201
|
Campanelli S, Tort ABL, Lobão-Soares B. Pranayamas and Their Neurophysiological Effects. Int J Yoga 2020; 13:183-192. [PMID: 33343147 PMCID: PMC7735501 DOI: 10.4103/ijoy.ijoy_91_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/02/2020] [Accepted: 06/26/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction The millenarian breathing exercises from Yoga, commonly called Pranayamas, are known to induce meditative states, reduce stress, and increase lung capacity. However, the physiological mechanisms by which these practices modulate the human nervous system still need to be unveiled. Objectives The aim of this work was to review studies describing the influence of breathing exercises on the brain/mind of humans. Methodology We reviewed articles written in English and published between 2008 and 2018. Inclusion and exclusion criteria were based on the PRISMA recommendations to filter articles from Science Direct, PubMed, and Virtual Health Library databases. Patient/Population, Intervention, Comparison, and Outcome technique and Prospective Register of Systematic Reviews registration were also considered. Results From a total of 1588 articles, 14 attended the criteria. They were critically compared to each other and presented in a table divided into study; country; sample size; gender; age; objective; technique; outcome. Discussion In general, the 14 papers highlight the impact of yogic breathing techniques on emotional and cognitive performance. Conclusion In-depth studies focusing on specific aspects of the practices such as retentions, prolonged expiration, attention on fluid respiration, and abdominal/thoracic respiration should better elucidate the effects of Yogic Breathing Techniques (YBT).
Collapse
Affiliation(s)
- Stephany Campanelli
- Department of Biophysics and Pharmachology, Centre of Biosciences, UFRN, Natal, Rio Grande do Norte, Brazil
| | | | - Bruno Lobão-Soares
- Department of Biophysics and Pharmachology, Centre of Biosciences, UFRN, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
202
|
Raad G, Tanios J, Azoury J, Daher A, Fakih C, Bakos HW. Neurophysiology of cognitive behavioural therapy, deep breathing and progressive muscle relaxation used in conjunction with ART treatments: a narrative review. Hum Reprod Update 2020; 27:324-338. [PMID: 33238001 DOI: 10.1093/humupd/dmaa048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is defined as the failure to achieve clinical pregnancy after 12 months of regular unprotected intercourse. It could be due to male or female factors, each requiring different treatment options. ART treatment exposes couples to numerous psychological stressors. Therefore, it has been recommended by the ESHRE Psychology and Counselling Guideline Development Group recently that psychosocial support should be offered as a complementary therapy during infertility treatments. In this context, the efficiency of different psychological interventions, such as cognitive behaviour therapy (CBT), deep breathing (DB), and progressive muscle relaxation (PMR), was evaluated in several clinical trials in terms of couples' mental health and pregnancy outcomes. OBJECTIVE AND RATIONALE The neurophysiology of CBT, DB and PMR, which are used in interventional studies, in both men and women undergoing ART, has not yet been fully elucidated. This review represents a comprehensive report, aiming to collate novel insights into the neurobiological processes and physiological mechanisms that occur during the practice of CBT, DB and PMR. SEARCH METHODS PubMed, Google Scholar and Cochrane Library were interrogated to conduct this comprehensive literature review. The search was carried out using combinations of MeSH terms and keywords: infertility, assisted reproductive techniques, IVF, ICSI, emotions, psychological stress, cognitive behavioural therapy, mind-body therapies and relaxation. Relevant information related to the mechanism of action of stress management techniques were obtained from original articles and reviews published in English without taking into consideration the time of publication. Moreover, as it was not the major focus of the review, only recent systematic reviews (2015-2019) pinpointing the effects of psychological interventions on infertility treatment outcomes were also retrieved from the above-mentioned databases. OUTCOMES CBT, DB and PMR may modify the activity of stress-related brain regions such as the prefrontal cortex, amygdala, hypothalamus and hippocampus, as demonstrated by functional MRI and electroencephalogram studies. Furthermore, applying these techniques was associated with mood improvements and a decline in stress biomarkers, and, hypothetically, reducing stress biomarkers attenuates the stress-induced effects on ART outcomes. WIDER IMPLICATIONS Increasing the knowledge of fertility staff, researchers and physicians regarding the mechanisms of action of these stress management techniques has several advantages. For instance, understanding the underlying neurophysiological pathways would assist practitioners to engage ART couples in the practice of these techniques. Also, it may enhance the quality of the support programmes and psychological research. Accordingly, this will ensure that these interventions reach their full potential and therefore improve clinical outcomes.
Collapse
Affiliation(s)
- Georges Raad
- IVF Department, Al-Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Judy Tanios
- Embryology Department, IVF Lebanon, Hazmieh, Lebanon
| | - Joseph Azoury
- Azoury IVF clinic, Mount-Lebanon Hospital, Hazmieh, Lebanon
| | - Alain Daher
- Ob-Gyn department, St Joseph University, Beirut, Lebanon
| | - Chadi Fakih
- IVF Department, Al-Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Hassan W Bakos
- Monash IVF Group, Sydney, NSW, Australia.,School of Environmental and Life Sciences Faculty of Science, University of Newcastle, NSW, Australia
| |
Collapse
|
203
|
Alexander RPD, Bowie D. Intrinsic plasticity of cerebellar stellate cells is mediated by NMDA receptor regulation of voltage-gated Na + channels. J Physiol 2020; 599:647-665. [PMID: 33146903 DOI: 10.1113/jp280627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS We show that NMDA receptors (NMDARs) elicit a long-term increase in the firing rates of inhibitory stellate cells of the cerebellum NMDARs induce intrinsic plasticity through a Ca2+ - and CaMKII-dependent pathway that drives shifts in the activation and inactivation properties of voltage-gated Na+ (Nav ) channels An identical Ca2+ - and CaMKII-dependent signalling pathway is triggered during whole-cell recording which lowers the action potential threshold by causing a hyperpolarizing shift in the gating properties of Nav channels. Our findings open the more general possibility that NMDAR-mediated intrinsic plasticity found in other cerebellar neurons may involve similar shifts in Nav channel gating. ABSTRACT Memory storage in the mammalian brain is mediated not only by long-lasting changes in the efficacy of neurotransmitter receptors but also by long-term modifications to the activity of voltage-gated ion channels. Activity-dependent plasticity of voltage-gated ion channels, or intrinsic plasticity, is found throughout the brain in virtually all neuronal types, including principal cells and interneurons. Although intrinsic plasticity has been identified in neurons of the cerebellum, it has yet to be studied in inhibitory cerebellar stellate cells of the molecular layer which regulate activity outflow from the cerebellar cortex by feedforward inhibition onto Purkinje cells. The study of intrinsic plasticity in stellate cells has been particularly challenging as membrane patch breakthrough in electrophysiology experiments unintentionally triggers changes in spontaneous firing rates. Using cell-attached patch recordings to avoid disruption, we show that activation of extrasynaptic N-methyl-d-aspartate receptors (NMDARs) elicits a long-term increase in the firing properties of stellate cells by stimulating a rise in cytosolic Ca2+ and activation of Ca²⁺/calmodulin-dependent protein kinase II (CaMKII). An identical signalling pathway is triggered during whole-cell recording which lowers the action potential threshold by causing a hyperpolarizing shift in the gating properties of voltage-gated sodium (Nav ) channels. Together, our findings identify an unappreciated role of Nav channel-dependent intrinsic plasticity in cerebellar stellate cells which, in concert with non-canonical NMDAR signalling, provides the cerebellum with an unconventional mechanism to fine-tune motor behaviour.
Collapse
Affiliation(s)
- Ryan P D Alexander
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Derek Bowie
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
204
|
Kluger DS, Gross J. Depth and phase of respiration modulate cortico-muscular communication. Neuroimage 2020; 222:117272. [PMID: 32822811 DOI: 10.1101/2020.01.13.904524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 05/28/2023] Open
Abstract
Recent studies in animals have convincingly demonstrated that respiration cyclically modulates oscillatory neural activity across diverse brain areas. To what extent this generalises to humans in a way that is relevant for behaviour is yet unclear. We used magnetoencephalography (MEG) to assess the potential influence of respiration depth and respiration phase on the human motor system. We obtained simultaneous recordings of brain activity, muscle activity, and respiration while participants performed a steady contraction task. We used corticomuscular coherence as a measure of efficient long-range cortico-peripheral communication. We found coherence within the beta range over sensorimotor cortex to be reduced during voluntary deep compared to involuntary normal breathing. Moreover, beta coherence was found to be cyclically modulated by respiration phase in both conditions. Overall, these results demonstrate how respiratory rhythms influence the synchrony of brain oscillations, conceivably regulating computational efficiency through neural excitability. Intriguing questions remain with regard to the shape of these modulatory processes and how they influence perception, cognition, and behaviour.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
205
|
Nasal respiration is necessary for ketamine-dependent high frequency network oscillations and behavioral hyperactivity in rats. Sci Rep 2020; 10:18981. [PMID: 33149202 PMCID: PMC7642442 DOI: 10.1038/s41598-020-75641-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Changes in oscillatory activity are widely reported after subanesthetic ketamine, however their mechanisms of generation are unclear. Here, we tested the hypothesis that nasal respiration underlies the emergence of high-frequency oscillations (130–180 Hz, HFO) and behavioral activation after ketamine in freely moving rats. We found ketamine 20 mg/kg provoked “fast” theta sniffing in rodents which correlated with increased locomotor activity and HFO power in the OB. Bursts of ketamine-dependent HFO were coupled to “fast” theta frequency sniffing. Theta coupling of HFO bursts were also found in the prefrontal cortex and ventral striatum which, although of smaller amplitude, were coherent with OB activity. Haloperidol 1 mg/kg pretreatment prevented ketamine-dependent increases in fast sniffing and instead HFO coupling to slower basal respiration. Consistent with ketamine-dependent HFO being driven by nasal respiration, unilateral naris blockade led to an ipsilateral reduction in ketamine-dependent HFO power compared to the control side. Bilateral nares blockade reduced ketamine-induced hyperactivity and HFO power and frequency. These findings suggest that nasal airflow entrains ketamine-dependent HFO in diverse brain regions, and that the OB plays an important role in the broadcast of this rhythm.
