201
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
202
|
Liu R, Li L, Wang Z, Zhu J, Ji Y. Acetylated Histone Modifications: Intersection of Diabetes and Atherosclerosis. J Cardiovasc Pharmacol 2024; 83:207-219. [PMID: 37989137 DOI: 10.1097/fjc.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT Worldwide, type 2 diabetes is predominant form of diabetes, and it is mainly affected by the environment. Furthermore, the offspring of patients with type 2 diabetes and metabolic disorder syndrome may have a higher risk of diabetes and cardiovascular disease, which indicates that the environmental impact on diabetes prevalence can be transmitted across generations. In the process of diabetes onset and intergenerational transmission, the genetic structure of the individual is not directly changed but is regulated by epigenetics. In this process, genes or histones are modified, resulting in selective expression of proteins. This modification will affect not only the onset of diabetes but also the related onset of atherosclerosis. Acetylation and deacetylation may be important regulatory factors for the above lesions. Therefore, in this review, based on the whole process of atherosclerosis evolution, we explored the possible existence of acetylation/deacetylation caused by diabetes. However, because of the lack of atherosclerosis-related acetylation studies directly based on diabetic models, we also used a small number of experiments involving nondiabetic models of related molecular mechanisms.
Collapse
Affiliation(s)
| | | | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; and
| | - Jie Zhu
- Department of Cardiology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu' an People's Hospital, Lu'an, China
| | | |
Collapse
|
203
|
Bai X, Wang S, Li N, Xu M, Chen JL, Qian YP, Wang TH. Role of Qufeng Tongqiao Prescription in the protection of cerebral ischemia and associated molecular network mechanism. Chem Biol Drug Des 2024; 103:e14475. [PMID: 38433560 DOI: 10.1111/cbdd.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
To explore the of Qufeng Tongqiao Prescription in the treatment of cerebral ischemia-reperfusion (CIR) and associated molecular network mechanism. Venny diagram, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis, protein-protein interaction (PPI), hub genes mining, molecular docking, combined with animal experiments and Nissl stain were performed to determine the molecular network mechanism of Qufeng Tongqiao Prescription for CIR treatment. Fifty three intersecting genes between Qufeng Tongqiao Prescription and cerebral ischemia reperfusion were acquired from Venny analysis. GO analysis showed that the main biological process (BP) was response to lipopolysaccharide, and the main cell localization (CC) process was membrane raft, while the most important molecular function (MF) process is Cytokine receptor binding. Moreover, AGE-RAGE signaling pathway in diabetic complications is the most important signaling pathway in KEGG pathway. Through molecular docking, it was found that Astragalus membranaceus was docked with MAPK14, IL4, FOS, IL6, and JUN; pueraria membranaceus was directly docked with JUN and IL4; Acorus acorus was linked to JUN and MAPK14; Ganoderma ganoderma and human were involved in JUN docking, and Ligusticum chuanqi and pueraria could not be docked with MAPK14, respectively. The results of animal experiments showed that Qufeng Tongqiao Prescription significantly improved behavioral performance and reduced the number of neuronal deaths in rats subjected to CIR, and molecular mechanisms are associated with FOS, IL-6, IL4, JUN, and MAPK14, of there, IL-6, as a vital candidator, which has been confirmed by immunostaining detection. Together, Qufeng Tongqiao Prescription has positive therapeutic effect on CIR, and the underlying mechanism is involved MAPK14, FOS, IL4, and JUN network, while IL-6 may be as a vital target.
Collapse
Affiliation(s)
- Xue Bai
- Department of Encephalopathy, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Shen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Na Li
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Min Xu
- Department of Anatomy, College of basic medicine, Jinzhou Medical University, Jinzhou, China
| | - Ji-Lin Chen
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yan-Ping Qian
- Department of Gynecology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Ting-Hua Wang
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
204
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
205
|
Chen YL, Su CC, Chang CH, James K, Chen MY. High Prevalence of Cardiometabolic Risks and Health Needs Among Patients With Hepatocellular Carcinoma After Treatment: A Cross-sectional Study. Cancer Nurs 2024:00002820-990000000-00217. [PMID: 38417128 DOI: 10.1097/ncc.0000000000001326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
BACKGROUND Many studies have indicated that inadequate health-related behavior is associated with the progression of cancer and cardiometabolic disorders. Because patients with hepatocellular carcinoma may adopt inadequate health behaviors, they are at risk for cancer recurrence, mortality, cardiometabolic disease progression, and worse quality of life. OBJECTIVE To explore the prevalence of cardiometabolic risks and health-promoting behaviors associated with quality of life among patients with hepatocellular carcinoma after treatment. METHODS A cross-sectional study was conducted from October 2021 to August 2022. Data were collected through face-to-face interviews using a structured questionnaire, and cardiometabolic information was recorded from medical charts. RESULTS In total, 115 patients with liver cancer after treatment were enrolled; 73% were male. The mean age was 67.7 years, and high prevalence rates of central obesity (72.2%) and metabolic syndrome (47%) were noted. Inadequate exercise, oral hygiene, and cigarette smoking were common. The health-promoting score was significantly associated with exercise, the number of remaining teeth, and metabolic syndrome, which correlated with quality of life, including positive functional and negative symptoms dimensions. CONCLUSIONS The findings demonstrated a high prevalence of cardiometabolic risks and inadequate health-related behaviors among patients with liver cancer after treatment. This study highlights the need for healthcare providers to help patients increase health literacy for preventing cardiometabolic risks at outpatient clinics. IMPLICATIONS FOR PRACTICE Findings from this study can be used to advise healthcare providers to educate patients with liver cancer during and after treatment on improving their health-promoting behaviors.
Collapse
Affiliation(s)
- Yi-Lin Chen
- Author Affiliations: Departments of Nursing (Ms Chen) and Internal Medicine (Dr Su), Chiayi Christian Hospital; and Department of Nursing, Chang Gung University of Science and Technology (Drs Chang and Chen), Chiayi, Taiwan; Department of Nursing, University of San Diego, California (Dr James); and Department of Cardiology, Chang Gung Memorial Hospital, Chiayi, Taiwan (Dr Chen); School of Nursing, Chang Gung University, Taoyuan, Taiwan (Dr Chen)
| | | | | | | | | |
Collapse
|
206
|
Wang G, Hua R, Chen X, He X, Dingming Y, Chen H, Zhang B, Dong Y, Liu M, Liu J, Liu T, Zhao J, Zhao YQ, Qiao L. MX1 and UBE2L6 are potential metaflammation gene targets in both diabetes and atherosclerosis. PeerJ 2024; 12:e16975. [PMID: 38406276 PMCID: PMC10893863 DOI: 10.7717/peerj.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Background The coexistence of diabetes mellitus (DM) and atherosclerosis (AS) is widespread, although the explicit metabolism and metabolism-associated molecular patterns (MAMPs) responsible for the correlation are still unclear. Methods Twenty-four genetically wild-type male Ba-Ma mini pigs were randomly divided into five groups distinguished by different combinations of 90 mg/kg streptozotocin (STZ) intravenous injection and high-cholesterol/lipid (HC) or high-lipid (HL) diet feeding for 9 months in total. Pigs in the STZ+HC and STZ+HL groups were injected with STZ first and then fed the HC or HL diet for 9 months. In contrast, pigs in the HC+STZ and HL+STZ groups were fed the HC or HL diet for 9 months and injected with STZ at 3 months. The controls were only fed a regular diet for 9 months. The blood glucose and abdominal aortic plaque observed through oil red O staining were used as evaluation indicators for successful modelling of DM and AS. A microarray gene expression analysis of all subjects was performed. Results Atherosclerotic lesions were observed only in the HC+STZ and STZ+HC groups. A total of 103 differentially expressed genes (DEGs) were identified as common between them. The most significantly enriched pathways of 103 common DEGs were influenza A, hepatitis C, and measles. The global and internal protein-protein interaction (PPI) networks of the 103 common DEGs consisted of 648 and 14 nodes, respectively. The top 10 hub proteins, namely, ISG15, IRG6, IRF7, IFIT3, MX1, UBE2L6, DDX58, IFIT2, USP18, and IFI44L, drive aspects of DM and AS. MX1 and UBE2L6 were the intersection of internal and global PPI networks. The expression of MX1 and UBE2L6 was 507.22 ± 342.56 and 96.99 ± 49.92 in the HC+STZ group, respectively, which was significantly higher than others and may be linked to the severity of hyperglycaemia-related atherosclerosis. Further PPI network analysis of calcium/micronutrients, including MX1 and UBE2L6, consisted of 58 and 18 nodes, respectively. The most significantly enriched KEGG pathways were glutathione metabolism, pyrimidine metabolism, purine metabolism, and metabolic pathways. Conclusions The global and internal PPI network of the 103 common DEGs consisted of 648 and 14 nodes, respectively. The intersection of the nodes of internal and global PPI networks was MX1 and UBE2L6, suggesting their key role in the comorbidity mechanism of DM and AS. This inference was partly verified by the overexpression of MX1 and UBE2L6 in the HC+STZ group but not others. Further calcium- and micronutrient-related enriched KEGG pathway analysis supported that MX1 and UBE2L6 may affect the inflammatory response through micronutrient metabolic pathways, conceptually named metaflammation. Collectively, MX1 and UBE2L6 may be potential common biomarkers for DM and AS that may reveal metaflammatory aspects of the pathological process, although proper validation is still needed to determine their contribution to the detailed mechanism.
Collapse
Affiliation(s)
- Guisheng Wang
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Rongrong Hua
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoxia Chen
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xucheng He
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yao Dingming
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hua Chen
- Laboratory Animal Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Buhuan Zhang
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuru Dong
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Muqing Liu
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiaxiong Liu
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ting Liu
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jingwei Zhao
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Qiong Zhao
- Laboratory Animal Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Li Qiao
- Department of International Business, Business College of Beijing Union University, Beijing, China
| |
Collapse
|
207
|
Rajan R, Karthikeyan S, Desikan R. Synthesis, Structural Elucidation, In Silico and In Vitro Studies of New Class of Methylenedioxyphenyl-Based Amide Derivatives as Potential Myeloperoxidase Inhibitors for Cardiovascular Protection. ACS OMEGA 2024; 9:7850-7868. [PMID: 38405500 PMCID: PMC10882620 DOI: 10.1021/acsomega.3c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
Novel methylenedioxyphenyl-based amides, especially N-(4-methoxybenzyl)-6-nitrobenzo-[1,3]-dioxole-5-carboxamide (MDC) and N-(3-acetylphenyl)-6-nitrobenzo-[1,3]-dioxole-5-carboxamide (ADC), potential cardiovascular preventive agents, are successfully synthesized, and their chemical structures are verified by 1H and 13C NMR, Fourier transform infrared (FT-IR), high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction (SC-XRD) analyses. Data obtained from SC-XRD reveal that MDC and ADC are both monoclinic molecules with Z = 2 and 4, respectively. From density functional theory (DFT) calculations, 3.54 and 3.96 eV are the energy gaps of the optimized MDC and ADC structures, respectively. MDC and ADC exhibit an electrophilicity index value of more than 1.5 eV, suggesting that they can act as an electrophile, facilitating bond formation with biomolecules. Hirshfeld surface analysis demonstrates that more than 25% of atomic interactions in both MDC and ADC are from H···H interactions. Based on pharmacokinetic predictions, MDC and ADC exhibit drug-like properties, and molecular docking simulations revealed favorable interactions with active site pockets. Both MDC and ADC achieved higher docking scores of -7.74 and -7.79 kcal/mol, respectively, with myeloperoxidase (MPO) protein. From docking results, MPO was found to be most favorable followed by dipeptidyl peptidase-4 (DPP-4) and α-glucosidase (α-GD). Antioxidant, anti-inflammatory, and in vitro enzymatic studies of MDC and ADC indicate that MDC is more selective toward MPO and more potent than ADC. The application of MDC to inhibit myeloperoxidase could be ascertained to reduce the cardiovascular risk factor. This can be supported from the results of computational docking (based on hydrogen bonding and docking score), in vitro antioxidant and anti-inflammatory properties, and MPO enzymatic inhibition (based on the percentage of inhibition and IC50 values).
