities in subthalamic nucleus are modulated during visual choice preference. Eur J Neurosci 2020; 53:2220-2233. [DOI: 10.1111/ejn.14750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/31/2020] [Accepted: 04/11/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Tameem M. Al‐Ozzi
- Department of Physiology University of Toronto Toronto ON Canada
- Department of Surgery University of Toronto Toronto ON Canada
- Krembil Research Institute Toronto ON Canada
| | - Luis F. Botero-Posada
- Hospital Universitario y Centros Especializados de Saint Vicente Fundacion Rionegro/Medellin Colombia
| | - Adriana L. Lopez Rios
- Hospital Universitario y Centros Especializados de Saint Vicente Fundacion Rionegro/Medellin Colombia
| | - William D. Hutchison
- Department of Physiology University of Toronto Toronto ON Canada
- Department of Surgery University of Toronto Toronto ON Canada
- Krembil Research Institute Toronto ON Canada
- Hospital Universitario y Centros Especializados de Saint Vicente Fundacion Rionegro/Medellin Colombia
- Division of Neurosurgery Toronto Western Hospital – University Health Network Toronto ON Canada
| |
Collapse
|
220
|
Haegens S. Entrainment revisited: a commentary on. LANGUAGE, COGNITION AND NEUROSCIENCE 2020; 35:1119-1123. [PMID: 33718510 PMCID: PMC7954236 DOI: 10.1080/23273798.2020.1758335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Saskia Haegens
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
221
|
Common and distinct lateralised patterns of neural coupling during focused attention, open monitoring and loving kindness meditation. Sci Rep 2020; 10:7430. [PMID: 32366919 PMCID: PMC7198563 DOI: 10.1038/s41598-020-64324-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/13/2020] [Indexed: 11/30/2022] Open
Abstract
Meditation has been integrated into different therapeutic interventions. To inform the evidence-based selection of specific meditation types it is crucial to understand the neural processes associated with different meditation practices. Here we explore commonalities and differences in electroencephalographic oscillatory spatial synchronisation patterns across three important meditation types. Highly experienced meditators engaged in focused attention, open monitoring, and loving kindness meditation. Improving on previous research, our approach avoids comparisons between groups that limited previous findings, while ensuring that the meditation states are reliably established. Employing a novel measure of neural coupling – the imaginary part of EEG coherence – the study revealed that all meditation conditions displayed a common connectivity pattern that is characterised by increased connectivity of (a) broadly distributed delta networks, (b) left-hemispheric theta networks with a local integrating posterior focus, and (c) right-hemispheric alpha networks, with a local integrating parieto-occipital focus. Furthermore, each meditation state also expressed specific synchronisation patterns differentially recruiting left- or right-lateralised beta networks. These observations provide evidence that in addition to global patterns, frequency-specific inter-hemispheric asymmetry is one major feature of meditation, and that mental processes specific to each meditation type are also supported by lateralised networks from fast-frequency bands.
Collapse
|
222
|
Scaltritti M, Suitner C, Peressotti F. Language and motor processing in reading and typing: Insights from beta-frequency band power modulations. BRAIN AND LANGUAGE 2020; 204:104758. [PMID: 32032864 DOI: 10.1016/j.bandl.2020.104758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Power modulations of the EEG activity within the beta-frequency band were investigated across silent-reading and copy-typing tasks featuring emotionally negative and neutral words in order to clarify the interplay between language and motor processing. In reading, a single desynchronization surfaced 200-600 ms after target presentation, with a stronger power-decrease in lower beta frequencies for neutral compared to negative words. The typing task revealed two distinct desynchronizations. A first one surfaced within spatio-temporal coordinates closely resembling those of the desynchronization observed in the reading task, thus pointing towards a common origin at the level of linguistic processing of the input word stimuli. Additionally, a second motor-related desynchronization surfaced during the typed response, from 700 to 2000 ms after stimulus onset. Here, words' emotional connotation affected the higher beta band. The comparison between tasks thus suggests that different beta desynchronizations reflect distinct EEG landmarks for language and motor processing. Further, the effect of emotional connotation on the motor-related desynchronization of the typing task suggests that language processing can propagate its influence onto the stage of motor response execution, pointing against a serial flow of information from language onto motor processing.
Collapse
Affiliation(s)
- Michele Scaltritti
- Dipartimento di Psicologia e Scienze Cognitive, Università degli Studi di Trento, Corso Bettini 84, 38068 Rovereto, TN, Italy; Dipartimento di Psicologia dello Sviluppo e della Socializzazione, Università degli Studi di Padova, Via Venezia 8, 35131 Padova, PD, Italy.
| | - Caterina Suitner
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione, Università degli Studi di Padova, Via Venezia 8, 35131 Padova, PD, Italy.
| | - Francesca Peressotti
- Dipartimento di Psicologia dello Sviluppo e della Socializzazione, Università degli Studi di Padova, Via Venezia 8, 35131 Padova, PD, Italy.
| |
Collapse
|
223
|
Wang Y, Cheung H, Yee LTS, Tse CY. Feedback-related negativity (FRN) and theta oscillations: Different feedback signals for non-conform and conform decisions. Biol Psychol 2020; 153:107880. [DOI: 10.1016/j.biopsycho.2020.107880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/28/2020] [Accepted: 03/04/2020] [Indexed: 01/21/2023]
|
224
|
Pinheiro DJLL, Oliveira LF, Souza INO, Brogin JAF, Bueno DD, Miranda IA, Da Poian AT, Ferreira ST, Figueiredo CP, Clarke JR, Cavalheiro EA, Faber J. Modulation in phase and frequency of neural oscillations during epileptiform activity induced by neonatal Zika virus infection in mice. Sci Rep 2020; 10:6763. [PMID: 32317689 PMCID: PMC7174408 DOI: 10.1038/s41598-020-63685-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Modulation of brain activity is one of the main mechanisms capable of demonstrating the synchronization dynamics of neural oscillations. In epilepsy, modulation is a key concept since seizures essentially result from neural hypersynchronization and hyperexcitability. In this study, we have introduced a time-dependent index based on the Kullback-Leibler divergence to quantify the effects of phase and frequency modulations of neural oscillations in neonatal mice exhibiting epileptiform activity induced by Zika virus (ZIKV) infection. Through this index, we demonstrate that fast oscillations (gamma and beta 2) are the more susceptible modulated rhythms in terms of phase, during seizures, whereas slow waves (delta and theta) mainly undergo changes in frequency. The index also allowed detection of specific patterns associated with the interdependent modulation of phase and frequency in neural activity. Furthermore, by comparing ZIKV modulations with the general computational model Epileptors, we verify different signatures related to the brain rhythms modulation in phase and frequency. These findings instigate new studies on the effects of ZIKV infection on neuronal networks from electrophysiological activities, and how different mechanisms can trigger epilepsy.