Collapse
|
206
|
Gholamrezaei A, Van Diest I, Aziz Q, Vlaeyen JWS, Van Oudenhove L. Psychophysiological responses to various slow, deep breathing techniques. Psychophysiology 2020; 58:e13712. [PMID: 33111377 DOI: 10.1111/psyp.13712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
Deep breathing exercises are commonly used for several health conditions including pain and hypertension. Various techniques are available to practice deep breathing, whereas possible differential psychophysiological effects have not been investigated. We compared four deep breathing techniques and examined outcomes in blood pressure variability, respiratory sinus arrhythmia, baroreflex function, and emotional state. Healthy adult volunteers performed pursed-lips breathing, left and right unilateral nostril breathing, and deep breathing with an inspiratory threshold load (loaded breathing), all at a frequency of 0.1 Hz (i.e., controlled breathing) and for three minutes each. Results showed that blood pressure variability was higher during loaded breathing versus other conditions and higher during pursed-lips breathing versus left and right unilateral nostril breathing. Respiratory sinus arrhythmia was higher during loaded breathing versus other conditions and higher during pursed-lips breathing versus left unilateral nostril breathing. The effect of breathing condition on respiratory sinus arrhythmia was mediated by alterations in blood pressure variability. There was no difference between the breathing conditions in baroreflex sensitivity or effectiveness. Participants rated pursed-lips breathing as more calming and pleasant and with more sense of control (vs. other conditions). Overall, among the four tested deep breathing techniques, loaded breathing was associated with enhanced cardiovascular effects and pursed-lips breathing with better emotional responses, while also enhancing cardiovascular effects (albeit less than loaded breathing). These findings can be informative in applying deep breathing techniques as self-management interventions for health conditions, in which baroreceptors stimulation and autonomic and emotional modulations can be beneficial, such as pain and hypertension.
Collapse
Affiliation(s)
- Ali Gholamrezaei
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Laboratory for Brain-Gut Axis Studies, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Ilse Van Diest
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Qasim Aziz
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Wingate Institute of Neurogastroeneterology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Johan W S Vlaeyen
- Research Group Health Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Experimental Health Psychology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
207
|
Hennig J, Kiviniemi V, Riemenschneider B, Barghoorn A, Akin B, Wang F, LeVan P. 15 Years MR-encephalography. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:85-108. [PMID: 33079327 PMCID: PMC7910380 DOI: 10.1007/s10334-020-00891-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Objective This review article gives an account of the development of the MR-encephalography (MREG) method, which started as a mere ‘Gedankenexperiment’ in 2005 and gradually developed into a method for ultrafast measurement of physiological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concentric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which allows high acceleration in all three spatial dimensions. Methods The methodological section covers the basic sequence design as well as recent advances in image reconstruction including the targeted reconstruction, which allows real-time feedback applications, and—most recently—the time-domain principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data as a sparsifying transformation to improve reconstruction speed as well as quality. Applications Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic variability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns of cardiac and breathing related pulsatility. Discussion MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows considerably faster acquisition at the cost of reduced image quality and spatial resolution.
Collapse
Affiliation(s)
- Juergen Hennig
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging Group, Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
| | - Bruno Riemenschneider
- Department of Radiology, Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA
| | - Antonia Barghoorn
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Burak Akin
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fei Wang
- Department of Radiology, Medical Physics, Faculty of Medicine, Medical Center University of Freiburg, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Pierre LeVan
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
208
|
Mainland JD, Barlow LA, Munger SD, Millar SE, Vergara MN, Jiang P, Schwob JE, Goldstein BJ, Boye SE, Martens JR, Leopold DA, Bartoshuk LM, Doty RL, Hummel T, Pinto JM, Trimmer C, Kelly C, Pribitkin EA, Reed DR. Identifying Treatments for Taste and Smell Disorders: Gaps and Opportunities. Chem Senses 2020; 45:493-502. [PMID: 32556127 PMCID: PMC7545248 DOI: 10.1093/chemse/bjaa038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.
Collapse
Affiliation(s)
| | - Linda A Barlow
- Department of Cell & Developmental Biology, Rocky Mountain Taste and Smell Center, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Steven D Munger
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, 1200 Newell Drive, University of Florida, Gainesville, FL, USA
| | - Sarah E Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Natalia Vergara
- Department of Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - James E Schwob
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Bradley J Goldstein
- Department of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, 40 Duke Medicine Cir Clinic 1F, Durham, NC, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, 1200 Newell Drive, University of Florida, Gainesville, FL, USA
| | - Donald A Leopold
- Division of Otolaryngology Head and Neck Surgery, University of Vermont Medical Center, Burlington, VT, USA
| | - Linda M Bartoshuk
- Department of Food Science and Human Nutrition, Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Richard L Doty
- Smell and Taste Center and Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, 3400 Spruce Street, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Fetscherstrasse, Dresden, Germany
| | - Jayant M Pinto
- Section of Otolaryngology—Head and Neck Surgery, Department of Surgery, The University of Chicago, MC, Chicago, IL, USA
| | | | | | - Edmund A Pribitkin
- Department of Otolaryngology—Head and Neck Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
209
|
van Dam K. Individual Stress Prevention through Qigong. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197342. [PMID: 33050017 PMCID: PMC7579037 DOI: 10.3390/ijerph17197342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Owing to work intensification and an accelerated pace of life in general, individuals in many Western countries are often overactivated and find it difficult to switch off. However, recovery from physiological and mental activation is critical to prevent stress symptoms and maintain one’s physiological and mental well-being. Extensive research evidence indicates that Qigong, a traditional Chinese movement practice for promoting health, provides an effective means to recover from work and off-work demands. The main objective of this paper is to offer a comprehensive, narrative review of the effects of Qigong and its core components. Attention is first paid to the outcomes of work and off-work demands and stress, and the role of recovery for individuals’ well-being. Then, Qigong and its components are explained, followed by the results of scientific research. Finally, limitations and implications for research and practiced are discussed.
Collapse
Affiliation(s)
- Karen van Dam
- Faculty of Psychology, Open University of the Netherlands, 6419 AT Heerlen, The Netherlands
| |
Collapse
|
210
|
Barsalou LW. Challenges and Opportunities for Grounding Cognition. J Cogn 2020; 3:31. [PMID: 33043241 PMCID: PMC7528688 DOI: 10.5334/joc.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/20/2020] [Indexed: 01/09/2023] Open
Abstract
According to the grounded perspective, cognition emerges from the interaction of classic cognitive processes with the modalities, the body, and the environment. Rather than being an autonomous impenetrable module, cognition incorporates these other domains intrinsically into its operation. The Situated Action Cycle offers one way of understanding how the modalities, the body, and the environment become integrated to ground cognition. Seven challenges and opportunities are raised for this perspective: (1) How does cognition emerge from the Situated Action Cycle and in turn support it? (2) How can we move beyond simply equating embodiment with action, additionally establishing how embodiment arises in the autonomic, neuroendocrine, immune, cardiovascular, respiratory, digestive, and integumentary systems? (3) How can we better understand the mechanisms underlying multimodal simulation, its functions across the Situated Action Cycle, and its integration with other representational systems? (4) How can we develop and assess theoretical accounts of symbolic processing from the grounded perspective (perhaps using the construct of simulators)? (5) How can we move beyond the simplistic distinction between concrete and abstract concepts, instead addressing how concepts about the external and internal worlds pattern to support the Situated Action Cycle? (6) How do individual differences emerge from different populations of situational memories as the Situated Action Cycle manifests itself differently across individuals? (7) How can constructs from grounded cognition provide insight into the replication and generalization crises, perhaps from a quantum perspective on mechanisms (as exemplified by simulators).
Collapse
Affiliation(s)
- Lawrence W. Barsalou
- Institute of Neuroscience and Psychology, School of Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
211
|
John AT, Wind J, Horst F, Schöllhorn WI. Acute Effects of an Incremental Exercise Test on Psychophysiological Variables and Their Interaction. J Sports Sci Med 2020; 19:596-612. [PMID: 32874113 PMCID: PMC7429434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Besides neurophysiological effects, the potential influence of exercise induced strains in terms of peripheral physiology or subjectively perceived stress as well as their possible reciprocal relation is not clearly understood yet. This study aimed to analyze effects of increasing exercise intensity on brain activity (spontaneous EEG), heart rate variability (HRV) and rating of perceived exertion (RPE) by means of a graded exercise test (GXT). Fifteen participants performed an open-loop GXT on a bicycle ergometer beginning at 50W and an increment of 50W every three minutes. Rest measurements were conducted pre- (5 min) and especially post-exercise (15 min) to analyze (neuro-) physiological prolonged effects. EEG and HRV were measured in parallel before, during (including RPE) and after GXT. Brain activity showed next to already determined effects (e.g. increased (pre)frontal theta, alpha and beta power) a particular activation of the temporal lobe after GXT compared to pre-resting state. HRV frequency parameters significantly decreased following GXT. Recovery process revealed a significant alteration of EEG and HRV towards pre-resting state with prolonged effects in the temporal lobe. Correlation analysis during GXT led to moderately negative effects of EEG total spectrum power and HRV frequency parameters. Frontopolar and temporal lobe revealed noteworthy negative correlated effects with HRV. Referring to RPE, solely temporal gamma activity correlated moderately positive with RPE. Recovery exposed only in the temporal cortex a moderately negative correlation to HF power. Thus, further analysis of the temporal brain lobe in context with exhausting physical exercise comprising induced regulation of cardiovascular stress and perceived exertion is promoted. These results indicate a brain lobe specific relation to peripheral physiology as well as perceived strain with a dependency of rest or exercise condition. Therefore, enough incentives are given to encourage further analysis of a connection between the (neuro-) physiological system as well as subjectively perceived exertion.