Collapse
Affiliation(s)
- Reshma Rajan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| | - Sambantham Karthikeyan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| | - Rajagopal Desikan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| |
Collapse
|
208
|
Zhang ML, Zhang MN, Chen H, Wang X, Zhao K, Li X, Song X, Tong F. Salvianolic Acid B Alleviates High Glucose-Induced Vascular Smooth Muscle Cell Inflammation by Upregulating the miR-486a-5p Expression. Mediators Inflamm 2024; 2024:4121166. [PMID: 38405620 PMCID: PMC10890902 DOI: 10.1155/2024/4121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/30/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
The macrovascular complications of diabetes cause high mortality and disability in patients with type 2 diabetes mellitus (T2DM). The inflammatory response of vascular smooth muscle cell (VSMC) runs through its pathophysiological process. Salvianolic acid B (Sal B) exhibits beneficial effects on the cardiovascular system. However, its role and mechanism in diabetic vascular inflammatory response remain unclear. In this study, we found that Sal B reduced vascular inflammation in diabetic mice and high glucose- (HG-) induced VSMC inflammation. Subsequently, we found that Sal B reduced HG-induced VSMC inflammation by downregulating FOXO1. Furthermore, miR-486a-5p expression was obviously reduced in HG-treated VSMC. Sal B attenuated HG-induced VSMC inflammation by upregulating miR-486a-5p. Loss- and gain-of-function experiments had proven that the transfection of the miR-486a-5p mimic inhibited HG-induced VSMC inflammation whereas that of the miR-486a-5p inhibitor promoted HG-induced VSMC inflammation, thereby leading to the amelioration of vascular inflammation in the diabetic mice. Furthermore, studies had shown that miR-486a-5p inhibited FOXO1 expression by directly targeting its 3'-UTR. In conclusion, Sal B alleviates the inflammatory response of VSMC by upregulating miR-486a-5p and aggravating its inhibition of FOXO1 expression. Sal B exerts a significant anti-inflammatory effect in HG-induced VSMC inflammation by modulating the miR-486a-5p/FOXO1 axis.
Collapse
Affiliation(s)
- Man-Li Zhang
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Man-Na Zhang
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Hui Chen
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Xia Wang
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Kun Zhao
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Xuan Li
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Xuan Song
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Fei Tong
- Department of Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
209
|
Kleimann P, Irschfeld LM, Grandoch M, Flögel U, Temme S. Trained Innate Immunity in Animal Models of Cardiovascular Diseases. Int J Mol Sci 2024; 25:2312. [PMID: 38396989 PMCID: PMC10889825 DOI: 10.3390/ijms25042312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Acquisition of immunological memory is an important evolutionary strategy that evolved to protect the host from repetitive challenges from infectious agents. It was believed for a long time that memory formation exclusively occurs in the adaptive part of the immune system with the formation of highly specific memory T cells and B cells. In the past 10-15 years, it has become clear that innate immune cells, such as monocytes, natural killer cells, or neutrophil granulocytes, also have the ability to generate some kind of memory. After the exposure of innate immune cells to certain stimuli, these cells develop an enhanced secondary response with increased cytokine secretion even after an encounter with an unrelated stimulus. This phenomenon has been termed trained innate immunity (TI) and is associated with epigenetic modifications (histone methylation, acetylation) and metabolic alterations (elevated glycolysis, lactate production). TI has been observed in tissue-resident or circulating immune cells but also in bone marrow progenitors. Risk-factors for cardiovascular diseases (CVDs) which are associated with low-grade inflammation, such as hyperglycemia, obesity, or high salt, can also induce TI with a profound impact on the development and progression of CVDs. In this review, we briefly describe basic mechanisms of TI and summarize animal studies which specifically focus on TI in the context of CVDs.
Collapse
Affiliation(s)
- Patricia Kleimann
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (U.F.)
| | - Lisa-Marie Irschfeld
- Department of Radiation Oncology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Maria Grandoch
- Institute of Translational Pharmacology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
| | - Ulrich Flögel
- Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (U.F.)
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
| | - Sebastian Temme
- Cardiovascular Research Institute Düsseldorf (CARID), University Hospital, 40225 Düsseldorf, Germany
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
210
|
González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15:154-169. [PMID: 38464365 PMCID: PMC10921170 DOI: 10.4239/wjd.v15.i2.154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with a considerable impact on human life, long-term health expenditures, and substantial health losses. In this context, the use of dietary polyphenols to prevent and manage T2DM is widely documented. These dietary compounds exert their beneficial effects through several actions, including the protection of pancreatic islet β-cell, the antioxidant capacities of these molecules, their effects on insulin secretion and actions, the regulation of intestinal microbiota, and their contribution to ameliorate diabetic complications, particularly those of vascular origin. In the present review, we intend to highlight these multifaceted actions and the molecular mechanisms by which these plant-derived secondary metabolites exert their beneficial effects on type 2 diabetes patients.
Collapse
Affiliation(s)
- Ileana González
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile
| | - Erik Diaz
- Faculty of Medicine, Catholic University of Maule, Talca 3460000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile
| |
Collapse
|
211
|
Nagao M, Sasaki J, Tanimura-Inagaki K, Sakuma I, Sugihara H, Oikawa S. Ipragliflozin and sitagliptin differentially affect lipid and apolipoprotein profiles in type 2 diabetes: the SUCRE study. Cardiovasc Diabetol 2024; 23:56. [PMID: 38331780 PMCID: PMC10854175 DOI: 10.1186/s12933-024-02149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND SGLT2 inhibitors and DPP4 inhibitors have been suggested to affect lipid metabolism. However, there are few randomized controlled trials comparing the effects on the lipid metabolism between the two types of antidiabetic drugs. The SUCRE study (UMIN ID: 000018084) was designed to compare the effects of ipragliflozin and sitagliptin on serum lipid and apolipoprotein profiles and other clinical parameters. METHODS This is a multicenter, open-label, randomized, controlled trial. Patients with type 2 diabetes (20-74 years old) with HbA1c levels of 7.0-10.5% and serum triglyceride levels of 120-399 mg/dL (1.35-4.50 mmol/L) on diet and/or oral hypoglycemic agents were enrolled. Subjects were randomized to treatment with ipragliflozin (50 mg/day, n = 77) or sitagliptin (50 mg/day, n = 83). Laboratory measurements were performed at 0, 1, 3, and 6 months of treatment. RESULTS Ipragliflozin and sitagliptin reduced fasting plasma glucose, glycoalbumin, and HbA1c almost equally. Ipragliflozin increased HDL-C and decreased apo E. Sitagliptin decreased TG, apo B48, CII, and CIII, but increased LDL-C. The between-treatment differences were significant for HDL-C (P = 0.02) and apo B48 (P = 0.006), and nearly significant for apo A1 (P = 0.06). In addition, ipragliflozin reduced body weight, blood pressure, serum liver enzymes, uric acid, and leptin, and increased serum ketones compared with sitagliptin. CONCLUSIONS While ipragliflozin and sitagliptin showed similar effects on glycemic parameters, the effects on serum lipid and apolipoprotein profiles were different. Ipragliflozin may have an anti-atherogenic effect through modulation of HDL-C and apo E compared to sitagliptin through TG and apo B48, CII, and CIII in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Jun Sasaki
- Graduate School of Pharmaceutical Medicine, International University of Health and Welfare, Nagahama 1-3-1, Chuo-ku, Fukuoka, 810-0072, Japan
| | - Kyoko Tanimura-Inagaki
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Ichiro Sakuma
- Caress Sapporo Hokko Memorial Clinic, Kita 27 Higashi 8 1-15, Higashi-ku, Sapporo, 065-0027, Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Shinichi Oikawa
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8603, Japan.
- Diabetes and Lifestyle-Related Disease Center, Fukujuji Hospital, Anti-Tuberculosis Association (JATA), Matsuyama 3-1-24, Kiyose, Tokyo, 204-8522, Japan.
| |
Collapse
|
212
|
Bulum T, Brkljačić N, Tičinović Ivančić A, Čavlović M, Prkačin I, Tomić M. In Association with Other Risk Factors, Smoking Is the Main Predictor for Lower Transcutaneous Oxygen Pressure in Type 2 Diabetes. Biomedicines 2024; 12:381. [PMID: 38397984 PMCID: PMC10886561 DOI: 10.3390/biomedicines12020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) significantly increases the risk of peripheral artery disease (PAD), and diabetes is the leading cause of nontraumatic amputations. This study investigated the risk factors for transcutaneous oxygen pressure (TcPO2) in T2DM, a noninvasive method to quantify skin oxygenation and the underlying microvascular circulation. The study included 119 T2DM patients (91 male/28 female). TcPO2 measurements were conducted with the Tina TCM4 Series transcutaneous monitor (Radiometer, Copenhagen, Sweden) and skin electrodes. Patients with TcPO2 < 40 mmHg were younger (p = 0.001), had significantly higher systolic blood pressure (SBP) (p = 0.023), glycated hemoglobin (HbA1c) (p = 0.013), fasting plasma glucose (fPG) (p = 0.038), total cholesterol (p = 0.006), LDL cholesterol (p = 0.004), and had more frequent smoking habits (p = 0.001) than those with TcPO2 ≥ 40 mmHg. The main predictors for the TcPO2 value (R2 = 0.211) obtained via stepwise regression analysis were age, smoking, SBP, HbA1c, fPG, and total and LDL cholesterol. Among all the listed predictors, smoking, HbA1c, and LDL cholesterol were found to be the most significant, with negative parameter estimates of -3.051310 (p = 0.0007), -2.032018 (p = 0.0003), and -2.560353 (p = 0.0046). The results of our study suggest that in association with other risk factors, smoking is the main predictor for lower TcPO2 in T2DM.
Collapse
Affiliation(s)
- Tomislav Bulum
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Neva Brkljačić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | | | - Maja Čavlović
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Ingrid Prkačin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Internal Medicine, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Martina Tomić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
213
|
Dong W, Liu X, Ma L, Yang Z, Ma C. Association between dietary selenium intake and severe abdominal aortic calcification in the United States: a cross-sectional study. Food Funct 2024; 15:1575-1582. [PMID: 38240140 DOI: 10.1039/d3fo02631k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Abdominal aortic calcification (AAC) is an important predictor of cardiovascular disease. The purpose of the current study was to detect the association between dietary selenium intake and severe AAC. We included 2651 participants from the National Health and Nutrition Examination Survey (NHANES, 2013-2014). Dietary selenium intake was measured using the 24-hour recall method. AAC was quantified using the Kauppila score system based on dual-energy X-ray absorptiometry, with a score of >6 indicating severe AAC. The association between dietary selenium intake and severe AAC was analyzed by using a weighted multivariate logistic regression model, smooth curve fitting, and stratified subgroup analysis. After adjusting for multiple covariates, we found that higher dietary selenium intake was negatively associated with severe AAC incidence. When selenium intake was converted into tertiles, the highest tertile of dietary selenium intake was significantly associated with the incidence of severe AAC (odds ratio = 0.66). Smooth curve fitting revealed that this relationship was nonlinear. Subgroup analysis revealed that this negative association was present in participants with chronic kidney disease, but was absent when participants had hypertension or diabetes mellitus. Higher dietary selenium intake was negatively associated with severe AAC incidence in a nonlinear pattern, except in participants with diabetes mellitus or hypertension. However, further cohort studies are required to validate these findings.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lu Ma
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiyong Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| |
Collapse
|
214
|
He W, Fang T, Fu X, Lao M, Xiao X. Risk factors and the CCTA application in patients with vulnerable coronary plaque in type 2 diabetes: a retrospective study. BMC Cardiovasc Disord 2024; 24:89. [PMID: 38311736 PMCID: PMC10840286 DOI: 10.1186/s12872-024-03717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/06/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Diabetes is an independent risk factor for cardiovascular disease. The purpose of this study was to identify the risk factors for vulnerable coronary plaques (VCPs), which are associated with adverse cardiovascular events, and to determine the value of coronary CT angiography (CCTA) in patients with type 2 diabetes mellitus (T2DM) and VCPs. METHODS Ninety-eight T2DM patients who underwent CCTA and intravascular ultrasound (IVUS) were retrospectively included and analyzed. The patients were grouped and analyzed according to the presence or absence of VCPs. RESULTS Among the patients with T2DM, time in range [TIR {the percentage of time blood glucose levels were in the target range}] (OR = 0.93, 95% CI = 0.89-0.96; P < 0.001) and the high-density lipoprotein-cholesterol (HDL-C) concentration (OR = 0.24, 95% CI = 0.09-0.63; P = 0.04) were correlated with a lower risk of VCP, but the triglycerides (TG) concentration was correlated with a higher risk of VCP (OR = 1.79, 95% CI = 1.01-3.18; P = 0.045). The area under the receiver operator characteristic curve (AUC) of TIR, and HDL-C and TG concentrations were 0.76, 0.73, and 0.65, respectively. The combined predicted AUC of TIR, and HDL-C and TG concentrations was 0.83 (P < 0.05). The CCTA sensitivity, specificity, false-negative, and false-positive values for the diagnosis of VCP were 95.74%, 94.12%, 4.26%, and 5.88%, respectively. The identification of VCP by CCTA was positively correlated with IVUS (intraclass correlation coefficient [ICC] = 0.90). CONCLUSIONS The TIR and HDL-C concentration are related with lower risk of VCP and the TG concentration was related with higher risk of VCP in patients with T2DM. In clinical practice, TIR, HDL-C and TG need special attention in patients with T2DM. The ability of CCTA to identify VCP is highly related to IVUS findings.