Collapse
Affiliation(s)
- Daniel J L L Pinheiro
- Department of Neurology and Neurosurgery - Paulista School of Medicine - Federal University of São Paulo (UNIFESP), São Paulo, Brazil.
| | - Leandro F Oliveira
- Department of Neurology and Neurosurgery - Paulista School of Medicine - Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Isis N O Souza
- School of Pharmacy - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21944-590, Brazil
| | - João A Ferres Brogin
- Department of Mechanical Engineering - São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| | - Douglas D Bueno
- Department of Mathematics - São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| | - Iranaia Assunção Miranda
- Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21944-590, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21944-590, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21944-590, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21944-590, Brazil
| | - Claudia P Figueiredo
- School of Pharmacy - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21944-590, Brazil
| | - Julia R Clarke
- School of Pharmacy - Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, 21944-590, Brazil
| | - Esper A Cavalheiro
- Department of Neurology and Neurosurgery - Paulista School of Medicine - Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Jean Faber
- Department of Neurology and Neurosurgery - Paulista School of Medicine - Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Nucleus of Neuroengineering and Computation - Institute of Science and Technology - Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
225
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
226
|
Micheli C, Schepers IM, Ozker M, Yoshor D, Beauchamp MS, Rieger JW. Electrocorticography reveals continuous auditory and visual speech tracking in temporal and occipital cortex. Eur J Neurosci 2020; 51:1364-1376. [PMID: 29888819 PMCID: PMC6289876 DOI: 10.1111/ejn.13992] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022]
Abstract
During natural speech perception, humans must parse temporally continuous auditory and visual speech signals into sequences of words. However, most studies of speech perception present only single words or syllables. We used electrocorticography (subdural electrodes implanted on the brains of epileptic patients) to investigate the neural mechanisms for processing continuous audiovisual speech signals consisting of individual sentences. Using partial correlation analysis, we found that posterior superior temporal gyrus (pSTG) and medial occipital cortex tracked both the auditory and the visual speech envelopes. These same regions, as well as inferior temporal cortex, responded more strongly to a dynamic video of a talking face compared to auditory speech paired with a static face. Occipital cortex and pSTG carry temporal information about both auditory and visual speech dynamics. Visual speech tracking in pSTG may be a mechanism for enhancing perception of degraded auditory speech.
Collapse
Affiliation(s)
- Cristiano Micheli
- Department of Psychology, Carl von Ossietzky University, Oldenburg, Germany
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Inga M Schepers
- Department of Psychology, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| | - Müge Ozker
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Daniel Yoshor
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | | | - Jochem W Rieger
- Department of Psychology, Carl von Ossietzky University, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
227
|
Wokke ME, Achoui D, Cleeremans A. Action information contributes to metacognitive decision-making. Sci Rep 2020; 10:3632. [PMID: 32107455 PMCID: PMC7046793 DOI: 10.1038/s41598-020-60382-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/10/2020] [Indexed: 11/08/2022] Open
Abstract
Metacognitive abilities allow us to adjust ongoing behavior and modify future decisions in the absence of external feedback. Although metacognition is critical in many daily life settings, it remains unclear what information is actually being monitored and what kind of information is being used for metacognitive decisions. In the present study, we investigated whether response information connected to perceptual events contribute to metacognitive decision-making. Therefore, we recorded EEG signals during a perceptual color discrimination task while participants were asked to provide an estimate about the quality of their decision on each trial. Critically, the moment participants provided their confidence judgments varied across conditions, thereby changing the amount of action information (e.g., response competition or response fluency) available for metacognitive decisions. Results from three experiments demonstrate that metacognitive performance improved when first-order action information was available at the moment metacognitive decisions about the perceptual task had to be provided. This behavioral effect was accompanied by enhanced functional connectivity (beta phase synchrony) between motor areas and prefrontal regions, exclusively observed during metacognitive decision-making. Our findings demonstrate that action information contributes to metacognitive decision-making, thereby painting a picture of metacognition as a process that integrates sensory evidence and information about our interactions with the world.
Collapse
Affiliation(s)
- Martijn E Wokke
- Programs in Psychology and Biology, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Psychology, The University of Cambridge, Cambridge, UK.
- Consciousness, Cognition, and Computation Group, Université Libre de Bruxelles, 1050, Bruxelles, Belgium.