Collapse
Affiliation(s)
- Alexander T John
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Johanna Wind
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Fabian Horst
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| | - Wolfgang I Schöllhorn
- Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
212
|
Kluger DS, Gross J. Depth and phase of respiration modulate cortico-muscular communication. Neuroimage 2020; 222:117272. [PMID: 32822811 DOI: 10.1016/j.neuroimage.2020.117272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies in animals have convincingly demonstrated that respiration cyclically modulates oscillatory neural activity across diverse brain areas. To what extent this generalises to humans in a way that is relevant for behaviour is yet unclear. We used magnetoencephalography (MEG) to assess the potential influence of respiration depth and respiration phase on the human motor system. We obtained simultaneous recordings of brain activity, muscle activity, and respiration while participants performed a steady contraction task. We used corticomuscular coherence as a measure of efficient long-range cortico-peripheral communication. We found coherence within the beta range over sensorimotor cortex to be reduced during voluntary deep compared to involuntary normal breathing. Moreover, beta coherence was found to be cyclically modulated by respiration phase in both conditions. Overall, these results demonstrate how respiratory rhythms influence the synchrony of brain oscillations, conceivably regulating computational efficiency through neural excitability. Intriguing questions remain with regard to the shape of these modulatory processes and how they influence perception, cognition, and behaviour.
Collapse
Affiliation(s)
- Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
213
|
Maier E, Lauer S, Brecht M. Layer 4 organization and respiration locking in the rodent nose somatosensory cortex. J Neurophysiol 2020; 124:822-832. [PMID: 32783591 DOI: 10.1152/jn.00138.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rodents and other mammals acquire sensory information by precisely orchestrated head, whisker, and respiratory movements. We have, however, only limited information about integration of these signals. In the somatosensory domain, the integration of somatosensory information with other modalities is particularly pertinent for body parts such as eyes, ears, and nose, which serve another modality. Here we analyzed the nose/nostril representation in the rodent somatosensory cortex. We identified the representation of the nose/nostril in the rat somatosensory cortex by receptive field mapping and subsequent histological reconstruction. In tangential somatosensory cortical sections, the rat nostril cortex was evident as a prominent stripe-like recess of layer 4 revealed by cytochrome-c oxidase reactivity or by antibodies against the vesicular glutamate-transporter-2 (identifying thalamic afferents). We compared flattened somatosensory cortices of various rodents including rats, mice, gerbils, chinchillas, and chipmunks. We found that such a nose/nostril module was evident as a region with thinned or absent layer 4 at the expected somatotopic position of the nostril. Extracellular spike activity was strongly modulated by respiration in the rat somatosensory cortex, and field potential recordings revealed a stronger locking of nostril recording sites to respiration than for whisker/barrel cortex recoding sites. We conclude that the rodent nose/nostril representation has a conserved architecture and specifically interfaces with respiration signals.NEW & NOTEWORTHY We characterized the rodent nose somatosensory cortex. The nostril representation appeared as a kind of "hole" (i.e., as a stripe-like recess of layer 4) in tangential cortical sections. Neural activity in nose somatosensory cortex was locked to respiration, and simultaneous field recordings indicate that this locking was specific to this region. Our results reveal previously unknown cytoarchitectonic and physiological properties of the rodent nose somatosensory cortex, potentially enabling it to integrate multiple sensory modalities.
Collapse
Affiliation(s)
- Eduard Maier
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Lauer
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
214
|
Abstract
Rhythms are a fundamental and defining feature of neuronal activity in animals including humans. This rhythmic brain activity interacts in complex ways with rhythms in the internal and external environment through the phenomenon of 'neuronal entrainment', which is attracting increasing attention due to its suggested role in a multitude of sensory and cognitive processes. Some senses, such as touch and vision, sample the environment rhythmically, while others, like audition, are faced with mostly rhythmic inputs. Entrainment couples rhythmic brain activity to external and internal rhythmic events, serving fine-grained routing and modulation of external and internal signals across multiple spatial and temporal hierarchies. This interaction between a brain and its environment can be experimentally investigated and even modified by rhythmic sensory stimuli or invasive and non-invasive neuromodulation techniques. We provide a comprehensive overview of the topic and propose a theoretical framework of how neuronal entrainment dynamically structures information from incoming neuronal, bodily and environmental sources. We discuss the different types of neuronal entrainment, the conceptual advances in the field, and converging evidence for general principles.
Collapse
Affiliation(s)
- Peter Lakatos
- Translational Neuroscience Laboratories, Nathan Kline Institute, Old Orangeburg Road 140, Orangeburg, New York 10962, USA; Department of Psychiatry, New York University School of Medicine, One, 8, Park Ave, New York, NY 10016, USA.
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Malmedyweg 15, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| | - Gregor Thut
- Centre for Cognitive Neuroimaging (CCNi), Institute of Neuroscience and Psychology, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK.
| |
Collapse
|
215
|
Parker PRL, Brown MA, Smear MC, Niell CM. Movement-Related Signals in Sensory Areas: Roles in Natural Behavior. Trends Neurosci 2020; 43:581-595. [PMID: 32580899 PMCID: PMC8000520 DOI: 10.1016/j.tins.2020.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated prominent and widespread movement-related signals in the brain of head-fixed mice, even in primary sensory areas. However, it is still unknown what role these signals play in sensory processing. Why are these sensory areas 'contaminated' by movement signals? During natural behavior, animals actively acquire sensory information as they move through the environment and use this information to guide ongoing actions. In this context, movement-related signals could allow sensory systems to predict self-induced sensory changes and extract additional information about the environment. In this review we summarize recent findings on the presence of movement-related signals in sensory areas and discuss how their study, in the context of natural freely moving behaviors, could advance models of sensory processing.
Collapse
Affiliation(s)
- Philip R L Parker
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | - Morgan A Brown
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Matthew C Smear
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
216
|
Tatschl JM, Hochfellner SM, Schwerdtfeger AR. Implementing Mobile HRV Biofeedback as Adjunctive Therapy During Inpatient Psychiatric Rehabilitation Facilitates Recovery of Depressive Symptoms and Enhances Autonomic Functioning Short-Term: A 1-Year Pre-Post-intervention Follow-Up Pilot Study. Front Neurosci 2020; 14:738. [PMID: 32792897 PMCID: PMC7386054 DOI: 10.3389/fnins.2020.00738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE New treatment options for depression are warranted, due to high recurrence rates. Recent research indicates benefits of heart rate variability biofeedback (HRVBF) on symptom recovery and autonomic functioning in depressed individuals. Slow-paced breathing-induced amplification of vagus nerve activity is the main element of HRVBF. Thus, the latter represents a safe and non-invasive complementary depression treatment. However, its efficacy in patients undergoing inpatient psychiatric rehabilitation receiving highly comprehensive treatments has not been evaluated. METHODS Ninety-two inpatients were randomly assigned to an intervention group (IG) or control group (CG). While the latter received the standard treatment only, adjunctive HRVBF was provided to the IG over 5 weeks. Depression severity and heart rate variability (HRV) were assessed before (pre) and after 5 weeks (post). Moreover, 1-year follow-up depression scores were available for 30 participants. RESULTS Although depression improved in both groups, the IG exhibited significantly larger improvements at post-assessment ( η p 2 = 0.065) and significant increases in resting LF-HRV (d = 0.45) and cardiorespiratory coherence (d = 0.61). No significant effects for RMSSD, SDNN, HF-HRV, or HR were found (ps > 0.05). Additionally, the IG showed a medium- to large-sized reduction in resting respiratory rate from 13.2 to 9.8 breaths per minute (p < 0.001, d = 0.86), with the CG exhibiting only a small decrease from 13.5 to 12.4 (p = 0.49; d = 0.35). While the IG exhibited significantly lower depression scores at post-assessment (p = 0.042, d = 0.79), this effect decreased during follow-up (p = 0.195, d = 0.48). CONCLUSION HRVBF as adjuvant therapy during inpatient psychiatric rehabilitation facilitated depression recovery. Additionally, amplified LF-HRV as well as cardiorespiratory coherence at rest and a decrease in resting breathing frequency was observed in the HRVBF group. These findings emphasize HRVBF's value as complementary therapy regardless of concurrent treatments. Moreover, these incremental benefits could serve as resource even after the actual training period. However, the additional antidepressant gains vanish during the long-term follow-up, indicating the need for more intense training or regular practice afterward, respectively. Thus, future studies are warranted to examine how the initial benefits of HRVBF during inpatient psychiatric rehabilitation can be preserved post discharge.
Collapse
Affiliation(s)
- Josef M. Tatschl
- Health Psychology Unit, Institute of Psychology, University of Graz, Graz, Austria
| | | | - Andreas R. Schwerdtfeger
- Health Psychology Unit, Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
217
|
Kananen J, Helakari H, Korhonen V, Huotari N, Järvelä M, Raitamaa L, Raatikainen V, Rajna Z, Tuovinen T, Nedergaard M, Jacobs J, LeVan P, Ansakorpi H, Kiviniemi V. Respiratory-related brain pulsations are increased in epilepsy-a two-centre functional MRI study. Brain Commun 2020; 2:fcaa076. [PMID: 32954328 PMCID: PMC7472909 DOI: 10.1093/braincomms/fcaa076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Resting-state functional MRI has shown potential for detecting changes in cerebral blood oxygen level-dependent signal in patients with epilepsy, even in the absence of epileptiform activity. Furthermore, it has been suggested that coefficient of variation mapping of fast functional MRI signal may provide a powerful tool for the identification of intrinsic brain pulsations in neurological diseases such as dementia, stroke and epilepsy. In this study, we used fast functional MRI sequence (magnetic resonance encephalography) to acquire ten whole-brain images per second. We used the functional MRI data to compare physiological brain pulsations between healthy controls (n = 102) and patients with epilepsy (n = 33) and furthermore to drug-naive seizure patients (n = 9). Analyses were performed by calculating coefficient of variation and spectral power in full band and filtered sub-bands. Brain pulsations in the respiratory-related frequency sub-band (0.11-0.51 Hz) were significantly (P < 0.05) increased in patients with epilepsy, with an increase in both signal variance and power. At the individual level, over 80% of medicated and drug-naive seizure patients exhibited areas of abnormal brain signal power that correlated well with the known clinical diagnosis, while none of the controls showed signs of abnormality with the same threshold. The differences were most apparent in the basal brain structures, respiratory centres of brain stem, midbrain and temporal lobes. Notably, full-band, very low frequency (0.01-0.1 Hz) and cardiovascular (0.8-1.76 Hz) brain pulses showed no differences between groups. This study extends and confirms our previous results of abnormal fast functional MRI signal variance in epilepsy patients. Only respiratory-related brain pulsations were clearly increased with no changes in either physiological cardiorespiratory rates or head motion between the subjects. The regional alterations in brain pulsations suggest that mechanisms driving the cerebrospinal fluid homeostasis may be altered in epilepsy. Magnetic resonance encephalography has both increased sensitivity and high specificity for detecting the increased brain pulsations, particularly in times when other tools for locating epileptogenic areas remain inconclusive.