Collapse
Affiliation(s)
- Weihong He
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, China.
| | - Tingsong Fang
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, China
| | - Xi Fu
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, China
| | - Meiling Lao
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, China
| | - Xiuyun Xiao
- Department of Radiology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Foshan, China
| |
Collapse
|
215
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
216
|
Wang F, Chang L, Zhang X, Jia T, Wang Y, Wang Y, Liu G. Effects of Polycyclic Aromatic Hydrocarbon Exposure and Telomere Length and their Interaction on Blood Lipids in Coal Miners. J Occup Environ Med 2024; 66:111-117. [PMID: 37903596 DOI: 10.1097/jom.0000000000003002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of polycyclic aromatic hydrocarbon (PAH) exposure and telomere length on lipids in coal miners. METHODS Basic personal information of 637 coal miners was collected by questionnaire survey. Logistic regression, the Bayesian kernel machine regression model, and weighted quantile sum regression were used to analyze the effects of PAH metabolites and telomere length and their interactions on blood lipids. RESULTS High exposure to 9-hydroxyphenanthrene (OR = 1.586, 95% CI: 1.011-2.487) and telomere shortening (OR = 1.413, 95% CI: 1.005-1.985) were associated with dyslipidemia. Weighted quantile sum results showed that 9-hydroxyphenanthrene accounted for the largest proportion of dyslipidemia (weight = 0.66). The interaction results showed that high 9-hydroxyphenanthrene exposure and short telomeres were risk factors for dyslipidemia in coal miners (OR = 2.085, 95% CI: 1.121-3.879). Conclusions: Our findings suggest that 9-hydroxyphenanthrene and shorter telomeres are risk factors for dyslipidemia, and their interaction increases the risk of dyslipidemia.
Collapse
Affiliation(s)
- Fang Wang
- From the Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, China (F.W., L.C., X.Z., T.J., Y.W., Y.W.); Department of Epidemiology and Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China (F.W., L.C., X.Z., T.J., Y.W., Y.W.); and Xishan Coal and Electricity (Group) Co, Ltd, Occupational Disease Prevention and Control Center, Taiyuan, China (G.L.)
| | | | | | | | | | | | | |
Collapse
|
217
|
Zhao N, Yu X, Zhu X, Song Y, Gao F, Yu B, Qu A. Diabetes Mellitus to Accelerated Atherosclerosis: Shared Cellular and Molecular Mechanisms in Glucose and Lipid Metabolism. J Cardiovasc Transl Res 2024; 17:133-152. [PMID: 38091232 DOI: 10.1007/s12265-023-10470-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 02/28/2024]
Abstract
Diabetes is one of the critical independent risk factors for the progression of cardiovascular disease, and the underlying mechanism regarding this association remains poorly understood. Hence, it is urgent to decipher the fundamental pathophysiology and consequently provide new insights into the identification of innovative therapeutic targets for diabetic atherosclerosis. It is now appreciated that different cell types are heavily involved in the progress of diabetic atherosclerosis, including endothelial cells, macrophages, vascular smooth muscle cells, dependence on altered metabolic pathways, intracellular lipids, and high glucose. Additionally, extensive studies have elucidated that diabetes accelerates the odds of atherosclerosis with the explanation that these two chronic disorders share some common mechanisms, such as endothelial dysfunction and inflammation. In this review, we initially summarize the current research and proposed mechanisms and then highlight the role of these three cell types in diabetes-accelerated atherosclerosis and finally establish the mechanism pinpointing the relationship between diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xiaoting Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China
| | - Yanting Song
- Department of Pathology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, 10 You'anmen Outer West 1st Street, Beijing, 100069, China.
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, 100069, China.
| |
Collapse
|
218
|
Li G, Cheng J, Yang L, Chen P, Duan X. Ethanol extract of Rubia yunnanensis inhibits carotid atherosclerosis via the PI3K/AKT signaling pathway. Biomed Rep 2024; 20:19. [PMID: 38170026 PMCID: PMC10758924 DOI: 10.3892/br.2023.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerosis is a multifactorial vascular disease caused by endothelial dysfunction. Because of adverse reactions to drugs used to treat atherosclerosis. For example, statins, which significantly reduce the burden of atherosclerotic disease, have been associated with muscle toxicity. There is a need to identify novel drugs for the prevention and treatment of atherosclerosis Rubia yunnanensis is a herbs commonly used in Asian countries for its protective effects against cardiovascular diseases. However, the mechanism of action of R. yunnanensis extract in carotid artery atherosclerosis has not been found. The carotid artery is usually used as a site for clinical evaluation of atherosclerosis. The present study aimed to determine the mechanism of action of R. yunnanensis extract in the inhibition of carotid atherosclerosis in apolipoprotein E gene knockout (ApoE-/-) mice. The mechanism of atherosclerosis inhibition was elucidated by detecting the blood lipid level, carotid artery pathology, and the protein expression of PI3K and AKT. The present study demonstrated that ethanol extract of R. yunnanensis reduced lipid levels, intima damage and carotid lipid accumulation and increased p-PI3K/PI3K and p-AKT/AKT protein levels in ApoE-/- mice fed high-fat diet for 12 weeks. It was hypothesized that the effects of R. yunnanensis extract may be achieved by regulation of the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Ethanol extract of R. yunnanensis decreased carotid atherosclerosis in ApoE-/- mice fed a high-fat diet via the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Therefore, R. yunnanensis may be a promising option for treating atherosclerosis in the future.
Collapse
Affiliation(s)
- Gaoyizhou Li
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Jianghao Cheng
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pu Chen
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
219
|
Torumtay Cin G, Fenkci SM, Kiliç ID, Aslan HS, Sevgican Cİ, Şenol H. The effects of severe periodontitis on arterial stiffness using cardio-ankle vascular index in patients with type 2 diabetes. J Periodontal Res 2024; 59:74-83. [PMID: 37909328 DOI: 10.1111/jre.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Arterial stiffness, which is a measure of the elasticity of the arteries, is also a risk factor for the development of cardiovascular diseases and its measurement is important for evaluating the atherosclerosis process. The purpose of this cross-sectional study to investigate whether severe periodontitis in short-term type 2 diabetes may be associated with increased cardio-ankle vascular index (CAVI) values specified for subclinical atherosclerosis risk. METHODS A total of 136 subjects, including 69 subjects with short-term type 2 diabetes (35 with severe periodontitis and 34 with periodontally healthy) and 67 systemically healthy subjects (32 with severe periodontitis and 35 with periodontally healthy) were enrolled to this study. Assessment of all participants included in this study in terms of arterial stiffness was determined by CAVI. Serum fasting plasma glucose (FPG), glycated haemoglobin (HbA1c), triglyceride (TRG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol (TC) and C-reactive protein (CRP) levels were calculated using standard methods. Full mouth periodontal measurements were recorded. Multiple linear regression analysis was performed to evaluate the relationship between periodontal parameters and mean CAVI values of the groups. RESULTS Mean CAVI levels were significantly higher in diabetic and periodontitis group compared to the other study groups (p < .05). In diabetes and periodontitis group, CAVI was showed positive correlations with CRP (r = .337, p = .048) and HbA1c (r = .442, p = .008). Also, positive significant correlations were found with probing depth (PD) and clinical attachment level (CAL) in the periodontitis groups. Multiple regression analysis revealed that CAL independently predicted CAVI levels in periodontitis groups (β = .433, p = .019 in diabetes and periodontitis groups and β = .57, p = .001 in systemically healthy and periodontitis group respectively). CONCLUSION This is the first study investigating the association between severe periodontitis and CAVI in patients with short-term diabetes. Our findings suggest that severe periodontitis may be an intermediate factor in the pathway between type 2 diabetes and cardiovascular disease by increasing the arterial stiffness.
Collapse
Affiliation(s)
- Gizem Torumtay Cin
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Semin Melahat Fenkci
- Department of Internal Medicine, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Ismail Doğu Kiliç
- Department of Cardiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Halil Serdar Aslan
- Department of Radiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | | | - Hande Şenol
- Department of Biostatistics, Pamukkale University, Denizli, Turkey
| |
Collapse
|
220
|
Huang J, Yang F, Liu Y, Wang Y. N6-methyladenosine RNA methylation in diabetic kidney disease. Biomed Pharmacother 2024; 171:116185. [PMID: 38237350 DOI: 10.1016/j.biopha.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes, and hyperglycemic memory associated with diabetes carries the risk of disease occurrence, even after the termination of blood glucose injury. The existence of hyperglycemic memory supports the concept of an epigenetic mechanism involving n6-methyladenosine (m6A) modification. Several studies have shown that m6A plays a key role in the pathogenesis of DKD. This review addresses the role and mechanism of m6A RNA modification in the progression of DKD, including the regulatory role of m6A modification in pathological processes, such as inflammation, oxidative stress, fibrosis, and non-coding (nc) RNA. This reveals the importance of m6A in the occurrence and development of DKD, suggesting that m6A may play a role in hyperglycemic memory phenomenon. This review also discusses how some gray areas, such as m6A modified multiple enzymes, interact to affect the development of DKD and provides countermeasures. In conclusion, this review enhances our understanding of DKD from the perspective of m6A modifications and provides new targets for future therapeutic strategies. In addition, the insights discussed here support the existence of hyperglycemic memory effects in DKD, which may have far-reaching implications for the development of novel treatments. We hypothesize that m6A RNA modification, as a key factor regulating the development of DKD, provides a new perspective for the in-depth exploration of DKD and provides a novel option for the clinical management of patients with DKD.
Collapse
Affiliation(s)
- Jiaan Huang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Fan Yang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yan Liu
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yuehua Wang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China.
| |
Collapse
|
221
|
Demir I, Yilmaz I, Horoz E, Calik B, Bilgir O. Matriptase as a potential biomarker and therapeutic target in newly diagnosed type 2 diabetes mellitus. Ir J Med Sci 2024; 193:223-230. [PMID: 37418107 DOI: 10.1007/s11845-023-03441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that affects the processing of carbohydrates, proteins, and lipids. In T2DM, metabolic dysregulation occurs through various pathways caused by increased levels of many adipokines and inflammatory chemokines. Impaired insulin-glucose metabolism occurs in tissues. The proteolytic enzyme matriptase is thought to be closely related to glucose metabolism due to its glycolization sites. AIM Our study aimed to evaluate the correlation between matriptase, a proteolytic enzyme, and metabolic parameters in individuals recently diagnosed with T2DM. We also sought to investigate the potential involvement of matriptase in the development of diabetes. METHODS We measured all participants' metabolic laboratory parameters, including basic biochemical tests, hemograms, high-sensitivity C-reactive protein (hsCRP), and matriptase levels. RESULTS Our results showed a significant increase in circulating matriptase levels in individuals with T2DM compared to the control group. Furthermore, individuals with metabolic syndrome had significantly higher matriptase levels than those without in the T2DM and control groups. We also observed that T2DM patients had elevated levels of Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), hsCRP, and matriptase, which displayed a positive correlation. CONCLUSION Our study is the first to report elevated levels of matriptase in individuals with newly diagnosed T2DM and/or metabolic syndrome. Additionally, we found a significant positive correlation between matriptase levels and metabolic and inflammatory parameters, indicating a potential role for matriptase in the pathogenesis of T2DM and glucose metabolism. Further research on matriptase could lead to its recognition as a novel target for investigation.