| | - Dalila Achoui
- Consciousness, Cognition, and Computation Group, Université Libre de Bruxelles, 1050, Bruxelles, Belgium
- Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, 1050, Bruxelles, Belgium
- Neuroscience Institute, Université Libre de Bruxelles, 1050, Bruxelles, Belgium
| | - Axel Cleeremans
- Consciousness, Cognition, and Computation Group, Université Libre de Bruxelles, 1050, Bruxelles, Belgium
- Center for Research in Cognition and Neurosciences, Université Libre de Bruxelles, 1050, Bruxelles, Belgium
- Neuroscience Institute, Université Libre de Bruxelles, 1050, Bruxelles, Belgium
| |
Collapse
|
228
|
Núñez P, Poza J, Gómez C, Barroso-García V, Maturana-Candelas A, Tola-Arribas MA, Cano M, Hornero R. Characterization of the dynamic behavior of neural activity in Alzheimer's disease: exploring the non-stationarity and recurrence structure of EEG resting-state activity. J Neural Eng 2020; 17:016071. [PMID: 32000144 DOI: 10.1088/1741-2552/ab71e9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (AD) have been shown to induce perturbations to normal neuronal behavior and disrupt neuronal networks. Recent work suggests that the dynamic properties of resting-state neuronal activity could be affected by MCI and AD-induced neurodegeneration. The aim of the study was to characterize these properties from different perspectives: (i) using the Kullback-Leibler divergence (KLD), a measure of non-stationarity derived from the continuous wavelet transform; and (ii) using the entropy of the recurrence point density ([Formula: see text]) and the median of the recurrence point density ([Formula: see text]), two novel metrics based on recurrence quantification analysis. APPROACH KLD, [Formula: see text] and [Formula: see text] were computed for 49 patients with dementia due to AD, 66 patients with MCI due to AD and 43 cognitively healthy controls from 60 s electroencephalographic (EEG) recordings with a 10 s sliding window with no overlap. Afterwards, we tested whether the measures reflected alterations to normal neuronal activity induced by MCI and AD. MAIN RESULTS Our results showed that frequency-dependent alterations to normal dynamic behavior can be found in patients with MCI and AD, both in non-stationarity and recurrence structure. Patients with MCI showed signs of patterns of abnormal state recurrence in the theta (4-8 Hz) and beta (13-30 Hz) frequency bands that became more marked in AD. Moreover, abnormal non-stationarity patterns were found in MCI patients, but not in patients with AD in delta (1-4 Hz), alpha (8-13 Hz), and gamma (30-70 Hz). SIGNIFICANCE The alterations in normal levels of non-stationarity in patients with MCI suggest an initial increase in cortical activity during the development of AD. This increase could possibly be due to an impairment in neuronal inhibition that is not present during later stages. MCI and AD induce alterations to the recurrence structure of cortical activity, suggesting that normal state switching during rest may be affected by these pathologies.
Collapse
Affiliation(s)
- Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina CIBER-BBN, Valladolid, Spain. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Specialized medial prefrontal-amygdala coordination in other-regarding decision preference. Nat Neurosci 2020; 23:565-574. [PMID: 32094970 PMCID: PMC7131896 DOI: 10.1038/s41593-020-0593-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/17/2020] [Indexed: 01/26/2023]
Abstract
Social behaviors recruit multiple cognitive operations that require interactions between cortical and subcortical brain regions. Interareal synchrony may facilitate such interactions between cortical and subcortical neural populations. However, it remains unknown how neurons from different nodes in the social brain network interact during social decision-making. Here, we investigated oscillatory neuronal interactions between the basolateral amygdala and the rostral anterior cingulate gyrus of the medial prefrontal cortex while monkeys expressed context-dependent positive or negative other-regarding preference (ORP), where decisions impacted the reward received by another monkey. Synchronization between the two nodes was enhanced for positive ORP, but suppressed for negative ORP. These interactions occurred in beta and gamma frequency bands depending on the area contributing spikes, exhibited a specific directionality of information flow associated with positive ORP, and could be used to decode social decisions. These findings suggest that specialized coordination in the medial prefrontal-amygdala network underlies social-decision preference.
Collapse
|
230
|
Fernandez Rojas R, Debie E, Fidock J, Barlow M, Kasmarik K, Anavatti S, Garratt M, Abbass H. Electroencephalographic Workload Indicators During Teleoperation of an Unmanned Aerial Vehicle Shepherding a Swarm of Unmanned Ground Vehicles in Contested Environments. Front Neurosci 2020; 14:40. [PMID: 32116498 PMCID: PMC7034033 DOI: 10.3389/fnins.2020.00040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/13/2020] [Indexed: 11/15/2022] Open
Abstract
Background: Although many electroencephalographic (EEG) indicators have been proposed in the literature, it is unclear which of the power bands and various indices are best as indicators of mental workload. Spectral powers (Theta, Alpha, and Beta) and ratios (Beta/(Alpha + Theta), Theta/Alpha, Theta/Beta) were identified in the literature as prominent indicators of cognitive workload. Objective: The aim of the present study is to identify a set of EEG indicators that can be used for the objective assessment of cognitive workload in a multitasking setting and as a foundational step toward a human-autonomy augmented cognition system. Methods: The participants' perceived workload was modulated during a teleoperation task involving an unmanned aerial vehicle (UAV) shepherding a swarm of unmanned ground vehicles (UGVs). Three sources of data were recorded from sixteen participants (n = 16): heart rate (HR), EEG, and subjective indicators of the perceived workload using the Air Traffic Workload Input Technique (ATWIT). Results: The HR data predicted the scores from ATWIT. Nineteen common EEG features offered a discriminatory power of the four workload setups with high classification accuracy (82.23%), exhibiting a higher sensitivity than ATWIT and HR. Conclusion: The identified set of features represents EEG indicators for the objective assessment of cognitive workload across subjects. These common indicators could be used for augmented intelligence in human-autonomy teaming scenarios, and form the basis for our work on designing a closed-loop augmented cognition system for human-swarm teaming.