Collapse
Affiliation(s)
- Janne Kananen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Heta Helakari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Vesa Korhonen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Niko Huotari
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Matti Järvelä
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Lauri Raitamaa
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Ville Raatikainen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Zalan Rajna
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Center for Machine Vision and Signal Analysis (CMVS), University of Oulu, Oulu 90014, Finland
| | - Timo Tuovinen
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Julia Jacobs
- Department of Pediatric Neurology and Muscular Disease, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pierre LeVan
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79110, Germany
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hanna Ansakorpi
- Medical Research Center (MRC), Oulu 90220, Finland
- Research Unit of Neuroscience, Neurology, University of Oulu, Oulu 90220, Finland
- Department of Neurology, Oulu University Hospital, Oulu 90029, Finland
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging (OFNI), Department of Diagnostic Radiology, Oulu University Hospital, Oulu 90029, Finland
- Medical Imaging, Physics and Technology (MIPT), Faculty of Medicine, University of Oulu, Oulu 90220, Finland
- Medical Research Center (MRC), Oulu 90220, Finland
| |
Collapse
|
218
|
Verdonk C, Trousselard M, Canini F, Vialatte F, Ramdani C. Toward a Refined Mindfulness Model Related to Consciousness and Based on Event-Related Potentials. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2020; 15:1095-1112. [DOI: 10.1177/1745691620906444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neuroimaging, behavioral, and self-report evidence suggests that there are four main cognitive mechanisms that support mindfulness: (a) self-regulation of attention, (b) improved body awareness, (c) improved emotion regulation, and (d) change in perspective on the self. In this article, we discuss these mechanisms on the basis of the event-related potential (ERP). We reviewed the ERP literature related to mindfulness and examined a data set of 29 articles. Our findings show that the neural features of mindfulness are consistently associated with the self-regulation of attention and, in most cases, reduced reactivity to emotional stimuli and improved cognitive control. On the other hand, there appear to be no studies of body awareness. We link these electrophysiological findings to models of consciousness and introduce a unified, mechanistic mindfulness model. The main idea in this refined model is that mindfulness decreases the threshold of conscious access. We end with several working hypotheses that could direct future mindfulness research and clarify our results.
Collapse
Affiliation(s)
- Charles Verdonk
- Neurophysiology of Stress Unit, Neurosciences and Cognitive Sciences Department, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- Plasticité du Cerveau, Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI) Paris, Université Paris Sciences et Lettres (PSL), CNRS
| | - Marion Trousselard
- Neurophysiology of Stress Unit, Neurosciences and Cognitive Sciences Department, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- French Military Health Service Academy, Paris, France
| | - Frédéric Canini
- Neurophysiology of Stress Unit, Neurosciences and Cognitive Sciences Department, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
- French Military Health Service Academy, Paris, France
| | - Francois Vialatte
- Plasticité du Cerveau, Ecole Supérieure de Physique et de Chimie Industrielles (ESPCI) Paris, Université Paris Sciences et Lettres (PSL), CNRS
| | - Céline Ramdani
- Neurophysiology of Stress Unit, Neurosciences and Cognitive Sciences Department, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| |
Collapse
|
219
|
Arabkheradmand G, Zhou G, Noto T, Yang Q, Schuele SU, Parvizi J, Gottfried JA, Wu S, Rosenow JM, Koubeissi MZ, Lane G, Zelano C. Anticipation-induced delta phase reset improves human olfactory perception. PLoS Biol 2020; 18:e3000724. [PMID: 32453719 PMCID: PMC7250403 DOI: 10.1371/journal.pbio.3000724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
Anticipating an odor improves detection and perception, yet the underlying neural mechanisms of olfactory anticipation are not well understood. In this study, we used human intracranial electroencephalography (iEEG) to show that anticipation resets the phase of delta oscillations in piriform cortex prior to odor arrival. Anticipatory phase reset correlates with ensuing odor-evoked theta power and improvements in perceptual accuracy. These effects were consistently present in each individual subject and were not driven by potential confounds of pre-inhale motor preparation or power changes. Together, these findings suggest that states of anticipation enhance olfactory perception through phase resetting of delta oscillations in piriform cortex. Use of human intracranial electroencephalography methods, including rare direct recordings from human olfactory cortex, shows that anticipation of odor resets the phase of delta oscillations prior to the arrival of an odor.
Collapse
Affiliation(s)
- Ghazaleh Arabkheradmand
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
- * E-mail:
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Qiaohan Yang
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Stephan U. Schuele
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University Palo Alto, Stanford, California, United States of America
| | - Jay A. Gottfried
- University of Pennsylvania, Perelman School of Medicine, Department of Neurology, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania, School of Arts and Sciences, Department of Psychology, Philadelphia, Pennsylvania, United States of America
| | - Shasha Wu
- University of Chicago, Department of Neurology, Chicago, Illinois, United States of America
| | - Joshua M. Rosenow
- Northwestern University Feinberg School of Medicine, Department of Neurosurgery, Illinois, United States of America
| | - Mohamad Z. Koubeissi
- George Washington University, Department of Neurology, Washington DC, United States of America
| | - Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, Illinois, United States of America
| |
Collapse
|
220
|
Kaido T, Hirabayashi H, Murase N, Sasaki R, Shimokawara T, Nagata K, Bando C, Aono Y. Deep slow nasal respiration with tight lip closure for immediate attenuation of severe tics. J Clin Neurosci 2020; 77:67-74. [PMID: 32417125 DOI: 10.1016/j.jocn.2020.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Severe intractable tics, which are associated with Tourette syndrome and chronic tic disorder (TS/CTD), severely affect the quality of life. Common less-invasive treatments are often unable to attenuate tics with deep brain stimulation currently being the only effective treatment. We aimed to assess the anti-tic effect of deep slow nasal respiration with tight lip closure using patients with TS/CTD. METHODS We retrospectively analyzed 10 consecutive patients (9 men, 1 woman; 23-41 years old). We instructed the patients to perform the procedure for 120 s and to obtain a video recording of before and during the procedure. The videos were used to count tics and determine lip competency or incompetency. The counted tics were rated using the modified Rush Video Rating Scale. RESULTS Compared with before the procedure, there were significantly lower frequencies of motor and phonic tics, as well as video scored, during the procedure. Eight patients presented with lip incompetency before the procedure and none after the procedure (P = 0.041). There were no side effects associated with the procedure. CONCLUSION Our findings indicate that deep slow nasal respiration with tight lip closure ameliorates tics in patients with TS/CTD. In accordance with our results, lip opening and oral breathing could be causes of tics, in addition to heritability. Therefore, this novel procedure could improve tics. Furthermore, our findings could contribute toward the development of tic treatments and elucidate their pathophysiology regarding the reward system, hypersensitivity, autonomic nerves, and nasal airway.
Collapse
Affiliation(s)
- Takanobu Kaido
- Department of Neurosurgery, National Hospital Organization Nara Medical Center, Nara, Japan; Anatomy and Physiology Laboratory, Department of Health and Nutrition, Osaka Shoin Women's University, Higashiosaka, Japan.
| | - Hidehiro Hirabayashi
- Department of Neurosurgery, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Nagako Murase
- Department of Neurology, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Ryota Sasaki
- Department of Neurosurgery, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Tatsuo Shimokawara
- Department of Neurosurgery, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Kiyoshi Nagata
- Department of Neurosurgery, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Chiaki Bando
- Department of Internal Medicine, National Hospital Organization Nara Medical Center, Nara, Japan
| | - Yuka Aono
- Anatomy and Physiology Laboratory, Department of Health and Nutrition, Osaka Shoin Women's University, Higashiosaka, Japan
| |
Collapse
|
221
|
Tantirigama MLS, Zolnik T, Judkewitz B, Larkum ME, Sachdev RNS. Perspective on the Multiple Pathways to Changing Brain States. Front Syst Neurosci 2020; 14:23. [PMID: 32457583 PMCID: PMC7225277 DOI: 10.3389/fnsys.2020.00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
In this review article, we highlight several disparate ideas that are linked to changes in brain state (i.e., sleep to arousal, Down to Up, synchronized to de-synchronized). In any discussion of the brain state, we propose that the cortical pyramidal neuron has a central position. EEG recordings, which typically assess brain state, predominantly reflect the activity of cortical pyramidal neurons. This means that the dominant rhythmic activity that characterizes a particular brain state ultimately has to manifest globally across the pyramidal neuron population. During state transitions, it is the long-range connectivity of these neurons that broadcast the resultant changes in activity to many subcortical targets. Structures like the thalamus, brainstem/hypothalamic neuromodulatory systems, and respiratory systems can also strongly influence brain state, and for many decades we have been uncovering bidirectional pathways that link these structures to state changes in the cerebral cortex. More recently, movement and active behaviors have emerged as powerful drivers of state changes. Each of these systems involve different circuits distributed across the brain. Yet, for a system-wide change in brain state, there must be a collaboration between these circuits that reflects and perhaps triggers the transition between brain states. As we expand our understanding of how brain state changes, our current challenge is to understand how these diverse sets of circuits and pathways interact to produce the changes observed in cortical pyramidal neurons.