Collapse
Affiliation(s)
- Ismail Demir
- Department of Internal Medicine, Health Sciences University, Izmir, Bozyaka Training and Research Hospital, 35170, Karabaglar, Izmir, Turkey.
| | - Ismail Yilmaz
- Faculty of Medicine, Department of Pharmacology and Toxicology, Izmir Kâtip Celebi University, Izmir, Turkey
| | - Ersan Horoz
- Faculty of Medicine, Department of Pharmacology and Toxicology, Izmir Kâtip Celebi University, Izmir, Turkey
| | - Bulent Calik
- Department of General Surgery, Health Sciences University Izmir, Bozyaka Training and Research Hospital, Izmir, Turkey
| | - Oktay Bilgir
- Department of Internal Medicine, Health Sciences University, Izmir, Bozyaka Training and Research Hospital, 35170, Karabaglar, Izmir, Turkey
| |
Collapse
|
222
|
Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, Pan Q, Li J. Review of the Protective Mechanism of Curcumin on Cardiovascular Disease. Drug Des Devel Ther 2024; 18:165-192. [PMID: 38312990 PMCID: PMC10838105 DOI: 10.2147/dddt.s445555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death worldwide and has been the focus of research in the medical community. Curcumin is a polyphenolic compound extracted from the root of turmeric. Curcumin has been shown to have a variety of pharmacological properties over the past decades. Curcumin can significantly protect cardiomyocyte injury after ischemia and hypoxia, inhibit myocardial hypertrophy and fibrosis, improve ventricular remodeling, reduce drug-induced myocardial injury, improve diabetic cardiomyopathy(DCM), alleviate vascular endothelial dysfunction, inhibit foam cell formation, and reduce vascular smooth muscle cells(VSMCs) proliferation. Clinical studies have shown that curcumin has a protective effect on blood vessels. Toxicological studies have shown that curcumin is safe. But high doses of curcumin also have some side effects, such as liver damage and defects in embryonic heart development. This article reviews the mechanism of curcumin intervention on CVDs in recent years, in order to provide reference for the development of new drugs in the future.
Collapse
Affiliation(s)
- Chunkun Yang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Yanbo Chen
- Department of Arrhythmia, Weifang People's Hospital, Weifang, Shandong, People's Republic of China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Qian Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, People's Republic of China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
223
|
Jazieh C, Arabi TZ, Asim Z, Sabbah BN, Alsaud AW, Alkattan K, Yaqinuddin A. Unraveling the epigenetic fabric of type 2 diabetes mellitus: pathogenic mechanisms and therapeutic implications. Front Endocrinol (Lausanne) 2024; 15:1295967. [PMID: 38323108 PMCID: PMC10845351 DOI: 10.3389/fendo.2024.1295967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a rapidly escalating global health concern, with its prevalence projected to increase significantly in the near future. This review delves into the intricate role of epigenetic modifications - including DNA methylation, histone acetylation, and micro-ribonucleic acid (miRNA) expression - in the pathogenesis and progression of T2DM. We critically examine how these epigenetic changes contribute to the onset and exacerbation of T2DM by influencing key pathogenic processes such as obesity, insulin resistance, β-cell dysfunction, cellular senescence, and mitochondrial dysfunction. Furthermore, we explore the involvement of epigenetic dysregulation in T2DM-associated complications, including diabetic retinopathy, atherosclerosis, neuropathy, and cardiomyopathy. This review highlights recent studies that underscore the diagnostic and therapeutic potential of targeting epigenetic modifications in T2DM. We also provide an overview of the impact of lifestyle factors such as exercise and diet on the epigenetic landscape of T2DM, underscoring their relevance in disease management. Our synthesis of the current literature aims to illuminate the complex epigenetic underpinnings of T2DM, offering insights into novel preventative and therapeutic strategies that could revolutionize its management.
Collapse
|
224
|
Đermanović Dobrota V, Brkljačić N, Tičinović Ivančić A, Čavlović M, Bulum T, Tomić M. Risk Factors for Ankle Brachial Index and Carotid Artery Stenosis in Patients with Type 2 Diabetes. Metabolites 2024; 14:59. [PMID: 38248862 PMCID: PMC10820541 DOI: 10.3390/metabo14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) significantly increases the risk of atherosclerotic cardiovascular disease. Ankle brachial index (ABI) and carotid artery stenosis are non-invasive indicators of generalized atherosclerosis. This study aimed to explore the risk factors for ABI and carotid artery stenosis and discover which factors simultaneously influence both conditions in T2DM. The study included a total of 101 patients with T2DM. ABI was performed via Doppler ultrasound, and both common carotid arteries were examined via ultrasound to obtain the percentage of carotid artery stenosis. A negative correlation was noted between the ABI and the percentage of carotid artery stenosis (p = 0.043). ABI correlated significantly negatively with waist circumference (p = 0.031), total cholesterol (p = 0.003), low-density lipoprotein (LDL) cholesterol (p = 0.003), and C-reactive protein (CRP) (p = 0.017), whereas the percentage of carotid artery stenosis correlated with the smoking habit (p = 0.017) and CRP (p = 0.042). The best model for predicting the ABI value (R2 = 0.195) obtained from stepwise regression analysis included waist circumference, LDL cholesterol, triglycerides, and CRP, while the best model for the percentage of the carotid artery stenosis (R2 = 0.112) included smoking and CRP. CRP influenced the ABI value with a negative parameter estimate of -0.008962 (p = 0.053) and the percentage of the carotid artery stenosis with a positive parameter estimate of 0.443655 (p = 0.006) relative to a one-unit change of it, presenting the negatively significant impact of CRP on the association between carotid artery stenosis and low ABI. Our results suggest that CRP is the most important risk factor that connects ABI and carotid artery stenosis, which are important non-invasive indicators of generalized atherosclerosis in T2DM.
Collapse
Affiliation(s)
- Vesna Đermanović Dobrota
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Neva Brkljačić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | | | - Maja Čavlović
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Tomislav Bulum
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Martina Tomić
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
225
|
Chen J, Zhang WC, Tang XQ, Yin RH, Wang T, Wei XY, Pan CJ. Predictive value of bilirubin and serum γ-glutamyltranspeptidase levels in type-2 diabetes mellitus patients with acute coronary syndrome. World J Diabetes 2024; 15:34-42. [PMID: 38313856 PMCID: PMC10835495 DOI: 10.4239/wjd.v15.i1.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cardiovascular disease is a major complication of diabetes mellitus (DM). Type-2 DM (T2DM) is associated with an increased risk of cardiovascular events and mortality, while serum biomarkers may facilitate the prediction of these outcomes. Early differential diagnosis of T2DM complicated with acute coronary syndrome (ACS) plays an important role in controlling disease progression and improving safety. AIM To investigate the correlation of serum bilirubin and γ-glutamyltranspeptidase (γ-GGT) with major adverse cardiovascular events (MACEs) in T2DM patients with ACS. METHODS The clinical data of inpatients from January 2022 to December 2022 were analyzed retrospectively. According to different conditions, they were divided into the T2DM complicated with ACS group (T2DM + ACS, n = 96), simple T2DM group (T2DM, n = 85), and simple ACS group (ACS, n = 90). The clinical data and laboratory indices were compared among the three groups, and the correlations of serum total bilirubin (TBIL) levels and serum γ-GGT levels with other indices were discussed. T2DM + ACS patients received a 90-day follow-up after discharge and were divided into event (n = 15) and nonevent (n = 81) groups according to the occurrence of MACEs; Univariate and multivariate analyses were further used to screen the independent influencing factors of MACEs in patients. RESULTS The T2DM + ACS group showed higher γ-GGT, total cholesterol, low-density lipoprotein cholesterol (LDL-C) and glycosylated hemoglobin (HbA1c) and lower TBIL and high-density lipoprotein cholesterol levels than the T2DM and ACS groups (P < 0.05). Based on univariate analysis, the event and nonevent groups were significantly different in age (t = 3.3612, P = 0.0011), TBIL level (t = 3.0742, P = 0.0028), γ-GGT level (t = 2.6887, P = 0.0085), LDL-C level (t = 2.0816, P = 0.0401), HbA1c level (t = 2.7862, P = 0.0065) and left ventricular ejection fraction (LEVF) levels (t=3.2047, P = 0.0018). Multivariate logistic regression analysis further identified that TBIL level and LEVF level were protective factor for MACEs, and age and γ-GGT level were risk factors (P < 0.05). CONCLUSION Serum TBIL levels are decreased and γ-GGT levels are increased in T2DM + ACS patients, and the two indices are significantly negatively correlated. TBIL and γ-GGT are independent influencing factors for MACEs in such patients.
Collapse
Affiliation(s)
- Jie Chen
- Radiology Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, Jiangsu Province, China
| | - Wan-Chao Zhang
- Radiology Department, The People’s Hospital of WuQia County, Wuqia 845450, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Qiang Tang
- Radiology Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, Jiangsu Province, China
| | - Ruo-Han Yin
- Radiology Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, Jiangsu Province, China
| | - Tao Wang
- Radiology Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, Jiangsu Province, China
| | - Xiao-Yu Wei
- Radiology Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, Jiangsu Province, China
| | - Chang-Jie Pan
- Radiology Department, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213164, Jiangsu Province, China
| |
Collapse
|
226
|
WEERARATHNA TP, LEKAMWASAM S, KODIKARA I, WASANA KGP, FONSEKA L. Control of cardiometabolic risk factors and their association with carotid intima media thickness among patients with type 2 diabetes mellitus-single center experience in a developing country. Turk J Med Sci 2024; 54:545-554. [PMID: 39050007 PMCID: PMC11265882 DOI: 10.55730/1300-0144.5821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/12/2024] [Accepted: 01/11/2024] [Indexed: 07/27/2024] Open
Abstract
Background/aim Type 2 diabetes mellitus (T2DM) is closely associated with atherosclerotic cardiovascular diseases (ASCVD). The objective of this study was to describe the degree of ASCVD risk factor control and their association with carotid intima-media thickness (CIMT) in T2DM patients followed up at a diabetes clinic in Southern, Sri Lanka. Materials and methods A crosssectional study was conducted to examine the association between CIMT and nonalcoholic fatty liver disease (NAFLD)in 300 T2DM patients. Both CIMT and its associations with modifiable cardiometabolic risk factors were examined using ultrasonography. The recommended optimal targets for risk factors were defined as glycated hemoglobin (HbA1C) < 7 %, absence of NAFLD, albumin-to-creatinine ratio (ACR) < 30 mg, triglyceride (TG) < 150 mg/dL, low-density lipoprotein cholesterol (LDL-C) < 100 mg/dL, high-density lipoprotein cholesterol (HDL-C) in men > 40 and in women > 50 mg/dL, systolic blood pressure (SBP) < 130 mmHg, and diastolic blood pressure (DBP) < 80 mmHg. Results SBP, DBP, LDL-C, TG, HDL-C, HbA1C, and ACR were optimally controlled in 59.3%, 75.0%, 46.7%, 84.3%, 46.0%, 33.0%, and 18.7% of patients, respectively. Notably, nearly half of the study subjects did not have NAFLD. Only three patients (1%) had achieved all therapeutic targets. There were statistically significant differences in CIMT between optimally controlled TG and suboptimally controlled TG group (p = 0.027) and between the groups with and without NAFLD (p = 0.045) when adjusted for age and duration of diabetes. CIMT showed significant and positive associations with LDL-C (p = 0.024), TG (p = 0.026), and NAFLD (p = 0.005). Among these, the presence of NAFLD had the highest odds of having higher CIMT when compared to LDL-C and TG. Conclusion The majority of patients have not achieved the recommended targets for ASCVD risk factors and are at high risk of ASCVD. It is therefore necessary to identify the reasons for not achieving the treatment targets in order to reduce the ASCVD burden by controlling LDL-C, TG, and NAFLD.