Collapse
Affiliation(s)
- Raul Fernandez Rojas
- School of Engineering & IT, University of New South Wales, Canberra, NSW, Australia
| | - Essam Debie
- School of Engineering & IT, University of New South Wales, Canberra, NSW, Australia
| | - Justin Fidock
- Defence Science and Technology Organisation, Adelaide, SA, Australia
| | - Michael Barlow
- School of Engineering & IT, University of New South Wales, Canberra, NSW, Australia
| | - Kathryn Kasmarik
- School of Engineering & IT, University of New South Wales, Canberra, NSW, Australia
| | - Sreenatha Anavatti
- School of Engineering & IT, University of New South Wales, Canberra, NSW, Australia
| | - Matthew Garratt
- School of Engineering & IT, University of New South Wales, Canberra, NSW, Australia
| | - Hussein Abbass
- School of Engineering & IT, University of New South Wales, Canberra, NSW, Australia
| |
Collapse
|
231
|
Amemori KI, Amemori S, Gibson DJ, Graybiel AM. Striatal Beta Oscillation and Neuronal Activity in the Primate Caudate Nucleus Differentially Represent Valence and Arousal Under Approach-Avoidance Conflict. Front Neurosci 2020; 14:89. [PMID: 32116529 PMCID: PMC7019018 DOI: 10.3389/fnins.2020.00089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
An approach-avoidance (Ap–Av) conflict arises when an individual has to decide whether to accept or reject a compound offer that has features indicating both reward and punishment. During value judgments of likes and dislikes, arousal responses simultaneously emerge and influence reaction times and the frequency of behavioral errors. In Ap–Av decision-making, reward and punishment differentially influence valence and arousal, allowing us to dissociate their neural processing. The primate caudate nucleus (CN) has been implicated in affective judgment, but it is still unclear how neural responses in the CN represent decision-related variables underlying choice. To address this issue, we recorded spikes and local field potentials (LFPs) from the CN while macaque monkeys performed an Ap–Av decision-making task. We analyzed 450 neuronal units and 667 beta oscillatory activities recorded during the performance of the task. To examine how these activities represented valence, we focused on beta-band responses and unit activities that encoded the chosen value (ChV) of the compound offer as derived from an econometric model. Unit activities exhibited either positive (65.0% = 26/40) or negative (35.0% = 14/40) correlations with the ChV, whereas beta responses exhibited almost exclusively positive correlations with the ChV (98.4% = 62/63). We examined arousal representation by focusing on beta responses and unit activities that encoded the frequency of omission errors (FOE), which were negatively correlated with arousal. The unit activities were either positively (65.3% = 17/26) or negatively (34.6% = 9/26) correlated with the FOE, whereas the beta responses were almost entirely positively correlated with the FOE (95.8% = 23/24). We found that the temporal onset of the beta-band responses occurred sequentially across conditions: first, the negative-value, then low-arousal, and finally, high-value conditions. These findings suggest the distinctive roles of CN beta oscillations that were sequentially activated for the valence and arousal conditions. By identifying dissociable groups of CN beta-band activity responding in relation to valence and arousal, we demonstrate that the beta responses mainly exhibited selective activation for the high-valence and low-arousal conditions, whereas the unit activities simultaneously recorded in the same experiments responded to chosen value and other features of decision-making under approach-avoidance conflict.
Collapse
Affiliation(s)
- Ken-Ichi Amemori
- The Hakubi Center for Advanced Research and Primate Research Institute, Kyoto University, Inuyama, Japan
| | - Satoko Amemori
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel J Gibson
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
232
|
La Rocca D, Ciuciu P, Engemann DA, van Wassenhove V. Emergence of β and γ networks following multisensory training. Neuroimage 2020; 206:116313. [PMID: 31676416 PMCID: PMC7355235 DOI: 10.1016/j.neuroimage.2019.116313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Our perceptual reality relies on inferences about the causal structure of the world given by multiple sensory inputs. In ecological settings, multisensory events that cohere in time and space benefit inferential processes: hearing and seeing a speaker enhances speech comprehension, and the acoustic changes of flapping wings naturally pace the motion of a flock of birds. Here, we asked how a few minutes of (multi)sensory training could shape cortical interactions in a subsequent unisensory perceptual task. For this, we investigated oscillatory activity and functional connectivity as a function of individuals' sensory history during training. Human participants performed a visual motion coherence discrimination task while being recorded with magnetoencephalography. Three groups of participants performed the same task with visual stimuli only, while listening to acoustic textures temporally comodulated with the strength of visual motion coherence, or with auditory noise uncorrelated with visual motion. The functional connectivity patterns before and after training were contrasted to resting-state networks to assess the variability of common task-relevant networks, and the emergence of new functional interactions as a function of sensory history. One major finding is the emergence of a large-scale synchronization in the high γ (gamma: 60-120Hz) and β (beta: 15-30Hz) bands for individuals who underwent comodulated multisensory training. The post-training network involved prefrontal, parietal, and visual cortices. Our results suggest that the integration of evidence and decision-making strategies become more efficient following congruent multisensory training through plasticity in network routing and oscillatory regimes.
Collapse
Affiliation(s)
- Daria La Rocca
- CEA/DRF/Joliot, Université Paris-Saclay, 91191, Gif-sur-Yvette, France; Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
| | - Philippe Ciuciu
- CEA/DRF/Joliot, Université Paris-Saclay, 91191, Gif-sur-Yvette, France; Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
| | - Denis-Alexander Engemann
- CEA/DRF/Joliot, Université Paris-Saclay, 91191, Gif-sur-Yvette, France; Université Paris-Saclay, Inria, CEA, Palaiseau, 91120, France
| | - Virginie van Wassenhove
- CEA/DRF/Joliot, Université Paris-Saclay, 91191, Gif-sur-Yvette, France; Cognitive Neuroimaging Unit, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
233
|
Kulkarni AS, del Mar Cortijo M, Roberts ER, Suggs TL, Stover HB, Pena-Bravo JI, Steiner JA, Luk KC, Brundin P, Wesson DW. Perturbation of in vivo Neural Activity Following α-Synuclein Seeding in the Olfactory Bulb. JOURNAL OF PARKINSON'S DISEASE 2020; 10:1411-1427. [PMID: 32925105 PMCID: PMC8018612 DOI: 10.3233/jpd-202241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parkinson's disease (PD) neuropathology is characterized by intraneuronal protein aggregates composed of misfolded α-Synuclein (α-Syn), as well as degeneration of substantia nigra dopamine neurons. Deficits in olfactory perception and aggregation of α-Syn in the olfactory bulb (OB) are observed during early stages of PD, and have been associated with the PD prodrome, before onset of the classic motor deficits. α-Syn fibrils injected into the OB of mice cause progressive propagation of α-Syn pathology throughout the olfactory system and are coupled to olfactory perceptual deficits. OBJECTIVE We hypothesized that accumulation of pathogenic α-Syn in the OB impairs neural activity in the olfactory system. METHODS To address this, we monitored spontaneous and odor-evoked local field potential dynamics in awake wild type mice simultaneously in the OB and piriform cortex (PCX) one, two, and three months following injection of pathogenic preformed α-Syn fibrils in the OB. RESULTS We detected α-Syn pathology in both the OB and PCX. We also observed that α-Syn fibril injections influenced odor-evoked activity in the OB. In particular, α-Syn fibril-injected mice displayed aberrantly high odor-evoked power in the beta spectral range. A similar change in activity was not detected in the PCX, despite high levels of α-Syn pathology. CONCLUSION Together, this work provides evidence that synucleinopathy impacts in vivo neural activity in the olfactory system at the network-level.