Collapse
Affiliation(s)
| | | | | | - Matthew E. Larkum
- Institut für Biologie, Neurocure Center for Excellence, Charité Universitätsmedizin Berlin & Humboldt Universität, Berlin, Germany
| | - Robert N. S. Sachdev
- Institut für Biologie, Neurocure Center for Excellence, Charité Universitätsmedizin Berlin & Humboldt Universität, Berlin, Germany
| |
Collapse
|
222
|
Bhaskar L, Tripathi V, Kharya C, Kotabagi V, Bhatia M, Kochupillai V. High-Frequency Cerebral Activation and Interhemispheric Synchronization Following Sudarshan Kriya Yoga as Global Brain Rhythms: The State Effects. Int J Yoga 2020; 13:130-136. [PMID: 32669767 PMCID: PMC7336945 DOI: 10.4103/ijoy.ijoy_25_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
Context: Respiration is known to modulate neuronal oscillations in the brain and is measured by electroencephalogram (EEG). Sudarshan Kriya Yoga (SKY) is a popular breathing process and is established for its significant effects on the various aspects of physiology and psychology. Aims: This study aimed to observe neuronal oscillations in multifrequency bands and interhemispheric synchronization following SKY. Settings and Design: This study employed before- and after-study design. Subjects and Methods: Forty healthy volunteers (average age 25.45 ± 5.75, 23 males and 17 females) participated in the study. Nineteen-channel EEG was recorded and analyzed for 5 min each: before and after SKY. Spectral power for delta, theta, alpha, beta, and gamma frequency band was calculated using Multi-taper Fast Fourier Transform (Chronux toolbox). The Asymmetry Index was calculated by subtracting the natural log of powers of left (L) hemisphere from the right® to show interhemispheric synchronization. Statistical Analysis: Paired t-test was used for statistical analysis. Results: Spectral power increased significantly in all frequency bands bilaterally in frontal, central, parietal, temporal, and occipital regions of the brain after long SKY. Electrical activity shifted from lower to higher frequency range with a significant rise in the gamma and beta powers following SKY. Asymmetry Index values tended toward 0 following SKY. Conclusions: A single session of SKY generates global brain rhythm dominantly with high-frequency cerebral activation and initiates appropriate interhemispheric synchronization in brain rhythms as state effects. This suggests that SKY leads to better attention, memory, and emotional and autonomic control along with enhanced cognitive functions, which finally improves physical and mental well-being.
Collapse
Affiliation(s)
- Lakshmi Bhaskar
- Sri Sri Institute of Advanced Research, Ved Vignan Maha Vidya Peeth, Bengaluru, Karnataka, India
| | - Vaibhav Tripathi
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Chhaya Kharya
- Sri Sri Institute of Advanced Research, Ved Vignan Maha Vidya Peeth, Bengaluru, Karnataka, India
| | - Vijayalakshmi Kotabagi
- Department of Medical Electronics, BMS College of Engineering, Bengaluru, Karnataka, India
| | - Manvir Bhatia
- Department of Sleep Medicine, Fortis Escort Heart Institute, Delhi, India
| | - Vinod Kochupillai
- Sri Sri Institute of Advanced Research, Ved Vignan Maha Vidya Peeth, Bengaluru, Karnataka, India
| |
Collapse
|
223
|
Nobis WP, González Otárula KA, Templer JW, Gerard EE, VanHaerents S, Lane G, Zhou G, Rosenow JM, Zelano C, Schuele S. The effect of seizure spread to the amygdala on respiration and onset of ictal central apnea. J Neurosurg 2020; 132:1313-1323. [PMID: 30952127 PMCID: PMC8022327 DOI: 10.3171/2019.1.jns183157] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death for patients with refractory epilepsy, and there is increasing evidence for a centrally mediated respiratory depression as a pathophysiological mechanism. The brain regions responsible for a seizure's inducing respiratory depression are unclear-the respiratory nuclei in the brainstem are thought to be involved, but involvement of forebrain structures is not yet understood. The aim of this study was to analyze intracranial EEGs in combination with the results of respiratory monitoring to investigate the relationship between seizure spread to specific mesial temporal brain regions and the onset of respiratory dysfunction and apnea. METHODS The authors reviewed all invasive electroencephalographic studies performed at Northwestern Memorial Hospital (Chicago) since 2010 to identify those cases in which 1) multiple mesial temporal electrodes (amygdala and hippocampal) were placed, 2) seizures were captured, and 3) patients' respiration was monitored. They identified 8 investigations meeting these criteria in patients with temporal lobe epilepsy, and these investigations yielded data on a total of 22 seizures for analysis. RESULTS The onset of ictal apnea associated with each seizure was highly correlated with seizure spread to the amygdala. Onset of apnea occurred 2.7 ± 0.4 (mean ± SEM) seconds after the spread of the seizure to the amygdala, which was significantly earlier than after spread to the hippocampus (10.2 ± 0.7 seconds; p < 0.01). CONCLUSIONS The findings suggest that activation of amygdalar networks is correlated with central apnea during seizures. This study builds on the authors' prior work that demonstrates a role for the amygdala in voluntary respiratory control and suggests a further role in dysfunctional breathing states seen during seizures, with implications for SUDEP pathophysiology.
Collapse
Affiliation(s)
- William P. Nobis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Jessica W. Templer
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Elizabeth E. Gerard
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephen VanHaerents
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joshua M. Rosenow
- Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Stephan Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
224
|
Santhanam Kumar SS, Kamath A, Poojary S. Effect of Unilateral Left Nostril Breathing (Chandra Anga Pranayama) on Cognitive Function in Healthy Yoga-Naïve Individuals: A Randomized, Controlled, Pilot Study. Complement Med Res 2020; 27:319-327. [PMID: 32344403 DOI: 10.1159/000506972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Breathing modulates cortical neuronal activity. Various breathing exercises are purported to have specific effects on emotional and cognitive functions. OBJECTIVE To determine the effect of unilateral left nostril breathing (ULNB) on nonlateralized, overall cognitive functions using computerized psychometric tests. METHODS A randomized, controlled, pilot study was conducted among 20 healthy yoga-naïve medical students. ULNB was performed for 15 min by the test group (n = 10) and breath awareness by the control group (n = 10). Attention and processing speed, memory, and executive function were assessed using the Letter-Digit Substitution Test, Sternberg Memory Task, and Victoria Stroop Test, respectively. Baseline, pre- and postintervention scores were recorded. RESULTS There was no significant difference between the groups in baseline scores. In the Sternberg Memory Task, a statistically significant decrease in response time was seen in the test (t(9) = 3.855, p = 0.004) as well as the control group (t(9) = 3.120, p = 0.012); there was no significant difference between the groups. No significant effect of UNLB was seen in the Letter-Digit Substitution Test and Stroop Test. CONCLUSIONS Our study showed no difference in the effects of 15-min practice of ULNB and breath awareness on cognitive functions; both improved memory but not attention or executive function.
Collapse
Affiliation(s)
| | - Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India,
| | | |
Collapse
|
225
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
226
|
Lane G, Zhou G, Noto T, Zelano C. Assessment of direct knowledge of the human olfactory system. Exp Neurol 2020; 329:113304. [PMID: 32278646 DOI: 10.1016/j.expneurol.2020.113304] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Gregory Lane
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Guangyu Zhou
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | - Torben Noto
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| | - Christina Zelano
- Northwestern University Feinberg School of Medicine, Department of Neurology, 303 E Chicago Ave, Chicago, IL 60611, USA
| |
Collapse
|
227
|
Gross J. Magnetoencephalography in Cognitive Neuroscience: A Primer. Neuron 2020; 104:189-204. [PMID: 31647893 DOI: 10.1016/j.neuron.2019.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Magnetoencephalography (MEG) is an invaluable tool to study the dynamics and connectivity of large-scale brain activity and their interactions with the body and the environment in functional and dysfunctional body and brain states. This primer introduces the basic concepts of MEG, discusses its strengths and limitations in comparison to other brain imaging techniques, showcases interesting applications, and projects exciting current trends into the near future, in a way that might more fully exploit the unique capabilities of MEG.
Collapse
Affiliation(s)
- Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis (IBB), University of Muenster, 48149 Muenster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, 48149 Muenster, Germany; Centre for Cognitive Neuroimaging (CCNi), University of Glasgow, Glasgow, UK.
| |
Collapse
|
228
|
Kontaris I, East BS, Wilson DA. Behavioral and Neurobiological Convergence of Odor, Mood and Emotion: A Review. Front Behav Neurosci 2020; 14:35. [PMID: 32210776 PMCID: PMC7076187 DOI: 10.3389/fnbeh.2020.00035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The affective state is the combination of emotion and mood, with mood reflecting a running average of sequential emotional events together with an underlying internal affective state. There is now extensive evidence that odors can overtly or subliminally modulate mood and emotion. Relying primarily on neurobiological literature, here we review what is known about how odors can affect emotions/moods and how emotions/moods may affect odor perception. We take the approach that form can provide insight into function by reviewing major brain regions and neural circuits underlying emotion and mood, and then reviewing the olfactory pathway in the context of that emotion/mood network. We highlight the extensive neuroanatomical opportunities for odor-emotion/mood convergence, as well as functional data demonstrating reciprocal interactions between these processes. Finally, we explore how the odor- emotion/mood interplay is, or could be, used in medical and/or commercial applications.
Collapse
Affiliation(s)
- Ioannis Kontaris
- Givaudan UK Limited, Health and Well-being Centre of Excellence, Ashford, United Kingdom
| | - Brett S East
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NC, United States.,Child and Adolescent Psychiatry, NYU School of Medicine, New York University, New York, NY, United States
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NC, United States.,Child and Adolescent Psychiatry, NYU School of Medicine, New York University, New York, NY, United States
| |
Collapse
|
229
|
Cavelli M, Castro‐Zaballa S, Gonzalez J, Rojas‐Líbano D, Rubido N, Velásquez N, Torterolo P. Nasal respiration entrains neocortical long‐range gamma coherence during wakefulness. Eur J Neurosci 2020; 51:1463-1477. [DOI: 10.1111/ejn.14560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Matías Cavelli
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Santiago Castro‐Zaballa
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Joaquín Gonzalez
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Daniel Rojas‐Líbano
- Laboratorio de Neurociencia Cognitiva y Social Facultad de Psicología Universidad Diego Portales Santiago Chile
| | - Nicolas Rubido
- Facultad de Ciencias Instituto de Física Universidad de la República Montevideo Uruguay
| | - Noelia Velásquez
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Pablo Torterolo
- Laboratorio de Neurobiología del Sueño Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| |
Collapse
|
230
|
Heart rate variability (HRV): From brain death to resonance breathing at 6 breaths per minute. Clin Neurophysiol 2020; 131:676-693. [DOI: 10.1016/j.clinph.2019.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/14/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022]
|
231
|
Breathing is coupled with voluntary action and the cortical readiness potential. Nat Commun 2020; 11:289. [PMID: 32029711 PMCID: PMC7005287 DOI: 10.1038/s41467-019-13967-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/10/2019] [Indexed: 11/30/2022] Open
Abstract
Voluntary action is a fundamental element of self-consciousness. The readiness potential (RP), a slow drift of neural activity preceding self-initiated movement, has been suggested to reflect neural processes underlying the preparation of voluntary action; yet more than fifty years after its introduction, interpretation of the RP remains controversial. Based on previous research showing that internal bodily signals affect sensory processing and ongoing neural activity, we here investigated the potential role of interoceptive signals in voluntary action and the RP. We report that (1) participants initiate voluntary actions more frequently during expiration, (2) this respiration-action coupling is absent during externally triggered actions, and (3) the RP amplitude is modulated depending on the respiratory phase. Our findings demonstrate that voluntary action is coupled with the respiratory system and further suggest that the RP is associated with fluctuations of ongoing neural activity that are driven by the involuntary and cyclic motor act of breathing. Voluntary action and free will have been associated with cortical activity, referred to as “the readiness potential” that precedes self-initiated actions by about 1 s. Here, the authors show that the involuntary and cyclic motor act of breathing is coupled with voluntary action and the readiness potential.
