201
|
Dong W, Zhu W, Wu Q, Li W, Li X. Improvement the thermostability and specific activity of acidic xylanase PjxA from Penicillium janthinellum via rigid flexible sites. Int J Biol Macromol 2024; 279:135399. [PMID: 39245095 DOI: 10.1016/j.ijbiomac.2024.135399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Acidic xylanase PjxA from Penicillium janthinellum MA21601, with good eosinophilic and enzymatic activity, is an excellent candidate for xylan degradation to achieve effective utilization of biomass materials. However, the low thermal stability of PjxA has become a major bottleneck in its application. In this study, the flexible sites of PjxA were identified and rigidified through computational simulations of structure and sequence analysis combined with folding free energy calculations. Finally, a combined mutase PjxA-DS was constructed by rational integration of the two single mutants S82N and D45N. Compared to PjxA, PjxA-DS showed a 115.11-fold longer half-life at 50 °C and a 2.02-fold higher specific enzyme activity. Computer simulation analysis showed that S82N and D45N acted synergistically to improve the thermostability of PjxA. The stabilization of the N-terminus and the active center of PjxA, the increase in surface positive charge and hydrophilicity are the main reasons for the improved thermostability and catalytic activity of PjxA. Rigidification of the flexible site is an effective method for improving the thermostability of enzymes, S82N and D45N can be used as effective targets for the thermostability engineering modification of GH11 acidic xylanase.
Collapse
Affiliation(s)
- Wenqi Dong
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weijia Zhu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
202
|
Verma J, Kumar C, Sharma M, Saxena S. Biotechnological advances in microbial synthesis of gold nanoparticles: Optimizations and applications. 3 Biotech 2024; 14:263. [PMID: 39387004 PMCID: PMC11458872 DOI: 10.1007/s13205-024-04110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the eco-friendly and cost-effective biosynthesis of gold nanoparticles (AuNPs) in viable microorganisms, focusing on microbes-mediated AuNP biosynthesis. This process suits agricultural, environmental, and biomedical applications, offering renewable, eco-friendly, non-toxic, sustainable, and time-efficient methods. Microorganisms are increasingly used in green technology, nanotechnology, and RNAi technology, but several microorganisms have not been fully identified and characterized. Bio-nanotechnology offers eco-friendly and sustainable solutions for nanomedicine, with microbe-mediated nanoparticle biosynthesis producing AuNPs with anti-oxidation activity, stability, and biocompatibility. Ultrasmall AuNPs offer rapid distribution, renal clearance, and enhanced permeability in biomedical applications. The review explores nano-size dependent biosynthesis of AuNPs by bacteria, fungi, and viruses revealing their non-toxic, non-genotoxic, and non-oxidative properties on human cells. AuNPs with varying sizes and shapes, from nitrate reductase enzymes, have shown potential as a promising nano-catalyst. The synthesized AuNPs, with negative charge capping molecules, have demonstrated antibacterial activity against drug-resistant Pseudomonas aeruginosa, and Acinetobacter baumannii strains, and were non-toxic to Vero cell lines, indicating potential antibiotic resistance treatments. A green chemical method for the biosynthesis of AuNPs using reducing chloroauric acid and Rhizopus oryzae protein extract has been described, demonstrating excellent stability and strong catalytic activity. AuNPs are eco-friendly, non-toxic, and time-efficient, making them ideal for biomedical applications due to their antioxidant, antidiabetic, and antibacterial properties. In addition to the biomedical application, the review also highlights the role of microbially synthesized AuNPs in sustainable management of plant diseases, and environmental bioremediation.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Chitranjan Kumar
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| | - Monica Sharma
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| | - Sangeeta Saxena
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Lucknow, Uttar Pradesh 226025 India
| |
Collapse
|
203
|
Abiola T, Olukanni OD. Isolation, characterization and optimization of oleaginous Providencia vermicola as a feedstock for biodiesel production using Response Surface Methodology. Prep Biochem Biotechnol 2024; 54:1226-1242. [PMID: 38727011 DOI: 10.1080/10826068.2024.2344516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Oleaginous organisms accrue more than twenty percent of their biomass as lipids and hence are promising feedstocks for biodiesel production. In this study, lipid accumulating bacteria were isolated from diesel-contaminated soils and screened with Sudan black B stain. The most oleaginous was done using 16s rRNA gene sequencing. Lipid production was initially optimized based on media, nitrogen source, pH and temperature. Response surface methodology (RSM) was then employed for the enhancement of lipid weight and content. Obtained lipid was converted to biodiesel using direct transesterification, and both lipid and biodiesel were characterized using FTIR. A total of thirteen bacteria were isolated and the most prominent lipid producer was identified as Providencia vermicola with lab number BA6. Preliminary optimization studies revealed optimum lipid production when nutrient broth and acetic acid served as carbon source; KNO3 as nitrogen source, pH 7.0 and 30 °C. Optimization using RSM resulted in a 5.1% and 74.1% increase in the biomass and lipid content of BA6 respectively. FTIR analyses confirmed the presence of functional groups characteristic of lipids and biodiesel. P. vermicola is a novel oleaginous organism that represents a promising feedstock for biodiesel production.HIGHLIGHTSThe bacterium designated as BA6 identified as Providencia vermicola has the highest lipid contents of the oleaginous bacteria isolated.It accumulates lipids up to 47.73 % of its biomassThe percentage lipids accumulation increased to about 74 % when RSM was used.Providencia vermicola is being reported as an oleaginous organism for the first time.