Collapse
Affiliation(s)
| | - Sarath LEKAMWASAM
- Department of Medicine, Faculty of Medicine, University of Ruhuna, Galle,
Sri Lanka
| | - Iroshani KODIKARA
- Department of Anatomy, Faculty of Medicine, University of Ruhuna, Galle,
Sri Lanka
| | | | - Lakmal FONSEKA
- Department of Medicine, Faculty of Medicine, University of Ruhuna, Galle,
Sri Lanka
| |
Collapse
|
227
|
Wang X, Wang Z, He J. Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease. Diabetes Metab Syndr Obes 2024; 17:165-192. [PMID: 38222032 PMCID: PMC10788067 DOI: 10.2147/dmso.s438618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
Presently, the mechanism of occurrence and development of vascular calcification (VC) is not fully understood; a range of evidence suggests a positive association between diabetes mellitus (DM) and VC. Furthermore, the increasing burden of central vascular disease in patients with chronic kidney disease (CKD) may be due, at least in part, to VC. In this review, we will review recent advances in the mechanisms of VC in the context of CKD and diabetes. The study further unveiled that VC is induced through the stimulation of pro-inflammatory factors, which in turn impairs endothelial function and triggers similar mechanisms in both disease contexts. Notably, hyperglycemia was identified as the distinctive mechanism driving calcification in DM. Conversely, in CKD, calcification is facilitated by mechanisms including mineral metabolism imbalance and the presence of uremic toxins. Additionally, we underscore the significance of investigating vascular alterations and newly identified molecular pathways as potential avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiabo Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
228
|
Yu SS, Du JL. Current views on selenoprotein S in the pathophysiological processes of diabetes-induced atherosclerosis: potential therapeutics and underlying biomarkers. Diabetol Metab Syndr 2024; 16:5. [PMID: 38172976 PMCID: PMC10763436 DOI: 10.1186/s13098-023-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) consistently ranks as the primary mortality factor among diabetic people. A thorough comprehension of the pathophysiological routes and processes activated by atherosclerosis (AS) caused by diabetes mellitus (DM), together with the recognition of new contributing factors, could lead to the discovery of crucial biomarkers and the development of innovative drugs against atherosclerosis. Selenoprotein S (SELENOS) has been implicated in the pathology and progression of numerous conditions, including diabetes, dyslipidemia, obesity, and insulin resistance (IR)-all recognized contributors to endothelial dysfunction (ED), a precursor event to diabetes-induced AS. Hepatic-specific deletion of SELENOS accelerated the onset and progression of obesity, impaired glucose tolerance and insulin sensitivity, and increased hepatic triglycerides (TG) and diacylglycerol (DAG) accumulation; SELENOS expression in subcutaneous and omental adipose tissue was elevated in obese human subjects, and act as a positive regulator for adipogenesis in 3T3-L1 preadipocytes; knockdown of SELENOS in Min6 β-cells induced β-cell apoptosis and reduced cell proliferation. SELENOS also participates in the early stages of AS, notably by enhancing endothelial function, curbing the expression of adhesion molecules, and lessening leukocyte recruitment-actions that collectively reduce the formation of foam cells. Furthermore, SELENOS forestalls the apoptosis of vascular smooth muscle cells (VSMCs) and macrophages, mitigates vascular calcification, and alleviates inflammation in macrophages and CD4+ T cells. These actions help stifle the creation of unstable plaque characterized by thinner fibrous caps, larger necrotic cores, heightened inflammation, and more extensive vascular calcification-features seen in advanced atherosclerotic lesion development. Additionally, serum SELENOS could function as a potential biomarker, and SELENOS single nucleotide polymorphisms (SNPs) rs4965814, rs28628459, and rs9806366, might be effective gene markers for atherosclerosis-related diseases in diabetes. This review accentuates the pathophysiological processes of atherosclerosis in diabetes and amasses current evidence on SELENOS's potential therapeutic benefits or as predictive biomarkers in the various stages of diabetes-induced atherosclerosis.
Collapse
Affiliation(s)
- Shan-Shan Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China
| | - Jian-Ling Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.
- Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, 116011, Liaoning, China.
| |
Collapse
|
229
|
Waksman R, Merdler I, Case BC, Waksman O, Porto I. Targeting inflammation in atherosclerosis: overview, strategy and directions. EUROINTERVENTION 2024; 20:32-44. [PMID: 38165117 PMCID: PMC10756224 DOI: 10.4244/eij-d-23-00606] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a chronic condition characterised by the build-up of plaque in the inner lining of the blood vessels and it is the main underlying cause of cardiovascular disease. The development of atherosclerosis is associated with the accumulation of cholesterol and inflammation. Although effective therapies exist to lower low-density lipoprotein cholesterol (LDL-C) levels, some patients still experience cardiovascular events due to persistent inflammation, known as residual inflammatory risk (RIR). Researchers have conducted laboratory and animal studies to investigate the measurement and targeting of the inflammatory cascade associated with atherosclerosis, which have yielded promising results. In addition to guideline-directed lifestyle modifications and optimal medical therapy focusing on reducing LDL-C levels, pharmacological interventions targeting inflammation may provide further assistance in preventing future cardiac events. This review aims to explain the mechanisms of inflammation in atherosclerosis, identifies potential biomarkers, discusses available therapeutic options and their strengths and limitations, highlights future advancements, and summarises notable clinical studies. Finally, an evaluation and management algorithm for addressing RIR is presented.
Collapse
Affiliation(s)
- Ron Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Ilan Merdler
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Brian C Case
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Ori Waksman
- MedStar Heart & Vascular Institute, MedStar Washington Hospital Center, MedStar Georgetown University Hospital, Washington, D.C., USA
| | - Italo Porto
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - Italian IRCCS Cardiology Network, Genoa, Italy
| |
Collapse
|
230
|
Li Y, Li X, Yang Y, Li F, Chen Q, Zhao Z, Zhang N, Li H. Hepatocyte growth factor attenuates high glucose-disturbed mitochondrial dynamics in podocytes by decreasing ARF6-dependent DRP1 translocation. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119623. [PMID: 37913847 DOI: 10.1016/j.bbamcr.2023.119623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Diabetic nephropathy (DN), one of the most common complications of Diabetes Mellitus, is the leading cause of end-stage renal diseases worldwide. Our previous study proved that hepatocyte growth factor (HGF) alleviated renal damages in mice with type 1 Diabetes Mellitus by suppressing overproduction of reactive oxygen species (ROS) in podocytes, while the further mechanism of how HGF lessens ROS production had not been clarified yet. ADP-ribosylation factor 6 (ARF6), the member of the small GTPases superfamilies, is widely spread among epithelial cells and can be activated by the HGF/c-Met signaling. Thus, this study was aimed to explore whether HGF could function on mitochondrial homeostasis, the main resource of ROS, in podocytes exposed to diabetic conditions via ARF6 activation. Our in vivo data showed that HGF markedly ameliorated the pathological damages in kidneys of db/db mice, especially the sharp decline of podocyte number, which was mostly blocked by the ARF6 inhibitor SecinH3. Correspondingly, our in vitro data revealed that HGF protected against high glucose-induced podocyte injuries by increasing ARF6 activity. Besides, this ARF6-dependent beneficial effect of HGF on podocytes was accompanied by improved mitochondrial dynamics and declined DRP1 translocation from cytosol to mitochondria. Collectively, our findings confirm the ability of HGF maintaining mitochondrial homeostasis in diabetic podocytes via decreasing ARF6-dependent DRP1 translocation and shed light on the novel mechanism of HGF treatment for DN.
Collapse
Affiliation(s)
- Yankun Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xue Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuling Yang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fengxia Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qi Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hui Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
231
|
Wong M, Dai Y, Ge J. Pan-vascular disease: what we have done in the past and what we can do in the future? CARDIOLOGY PLUS 2024; 9:1-5. [PMID: 38584611 PMCID: PMC10994062 DOI: 10.1097/cp9.0000000000000078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Mingjen Wong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| |
Collapse
|
232
|
Rais N, Ved A, Ahmad R, Parveen A. Research-based Analytical Procedures to Evaluate Diabetic Biomarkers and Related Parameters: In Vitro and In Vivo Methods. Curr Diabetes Rev 2024; 20:e201023222417. [PMID: 37867271 DOI: 10.2174/0115733998252495231011182012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/24/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND The degenerative tendency of diabetes leads to micro- and macrovascular complications due to abnormal levels of biochemicals, particularly in patients with poor diabetic control. Diabetes is supposed to be treated by reducing blood glucose levels, scavenging free radicals, and maintaining other relevant parameters close to normal ranges. In preclinical studies, numerous in vivo trials on animals as well as in vitro tests are used to assess the antidiabetic and antioxidant effects of the test substances. Since a substance that performs poorly in vitro won't perform better in vivo, the outcomes of in vitro studies can be utilized as a direct indicator of in vivo activities. OBJECTIVE The objective of the present study is to provide research scholars with a comprehensive overview of laboratory methods and procedures for a few selected diabetic biomarkers and related parameters. METHOD The search was conducted on scientific database portals such as ScienceDirect, PubMed, Google Scholar, BASE, DOAJ, etc. Conclusion: The development of new biomarkers is greatly facilitated by modern technology such as cell culture research, lipidomics study, microRNA biomarkers, machine learning techniques, and improved electron microscopies. These biomarkers do, however, have some usage restrictions. There is a critical need to find more accurate and sensitive biomarkers. With a few modifications, these biomarkers can be used with or even replace conventional markers of diabetes.
Collapse
Affiliation(s)
- Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Akash Ved
- Goel Institute of Pharmaceutical Sciences, Lucknow, Uttar Pradesh 226028, India
| | - Rizwan Ahmad
- Department of Pharmacy, Vivek College of Technical Education, Bijnor, Uttar Pradesh 246701, India
| | - Aashna Parveen
- Faculty of Applied Science, Bhagwant Global University, Kotdwar, Uttarakhand 246149, India
| |
Collapse
|
233
|
Hussain S, Gul Jan F, Jan G, Irfan M, Musa M, Rahman S, Ali N, Hamayun M, Alrefai AF, Almutairi MH, Azmat R, Ali S. Evaluation of the Hypoglycemic and Hypolipidemic Potential of Extract Fraction of Quercus baloot Griff Seeds in Alloxan-induced Diabetic Mice. Curr Pharm Des 2024; 30:2978-2991. [PMID: 39219120 DOI: 10.2174/0113816128319184240827070016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The discovery and development of new phytomedicines can be greatly aided by plants because of their tremendous therapeutic benefits, efficiency, cost-effectiveness, lack of side effects, and cheaper therapies. In this regard, Quercus baloot, generally known as oak, is used in folkloric medicine for treating and preventing various human disorders, including diabetes. AIM For this purpose, the present study aimed to evaluate crude methanolic extract and various fractions of Quercus baloot for antihyperlipidemic and antihyperglycemic potential followed by the analysis of active compounds. METHODS The hypoglycemic and hypolipidemic activity was evaluated in Swiss male Albino mice by administering an oral dose of 150-300 mg/kg of Q. baloot extracts in alloxan induced diabetic mice for 14 days. RESULTS The results revealed that crude methanolic extract at a dose of 300 mg/kg exhibited a significant reduction in the blood glucose level (198.50 ± 1.99 mg/dl) at day 14 and the same treatment significantly increased the body weight (31.26 ± 0.27 g) at day 14 in comparison to the control group. Moreover, the biochemical parameters were investigated which presented an increase in high-density lipids (HDL) (30.33 ± 0.33 mg/dl), whereas low-density lipids (LDL) showed a significant decrease (105.66 ± 0.26 mg/dl). Additionally, triglyceride levels 104.83 ± 0.70 mg/dl, and total cholesterol 185.50 ± 0.76 mg/dl are significantly decreased. In serum biochemical analysis creatinine and hepatic enzyme markers, like serum glutamate pyruvate transaminase (32.00 ± 0.36 U/mg), serum glutamate oxaloacetate transaminase (34.33 ± 0.61 U/mg), and alkaline phosphatase (157.00 ± 0.73 U/mg), were significantly reduced by the crude methanolic extract at a dose of 300 mg/kg as compared to the control group. The antioxidant enzymes like Superoxide dismutase (4.57 ± 0.011), peroxidases dismutase (6.53 ± 0.014, and catalase (8.38 ± 0.014) at a dosage of 300 mg/kg of methanolic extract exhibited a significant increase. The histopathological study of the diabetic heart, liver, and pancreas showed substantial restoration of damaged tissues in the methanolic extract 150 and 300 mg/kg treated group, which supports the effectiveness of Q. baloot seeds. The gas chromatography-mass spectrometry analysis of methanolic extract identified 10 antidiabetic active compounds in the Q. baloot seeds, validating the antihyperglycemic activity. Thus, methanolic crude extract at the doses 150 and 300 mg/kg of Q. baloot showed significant antihyperlipidemic and antihyperglycemic activities, which validate the folkloric utilization of Q. baloot as a remedy in diabetes. CONCLUSION In conclusion, the 300 mg/kg methanolic extract of Q. baloot has notable hypoglycemic and hypolipidemic potential, supporting the plant's traditional medicinal usage in the treatment of diabetes and its complications. Further studies are needed for the purification, characterization, and structural clarification of bioactive compounds.