Collapse
|
232
|
Maric V, Ramanathan D, Mishra J. Respiratory regulation & interactions with neuro-cognitive circuitry. Neurosci Biobehav Rev 2020; 112:95-106. [PMID: 32027875 PMCID: PMC10092293 DOI: 10.1016/j.neubiorev.2020.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 01/17/2020] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
Abstract
It is increasingly being recognized that active control of breathing - a key aspect of ancient Vedic meditative practices, can relieve stress and anxiety and improve cognition. However, the underlying mechanisms of respiratory modulation of neurophysiology are just beginning to be elucidated. Research shows that brainstem circuits involved in the motor control of respiration receive input from and can directly modulate activity in subcortical circuits, affecting emotion and arousal. Meanwhile, brain regions involved in the sensory aspects of respiration, such as the olfactory bulb, are like-wise linked with wide-spread brain oscillations; and perturbing olfactory bulb activity can significantly affect both mood and cognition. Thus, via both motor and sensory pathways, there are clear mechanisms by which brain activity is entrained to the respiratory cycle. Here, we review evidence gathered across multiple species demonstrating the links between respiration, entrainment of brain activity and functional relevance for affecting mood and cognition. We also discuss further linkages with cardiac rhythms, and the potential translational implications for biorhythm monitoring and regulation in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vojislav Maric
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Mental Health, VA San Diego Medical Center, San Diego, CA, USA
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
233
|
Losacco J, Ramirez-Gordillo D, Gilmer J, Restrepo D. Learning improves decoding of odor identity with phase-referenced oscillations in the olfactory bulb. eLife 2020; 9:e52583. [PMID: 31990271 PMCID: PMC6986879 DOI: 10.7554/elife.52583] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/30/2019] [Indexed: 01/04/2023] Open
Abstract
Local field potential oscillations reflect temporally coordinated neuronal ensembles-coupling distant brain regions, gating processing windows, and providing a reference for spike timing-based codes. In phase amplitude coupling (PAC), the amplitude of the envelope of a faster oscillation is larger within a phase window of a slower carrier wave. Here, we characterized PAC, and the related theta phase-referenced high gamma and beta power (PRP), in the olfactory bulb of mice learning to discriminate odorants. PAC changes throughout learning, and odorant-elicited changes in PRP increase for rewarded and decrease for unrewarded odorants. Contextual odorant identity (is the odorant rewarded?) can be decoded from peak PRP in animals proficient in odorant discrimination, but not in naïve mice. As the animal learns to discriminate the odorants the dimensionality of PRP decreases. Therefore, modulation of phase-referenced chunking of information in the course of learning plays a role in early sensory processing in olfaction.
Collapse
Affiliation(s)
- Justin Losacco
- Neuroscience Graduate ProgramUniversity of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental BiologyUniversity of Colorado Anschutz Medical CampusAuroraUnited States
| | - Daniel Ramirez-Gordillo
- Department of Cell and Developmental BiologyUniversity of Colorado Anschutz Medical CampusAuroraUnited States
| | - Jesse Gilmer
- Neuroscience Graduate ProgramUniversity of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Physiology and BiophysicsUniversity of Colorado Anschutz Medical CampusAuroraUnited States
| | - Diego Restrepo
- Neuroscience Graduate ProgramUniversity of Colorado Anschutz Medical CampusAuroraUnited States
- Department of Cell and Developmental BiologyUniversity of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
234
|
Zhu D, Jiang M, Xu D, Schöllhorn WI. Long-Term Effects of Mind-Body Exercises on the Physical Fitness and Quality of Life of Individuals With Substance Use Disorder-A Randomized Trial. Front Psychiatry 2020; 11:528373. [PMID: 33391039 PMCID: PMC7775308 DOI: 10.3389/fpsyt.2020.528373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Mind-body exercises (MBE) are sequences of low to medium-intensity activities that benefit healthy performers physically and mentally. In contrast to the unmodified application of traditional tai chi, qi gong, or yoga in the healthy population, MBEs are typically tailored for individuals with substance abuse disorder (SUD). Despite numerous applications in practice, the detailed effects of tailor-made MBEs for SUD are unclear. Objectives: This study aimed to analyze and compare changes in the physical fitness and quality of life of individuals with SUD that underwent conventional or tailor-made MBEs. Methods: A total of 100 subjects obtained from the Shanghai Mandatory Detoxification and Rehabilitation Center with SUD were randomly assigned into two groups. The subjects in the experimental group (n = 50) practiced tailored MBE for 60 min a day, five times a week, for 3 months. The subjects (n = 50) in the control group were treated with conventional rehabilitation exercises with the same intervention protocol. The outcomes of fitness and quality of life for drug addiction were measured at the beginning and after 3 and 6 months by a questionnaire (QOL-DA). A two-way repeated measure analysis of variance was applied to compare the difference of treatments in the two groups. Results: Statistically significant differences for the experimental group were found in systolic (p < 0.01, η2 = 0.124) and diastolic blood pressure (p < 0.01, η2 = 0.097), pulse (p < 0.01, η2 = 0.086), vital capacity (p < 0.05, η2 = 0.036), flexibility (p < 0.01, η2 = 0.143), and aerobic endurance (p < 0.01, η2 = 0.165). Results of the QOL-DA showed statistically significant differences between the experimental and control groups in total score (p < 0.01, η2 = 0.158) with greater effects on the former. Conclusions: This study provided evidence that tailored MBE could lead to remarkable effects with regard to blood pressure, vital capacity, flexibility, and aerobic endurance in comparison with conventional rehabilitation methods. Clinical Trial Registration: ChiCTR-IPR-14005343.
Collapse
Affiliation(s)
- Dong Zhu
- School of International Education, Shanghai University of Sport, Shanghai, China
| | - Mei Jiang
- School of International Education, Shanghai University of Sport, Shanghai, China
| | - Ding Xu
- Shanghai Drug Administration, Shanghai, China
| | - Wolfgang I Schöllhorn
- School of International Education, Shanghai University of Sport, Shanghai, China.,Institute for Sport Science, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
235
|
Jerath R, Beveridge C, Jensen M. On the Hierarchical Organization of Oscillatory Assemblies: Layered Superimposition and a Global Bioelectric Framework. Front Hum Neurosci 2019; 13:426. [PMID: 31866845 PMCID: PMC6904282 DOI: 10.3389/fnhum.2019.00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 11/18/2019] [Indexed: 01/23/2023] Open
Abstract
Bioelectric oscillations occur throughout the nervous system of nearly all animals, revealed to play an important role in various aspects of cognitive activity such as information processing and feature binding. Modern research into this dynamic and intrinsic bioelectric activity of neural cells continues to raise questions regarding their role in consciousness and cognition. In this theoretical article, we assert a novel interpretation of the hierarchical nature of "brain waves" by identifying that the superposition of multiple oscillations varying in frequency corresponds to the superimposing of the contents of consciousness and cognition. In order to describe this isomorphism, we present a layered model of the global functional oscillations of various frequencies which act as a part of a unified metastable continuum described by the Operational Architectonics theory and suggested to be responsible for the emergence of the phenomenal mind. We detail the purposes, functions, and origins of each layer while proposing our main theory that the superimposition of these oscillatory layers mirrors the superimposition of the components of the integrated phenomenal experience as well as of cognition. In contrast to the traditional view that localizations of high and low-frequency activity are spatially distinct, many authors have suggested a hierarchical nature to oscillations. Our theoretical interpretation is founded in four layers which correlate not only in frequency but in evolutionary development. As other authors have done, we explore how these layers correlate to the phenomenology of human experience. Special importance is placed on the most basal layer of slow oscillations in coordinating and grouping all of the other layers. By detailing the isomorphism between the phenomenal and physiologic aspects of how lower frequency layers provide a foundation for higher frequency layers to be organized upon, we provide a further means to elucidate physiological and cognitive mechanisms of mind and for the well-researched outcomes of certain voluntary breathing patterns and meditative practices which modulate the mind and have therapeutic effects for psychiatric and other disorders.
Collapse
Affiliation(s)
- Ravinder Jerath
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Connor Beveridge
- Charitable Medical Healthcare Foundation, Augusta, GA, United States
| | - Michael Jensen
- Department of Medical Illustration, Augusta University, Augusta, GA, United States
| |
Collapse
|
236
|
Monti A, Porciello G, Tieri G, Aglioti SM. The "embreathment" illusion highlights the role of breathing in corporeal awareness. J Neurophysiol 2019; 123:420-427. [PMID: 31800367 DOI: 10.1152/jn.00617.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent theories posit that physiological signals contribute to corporeal awareness, the basic feeling that one has a body (body ownership) that acts according to one's will (body agency) and occupies a specific position (body location). Combining physiological recordings with immersive virtual reality, we found that an ecological mapping of real respiratory patterns onto a virtual body illusorily changes corporeal awareness. This new way of inducing a respiratory bodily illusion, called "embreathment," revealed that breathing is almost as important as visual appearance for inducing body ownership and more important than any other cue for body agency. These effects were moderated by individual levels of interoception, as assessed through a standard heartbeat-counting task and a new "pneumoception" task. By showing that respiratory, visual, and spatial signals exert a specific and weighted influence on the fundamental feeling that one is an embodied agent, we pave the way for a comprehensive hierarchical model of corporeal awareness.NEW & NOTEWORTHY Our body is the only object we sense from the inside; however, it is unclear how much inner physiology contributes to the global sensation of having a body and controlling it. We combine respiration recordings with immersive virtual reality and find that making a virtual body breathe like the real body gives an illusory sense of ownership and agency over the avatar, elucidating the role of a key physiological process like breathing in corporeal awareness.