Collapse
Affiliation(s)
- Temitope Abiola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Olumide D Olukanni
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
204
|
Han P, Wei S, Wang H, Cai Y. Licochalcone A decreases cancer cell proliferation and enhances ferroptosis in acute myeloid leukemia through suppressing the IGF2BP3/MDM2 cascade. Ann Hematol 2024; 103:4511-4524. [PMID: 39264435 DOI: 10.1007/s00277-024-06003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Licochalcone A (Lico A), a naturally bioactive flavonoid, has shown antitumor activity in several types of cancers. However, few studies have focused on its effect on acute myeloid leukemia (AML). Cell viability and colony formation potential were detected by CCK-8 assay and colony formation assay, respectively. Cell cycle distribution and apoptosis were assessed by flow cytometry. Ferroptosis was assessed by measuring reactive oxygen species (ROS), lipid ROS, malondialdehyde (MDA), and glutathione (GSH). Protein expression levels were determined by immunoblotting and immunohistochemistry (IHC), and mRNA expression was detected by real-time qPCR. The m6A modification of MDM2 mRNA was verified by methylated RNA immunoprecipitation (MeRIP) assay, and the interaction of IGF2BP3 and MDM2 mRNA was analyzed by RIP assay. Actinomycin D was used to evaluate mRNA stability. The efficacy of Lico A in vivo was examined by a murine xenograft model. Lico A suppressed cell proliferation and induced ferroptosis in MOLM-13 and U-937 in vitro, and slowed the growth of xenograft tumors in vivo. IGF2BP3 was highly expressed in human AML specimens and cells, and Lico A suppressed IGF2BP3 expression in AML cells. Lico A exerted the anti-proliferative and pro-ferroptosis effects by downregulating IGF2BP3. Moreover, IGF2BP3 enhanced the stability and expression of MDM2 mRNA through an m6A-dependent manner. Downregulation of IGF2BP3 impeded AML cell proliferation and enhanced ferroptosis via repressing MDM2. Furthermore, Lico A could affect the MDM2/p53 pathway by downregulating IGF2BP3 expression. Lico A exerts the anti-proliferative and pro-ferroptosis activity in AML cells by affecting the IGF2BP3/MDM2/p53 pathway, providing new evidence for Lico A as a promising agent for the treatment of AML.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-mdm2/metabolism
- Proto-Oncogene Proteins c-mdm2/genetics
- Ferroptosis/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Chalcones/pharmacology
- Chalcones/therapeutic use
- Cell Proliferation/drug effects
- Animals
- Mice
- Xenograft Model Antitumor Assays
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Cell Line, Tumor
- Female
- Male
- Signal Transduction/drug effects
- Mice, Nude
Collapse
Affiliation(s)
- Pingping Han
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
| | - Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yun Cai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
205
|
Liu X, Zhang Y, Qi X, Zhao D, Rao H, Zhao X, Li Y, Liu J, Qin Z, Hao J, Liu X. Advances of microbial xylanases in the application of flour industries: A comprehensive review. Int J Biol Macromol 2024:137205. [PMID: 39489265 DOI: 10.1016/j.ijbiomac.2024.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Microbial xylanase has a wide range of applications, and many researchers favoring its utilization as an alternative to improve flour products. Wheat flour is the main raw material of flour products, although the content of arabinoxylan is not high in flour products, but it has a great influence on the quality of flour products, microbial xylanase can act on wheat arabinoxylan, so as to play the role of flour product improvement. This review carries out a description of the research progress on the application of xylanases in flour products in terms of xylanase properties, different families of xylanases and improvement mechanisms of xylanases in flour products. According to the properties of various microbial sources of xylanases, the suitable xylanase can be added to flour products, and the effect of xylanase toward wheat arabinoxylan in flour can be used to improve the quality of flour products. The molecular modification based on the properties of xylanase and the crystal structure of different families of xylanase and their substrate specificity toward wheat arabinoxylan are discussed. The article reviews the information about microbial xylanases in order to achieve better results in flour products and to provide a theoretical basis for their industrial application.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yuxi Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xiaoya Qi
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Dandan Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Huan Rao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xia Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jianxiong Hao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| | - Xueqiang Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
206
|