Collapse
Affiliation(s)
- Aishwarya S. Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Maria del Mar Cortijo
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Elizabeth R. Roberts
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Tamara L. Suggs
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Heather B. Stover
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - José I. Pena-Bravo
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Jennifer A. Steiner
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, U.S.A
| | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, U.S.A
| | - Daniel W. Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| |
Collapse
|
234
|
Popescu M, Popescu EA, DeGraba TJ, Hughes JD. Altered modulation of beta band oscillations during memory encoding is predictive of lower subsequent recognition performance in post-traumatic stress disorder. Neuroimage Clin 2019; 25:102154. [PMID: 31951934 PMCID: PMC6965746 DOI: 10.1016/j.nicl.2019.102154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/25/2019] [Accepted: 12/26/2019] [Indexed: 11/23/2022]
Abstract
We studied the relationship between electrophysiological markers of memory encoding, subsequent recognition performance, and severity of PTSD symptoms in service members with combat exposure (n = 40, age: 41.2 ± 7.2 years) and various levels of PTSD symptom severity assessed using the PTSD Check List for DSM V version (PCL-5). Brain activity was recorded using magnetoencephalography during a serial presentation of 86 images of outdoor scenes that were studied by participants for an upcoming recognition test. In a second session, the original images were shown intermixed with an equal number of novel images while participants performed the recognition task. Participants recognized 76.0% ± 12.1% of the original images and correctly categorized as novel 89.9% ± 7.0% of the novel images. A negative correlation was present between PCL-5 scores and discrimination performance (Spearman rs = -0.38, p = 0.016). PCL-5 scores were also negatively correlated with the recognition accuracy for original images (rs = -0.37, p = 0.02). Increases in theta and gamma power and decreases in alpha and beta power were observed over distributed brain networks during memory encoding. Higher PCL-5 scores were associated with less suppression of beta band power in bilateral ventral and medial temporal regions and in the left orbitofrontal cortex. These regions also showed positive correlations between the magnitude of suppression of beta power during encoding and subsequent recognition accuracy. These findings indicate that the lower recognition performance in participants with greater PTSD symptom severity may be due in part to ineffective encoding reflected in altered modulation of beta band oscillatory activity.
Collapse
Affiliation(s)
- Mihai Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Elena-Anda Popescu
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Thomas J DeGraba
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - John D Hughes
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States; Behavioral Biology Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, United States.
| |
Collapse
|
235
|
MacDonald HJ, Brittain JS, Spitzer B, Hanslmayr S, Jenkinson N. Memory deficits in Parkinson's disease are associated with reduced beta power modulation. Brain Commun 2019; 1:fcz040. [PMID: 32090200 PMCID: PMC7025167 DOI: 10.1093/braincomms/fcz040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 12/28/2022] Open
Abstract
There is an increasing recognition of the significant non-motor symptoms that burden people with Parkinson's disease. As such, there is a pressing need to better understand and investigate the mechanisms underpinning these non-motor deficits. The electrical activity within the brains of people with Parkinson's disease is known to exhibit excessive power within the beta range (12-30 Hz), compared with healthy controls. The weight of evidence suggests that this abnormally high level of beta power is the cause of bradykinesia and rigidity in Parkinson's disease. However, less is known about how the abnormal beta rhythms seen in Parkinson's disease impact on non-motor symptoms. In healthy adults, beta power decreases are necessary for successful episodic memory formation, with greater power decreases during the encoding phase predicting which words will subsequently be remembered. Given the raised levels of beta activity in people with Parkinson's disease, we hypothesized that the necessary decrease in power during memory encoding would be diminished and that this would interfere with episodic memory formation. Accordingly, we conducted a cross-sectional, laboratory-based experimental study to investigate whether there was a direct relationship between decreased beta modulation and memory formation in Parkinson's disease. Electroencephalography recordings were made during an established memory-encoding paradigm to examine brain activity in a cohort of adults with Parkinson's disease (N = 28, 20 males) and age-matched controls (N = 31, 18 males). The participants with Parkinson's disease were aged 65 ± 6 years, with an average disease duration of 6 ± 4 years, and tested on their normal medications to avoid the confound of exacerbated motor symptoms. Parkinson's disease participants showed impaired memory strength (P = 0.023) and reduced beta power decreases (P = 0.014) relative to controls. Longer disease duration was correlated with a larger reduction in beta modulation during encoding, and a concomitant reduction in memory performance. The inability to sufficiently decrease beta activity during semantic processing makes it a likely candidate to be the central neural mechanism underlying this type of memory deficit in Parkinson's disease. These novel results extend the notion that pathological beta activity is causally implicated in the motor and (lesser appreciated) non-motor deficits inherent to Parkinson's disease. These findings provide important empirical evidence that should be considered in the development of intelligent next-generation therapies.
Collapse
Affiliation(s)
- Hayley J MacDonald
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| | - John-Stuart Brittain
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Bernhard Spitzer
- Center for Adaptive Rationality, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Simon Hanslmayr
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
- School of Psychology, University of Birmingham, Birmingham B15 2TT, UK
| | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
236
|
Hussain SJ, Cohen LG, Bönstrup M. Beta rhythm events predict corticospinal motor output. Sci Rep 2019; 9:18305. [PMID: 31797890 PMCID: PMC6892943 DOI: 10.1038/s41598-019-54706-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
The beta rhythm (15-30 Hz) is a prominent signal of sensorimotor cortical activity. This rhythm is not sustained but occurs non-rhythmically as brief events of a few (1-2) oscillatory cycles. Recent work on the relationship between these events and sensorimotor performance suggests that they are the biologically relevant elements of the beta rhythm. However, the influence of these events on corticospinal excitability, a mechanism through which the primary motor cortex controls motor output, is unknown. Here, we addressed this question by evaluating relationships between beta event characteristics and corticospinal excitability in healthy adults. Results show that the number, amplitude, and timing of beta events preceding transcranial magnetic stimulation (TMS) each significantly predicted motor-evoked potential (MEP) amplitudes. However, beta event characteristics did not explain additional MEP amplitude variance beyond that explained by mean beta power alone, suggesting that conventional beta power measures and beta event characteristics similarly captured natural variation in human corticospinal excitability. Despite this lack of additional explained variance, these results provide first evidence that endogenous beta oscillatory events shape human corticospinal excitability.