Collapse
Affiliation(s)
- Alessandro Monti
- Sapienza, Università di Roma and Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Porciello
- Sapienza, Università di Roma and Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gaetano Tieri
- IRCCS Fondazione Santa Lucia, Rome, Italy.,Virtual Reality Laboratory, Università Telematica Unitelma Sapienza, Rome, Italy
| | - Salvatore M Aglioti
- Sapienza, Università di Roma and Istituto Italiano di Tecnologia, Center for Life Nano Science, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
237
|
Hsu SM, Tseng CH, Hsieh CH, Hsieh CW. Slow-paced inspiration regularizes alpha phase dynamics in the human brain. J Neurophysiol 2019; 123:289-299. [PMID: 31747328 DOI: 10.1152/jn.00624.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The phase of low-frequency, rhythmic cortical activity is essential for organizing brain processes because it provides a recurrent temporal frame for information coding. However, the low-frequency cortical phase exhibits great flexibility in response to external influences. Given that brain rhythms have been found to track respiratory inputs, we hypothesized that slow breathing, commonly associated with mental regulation, could reorganize the relationship between these two rhythmic systems through the adjustment of the cortical phase to such a slow train of inputs. Based on simultaneous magnetoencephalography and respiratory measurements, we report that while participants performed paced breathing, slow relative to normal breathing modulated cortical phase activity in the alpha range across widespread brain areas. Such modulation effects were specifically locked to the middle of the inspiration stage and exhibited a well-structured pattern. At the single-subject level, the phase angles underlying the effects became more likely to be diametrically opposed across breaths, indicating unique and consistent phase adjustment to slow inspiratory inputs. Neither cardiac fluctuations nor breathing-unrelated task effects could account for the findings. We suggest that slow-paced inspiration could organize the cortical phase in a regularized phase pattern, revealing a rhythmic but dynamic neural network integrated with different neurophysiological systems through volitional control.NEW & NOTEWORTHY Breathing is more complicated than a simple gas exchange, as it is integrated with numerous cognitive and emotional functions. Controlled slow breathing has often been used to regulate mental processes. This magnetoencephalography study demonstrates that slow-paced relative to normal-paced inspiration could organize the timing of alpha rhythmic activities across breathing cycles in a structured manner over widespread brain areas. Our results reveal how a volitionally controlled change in respiratory behavior could systematically modulate cortical activity.
Collapse
Affiliation(s)
- Shen-Mou Hsu
- Imaging Center for Integrated Body, Mind and Culture Research, National Taiwan University, Taipei, Taiwan (R.O.C.).,MOST AI Biomedical Research Center, Taiwan (R.O.C.)
| | - Chih-Hsin Tseng
- Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Chao-Hsien Hsieh
- Imaging Center for Integrated Body, Mind and Culture Research, National Taiwan University, Taipei, Taiwan (R.O.C.).,Interdisciplinary MRI/MRS Laboratory, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Chang-Wei Hsieh
- Department of Photonic and Communication Engineering, Asia University, Taichung, Taiwan (R.O.C.)
| |
Collapse
|
238
|
|
239
|
Rassi E, Dorffner G, Gruber W, Schabus M, Klimesch W. Coupling and Decoupling between Brain and Body Oscillations. Neurosci Lett 2019; 711:134401. [PMID: 31349018 DOI: 10.1016/j.neulet.2019.134401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/21/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Cross frequency coupling is used to study the cross talk between brain oscillations. In this paper we focus on a special type of frequency coupling between brain and body oscillations, which is reflected by the numerical ratio (r) between two frequencies (m and n; n > m). This approach is motivated by theoretical considerations, indicating that during alert wakefulness brain-body oscillations form a coupled hierarchy of frequencies with integer relationships that are binary multiples (r = n:m = 1:2, 1:4, 1:8…..). During sleep we expect an irrational relationship (r = n/m = irrational number) between brain and body oscillations that reflects decoupling. We analyzed alpha frequency, heart rate, breathing frequency during performance of a memory tasks and in addition spindle frequency from data collected by the SIESTA sleep research group. As predicted, our results show a binary multiple frequency relationship between alpha, heart rate and breathing frequency during task performance but an irrational relationship between spindle frequency, heart rate and breathing frequency during sleep.
Collapse
Affiliation(s)
- Elie Rassi
- Centre for Cognitive Neuroscience, University of Salzburg, Austria.
| | - Georg Dorffner
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria
| | - Walter Gruber
- Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | - Manuel Schabus
- Centre for Cognitive Neuroscience, University of Salzburg, Austria
| | | |
Collapse
|
240
|
Adamantidis AR, Gutierrez Herrera C, Gent TC. Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 2019; 20:746-762. [DOI: 10.1038/s41583-019-0223-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
|
241
|
Lee KJ, Park CA, Lee YB, Kim HK, Kang CK. EEG signals during mouth breathing in a working memory task. Int J Neurosci 2019; 130:425-434. [PMID: 31518511 DOI: 10.1080/00207454.2019.1667787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Continuous mouth breathing results not only morphological deformations but also poor learning outcomes. However, there were few studies that observed correlations between mouth breathing and cognition. This study aimed at investigating the changes in brain activity during mouth breathing while the participant simultaneously performed a cognitive task using electroencephalography (EEG).Methods: Twenty subjects participated in this study, and EEG electrodes (32 channels, 250-Hz sampling rate) were placed on their scalp. Brain waves during a resting state and n-back tasks (0-back and 2-back) and physiological parameters such as SpO2, ETCO2, and the airway respiratory rate were measured. The pre-processed EEG signals were analyzed based on their frequencies as delta waves (0.5 ∼ 4 Hz), theta waves (4 ∼ 8 Hz), alpha waves (8 ∼ 13 Hz), beta waves (13 ∼ 30 Hz) and gamma waves (30 ∼ 50 Hz) using fast Fourier transform (FFT).Results: When compared with nose breathing, theta and alpha powers were lower during mouth breathing at rest and alpha wave presented low power at 0-back and 2-back tasks. Furthermore, beta and gamma waves exhibited low powers at 2-back task. However, the behavioral results (accuracy and response time) have no significant difference between two breathing methods (mouth and nose). Mouth breathing showed different brain activity patterns, compared to nose breathing, and these changes are related to cognitive regions.Conclusion: The reason for this change seems to relate to the decreased oxygen saturation during mouth breathing, suggesting that when cognitive abilities are required, mouth breathing can act as one of the variables that cause different outcomes in brain activities.
Collapse
Affiliation(s)
- Kyung-Jin Lee
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea.,Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea
| | - Chan-A Park
- Biomedical Engineering Research Center, Gachon University, Incheon, Republic of Korea
| | - Yeong-Bae Lee
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea.,Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Neurology, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hang-Keun Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea.,Department of Biomedical Engineering, College of Health Science, Gachon University, Incheon, Republic of Korea
| | - Chang-Ki Kang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon, Republic of Korea.,Neuroscience Research Institute, Gachon University, Incheon, Republic of Korea.,Department of Radiological Science, College of Health Science, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
242
|
Noble DJ, Hochman S. Hypothesis: Pulmonary Afferent Activity Patterns During Slow, Deep Breathing Contribute to the Neural Induction of Physiological Relaxation. Front Physiol 2019; 10:1176. [PMID: 31572221 PMCID: PMC6753868 DOI: 10.3389/fphys.2019.01176] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Control of respiration provides a powerful voluntary portal to entrain and modulate central autonomic networks. Slowing and deepening breathing as a relaxation technique has shown promise in a variety of cardiorespiratory and stress-related disorders, but few studies have investigated the physiological mechanisms conferring its benefits. Recent evidence suggests that breathing at a frequency near 0.1 Hz (6 breaths per minute) promotes behavioral relaxation and baroreflex resonance effects that maximize heart rate variability. Breathing around this frequency appears to elicit resonant and coherent features in neuro-mechanical interactions that optimize physiological function. Here we explore the neurophysiology of slow, deep breathing and propose that coincident features of respiratory and baroreceptor afferent activity cycling at 0.1 Hz entrain central autonomic networks. An important role is assigned to the preferential recruitment of slowly-adapting pulmonary afferents (SARs) during prolonged inhalations. These afferents project to discrete areas in the brainstem within the nucleus of the solitary tract (NTS) and initiate inhibitory actions on downstream targets. Conversely, deep exhalations terminate SAR activity and activate arterial baroreceptors via increases in blood pressure to stimulate, through NTS projections, parasympathetic outflow to the heart. Reciprocal SAR and baroreceptor afferent-evoked actions combine to enhance sympathetic activity during inhalation and parasympathetic activity during exhalation, respectively. This leads to pronounced heart rate variability in phase with the respiratory cycle (respiratory sinus arrhythmia) and improved ventilation-perfusion matching. NTS relay neurons project extensively to areas of the central autonomic network to encode important features of the breathing pattern that may modulate anxiety, arousal, and attention. In our model, pronounced respiratory rhythms during slow, deep breathing also support expression of slow cortical rhythms to induce a functional state of alert relaxation, and, via nasal respiration-based actions on olfactory signaling, recruit hippocampal pathways to boost memory consolidation. Collectively, we assert that the neurophysiological processes recruited during slow, deep breathing enhance the cognitive and behavioral therapeutic outcomes obtained through various mind-body practices. Future studies are required to better understand the physio-behavioral processes involved, including in animal models that control for confounding factors such as expectancy biases.