Costa MG, Alves DMR, da Silva BC, de Lima PSR, Prado RDM. Elucidating the underlying mechanisms of silicon to suppress the effects of nitrogen deficiency in pepper plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109113. [PMID: 39276673 DOI: 10.1016/j.plaphy.2024.109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/21/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In many regions, nitrogen (N) deficiency limits pepper cultivation, presenting significant cultivation challenges. This study investigates the impact of N deficiency and silicon (Si) supplementation on physiological responses and antioxidant modulation in pepper plants, focusing particularly on the homeostasis of carbon (C), nitrogen, and phosphorus (P), and their effects on growth and biomass production. Conducted in a factorial design, the experiment examined pepper plants under conditions of N sufficiency and deficiency, with and without Si supplementation (0.0 mM and 2.0 mM). Results showed that N deficiency sensitizes pepper plants, leading to increased electrolyte leakage (39.59%) and disrupted C, N, and P homeostasis. This disruption manifests as reductions in photosynthetic pigments (-64.53%), photochemical efficiency (-14.92%), and the synthesis of key metabolites such as total free amino acids (-86.97%), sucrose (-53.88%), and soluble sugars (-39.96%), ultimately impairing plant growth. However, Si supplementation was found to alleviate these stresses. It modulated the antioxidant system, enhanced the synthesis of ascorbic acid (+30.23), phenolic compounds (+33.19%), and flavonoids (+7.52%), and reduced cellular electrolyte leakage (-25.02%). Moreover, Si helped establish a new homeostasis of C, N, and P, optimizing photosynthetic and nutritional efficiency by improving the utilization of C (+17.46%) and N (+13.20%). These Si-induced modifications in plant physiology led to increased synthesis of amino acids (+362.20%), soluble sugars (+51.34%), and sucrose (77.42%), thereby supporting enhanced growth of pepper plants. These findings elucidate the multifaceted biological roles of Si in mitigating N deficiency effects, offering valuable insights for more sustainable horticultural practices.
Collapse
Affiliation(s)
- Milton Garcia Costa
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil.
| | - Deyvielen Maria Ramos Alves
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil
| | - Bianca Cavalcante da Silva
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil
| | - Paulo Sergio Rodrigues de Lima
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil
| | - Renato de Mello Prado
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900, Jaboticabal, Brazil
| |
Collapse
|
207
|
Shao D, Abubakar AS, Chen J, Zhao H, Chen P, Chen K, Wang X, Shawai RS, Chen Y, Zhu A, Gao G. Physiological, molecular, and morphological adjustment to waterlogging stress in ramie and selection of waterlogging-tolerant varieties. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109101. [PMID: 39255614 DOI: 10.1016/j.plaphy.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Waterlogging stress is a severe abiotic challenge that impedes plant growth and development. Ramie (Boehmeria nivea L.) is a Chinese traditional characteristic economic crop, valued for its fibers and by-products. To investigate the waterlogging tolerance of ramie and provide the scientific basis for selecting waterlogging-tolerant ramie varieties, this study examined the morphological, physiological, biochemical, and molecular responses of 15 ramie germplasms (varieties) under waterlogging stress. The results revealed varied impacts of waterlogging stress across the 15 ramie varieties, characterized by a decrease in SPAD values, net photosynthesis rates, and relative water content of ramie leaves, along with a significant increase in relative conductivity and the activities of antioxidant enzymes such as SOD, POD, CAT, and APX. Additionally, the levels of soluble sugars, soluble proteins, and free proline exhibited varying degrees of increase. Through Principal Component Analysis (PCA), ZZ_2 and ZSZ_1 were identified as relatively tolerant and susceptible varieties. Transcriptome analysis showed that the differential expressed genes between ZZ_2 and ZSZ_1 were significantly enriched in metabolic pathways, ascorbate and aldarate metabolism, and inositol phosphate metabolism, under waterlogging stress. In addition, the expression of hypoxia-responsive genes was higher in ZZ_2 than in ZSZ_1 under waterlogging stress. These differences might account for the varied waterlogging responses between the two varieties. Therefore, this study explored the morpho-physiological responses of ramie under waterlogging stress and identified the molecular mechanisms involved, providing valuable insights for improving ramie varieties and breeding new ones.
Collapse
Affiliation(s)
- Deyi Shao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Department of Agronomy, Bayero University Kano, PMB 3011, Kano, Nigeria
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Rabiu Sani Shawai
- Department of Crop Science, Faculty of Agriculture and Agricultural Technology, Kano University of Science and Technology Wudil, Kano, 713281, Nigeria
| | - Yu Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Yuelushan Laboratory, Changsha, 410082, China.