Collapse
Affiliation(s)
| | - Farzana Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Irfan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
- Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, Missouri 63110, USA
| | - Muhammad Musa
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Shahid Rahman
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Niaz Ali
- Department of Botany, University of Hazara, Mansehra, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rafia Azmat
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
234
|
Lembas A, Załęski A, Peller M, Mikuła T, Wiercińska-Drapało A. Human Immunodeficiency Virus as a Risk Factor for Cardiovascular Disease. Cardiovasc Toxicol 2024; 24:1-14. [PMID: 37982976 PMCID: PMC10838226 DOI: 10.1007/s12012-023-09815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The developments in HIV treatments have increased the life expectancy of people living with HIV (PLWH), a situation that makes cardiovascular disease (CVD) in that population as relevant as ever. PLWH are at increased risk of CVD, and our understanding of the underlying mechanisms is continually increasing. HIV infection is associated with elevated levels of multiple proinflammatory molecules, including IL-6, IL-1β, VCAM-1, ICAM-1, TNF-α, TGF-β, osteopontin, sCD14, hs-CRP, and D-dimer. Other currently examined mechanisms include CD4 + lymphocyte depletion, increased intestinal permeability, microbial translocation, and altered cholesterol metabolism. Antiretroviral therapy (ART) leads to decreases in the concentrations of the majority of proinflammatory molecules, although most remain higher than in the general population. Moreover, adverse effects of ART also play an important role in increased CVD risk, especially in the era of rapid advancement of new therapeutical options. Nevertheless, it is currently believed that HIV plays a more significant role in the development of metabolic syndromes than treatment-associated factors. PLWH being more prone to develop CVD is also due to the higher prevalence of smoking and chronic coinfections with viruses such as HCV and HBV. For these reasons, it is crucial to consider HIV a possible causal factor in CVD occurrence, especially among young patients or individuals without common CVD risk factors.
Collapse
Affiliation(s)
- Agnieszka Lembas
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| | - Andrzej Załęski
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland.
- Hospital for Infectious Diseases, Warsaw, Poland.
| | - Michał Peller
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mikuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| | - Alicja Wiercińska-Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, Warsaw, Poland
| |
Collapse
|
235
|
Zhou J, Tang CK. Cytoplasmic Polyadenylation Element Binding Protein 1 and Atherosclerosis: Prospective Target and New Insights. Curr Vasc Pharmacol 2024; 22:95-105. [PMID: 38284693 DOI: 10.2174/0115701611258090231221082502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
The ribonucleic acid (RNA)-binding protein Cytoplasmic Polyadenylation Element Binding Protein 1 (CPEB1), a key member of the CPEB family, is essential in controlling gene expression involved in both healthy physiological and pathological processes. CPEB1 can bind to the 3'- untranslated regions (UTR) of substrate messenger ribonucleic acid (mRNA) and regulate its translation. There is increasing evidence that CPEB1 is closely related to the pathological basis of atherosclerosis. According to recent investigations, many pathological processes, including inflammation, lipid metabolism, endothelial dysfunction, angiogenesis, oxidative stress, cellular senescence, apoptosis, and insulin resistance, are regulated by CPEB1. This review considers the prevention and treatment of atherosclerotic heart disease in relation to the evolution of the physiological function of CPEB1, recent research breakthroughs, and the potential participation of CPEB1 in atherosclerosis.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
236
|
Zheng J, An Y, Du Y, Song Y, Zhao Q, Lu Y. Effects of short-chain fatty acids on blood glucose and lipid levels in mouse models of diabetes mellitus: A systematic review and network meta-analysis. Pharmacol Res 2024; 199:107041. [PMID: 38128856 DOI: 10.1016/j.phrs.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Short-chain fatty acids (SCFAs), the main metabolites of gut microbiota, have been associated with lower blood glucose and lipid levels in diabetic mice. However, a comprehensive summary and comparison of the effects of different SCFA interventions on blood glucose and lipid levels in diabetic mice is currently unavailable. This study aims to compare and rank the effects of different types of SCFAs on blood glucose and lipid levels by collecting relevant animal research. A systematic search through PubMed, Embase, Cochrane Library, and Web of Science database was conducted to identify relevant studies from inception to March 17, 2023. Both pairwise meta-analysis and Bayesian network meta-analysis were used for statistical analyses. In total, 18 relevant studies involving 5 interventions were included after screening 3793 citations and 53 full-text articles. Notably, butyrate therapy (mean difference [MD] = -4.52, 95% confidence interval [-6.29, -2.75]), acetate therapy (MD = -3.12, 95% confidence interval [-5.79, -0.46]), and propionate therapy (MD = -2.96, 95% confidence interval [-5.66, -0.26]) significantly reduced the fasting blood glucose levels compared to the control group; butyrate therapy was probably the most effective intervention, with a surface under the cumulative ranking curve (SUCRA) value of 85.5%. Additionally, acetate plus propionate therapy was probably the most effective intervention for reducing total cholesterol (SUCRA = 85.8%) or triglyceride levels (SUCRA = 88.1%). These findings underscore the potential therapeutic implications of SCFAs for addressing metabolic disorders, particularly in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jie Zheng
- School of Nursing, Peking University, Beijing 100191, China
| | - Yu An
- Department of Endocrinology, Beijing Chaoyang Hospital, Beijing 100020, China
| | - Yage Du
- School of Nursing, Peking University, Beijing 100191, China
| | - Ying Song
- School of Nursing, Peking University, Beijing 100191, China
| | - Qian Zhao
- Department of Nursing, Shanxi Provincial People's hospital, 29th Shuangta Temple Street, Taiyuan 030012, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
237
|
Bian X, He J, Zhang R, Yuan S, Dou K. The Combined Effect of Systemic Immune-Inflammation Index and Type 2 Diabetes Mellitus on the Prognosis of Patients Undergoing Percutaneous Coronary Intervention: A Large-Scale Cohort Study. J Inflamm Res 2023; 16:6415-6429. [PMID: 38164165 PMCID: PMC10758317 DOI: 10.2147/jir.s445479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Background Chronic low-grade inflammation is the common mechanism of both atherosclerosis and type 2 diabetes mellitus (T2DM), and systemic immune-inflammation index (SII) has been emerged as a novel and simple inflammatory biomarker. However, the association between SII and glycemic metabolism and their synergetic effect on the prognosis of coronary artery disease (CAD) patients remains unclear. Methods A total of 8602 patients hospitalized for percutaneous coronary intervention (PCI) were included. The primary endpoint was major adverse cardiovascular events (MACE), including all-cause death, myocardial infarction (MI), and target vessel revascularization. According to the optimal cut-off value of SII for MACEs, patients were grouped into higher levels of SII (SII-H) and lower levels of SII (SII-L) and further divided by the concomitance of T2DM into four groups: SII-H/T2DM, SII-H/Non-T2DM, SII-L/T2DM, SII-L/Non-T2DM. Results During a median 2.4-year follow-up, 522 MACEs occurred. The optimal cut-off value of SII for MACEs was 502.5. A 1-unit increase of SII (transformed by natural logarithm) was associated with a 29% increase of MACE risks in the T2DM cohort [adjusted hazard ratio (HR): 1.29, 95% confidence interval (CI): 1.03 to 1.61, P = 0.024], while had no effect in the non-T2DM cohort (HR: 1.03, 95% CI: 0.80 to 1.34, P = 0.800). Compared to those in SII-H/T2DM group, patients in SII-H/Non-T2DM, SII-L/T2DM, SII-L/Non-T2DM had significantly decreased risk of MACEs [adjusted HR: 0.77, 95% CI: 0.61 to 0.98, P = 0.036; adjusted HR: 0.66, 95% CI: 0.50 to 0.87, P = 0.003; adjusted HR: 0.58, 95% CI: 0.45 to 0.74, P < 0.001; respectively]. Multivariable Cox regression analysis also indicated the highest risk in T2DM patients with higher levels of SII than others (P for trend < 0.001). Conclusion In this large-scale real-world study, diabetic patients with elevated SII levels were associated with worse clinical outcomes after PCI.
Collapse
Affiliation(s)
- Xiaohui Bian
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Jining He
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Rui Zhang
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| |
Collapse
|
238
|
Simon Machado R, Mathias K, Joaquim L, Willig de Quadros R, Petronilho F, Tezza Rezin G. From diabetic hyperglycemia to cerebrovascular Damage: A narrative review. Brain Res 2023; 1821:148611. [PMID: 37793604 DOI: 10.1016/j.brainres.2023.148611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Diabetes mellitus is a globally significant disease that can lead to systemic complications, particularly vascular damage, including cardiovascular and cerebrovascular diseases of relevance. The physiological changes resulting from the imbalance in blood glucose levels play a crucial role in initiating vascular endothelial damage. Elevated glucose levels can also penetrate the central nervous system, triggering diabetic encephalopathy characterized by oxidative damage to brain components and activation of alternative and neurotoxic pathways. This brain damage increases the risk of ischemic stroke, a leading cause of mortality worldwide and a major cause of disability among surviving patients. The aim of this review is to highlight important pathways related to hyperglycemic damage that extend to the brain and result in vascular dysfunction, ultimately leading to the occurrence of a stroke. Understanding how diabetes mellitus contributes to the development of ischemic stroke and its impact on patient outcomes is crucial for implementing therapeutic strategies that reduce the incidence of diabetes mellitus and its complications, ultimately decreasing morbidity and mortality associated with the disease.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaella Willig de Quadros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
239
|
Nani A, Bertuzzi F, Meneghini E, Mion E, Pintaudi B. Combined Inositols, α-Lactalbumin, Gymnema Sylvestre and Zinc Improve the Lipid Metabolic Profile of Patients with Type 2 Diabetes Mellitus: A Randomized Clinical Trial. J Clin Med 2023; 12:7650. [PMID: 38137721 PMCID: PMC10743679 DOI: 10.3390/jcm12247650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by high blood glucose levels and lipid alterations. Besides pharmacological treatment, lifestyle modifications and nutraceuticals can be used to manage glucose and lipid profiles, which is crucial for preventing, or avoiding, serious consequences associated with the condition. This randomized controlled clinical trial on 75 patients with T2DM evaluated the effects of a combination of myo-inositol and d-chiro-inositol (40:1), α-lactalbumin, Gymnema sylvestre, and zinc on glucose and lipid profile. The intention-to-treat analysis displayed no significant differences in glucose parameters between the groups; however, the study group displayed reduced levels of total cholesterol (p = 0.01) and LDL (p = 0.03) after 3 months of supplementation. A subgroup analysis involving patients who did not modify their antidiabetic therapy, after 6 months displayed improved levels of total cholesterol (p = 0.03) and LDL (p = 0.04) in the study group versus placebo, along with a greater body weight reduction (p = 0.03) after 3 months. Furthermore, within the study group, levels of HDL (p = 0.03) and triglycerides (p = 0.04) improved after 3 months. These findings support supplementation with myo-inositol and d-chiro-inositol (40:1), α-lactalbumin, Gymnema sylvestre, and zinc as an adjuvant and safe strategy to manage the lipid profiles of patients with T2DM.