Collapse
Affiliation(s)
- Sara J Hussain
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marlene Bönstrup
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurology, University of Leipzig, Leipzig, 04103, Germany
| |
Collapse
|
237
|
Müller F, Niso G, Samiee S, Ptito M, Baillet S, Kupers R. A thalamocortical pathway for fast rerouting of tactile information to occipital cortex in congenital blindness. Nat Commun 2019; 10:5154. [PMID: 31727882 PMCID: PMC6856176 DOI: 10.1038/s41467-019-13173-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/21/2019] [Indexed: 11/09/2022] Open
Abstract
In congenitally blind individuals, the occipital cortex responds to various nonvisual inputs. Some animal studies raise the possibility that a subcortical pathway allows fast re-routing of tactile information to the occipital cortex, but this has not been shown in humans. Here we show using magnetoencephalography (MEG) that tactile stimulation produces occipital cortex activations, starting as early as 35 ms in congenitally blind individuals, but not in blindfolded sighted controls. Given our measured thalamic response latencies of 20 ms and a mean estimated lateral geniculate nucleus to primary visual cortex transfer time of 15 ms, we claim that this early occipital response is mediated by a direct thalamo-cortical pathway. We also observed stronger directed connectivity in the alpha band range from posterior thalamus to occipital cortex in congenitally blind participants. Our results strongly suggest the contribution of a fast thalamo-cortical pathway in the cross-modal activation of the occipital cortex in congenitally blind humans. In congenitally blind people, tactile stimuli can activate the occipital (visual) cortex. Here, the authors show using magnetoencephalography (MEG) that occipital activation can occur within 35 ms following tactile stimulation, suggesting the existence of a fast thalamocortical pathway for touch in congenitally blind humans.
Collapse
Affiliation(s)
- Franziska Müller
- BRAINlab, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Guiomar Niso
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Soheila Samiee
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Maurice Ptito
- BRAINlab, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark.,École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Ron Kupers
- BRAINlab, Department of Neuroscience, Panum Institute, University of Copenhagen, Copenhagen, Denmark. .,École d'Optométrie, Université de Montréal, Montréal, QC, Canada. .,Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA. .,Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
238
|
Voloh B, Womelsdorf T. Cell-Type Specific Burst Firing Interacts with Theta and Beta Activity in Prefrontal Cortex During Attention States. Cereb Cortex 2019; 28:4348-4364. [PMID: 29136106 DOI: 10.1093/cercor/bhx287] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 12/25/2022] Open
Abstract
Population-level theta and beta band activity in anterior cingulate and prefrontal cortices (ACC/PFC) are prominent signatures of self-controlled, adaptive behaviors. But how these rhythmic activities are linked to cell-type specific activity has remained unclear. Here, we suggest such a cell-to-systems level linkage. We found that the rate of burst spiking events is enhanced particularly during attention states and that attention-specific burst spikes have a unique temporal relationship to local theta and beta band population-level activities. For the 5-10 Hz theta frequency range, bursts coincided with transient increases of local theta power relative to nonbursts, particularly for bursts of putative interneurons. For the 16-30 Hz beta frequency, bursts of putative interneurons phase synchronized stronger than nonbursts, and were associated with larger beta power modulation. In contrast, burst of putative pyramidal cells showed similar beta power modulation as nonbursts, but were accompanied by stronger beta power only when they occurred early in the beta cycle. These findings suggest that in the ACC/PFC during attention states, mechanisms underlying burst firing are intimately linked to narrow band population-level activities, providing a cell-type specific window into rhythmic inhibitory gating and the emergence of rhythmically coherent network states during goal directed behavior.
Collapse
Affiliation(s)
- B Voloh
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada.,Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN, USA
| | - T Womelsdorf
- Department of Biology, Centre for Vision Research, York University, Toronto, Ontario, Canada.,Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN, USA
| |
Collapse
|
239
|
Borgheai SB, Deligani RJ, McLinden J, Zisk A, Hosni SI, Abtahi M, Mankodiya K, Shahriari Y. Multimodal exploration of non-motor neural functions in ALS patients using simultaneous EEG-fNIRS recording. J Neural Eng 2019; 16:066036. [PMID: 31530755 DOI: 10.1088/1741-2552/ab456c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Despite the high prevalence of non-motor impairments reported in patients with amyotrophic lateral sclerosis (ALS), little is known about the functional neural markers underlying such dysfunctions. In this study, a new dual-task multimodal framework relying on simultaneous electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) recordings was developed to characterize integrative non-motor neural functions in people with ALS. APPROACH Simultaneous EEG-fNIRS data were recorded from six subjects with ALS and twelve healthy controls. Through a proposed visuo-mental paradigm, subjects performed a set of visuo-mental arithmetic operations. The data recorded were analyzed with respect to event-related changes both in the time and frequency domains for EEG and de/oxygen-hemoglobin level (HbR/HbO) changes for fNIRS. The correlation of EEG spectral features with fNIRS HbO/HbR features were then evaluated to assess the mechanisms of ALS on the electrical (EEG)-vascular (fNIRS) interrelationships. MAIN RESULTS We observed overall smaller increases in EEG delta and theta power, decreases in beta power, reductions in HbO responses, and distortions both in early and later EEG event-related potentials in ALS subjects compared to healthy controls. While significant correlations between EEG features and HbO responses were observed in healthy controls, these patterns were absent in ALS patients. Distortions in both electrical and hemodynamic responses are speculated to be associated with cognitive deficits in ALS that center primarily on attentional and working memory processing. SIGNIFICANCE Our results highlight the important role of ALS non-motor dysfunctions in electrical and hemodynamic neural dynamics as well as their interrelationships. The insights obtained through this study can enhance our understanding of the underlying non-motor neural processes in ALS and enrich future diagnostic and prognostic techniques.