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China; Yuelushan Laboratory, Changsha, 410082, China.
| |
Collapse
|
208
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
209
|
Zheng X, Yang J, Wang Q, Yao P, Xiao J, Mao S, Zhang Z, Zeng Y, Zhu J, Hou J. Characterisation and evolution of the PRC2 complex and its functional analysis under various stress conditions in rice. Int J Biol Macromol 2024; 280:136124. [PMID: 39349087 DOI: 10.1016/j.ijbiomac.2024.136124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The polycomb repressive complex 2 (PRC2) is a chromatin-associated methyltransferase responsible for catalysing the trimethylation of H3K27, an inhibitory chromatin marker associated with gene silencing. This enzymatic activity is crucial for normal organismal development and the maintenance of gene expression patterns that preserve cellular identity, subsequently influencing plant growth and abiotic stress responses. Therefore, in this study, we investigated the evolutionary characteristics and functional roles of PRC2 in plants. We identified 209 PRC2 genes, including E(z), Su(z), Esc, and Nurf55 families, using 18 representative plant species and revealed that recent gene replication events have led to an expansion in the Nurf55 family, resulting in a greater number of members compared to the E(z), Su(z), and Esc families. Furthermore, protein structure and motif composition analyses highlighted the potential functional site regions within PRC2 members. In addition, we selected rice, a representative monocotyledonous plant, as the model species for food crops. Our findings revealed that SDG711, SDG718, and MSI1-5 genes were induced by abscisic acid (ABA) and/or methyl jasmonate (MeJA) hormones, suggesting that these genes play an important role in abiotic stress and disease resistance. Further experiments involving rice blast fungus treatments confirmed that the expression of SDG711 and MSI1-5 was induced by Magnaporthe oryzae strain GUY11. Multiple protein interaction assays revealed that the M. oryzae effector AvrPiz-t interacts with PRC2 core member SDG711 to increase H3K27me3 levels. Notably, inhibition of PRC2 or mutation of SDG711 enhanced rice resistance to M. oryzae. Collectively, these results provide new insights into PRC2 evolution in plants and its significant functions in rice.
Collapse
Affiliation(s)
- Xueke Zheng
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China; State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jieru Yang
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Qing Wang
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shengxin Mao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zihan Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Zhu
- College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
| | - Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
210
|
Sivan P, Heinonen E, Escudero L, Gandla ML, Jiménez-Quero A, Jönsson LJ, Mellerowicz EJ, Vilaplana F. Unraveling the unique structural motifs of glucuronoxylan from hybrid aspen wood. Carbohydr Polym 2024; 343:122434. [PMID: 39174079 DOI: 10.1016/j.carbpol.2024.122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024]
Abstract
Xylan is a fundamental structural polysaccharide in plant secondary cell walls and a valuable resource for biorefinery applications. Deciphering the molecular motifs of xylans that mediate their interaction with cellulose and lignin is fundamental to understand the structural integrity of plant cell walls and to design lignocellulosic materials. In the present study, we investigated the pattern of acetylation and glucuronidation substitution in hardwood glucuronoxylan (GX) extracted from aspen wood using subcritical water and alkaline conditions. Enzymatic digestions of GX with β-xylanases from glycosyl hydrolase (GH) families GH10, GH11 and GH30 generated xylo-oligosaccharides with controlled structures amenable for mass spectrometric glycan sequencing. We identified the occurrence of intramolecular motifs in aspen GX with block repeats of even glucuronidation (every 2 xylose units) and consecutive glucuronidation, which are unique features for hardwood xylans. The acetylation pattern of aspen GX shows major domains with evenly-spaced decorations, together with minor stretches of highly acetylated domains. These heterogenous patterns of GX can be correlated with its extractability and with its potential interaction with lignin and cellulose. Our study provides new insights into the molecular structure of xylan in hardwood species, which has fundamental implications for overcoming lignocellulose recalcitrance during biochemical conversion.
Collapse
Affiliation(s)
- Pramod Sivan
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Emilia Heinonen
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden; Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Louis Escudero
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | | | - Amparo Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Department of Forest Genetics and Plant Physiology, 901 83 Umeå, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91 Stockholm, Sweden; Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
| |
Collapse
|
211
|
Sik Choi Y, Won Jeon H, Taek Hwang E. In-situ stabilized lipase in calcium carbonate microparticles for activation in solvent-free transesterification for biodiesel production. BIORESOURCE TECHNOLOGY 2024; 412:131394. [PMID: 39218365 DOI: 10.1016/j.biortech.2024.131394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Biodiesel serves as a crucial biofuel alternative to petroleum-based diesel fuels, achieved through enzymatic transesterification of oil substrates. This study aims to investigate stabilized lipase (LP) within calcium carbonate (CaCO3) microparticles as a catalyst for solvent-free transesterification in biodiesel synthesis. The specific hydrolysis activity of the in-situ immobilized LP was 66% of that of free LP. However, the specific transesterification activity of immobilized LP in the solvent-free phase for biodiesel production was 2.29 times higher than that of free LP. These results suggest that the interfacial activation of LP molecules is facilitated by the inorganic CaCO3 environment. The immobilized LP demonstrated higher biodiesel production levels with superior stability compared to free LP, particularly regarding methanol molar ratio and temperature. To the best of our knowledge, there are no previous reports on the in-situ immobilization of LP in a CaCO3 carrier without any crosslinker as an interfacial-activated biocatalyst for biodiesel production.