Collapse
Affiliation(s)
- Alessandro Nani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | | | - Elena Meneghini
- Department of Diabetology, Niguarda Hospital, 20162 Milan, Italy
| | - Elena Mion
- Department of Diabetology, Niguarda Hospital, 20162 Milan, Italy
| | - Basilio Pintaudi
- Department of Diabetology, Niguarda Hospital, 20162 Milan, Italy
- The Experts Group on Inositol in Basic and Clinical Research (EGOI), 00161 Rome, Italy
| |
Collapse
|
240
|
Rybarczyk A, Formanowicz D, Formanowicz P. Key Therapeutic Targets to Treat Hyperglycemia-Induced Atherosclerosis Analyzed Using a Petri Net-Based Model. Metabolites 2023; 13:1191. [PMID: 38132873 PMCID: PMC10744714 DOI: 10.3390/metabo13121191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic superphysiological glucose concentration is a hallmark of diabetes mellitus (DM) and a cause of damage to many types of cells. Atherosclerosis coexists with glucose metabolism disturbances, constituting a significant problem and exacerbating its complications. Atherosclerosis in DM is accelerated, so it is vital to slow its progression. However, from the complex network of interdependencies, molecules, and processes involved, choosing which ones should be inhibited without blocking the pathways crucial for the organism's functioning is challenging. To conduct this type of analysis, in silicotesting comes in handy. In our study, to identify sites in the network that need to be blocked to have an inhibitory effect on atherosclerosis in hyperglycemia, which is toxic for the human organism, we created a model using Petri net theory and performed analyses. We have found that blocking isoforms of protein kinase C (PKC)-PKCβ and PKCγ-in diabetic patients can contribute to the inhibition of atherosclerosis progression. In addition, we have discovered that aldose reductase inhibition can slow down atherosclerosis progression, and this has been shown to reduce PKC (β and γ) expression in DM. It has also been observed that diminishing oxidative stress through the inhibitory effect on the AGE-RAGE axis may be a promising therapeutic approach in treating hyperglycemia-induced atherosclerosis. Moreover, the blockade of NADPH oxidase, the key enzyme responsible for the formation of reactive oxygen species (ROS) in blood vessels, only moderately slowed down atherosclerosis development. However, unlike aldose reductase blockade, or direct PKC (β and γ), the increased production of mitochondrial ROS associated with mitochondrial dysfunction effectively stopped after NADPH oxidase blockade. The results obtained may constitute the basis for further in-depth research.
Collapse
Affiliation(s)
- Agnieszka Rybarczyk
- Institute of Computing Science, Poznan University of Technology, 60-695 Poznan, Poland;
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Faculty of Electrical Engineering, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Piotr Formanowicz
- Institute of Computing Science, Poznan University of Technology, 60-695 Poznan, Poland;
| |
Collapse
|
241
|
Zhang Y, Wang R, Tan H, Wu K, Hu Y, Diao H, Wang D, Tang X, Leng M, Li X, Cai Z, Luo D, Shao X, Yan M, Chen Y, Rong X, Guo J. Fufang Zhenzhu Tiaozhi (FTZ) capsule ameliorates diabetes-accelerated atherosclerosis via suppressing YTHDF2-mediated m 6A modification of SIRT3 mRNA. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116766. [PMID: 37343655 DOI: 10.1016/j.jep.2023.116766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Zhenzhu TiaoZhi (FTZ), a Chinese medicinal decoction, has continuously been used to treat metabolic syndrome. Atherosclerosis is the main pathological basis of cardiovascular disease. The N6 methyladenosine (m6A) modification is a highly dynamic and reversible process involving a variety of important biological processes. AIM OF THE STUDY Here, we investigated the therapeutic effects and mechanism of FTZ in diabetes-accelerated atherosclerosis. MATERIALS AND METHODS Doppler ultrasonography was used to examine the carotid intima-media thickness and plaque area in diabetic atherosclerosis patients. HFD mice were injected with streptozotocin to induce diabetes. HE and Oil red O staining were used to assess the effect of FTZ on lipid deposition. HUVECs were induced with HG/ox-LDL as a model of diabetic atherosclerosis. Furthermore, application of m6A methylation level kit, qRT-PCR, Western blot, tunel staining, reactive oxygen species staining and mPTP staining were performed to analyze the detailed mechanism. RESULTS Clinical trials of FTZ have shown obvious effect of lowering blood glucose and blood lipids. These effects were reversed after FTZ intervention. Compared with the control, lipid deposition decreased significantly after FTZ administration. FTZ reduced endothelial cell apoptosis. At the same time, we found that FTZ reversed the increase of methylation reader YTHDF2 caused by ox-LDL treatment. Subsequently, we discovered that YTHDF2 degraded SIRT3 mRNA, leading to endothelial cell apoptosis and oxidative stress. CONCLUSION FTZ attenuated diabetes-accelerated atherosclerosis by decreasing blood glucose and serum lipids levels, and increased endothelial cell antioxidant capacity, inhibited endothelial cell apoptosis via inhibiting YTHDF2-mediated m6A modification of SIRT3 mRNA, which reduced mRNA degradation.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Ruonan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Huiling Tan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Kaili Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yaju Hu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Hongtao Diao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Dongwei Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Mingyang Leng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Zhenlu Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Xiaoqi Shao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Yingyu Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China; The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, 510006, China.
| |
Collapse
|
242
|
Lu Y, Wang Y, Zhou B. Predicting long-term prognosis after percutaneous coronary intervention in patients with acute coronary syndromes: a prospective nested case-control analysis for county-level health services. Front Cardiovasc Med 2023; 10:1297527. [PMID: 38111892 PMCID: PMC10725923 DOI: 10.3389/fcvm.2023.1297527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose We aimed to establish and authenticate a clinical prognostic nomogram for predicting long-term Major Adverse Cardiovascular Events (MACEs) among high-risk patients who have undergone Percutaneous Coronary Intervention (PCI) in county-level health service. Patients and methods This prospective study included Acute Coronary Syndrome (ACS) patients treated with PCI at six county-level hospitals between September 2018 and August 2019, selected from both the original training set and external validation set. Least Absolute Shrinkage and Selection Operator (LASSO) regression techniques and logistic regression were used to assess potential risk factors and construct a risk predictive nomogram. Additionally, the potential non-linear relationships between continuous variables were tested using Restricted Cubic Splines (RCS). The performance of the nomogram was evaluated based on the Receiver Operating Characteristic (ROC) curve analysis, Calibration Curve, Decision Curve Analysis (DCA), and Clinical Impact Curve (CIC). Results The original training set and external validation set comprised 520 and 1,061 patients, respectively. The final nomogram was developed using nine clinical variables: Age, Killip functional classification III-IV, Hypertension, Hyperhomocysteinemia, Heart failure, Number of stents, Multivessel disease, Low-density Lipoprotein Cholesterol, and Left Ventricular Ejection Fraction. The AUC of the nomogram was 0.79 and 0.75 in the training set and external validation set, respectively. The DCA and CIC validated the clinical value of the constructed prognostic nomogram. Conclusion We developed and validated a prognostic nomogram for predicting the probability of 3-year MACEs in ACS patients who underwent PCI at county-level hospitals. The nomogram could provide a precise risk assessment for secondary prevention in ACS patients receiving PCI.
Collapse
Affiliation(s)
| | | | - Bo Zhou
- Department of Clinical Epidemiology and Evidence-Based Medicine, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
243
|
Du Y, Wang J, Fan W, Huang R, Wang H, Liu G. Preclinical study of diabetic foot ulcers: From pathogenesis to vivo/vitro models and clinical therapeutic transformation. Int Wound J 2023; 20:4394-4409. [PMID: 37438679 PMCID: PMC10681512 DOI: 10.1111/iwj.14311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Diabetic foot ulcer (DFU), a common intractable chronic complication of diabetes mellitus (DM), has a prevalence of up to 25%, with more than 17% of the affected patients at risk of amputation or even death. Vascular risk factors, including vascular stenosis or occlusion, dyslipidemia, impaired neurosensory and motor function, and skin infection caused by trauma, all increase the risk of DFU in patients with diabetes. Therefore, diabetic foot is not a single pathogenesis. Preclinical studies have contributed greatly to the pathogenesis determination and efficacy evaluation of DFU. Many therapeutic tools are currently being investigated using DFU animal models for effective clinical translation. However, preclinical animal models that completely mimic the pathogenesis of DFU remain unexplored. Therefore, in this review, the preparation methods and evaluation criteria of DFU animal models with three major pathological mechanisms: neuropathy, angiopathy and DFU infection were discussed in detail. And the advantages and disadvantages of various DFU animal models for clinical sign simulation. Furthermore, the current status of vitro models of DFU and some preclinical studies have been transformed into clinical treatment programs, such as medical dressings, growth factor therapy, 3D bioprinting and pre-vascularization, Traditional Chinese Medicine treatment. However, because of the complexity of the pathological mechanism of DFU, the clinical transformation of DFU model still faces many challenges. We need to further optimize the existing preclinical studies of DFU to provide an effective animal platform for the future study of pathophysiology and clinical treatment of DFU.
Collapse
Affiliation(s)
- Yuqing Du
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jie Wang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Endocrinology departmentShanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weijing Fan
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Renyan Huang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongfei Wang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guobin Liu
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
244
|
Deng Z, Li L. Effect of miR-663 on atherosclerosis by regulating the proliferation of vascular smooth muscle cells in lipid plaques. Vascular 2023; 31:1240-1252. [PMID: 35599617 DOI: 10.1177/17085381221098826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Atherosclerosis (AS) is the main cause of coronary heart disease, cerebral infarction, and peripheral vascular disease. microRNAs (miRNAs) are widely distributed in the human body and closely related to the pathological progress of AS. This study probed into the function of miR-663 in AS. METHODS The atherosclerotic plaques, cholesterol (CHOL), low-density lipoprotein (LDL), inflammatory factors, and miR-663 expression in ApoE-/- mice on high-fat diet were evaluated. The overexpressing miR-663 adenovirus was injected into ApoE-/- mice, followed by measurement of type III collagen (Col III), matrix metalloproteinase (MMP)-2, α-SMA, osteopontin, and CD31. miR-663 mimic or inhibitor was introduced into vascular smooth muscle cells (VSMCs) stimulated by oxidized LDL (Ox-LDL), and cell proliferation and IL-6 and IL-18 secretion were evaluated. The binding relationship between miR-663 and HMGA2 was verified, followed by the determination of HMGA2 role in VSMC proliferation. RESULTS Atherosclerotic plaques appeared in ApoE-/- mice on high-fat diet, with increased CHOL, LDL, osteopontin, MMP-2 and Col III and decreased miR-663, α-SMA and CD31. miR-663 overexpression downregulated osteopontin, MMP-2 and Col III and upregulated α-SMA and CD31 in ApoE-/- mice on high-fat diet. With Ox-LDL concentration increase, VSMC proliferation was promoted and miR-663 was downregulated. miR-663 overexpression inhibited proliferation of Ox-LDL-stimulated VSMCs and reduced levels of inflammatory factor levels, whereas silencing miR-663 did the opposite. miR-663 targeted HMGA2. HMGA2 overexpression partially reversed the inhibitory effect of miR-663 overexpression on VSMC proliferation. CONCLUSION miR-663 targeted HMGA2 to inhibit VSMC proliferation and AS development, which may offer insights into AS treatment.