Collapse
Affiliation(s)
- Donald J. Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
243
|
Odor Identification in Rats: Behavioral and Electrophysiological Evidence of Learned Olfactory-Auditory Associations. eNeuro 2019; 6:ENEURO.0102-19.2019. [PMID: 31362955 PMCID: PMC6709214 DOI: 10.1523/eneuro.0102-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 12/31/2022] Open
Abstract
The ability to recognize and identify a smell is highly dependent on multisensory context and expectation, for example, hearing the name of the odor source. Here, we develop a novel auditory-odor association task in rats, wherein the animal learns that a specific auditory tone, when associated with a specific odor, predicts reward (Go signal), whereas the same tone associated with a different odor, or vice versa, is not (No-Go signal). The tone occurs prior to the onset of the odor, allowing physiological analyses of sensory-evoked local field potential (LFP) activity to each stimulus in primary auditory cortex and anterior piriform cortex (aPCX). In trained animals that have acquired the task, both auditory and subsequent olfactory cues activate β band oscillations in both the auditory cortex and PCX, suggesting multisensory integration. Naive animals show no such multisensory responses, suggesting the response is learned. In addition to the learned multisensory evoked responses, functional connectivity between auditory cortex and PCX, as assessed with spectral coherence and phase lag index (PLI), is enhanced. Importantly, both the multi-sensory evoked responses and the functional connectivity are context-dependent. In trained animals, the same auditory stimuli presented in the home cage evoke no responses in auditory cortex or PCX, and functional connectivity between the sensory cortices is reduced. Together, the results demonstrate how learning and context shape the expression of multisensory cortical processing. Given that odor identification impairment is associated with preclinical dementia in humans, the mechanisms suggested here may help develop experimental models to assess effects of neuropathology on behavior.
Collapse
|
244
|
Yoshimura N, Yonemitsu F, Marmolejo-Ramos F, Ariga A, Yamada Y. Task Difficulty Modulates the Disrupting Effects of Oral Respiration on Visual Search Performance. J Cogn 2019; 2:21. [PMID: 31517239 PMCID: PMC6676927 DOI: 10.5334/joc.77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/05/2019] [Indexed: 01/11/2023] Open
Abstract
Previous research has suggested that oral respiration may disturb cognitive function and health. The present study investigated whether oral respiration negatively affects visual attentional processing during a visual search task. Participants performed a visual search task in the following three breathing conditions: wearing a nasal plug, wearing surgical tape over their mouths, or no modification (oral vs. nasal vs. control). The participants searched for a target stimulus within different set sizes of distractors in three search conditions (orientation vs colour vs conjunction). Experiment 1 did not show any effect due to respiration. Experiment 2 rigorously manipulated the search efficiency and found that participants required more time to find a poorly discriminable target during oral breathing compared with other breathing styles, which was due to the heightened intercept under this condition. Because the intercept is an index of pre-search sensory processing or motor response in visual search, such cognitive processing was likely disrupted by oral respiration. These results suggest that oral respiration and attentional processing during inefficient visual search share a common cognitive resource.
Collapse
Affiliation(s)
- Naoto Yoshimura
- Graduate School of Human-Environment Studies, Kyushu University, JP
- Japan Society for the Promotion of Science, Tokyo, JP
| | - Fumiya Yonemitsu
- Graduate School of Human-Environment Studies, Kyushu University, JP
- Japan Society for the Promotion of Science, Tokyo, JP
| | | | - Atsunori Ariga
- Graduate School of Integrated Arts and Sciences, Hiroshima University, JP
| | - Yuki Yamada
- Faculty of Arts and Science, Kyushu University, JP
| |
Collapse
|
245
|
The Respiratory Modulation of Memory. J Neurosci 2019; 39:5836-5838. [PMID: 31341066 DOI: 10.1523/jneurosci.0224-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 11/21/2022] Open
|
246
|
Immediate Effect of a Yoga Breathing Practice on Attention and Anxiety in Pre-Teen Children. CHILDREN-BASEL 2019; 6:children6070084. [PMID: 31336661 PMCID: PMC6678429 DOI: 10.3390/children6070084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Pre-teen children face stressors related to their transition from childhood to adolescence, with a simultaneous increase in academic pressure. The present study compared the immediate effects of 18 min of (i) high frequency yoga breathing with (ii) yoga-based breath awareness and (iii) sitting quietly, on (a) attention and (b) anxiety, in 61 pre-teen children (aged between 11 and 12 years; 25 girls). Attention was assessed using a six letter cancellation task and Spielberger’s State Trait Anxiety Inventory STAI-S was used to measure anxiety before and after the three practices, practiced on separate days. Repeated measures ANOVA, followed by Bonferroni adjusted post-hoc analyses showed an increase in total attempts and net scores after high frequency yoga breathing (p < 0.05), while wrong attempts increased after yoga based breath awareness (p < 0.05). Anxiety decreased comparably after all three interventions. The 25 girls in the group had the same trend of results as the whole group with respect to the attention-based cancellation task, while boys showed no, how since change. For both girls and boys, anxiety decreased after all three 18min interventions. The results suggest that high frequency yoga breathing could be a short, useful school based practice to improve attention and reduce anxiety.
Collapse
|
247
|
Heck DH, Kozma R, Kay LM. The rhythm of memory: how breathing shapes memory function. J Neurophysiol 2019; 122:563-571. [PMID: 31215344 DOI: 10.1152/jn.00200.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mammalian olfactory bulb displays a prominent respiratory rhythm, which is linked to the sniff cycle and is driven by sensory input from olfactory receptors in the nasal sensory epithelium. In rats and mice, respiratory frequencies occupy the same band as the hippocampal θ-rhythm, which has been shown to be a key player in memory processes. Hippocampal and olfactory bulb rhythms were previously found to be uncorrelated except in specific odor-contingency learning circumstances. However, many recent electrophysiological studies in both rodents and humans reveal a surprising cycle-by-cycle influence of nasal respiration on neuronal activity throughout much of the cerebral cortex beyond the olfactory system, including the prefrontal cortex, hippocampus, and subcortical structures. In addition, respiratory phase has been shown to influence higher-frequency oscillations associated with cognitive functions, including attention and memory, such as the power of γ-rhythms and the timing of hippocampal sharp wave ripples. These new findings support respiration's role in cognitive function, which is supported by studies in human subjects, in which nasal respiration has been linked to memory processes. Here, we review recent reports from human and rodent experiments that link respiration to the modulation of memory function and the neurophysiological processes involved in memory in rodents and humans. We argue that respiratory influence on the neuronal activity of two key memory structures, the hippocampus and prefrontal cortex, provides a potential neuronal mechanism behind respiratory modulation of memory.
Collapse
Affiliation(s)
- Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center
| | - Robert Kozma
- Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee.,Department of Computer Sciences, University of Massachusetts Amherst, Massachusetts
| | - Leslie M Kay
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
248
|
New Insights from 22-kHz Ultrasonic Vocalizations to Characterize Fear Responses: Relationship with Respiration and Brain Oscillatory Dynamics. eNeuro 2019; 6:ENEURO.0065-19.2019. [PMID: 31064837 PMCID: PMC6506822 DOI: 10.1523/eneuro.0065-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/30/2022] Open
Abstract
Fear behavior depends on interactions between the medial prefrontal cortex (mPFC) and the basolateral amygdala (BLA), and the expression of fear involves synchronized activity in θ and γ oscillatory activities. In addition, freezing, the most classical measure of fear response in rodents, temporally coincides with the development of sustained 4-Hz oscillations in prefrontal-amygdala circuits. Interestingly, these oscillations were recently shown to depend on the animal’s respiratory rhythm, supporting the growing body of evidence pinpointing the influence of nasal breathing on brain rhythms. During fearful states, rats also emit 22-kHz ultrasonic vocalizations (USVs) which drastically affect respiratory rhythm. However, the relationship between 22-kHz USV, respiration, and brain oscillatory activities is still unknown. Yet such information is crucial for a comprehensive understanding of how the different components of fear response collectively modulate rat’s brain neural dynamics. Here, we trained male rats in an odor fear conditioning task, while recording simultaneously local field potentials (LFPs) in BLA, mPFC, and olfactory piriform cortex (PIR), together with USV calls and respiration. We show that USV calls coincide with an increase in delta and gamma power and a decrease in theta power. In addition, during USV emission in contrast to silent freezing, there is no coupling between respiratory rate and delta frequency, and the modulation of fast oscillations amplitude relative to the phase of respiration is modified. We propose that sequences of USV calls could result in a differential gating of information within the network of structures sustaining fear behavior, thus potentially modulating fear expression/memory.
Collapse
|
249
|
Waselius T, Wikgren J, Penttonen M, Nokia MS. Breathe out and learn: Expiration‐contingent stimulus presentation facilitates associative learning in trace eyeblink conditioning. Psychophysiology 2019; 56:e13387. [DOI: 10.1111/psyp.13387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Tomi Waselius
- Department of Psychology University of Jyvaskyla Jyvaskyla Finland
| | - Jan Wikgren
- Department of Psychology University of Jyvaskyla Jyvaskyla Finland
- Centre for Interdisciplinary Brain Research University of Jyvaskyla Jyvaskyla Finland
| | - Markku Penttonen
- Department of Psychology University of Jyvaskyla Jyvaskyla Finland
| | - Miriam S. Nokia
- Department of Psychology University of Jyvaskyla Jyvaskyla Finland
- Neuroscience Center Helsinki Institute of Life Science, University of Helsinki Helsinki Finland
| |
Collapse
|
250
|
Human olfactory-auditory integration requires phase synchrony between sensory cortices. Nat Commun 2019; 10:1168. [PMID: 30858379 PMCID: PMC6411726 DOI: 10.1038/s41467-019-09091-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
Multisensory integration is particularly important in the human olfactory system, which is highly dependent on non-olfactory cues, yet its underlying neural mechanisms are not well understood. In this study, we use intracranial electroencephalography techniques to record neural activity in auditory and olfactory cortices during an auditory-olfactory matching task. Spoken cues evoke phase locking between low frequency oscillations in auditory and olfactory cortices prior to odor arrival. This phase synchrony occurs only when the participant's later response is correct. Furthermore, the phase of low frequency oscillations in both auditory and olfactory cortical areas couples to the amplitude of high-frequency oscillations in olfactory cortex during correct trials. These findings suggest that phase synchrony is a fundamental mechanism for integrating cross-modal odor processing and highlight an important role for primary olfactory cortical areas in multisensory integration with the olfactory system.
Collapse
|