Collapse
Affiliation(s)
- Young Sik Choi
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Hyo Won Jeon
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
212
|
Zhu P, Zhang C, Chen J, Zeng X. Multilevel systemic engineering of Bacillus licheniformis for efficient production of acetoin from lignocellulosic hydrolysates. Int J Biol Macromol 2024; 279:135142. [PMID: 39208901 DOI: 10.1016/j.ijbiomac.2024.135142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Bio-refining lignocellulosic resource offers a renewable and sustainable approach for producing biofuels and biochemicals. However, the conversion efficiency of lignocellulosic resource is still challenging due to the intrinsic inefficiency in co-utilization of xylose and glucose. In this study, the industrial bacterium Bacillus licheniformis was engineered for biorefining lignocellulosic resource to produce acetoin. First, adaptive evolution was conducted to improve acetoin tolerance, leading to a 19.6 % increase in acetoin production. Then, ARTP mutagenesis and 60Co-γ irradiation was carried out to enhance the production of acetoin, obtaining 73.0 g/L acetoin from glucose. Further, xylose uptake and xylose utilization pathway were rewired to facilitate the co-utilization of xylose and glucose, enabling the production of 60.6 g/L acetoin from glucose and xylose mixtures. Finally, this efficient cell factory was utilized for acetoin production from lignocellulosic hydrolysates with the highest titer of 68.3 g/L in fed-batch fermentation. This strategy described here holds great applied potential in the biorefinery of lignocellulose for the efficient synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Pan Zhu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Chen Zhang
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jiaying Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xin Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
213
|
Klepacz-Smolka A, Shah MR, Jiang Y, Zhong Y, Chen P, Pietrzyk D, Szelag R, Ledakowicz S, Daroch M. Microalgae are not an umbrella solution for power industry waste abatement but could play a role in their valorization. Crit Rev Biotechnol 2024; 44:1296-1324. [PMID: 38105487 DOI: 10.1080/07388551.2023.2284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 12/19/2023]
Abstract
Microalgae have long been regarded as a promising solution for biological carbon abatement from the power industry, offering renewable biomass without competing for land or water resources used for food crops. In this study, we extensively examined the application of photosynthetic microorganisms for closing carbon, nitrogen, and micronutrient loops in the power industry. Subsequently, we explored the bottom-up integration of algal biorefineries into power industry waste streams for increased economic benefits and reduced environmental impacts. Analysis of the available data indicated that microalgae integration with the power industry is primarily performed using flue-gas-assisted cultivation. This approach allows for carbon sequestration typically below one gram per liter per day, too low to significantly impact carbon abatement at achievable scales of microalgae cultivation. Alternative approaches are also being explored. For example, soluble bicarbonate platforms allow for higher biomass productivity and temporary carbon storage. Meanwhile, the use of ashes and waste heat and thermophilic strains can result in lower cultivation costs and better control of cultivation conditions. These approaches offer further incremental improvement to microalgae-based carbon abatement systems in the power industry but are unlikely to be an umbrella solution for carbon reduction. Consequently, in the near term, microalgae-based carbon valorization systems are likely to be limited to niche applications involving the synthesis of high-value products. For microalgae to truly transform carbon abatement processes radical improvements in both biology and engineering approaches are urgently needed.
Collapse
Affiliation(s)
- Anna Klepacz-Smolka
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Mahfuzur R Shah
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuqing Zhong
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Pengyu Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Damian Pietrzyk
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Rafal Szelag
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Stanislaw Ledakowicz
- Faculty of Process Engineering and Environmental Protection, Technical University of Lodz, Lodz, Poland
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
214
|
Yu F, Wang Z, Zhang Z, Zhou J, Li J, Chen J, Du G, Zhao X. Biosynthesis, acquisition, regulation, and upcycling of heme: recent advances. Crit Rev Biotechnol 2024; 44:1422-1438. [PMID: 38228501 DOI: 10.1080/07388551.2023.2291339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Heme, an iron-containing tetrapyrrole in hemoproteins, including: hemoglobin, myoglobin, catalase, cytochrome c, and cytochrome P450, plays critical physiological roles in different organisms. Heme-derived chemicals, such as biliverdin, bilirubin, and phycocyanobilin, are known for their antioxidant and anti-inflammatory properties and have shown great potential in fighting viruses and diseases. Therefore, more and more attention has been paid to the biosynthesis of hemoproteins and heme derivatives, which depends on the adequate heme supply in various microbial cell factories. The enhancement of endogenous biosynthesis and exogenous uptake can improve the intracellular heme supply, but the excess free heme is toxic to the cells. Therefore, based on the heme-responsive regulators, several sensitive biosensors were developed to fine-tune the intracellular levels of heme. In this review, recent advances in the: biosynthesis, acquisition, regulation, and upcycling of heme were summarized to provide a solid foundation for the efficient production and application of high-value-added hemoproteins and heme derivatives.