Collapse
Affiliation(s)
- S B Borgheai
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Ort E, Fahrenfort JJ, Reeder R, Pollmann S, Olivers CN. Frontal cortex differentiates between free and imposed target selection in multiple-target search. Neuroimage 2019; 202:116133. [DOI: 10.1016/j.neuroimage.2019.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/22/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023] Open
|
241
|
Abbasi O, Gross J. Beta-band oscillations play an essential role in motor-auditory interactions. Hum Brain Mapp 2019; 41:656-665. [PMID: 31639252 PMCID: PMC7268072 DOI: 10.1002/hbm.24830] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/30/2022] Open
Abstract
In the human brain, self‐generated auditory stimuli elicit smaller cortical responses compared to externally generated sounds. This sensory attenuation is thought to result from predictions about the sensory consequences of self‐generated actions that rely on motor commands. Previous research has implicated brain oscillations in this process. However, the specific role of these oscillations in motor–auditory interactions during sensory attenuation is still unclear. In this study, we aimed at addressing this question by using magnetoencephalography (MEG). We recorded MEG in 20 healthy participants during listening to passively presented and self‐generated tones. Our results show that the magnitude of sensory attenuation in bilateral auditory areas is significantly correlated with the modulation of beta‐band (15–30 Hz) amplitude in the motor cortex. Moreover, we observed a significant directional coupling (Granger causality) in beta‐band originating from the motor cortex toward bilateral auditory areas. Our findings indicate that beta‐band oscillations play an important role in mediating top–down interactions between motor and auditory cortex and, in our paradigm, suppress cortical responses to predicted sensory input.
Collapse
Affiliation(s)
- Omid Abbasi
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.,Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, United Kingdom.,Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
242
|
Schmidt R, Herrojo Ruiz M, Kilavik BE, Lundqvist M, Starr PA, Aron AR. Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function. J Neurosci 2019; 39:8231-8238. [PMID: 31619492 PMCID: PMC6794925 DOI: 10.1523/jneurosci.1163-19.2019] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022] Open
Abstract
Beta oscillations (∼13 to 30 Hz) have been observed during many perceptual, cognitive, and motor processes in a plethora of brain recording studies. Although the function of beta oscillations (hereafter "beta" for short) is unlikely to be explained by any single monolithic description, we here discuss several convergent findings. In prefrontal cortex (PFC), increased beta appears at the end of a trial when working memory information needs to be erased. A similar "clear-out" function might apply during the stopping of action and the stopping of long-term memory retrieval (stopping thoughts), where increased prefrontal beta is also observed. A different apparent role for beta in PFC occurs during the delay period of working memory tasks: it might serve to maintain the current contents and/or to prevent interference from distraction. We confront the challenge of relating these observations to the large literature on beta recorded from sensorimotor cortex. Potentially, the clear-out of working memory in PFC has its counterpart in the postmovement clear-out of the motor plan in sensorimotor cortex. However, recent studies support alternative interpretations. In addition, we flag emerging research on different frequencies of beta and the relationship between beta and single-neuron spiking. We also discuss where beta might be generated: basal ganglia, cortex, or both. We end by considering the clinical implications for adaptive deep-brain stimulation.
Collapse
Affiliation(s)
- Robert Schmidt
- Department of Psychology, University of Sheffield, Sheffield, S1 2LT, UK,
| | - Maria Herrojo Ruiz
- Department of Psychology, Goldsmiths University of London, London, SE14 6NW, UK
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Bjørg E Kilavik
- Institut de Neurosciences de la Timone, Aix-Marseille Université, Marseille, 13005, France
| | - Mikael Lundqvist
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307
| | - Philip A Starr
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, and
| | - Adam R Aron
- Department of Psychology, University of California San Diego La Jolla, CA 92093
| |
Collapse
|
243
|
Little S, Bonaiuto J, Barnes G, Bestmann S. Human motor cortical beta bursts relate to movement planning and response errors. PLoS Biol 2019; 17:e3000479. [PMID: 31584933 PMCID: PMC6795457 DOI: 10.1371/journal.pbio.3000479] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/16/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022] Open
Abstract
Motor cortical beta activity (13-30 Hz) is a hallmark signature of healthy and pathological movement, but its behavioural relevance remains unclear. Using high-precision magnetoencephalography (MEG), we show that during the classical event-related desynchronisation (ERD) and event-related synchronisation (ERS) periods, motor cortical beta activity in individual trials (n > 12,000) is dominated by high amplitude, transient, and infrequent bursts. Beta burst probability closely matched the trial-averaged beta amplitude in both the pre- and post-movement periods, but individual bursts were spatially more focal than the classical ERS peak. Furthermore, prior to movement (ERD period), beta burst timing was related to the degree of motor preparation, with later bursts resulting in delayed response times. Following movement (ERS period), the first beta burst was delayed by approximately 100 milliseconds when an incorrect response was made. Overall, beta burst timing was a stronger predictor of single trial behaviour than beta burst rate or single trial beta amplitude. This transient nature of motor cortical beta provides new constraints for theories of its role in information processing within and across cortical circuits, and its functional relevance for behaviour in both healthy and pathological movement.