Collapse
Affiliation(s)
- Zhisheng Deng
- Department of Geriatrics, Nanchang Hospital Sun Yat-Sen University (The First Hospital of Nanchang), Nanchang, China
| | - Lihua Li
- Department of Geriatrics, Nanchang Hospital Sun Yat-Sen University (The First Hospital of Nanchang), Nanchang, China
| |
Collapse
|
245
|
Uno-Eder K, Satoh-Asahara N, Hibiya M, Uno K, Uchino T, Morita K, Ishikawa T, Kaneko T, Yamakage H, Kitaoka Y, Sawa T, Tsukamoto K, Teramoto T. Understanding impacts of COVID-19 restrictions on glycemic control for patients with diabetes in Japan. J Diabetes Metab Disord 2023; 22:1695-1703. [PMID: 37975143 PMCID: PMC10638246 DOI: 10.1007/s40200-023-01302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/05/2023] [Indexed: 11/19/2023]
Abstract
Objective This study evaluated the changes in the status of glycemic control and lipid management in patients with diabetes under COVID-19 containment restrictions, in order to better understand the impacts of events causing lifestyle restrictions. Patient characteristics with worsened glycemic control were also assessed. Methods We conducted a retrospective and observational cohort study using the electronic health records of 5,169 patients with diabetes seeking medical care in two healthcare centers. Laboratory test results including glycemic and lipid goal attainment rates were compared between pre-COVID-19 (January to December 2019) and the first wave of COVID-19 (February to June 2020). Multiple regression models were used to evaluate the association between glycated hemoglobin (HbA1c) at baseline and during the first wave with covariates such as concomitant medications and comorbidities. Results The HbA1c goal achievement rate improved significantly from 39.0% to 43.1% (p < 0.0001) overall, and more patients reached their glycemic target during COVID-19 restrictions. No significant changes were observed in lipid control. An indexed change in HbA1c level showed that glycemic control improved in 2,230 patients and worsened in 1,619 patients. Administration of insulin, GLP-1, and sulfonylureas were each identified as factors correlated with elevated HbA1c, during the first wave of COVID-19. Conclusion Although the glycemic control in patients with diabetes improved overall under COVID-19 restrictions, those on insulin, GLP-1, or sulfonylureas worsened. These findings suggest the need to better understand what drives differences in glycemic control to better support people with diabetes for future epidemiological outbreaks. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01302-5.
Collapse
Affiliation(s)
- Kiyoko Uno-Eder
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| | - Noriko Satoh-Asahara
- Department of Endocrinology, Metabolism and Hypertension, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Manabu Hibiya
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| | - Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tetsuji Kaneko
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| | - Hajime Yamakage
- Department of Endocrinology, Metabolism and Hypertension, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuki Kitaoka
- Medical Informatics Department, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tomohiro Sawa
- Medical Information System Research Center, Teikyo University, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Tamio Teramoto
- Teikyo Academic Research Center, Teikyo University, Tokyo, Japan
| |
Collapse
|
246
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
247
|
Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, Roh EJ, Elkamhawy A, Al-Karmalawy AA. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomed Pharmacother 2023; 168:115734. [PMID: 37857245 DOI: 10.1016/j.biopha.2023.115734] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023] Open
Abstract
Nowadays, diabetes mellitus has emerged as a significant global public health concern with a remarkable increase in its prevalence. This review article focuses on the definition of diabetes mellitus and its classification into different types, including type 1 diabetes (idiopathic and fulminant), type 2 diabetes, gestational diabetes, hybrid forms, slowly evolving immune-mediated diabetes, ketosis-prone type 2 diabetes, and other special types. Diagnostic criteria for diabetes mellitus are also discussed. The role of inflammation in both type 1 and type 2 diabetes is explored, along with the mediators and potential anti-inflammatory treatments. Furthermore, the involvement of various organs in diabetes mellitus is highlighted, such as the role of adipose tissue and obesity, gut microbiota, and pancreatic β-cells. The manifestation of pancreatic Langerhans β-cell islet inflammation, oxidative stress, and impaired insulin production and secretion are addressed. Additionally, the impact of diabetes mellitus on liver cirrhosis, acute kidney injury, immune system complications, and other diabetic complications like retinopathy and neuropathy is examined. Therefore, further research is required to enhance diagnosis, prevent chronic complications, and identify potential therapeutic targets for the management of diabetes mellitus and its associated dysfunctions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | - Naira A Ashour
- Department of Neurology, Faculty of Physical Therapy, Horus University, New Damietta 34518, Egypt
| | - Roaa T Zaid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
248
|
Chen Y, Guan M, Wang R, Wang X. Relationship between advanced lung cancer inflammation index and long-term all-cause, cardiovascular, and cancer mortality among type 2 diabetes mellitus patients: NHANES, 1999-2018. Front Endocrinol (Lausanne) 2023; 14:1298345. [PMID: 38111710 PMCID: PMC10726345 DOI: 10.3389/fendo.2023.1298345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) was a major global health threat. As a chronic low-grade inflammatory disease, the prognosis of diabetes was associated with inflammation. The advanced lung cancer inflammation index (ALI) served as a comprehensive index to assess inflammation. This study aimed to estimate the association between ALI and all-cause, cardiovascular disease (CVD), and cancer mortality in T2DM patients. Methods We extracted cohort data from the National Health and Nutrition Examination Survey (NHANES) spanning 1999-2018 for analysis. The weighted Kaplan-Meier analysis and multivariate-adjusted Cox analysis were utilized to evaluate the relationship between ALI and all-cause, CVD, and cancer mortality in T2DM patients. Restricted cubic spline (RCS) analysis was employed to assess their non-linear relationship. Stratified analysis and interaction analysis were conducted to enhance the robustness of the results. Results The study incorporated a total of 3,888 patients. An increase in ALI was associated with a reduced risk of all-cause and CVD mortality in T2DM patients, but not related to cancer mortality. There were J-shaped and L-shaped non-linear relationships between ALI and all-cause, CVD mortality in T2DM patients, respectively. The inflection points were 90.20 and 93.06, respectively. For values below the inflection point, every 10U increase in ALI, both all-cause and CVD mortality risk decreased by 9%. Beyond the inflection point, all-cause mortality rose by 3%, while CVD mortality remained unaffected. Gender-stratified RCS analysis indicated a linear negative relationship between CVD mortality and ALI in female T2DM patients, whereas the trend in males aligned with the overall population. Conclusion Our research initially identified a significant correlation between increased ALI levels with decreased all-cause and CVD mortality in T2DM patients. There were J-shaped and L-shaped non-linear relationships between ALI and all-cause, CVD mortality in T2DM patients, respectively. For female patients, there was a linear negative relation between CVD mortality and ALI, whereas the trend in males aligned with the overall population. These findings suggested that maintaining ALI (for example, control body weight and keep albumin in the normal range) within a certain range in the clinical settings was crucial for improving all-cause and CVD mortality in T2DM patients.
Collapse
Affiliation(s)
- Yaying Chen
- Department of Physical Examination Center, Xiamen Humanity Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Mengqian Guan
- Fuzhou International Travel Health Care Center, Fuzhou, China
| | - Ruiqi Wang
- Department of Gastroenterology, Xiamen Humanity Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Xuewen Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
249
|
Yang CC, Peng CH, Huang LY, Chen FY, Kuo CH, Wu CZ, Hsia TL, Lin CY. Comparison between multiple logistic regression and machine learning methods in prediction of abnormal thallium scans in type 2 diabetes. World J Clin Cases 2023; 11:7951-7964. [DOI: 10.12998/wjcc.v11.i33.7951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The prevalence of type 2 diabetes (T2D) has been increasing dramatically in recent decades, and 47.5% of T2D patients will die of cardiovascular disease. Thallium-201 myocardial perfusion scan (MPS) is a precise and non-invasive method to detect coronary artery disease (CAD). Most previous studies used traditional logistic regression (LGR) to evaluate the risks for abnormal CAD. Rapidly developing machine learning (Mach-L) techniques could potentially outperform LGR in capturing non-linear relationships.
AIM To aims were: (1) Compare the accuracy of Mach-L methods and LGR; and (2) Found the most important factors for abnormal TMPS.
METHODS 556 T2D were enrolled in the study (287 men and 269 women). Demographic and biochemistry data were used as independent variables and the sum of stressed score derived from MPS scan was the dependent variable. Subjects with a MPS score ≥ 9 were defined as abnormal. In addition to traditional LGR, classification and regression tree (CART), random forest, Naïve Bayes, and eXtreme gradient boosting were also applied. Sensitivity, specificity, accuracy and area under the receiver operation curve were used to evaluate the respective accuracy of LGR and Mach-L methods.
RESULTS Except for CART, the other Mach-L methods outperformed LGR, with gender, body mass index, age, low-density lipoprotein cholesterol, glycated hemoglobin and smoking emerging as the most important factors to predict abnormal MPS.
CONCLUSION Four Mach-L methods are found to outperform LGR in predicting abnormal TMPS in Chinese T2D, with the most important risk factors being gender, body mass index, age, low-density lipoprotein cholesterol, glycated hemoglobin and smoking.
Collapse
Affiliation(s)
- Chung-Chi Yang
- Division of Cardiovascular Medicine, Taoyuan Armed Forces General Hospital, Taoyuan City 32551, Taiwan
- Division of Cardiovascular, Tri-service General Hospital, Taipei City 114202, Taiwan
| | - Chung-Hsin Peng
- Department of Urology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242062, Taiwan
| | - Li-Ying Huang
- Department of Internal Medicine, Department of Medical Education, School of Medicine, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 243, Taiwan
| | - Fang Yu Chen
- Department of Endocrinology, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
| | - Chun-Heng Kuo
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 243, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
| | - Chung-Ze Wu
- Division of Endocrinology, Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Te-Lin Hsia
- Department of Internal Medicine, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chung-Yu Lin
- Department of Cardiology, Fu Jen Catholic University Hospital, New Taipei City 24352, Taiwan
- Graduate Institute of Business Administration, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
250
|
Flora GD, Nayak MK, Ghatge M, Chauhan AK. Metabolic targeting of platelets to combat thrombosis: dawn of a new paradigm? Cardiovasc Res 2023; 119:2497-2507. [PMID: 37706546 PMCID: PMC10676458 DOI: 10.1093/cvr/cvad149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
Current antithrombotic therapies used in clinical settings target either the coagulation pathways or platelet activation receptors (P2Y12 or GPIIb/IIIa), as well as the cyclooxygenase (COX) enzyme through aspirin. However, they are associated with bleeding risk and are not suitable for long-term use. Thus, novel strategies which provide broad protection against platelet activation with minimal bleeding risks are required. Regardless of the nature of agonist stimulation, platelet activation is an energy-intensive and ATP-driven process characterized by metabolic switching toward a high rate of aerobic glycolysis, relative to oxidative phosphorylation (OXPHOS). Consequently, there has been considerable interest in recent years in investigating whether targeting metabolic pathways in platelets, especially aerobic glycolysis and OXPHOS, can modulate their activation, thereby preventing thrombosis. This review briefly discusses the choices of metabolic substrates available to platelets that drive their metabolic flexibility. We have comprehensively elucidated the relevance of aerobic glycolysis in facilitating platelet activation and the underlying molecular mechanisms that trigger this switch from OXPHOS. We have provided a detailed account of the antiplatelet effects of targeting vital metabolic checkpoints such as pyruvate dehydrogenase kinases (PDKs) and pyruvate kinase M2 (PKM2) that preferentially drive the pyruvate flux to aerobic glycolysis. Furthermore, we discuss the role of fatty acids and glutamine oxidation in mitochondria and their subsequent role in driving OXPHOS and platelet activation. While the approach of targeting metabolic regulatory mechanisms in platelets to prevent their activation is still in a nascent stage, accumulating evidence highlights its beneficial effects as a potentially novel antithrombotic strategy.
Collapse
Affiliation(s)
- Gagan D Flora
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Manasa K Nayak
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Madankumar Ghatge
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| | - Anil K Chauhan
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|