Collapse
Affiliation(s)
- Fei Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Ziwei Wang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Zihan Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xinrui Zhao
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
215
|
Gonzalez-Rivera JC, Galvan A, Ryder T, Milman M, Agarwal K, Kandari L, Khetan A. A high-titer scalable Chinese hamster ovary transient expression platform for production of biotherapeutics. Biotechnol Bioeng 2024; 121:3454-3470. [PMID: 39101569 DOI: 10.1002/bit.28817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Transient gene expression (TGE) in Chinese hamster ovary (CHO) cells offers a route to accelerate biologics development by delivering material weeks to months earlier than what is possible with conventional cell line development. However, low productivity, inconsistent product quality profiles, and scalability challenges have prevented its broader adoption. In this study, we develop a scalable CHO-based TGE system achieving 1.9 g/L of monoclonal antibody in an unmodified host. We integrated continuous flow-electroporation and alternate tangential flow (ATF) perfusion to enable an end-to-end closed system from N-1 perfusion to fed-batch 50-L bioreactor production. Optimization of both the ATF operation for three-in-one application-cell growth, buffer exchange, and cell mass concentration-and the flow-electroporation process, led to a platform for producing biotherapeutics using transiently transfected cells. We demonstrate scalability up to 50-L bioreactor, maintaining a titer over 1 g/L. We also show comparable quality between both transiently and stably produced material, and consistency across batches. The results confirm that purity, charge variants and N-glycan profiles are similar. Our study demonstrates the potential of CHO-based TGE platforms to accelerate biologics process development timelines and contributes evidence supporting its feasibility for manufacturing early clinical material, aiming to strengthen endorsement for TGE's wider implementation.
Collapse
Affiliation(s)
| | - Alberto Galvan
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Todd Ryder
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Monica Milman
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Kitty Agarwal
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Lakshmi Kandari
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| | - Anurag Khetan
- Biologics Development, Bristol Myers Squibb, New Brunswick, New Jersey, USA
| |
Collapse
|
216
|
Zhong H, Jiang C, Zou J, Zhu G, Cheng M, Huang Y. Self-assembly of CuAuTA nanozymes for intelligent detection of ginkgolic acids. Anal Bioanal Chem 2024; 416:6091-6102. [PMID: 38416157 DOI: 10.1007/s00216-024-05221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Toxic ginkgolic acids (GAs) are a challenge for Ginkgo biloba-related food. Although a detection method for GAs is available, bulky instruments limit the field testing of GAs. Herein, by assembling gold nanoclusters with copper tannic acid (CuTA), CuAuTA nanocomposites were designed as peroxidase mimics for the colorimetric determination of GAs. Compared with single CuTA, the obtained CuAuTA nanocomposites possessed enhanced peroxidase-like properties. Based on the inhibitory effect of GAs for the catalytic activity of CuAuTA nanozymes, CuAuTA could be utilized for the colorimetric sensing of GAs with a low limit of quantitation of 0.17 μg mL-1. Using a smartphone and the ImageJ software in conjunction, a nanozyme-based intelligent detection platform was developed with a detection limit of 0.86 μg mL-1. This sensing system exhibited good selectivity against other potential interferents. Experimental data demonstrated that GAs might bind to the surface of CuAuTA, blocking the catalytically active sites and resulting in decreased catalytic activity. Our CuAuTA nanozyme-based system could also be applied to detect real ginkgo nut and ginkgo powder samples with recoveries of 93.12-111.6% and relative standard deviations less than 0.3%. Our work may offer a feasible strategy for the determination of GAs and expand the application of nanozymes in food safety detection.
Collapse
Affiliation(s)
- Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengyue Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
217
|
Hou M, Leng C, Zhu J, Yang M, Yin Y, Xing Y, Chen J. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. ENVIRONMENTAL MICROBIOME 2024; 19:82. [PMID: 39487507 PMCID: PMC11529171 DOI: 10.1186/s40793-024-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
With global climate change, ecosystems are affected, some of which are more vulnerable than others, such as alpine ecosystems. Microbes play an important role in environmental change in global ecosystems. Plants and microbes are tightly associated, and symbiotic or commensal microorganisms are crucial for plants to respond to stress, particularly for alpine plants. The current study of alpine and subalpine plant microbiome only stays at the community structure scale, but its ecological function and mechanism to help plants to adapt to the harsh environments have not received enough attention. Therefore, it is essential to systematically understand the structure, functions and mechanisms of the microbial community of alpine and subalpine plants, which will be helpful for the conservation of alpine and subalpine plants using synthetic microbial communities in the future. This review mainly summarizes the research progress of the alpine plant microbiome and its mediating mechanism of plant cold adaptation from the following three perspectives: (1) Microbiome community structure and their unique taxa of alpine and subalpine plants; (2) The role of alpine and subalpine plant microbiome in plant adaptation to cold stress; (3) Mechanisms by which the microbiome of alpine and subalpine plants promotes plant adaptation to low-temperature environments. Finally, we also discussed the future application of high-throughput technologies in the development of microbial communities for alpine and subalpine plants. The existing knowledge could improve our understanding of the important role of microbes in plant adaptation to harsh environments. In addition, perspective further studies on microbes' function confirmation and microbial manipulations in microbiome engineering were also discussed.