Collapse
Affiliation(s)
- Simon Little
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neurology, University of San Francisco, California, United States of America
| | - James Bonaiuto
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Gareth Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
244
|
Tavano A, Schröger E, Kotz SA. Beta power encodes contextual estimates of temporal event probability in the human brain. PLoS One 2019; 14:e0222420. [PMID: 31557168 PMCID: PMC6762064 DOI: 10.1371/journal.pone.0222420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/29/2019] [Indexed: 12/30/2022] Open
Abstract
To prepare for an impending event of unknown temporal distribution, humans internally increase the perceived probability of event onset as time elapses. This effect is termed the hazard rate of events. We tested how the neural encoding of hazard rate changes by providing human participants with prior information on temporal event probability. We recorded behavioral and electroencephalographic (EEG) data while participants listened to continuously repeating five-tone sequences, composed of four standard tones followed by a non-target deviant tone, delivered at slow (1.6 Hz) or fast (4 Hz) rates. The task was to detect a rare target tone, which equiprobably appeared at either position two, three or four of the repeating sequence. In this design, potential target position acts as a proxy for elapsed time. For participants uninformed about the target's distribution, elapsed time to uncertain target onset increased response speed, displaying a significant hazard rate effect at both slow and fast stimulus rates. However, only in fast sequences did prior information about the target's temporal distribution interact with elapsed time, suppressing the hazard rate. Importantly, in the fast, uninformed condition pre-stimulus power synchronization in the beta band (Beta 1, 15-19 Hz) predicted the hazard rate of response times. Prior information suppressed pre-stimulus power synchronization in the same band, while still significantly predicting response times. We conclude that Beta 1 power does not simply encode the hazard rate, but-more generally-internal estimates of temporal event probability based upon contextual information.
Collapse
Affiliation(s)
- Alessandro Tavano
- BioCog, Cognitive Incl. Biological Psychology, Institute of Psychology, University of Leipzig, Leipzig, Germany
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Erich Schröger
- BioCog, Cognitive Incl. Biological Psychology, Institute of Psychology, University of Leipzig, Leipzig, Germany
| | - Sonja A. Kotz
- Department of Neuropsychology, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
245
|
Núñez P, Poza J, Gómez C, Rodríguez-González V, Hillebrand A, Tola-Arribas MA, Cano M, Hornero R. Characterizing the fluctuations of dynamic resting-state electrophysiological functional connectivity: reduced neuronal coupling variability in mild cognitive impairment and dementia due to Alzheimer’s disease. J Neural Eng 2019; 16:056030. [DOI: 10.1088/1741-2552/ab234b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
246
|
Kubicek E, Quandt LC. Sensorimotor system engagement during ASL sign perception: An EEG study in deaf signers and hearing non-signers. Cortex 2019; 119:457-469. [PMID: 31505437 DOI: 10.1016/j.cortex.2019.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022]
Abstract
When a person observes someone else performing an action, the observer's sensorimotor cortex activates as if the observer is the one performing the action, a phenomenon known as action simulation. While this process has been well-established for basic (e.g., grasping) and complex (e.g., dancing) actions, it remains unknown if the framework of action simulation is applicable to visual languages such as American Sign Language (ASL). We conducted an EEG experiment with deaf signers and hearing non-signers to compare overall sensorimotor EEG between groups, and to test whether sensorimotor systems are differentially sensitive to signs that are produced with one hand ("1H") or two hands ("2H"). We predicted greater alpha and beta event-related desynchronization (previously correlated with action simulation) during the perception of 2H ASL signs compared to 1H ASL signs, due to greater demands on sensorimotor processing systems required for producing two-handed actions. We recorded EEG from both groups as they observed videos of ASL signs, half 1H and half 2H. Event-related spectral perturbations (ERSPs) in the alpha and beta ranges were computed for the two conditions at central electrode sites overlying the sensorimotor cortex. Sensorimotor EEG responses in both Hearing and Deaf groups were sensitive to the observed gross motor characteristics of the observed signs. We show for the first time that despite hearing non-signers showing overall more sensorimotor cortex involvement during sign observation, mirroring-related processes are in fact involved when deaf signers observe signs.
Collapse
Affiliation(s)
- Emily Kubicek
- Educational Neuroscience Program, Gallaudet University, Washington, DC, USA
| | - Lorna C Quandt
- Educational Neuroscience Program, Gallaudet University, Washington, DC, USA; Department of Psychology, Gallaudet University, Washington, DC, USA.
| |
Collapse
|
247
|
Bighamian R, Wong YT, Pesaran B, Shanechi MM. Sparse model-based estimation of functional dependence in high-dimensional field and spike multiscale networks. J Neural Eng 2019; 16:056022. [DOI: 10.1088/1741-2552/ab225b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
248
|
Frequency-specific brain dynamics related to prediction during language comprehension. Neuroimage 2019; 198:283-295. [DOI: 10.1016/j.neuroimage.2019.04.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/28/2022] Open
|
249
|
Chang A, Bosnyak DJ, Trainor LJ. Rhythmicity facilitates pitch discrimination: Differential roles of low and high frequency neural oscillations. Neuroimage 2019; 198:31-43. [DOI: 10.1016/j.neuroimage.2019.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
|
250
|
de Vries IEJ, Savran E, van Driel J, Olivers CNL. Oscillatory Mechanisms of Preparing for Visual Distraction. J Cogn Neurosci 2019; 31:1873-1894. [PMID: 31418334 DOI: 10.1162/jocn_a_01460] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Evidence shows that observers preactivate a target representation in preparation of a visual selection task. In this study, we addressed the question if and how preparing to ignore an anticipated distractor differs from preparing for an anticipated target. We measured EEG while participants memorized a laterally presented color, which was cued to be either a target or a distractor in two subsequent visual search tasks. Decoding the location of items in the search display from EOG channels revealed that, initially, the anticipated distractor attracted attention and could only be ignored later during the trial. This suggests that distractors could not be suppressed in advance but were represented in an active, attention-guiding format. Consistent with this, lateralized posterior alpha power did not dissociate between target and distractor templates during the delay periods, suggesting similar encoding and maintenance. However, distractor preparation did lead to relatively enhanced nonlateralized posterior alpha power, which appeared to gate sensory processing at search display onset to prevent attentional capture in general. Finally, anticipating distractors also led to enhanced midfrontal theta power during the delay period, a signal that was predictive of how strongly both target and distractor were represented in the search display. Together, our results speak against a distractor-specific advance inhibitory template, thus contrary to the preactivation of specific target templates. Rather, we demonstrate a general selection suppression mechanism, which serves to prevent initial involuntary capture by anticipated distracting input.
Collapse
|