Collapse
Affiliation(s)
- Mengyan Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chunyan Leng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi, 830002, People's Republic of China
| | - Mingshu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongmei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
218
|
Sun D, Qi H, Dou G, Mao S, Lu F, Tian K, Qin HM. Ancestral sequence reconstruction of a robust β-1,4-xylanase and efficient expression in Bacillus subtilis. Int J Biol Macromol 2024:137188. [PMID: 39489259 DOI: 10.1016/j.ijbiomac.2024.137188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Xylanases are a class of glycoside hydrolases commonly used in the food, papermaking, and textile industries. However, most xylanases are rapidly inactivated under harsh industrial conditions. Here, a unique and robust GH11 xylanase, AncXyn18, was designed using an ancestral sequence reconstruction strategy, sequence analysis, structure prediction, and experimental verification. It displayed desirable robustness with high alkali resistance and thermostability, retaining >50 % of the initial activity after incubation at pH 10.0 or 70 °C for 10 h. Furthermore, the engineered strain Bs-AncXyn18-Du12 based on the dual promoter PsigW-P43 increased the enzyme activity of AncXyn18 7.5-fold, reaching 58.2 U/mL. This work offers a theoretical basis for the improvement of xylanases, which will benefit the enzymatic bioconversion of xylan-containing agricultural waste into high-value oligosaccharide products and promote green industrial development.
Collapse
Affiliation(s)
- Dengyue Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Hongbin Qi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Guangpeng Dou
- Shandong Bailong Chuangyuan Bio-tech Co., Ltd, Dezhou 251200, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Kangming Tian
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China.
| |
Collapse
|
219
|
Zhong L, Wang Q, Kou Z, Gan L, Yang Z, Pan J, Huang L, Chen Y. The combination of FLCWK with 5-FU inhibits colon cancer and multidrug resistance by activating PXR to suppress the IL-6/STAT3 pathway. J Cell Mol Med 2024; 28:e70185. [PMID: 39495702 PMCID: PMC11534069 DOI: 10.1111/jcmm.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
5-fluorouracil (5-FU) is a preferred chemotherapeutic agent for the treatment of colon cancer. Nonetheless, its clinical effectiveness is frequently hampered by suboptimal therapeutic outcomes and the emergence of drug resistance. Therefore, there exists a pressing demand for novel therapeutic agents to circumvent chemoresistance. The pregnane X receptor (PXR) exerts a pivotal regulatory influence on the proliferation, invasion, and chemoresistance mechanisms in colon cancer. Activation of PXR drives up the transcription of the multidrug resistance gene (MDR1), thus prompting the expression of P-glycoprotein (P-gp) responsible for conferring tumour resistance. This study scrutinized the potential of Fengliao Changweikang (FLCWK) in augmenting the efficacy of 5-FU in the management of colon cancer. To this end, we engineered colon cancer cells with varied levels of PXR expression via lentiviral transfection, subsequently validating the findings in nude mice. By means of MTT assays, flow cytometry apoptosis analysis, Western blotting and immunofluorescence, we probed into the prospective impacts of FLCWK and 5-FU on cellular viability and resistance. Our results revealed that while upregulation of PXR amplified the therapeutic benefits in colon cancer treatment, it concurrently heightened resistance levels. FLCWK demonstrated a capacity to reduce P-gp expression, with the combined administration of FLCWK and 5-FU effectively reversing resistance mechanisms. Furthermore, activation of PXR was found to impede the IL-6/STAT3 signalling pathway. In an effort to mimic the development of colon cancer, we established an azomethane oxide (AOM)/ dextran sodium sulfate (DSS) mouse model, showing that FLCWK bolstered the inhibitory effects of 5-FU, impeding the progression of colon cancer. In summation, our findings point towards the potential of FLCWK in the treatment of colon cancer, particularly in strengthening the therapeutic efficacy of 5-FU in the prevention and control of the disease.
Collapse
Affiliation(s)
- Lifan Zhong
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Qianru Wang
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Zhixiong Kou
- Department of Key Specialist OfficeSanya Hospital of Traditional Chinese MedicineSanyaChina
| | - Lianfang Gan
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Zhaoxin Yang
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Junhua Pan
- School of Hainan Provincial Drug Safety Evaluation Research CenterHainan Medical UniversityHaikouChina
| | - Ling Huang
- Center for Pharmacovigilance of Hainan ProvinceHainan Medical Products AdministrationHaikouChina
| | - Yunqiang Chen
- Department of Rehabilitation therapeuticsThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| |
Collapse
|
220
|
Ge Q, Zhang Y, Wu J, Wei B, Li S, Nan H, Fang Y, Min Z. Exogenous strigolactone alleviates post-waterlogging stress in grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109124. [PMID: 39276672 DOI: 10.1016/j.plaphy.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
With global climate change, the frequent occurrence of intense rainfall and aggravation of waterlogging disasters have severely threatened the plant growth and fruit quality of grapevines, which are commercially important fruit crops worldwide. There is accordingly an imperative to clarify the responses of grapevine to waterlogging and to propose appropriate remedial measures. Strigolactone (SL) is a phytohormone associated with plant abiotic stress tolerance, while, its function in plant responses to waterlogging stress remain undetermined. In this study, systematic analyses of the morphology, physiology, and transcriptome changes in grapevine leaves and roots under post-waterlogging and GR24 (a synthetic analog of SL) treatments were performed. Morphological and physiological changes in grapevines in response to post-waterlogging stress, including leaf wilting and yellowing, leaf senescence, photosynthesis inhibition, and increased anti-oxidative systems, could be alleviated by the application of GR24. Moreover, transcriptome analysis revealed that the primary gene functions induced by post-waterlogging stress changed over time; however, they were consistently associated with carbohydrate metabolism. The GR24-induced leaf genes were closely associated with carbohydrate metabolism, photosynthesis, antioxidant systems, and hormone signal transduction, which were considered vital aspects that were influenced by GR24 in grapevine to induce post-waterlogging tolerance. Concerning the roots, an enhancement of microtubules and cytoskeleton for cell construction in GR24 application was proposed to facilitate root system recovery after waterlogging. With this study, we comprehend the knowledge regarding the responses of grapevines to post-waterlogging and the ameliorative effect of GR24 with the insight to the transcriptome changes during these processes.
Collapse
Affiliation(s)
- Qing Ge
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Yang Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, 564500, China
| | - Jinren Wu
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Bingxin Wei
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Sijia Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Nan
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China.
| | - Zhuo Min
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, 564500, China.
| |
Collapse
|
221
|
Sun M, Li Y, Chen Y, Chen DY, Wang H, Ren J, Guo M, Dong S, Li X, Yang G, Gao L, Chu X, Wang JG, Yuan X. Combined transcriptome and physiological analysis reveals exogenous sucrose enhances photosynthesis and source capacity in foxtail millet. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109189. [PMID: 39406001 DOI: 10.1016/j.plaphy.2024.109189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv.) is an environmentally friendly crop that meets the current requirements of international food security and is widely accepted as a photosynthesis research model. However, whether exogenous sucrose treatment has a positive effect on foxtail millet growth remains unknown. Here, we employed physiological and molecular approaches to identify photosynthesis and source capacity associated with exogenous sucrose during the growth of Jingu 21 seedlings. RNA-seq analysis showed that some differentially expressed genes (DEGs) related to photosynthesis and carotenoid biosynthesis were induced by exogenous sucrose and that most of these genes were up-regulated. An increase in gas exchange parameters, chlorophyll content, and chlorophyll fluorescence of Jingu 21 was noted after exogenous sucrose addition. Furthermore, exogenous sucrose up-regulated genes encoding sucrose and hexose transporters and enhanced starch and sucrose metabolism. More DEGs were up-regulated by sucrose, the nonstructural carbohydrate (NSC) content in the leaves increased and energy metabolism and sucrose loading subsequently improved, ultimately enhancing photosynthesis under normal and dark conditions. Further analysis revealed that WRKYs, ERFs, HY5, RAP2, and ABI5 could be key transcription factors involved in growth regulation. These results indicate that exogenous sucrose affects the normal photosynthetic performance of foxtail millet by increasing NSC transport and loading. They improve our understanding of the molecular mechanisms of the effects of exogenous sucrose on photosynthesis in foxtail millet, providing an effective measure to enhance source-sink relationships and improve yield.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yongchao Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yunhao Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Dan-Ying Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Haiyu Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianhong Ren
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Meijun Guo
- College of Biology Science and Technology, Jinzhong University, Jinzhong, 030600, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China; Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
222
|
Thamarai P, Deivayanai VC, Swaminaathan P, Karishma S, A S, Vickram AS, Yaashikaa PR. Experimental investigation of Cd (II) ion adsorption on surface-modified mixed seaweed Biosorbent: A study on analytical interpretation and thermodynamics. ENVIRONMENTAL RESEARCH 2024; 260:119670. [PMID: 39048063 DOI: 10.1016/j.envres.2024.119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Despite advancements in wastewater treatment technologies, heavy metal contamination, especially cadmium (Cd), severely threatens human health and ecosystems. The purpose of this work is to compare the removal of Cd (II) ions from aqueous solutions by chemically modified mixed seaweed biosorbent (CMSB) and physically modified mixed seaweed biosorbent (PMSB). BET, SEM, EDAX, FTIR, and XRD techniques characterized the mixed seaweed biosorbents before and after adsorption. They are well-known for their sustainability, affordability, and biodegradability. The BET study revealed that CMSB had a surface area of 19.682 m2/g, while PMSB had a lower surface area of 14.803 m2/g. The optimum adsorption conditions were a temperature of 303 K, pH of 6.0, and biosorbent dosages of 1 g/L for CMSB and 2.5 g/L for PMSB. For CMSB and PMSB, the most efficient contact times were 40 and 80 min, respectively. The Langmuir model was demonstrated to be the best fit for the experimental data when compared to other isotherm models, with a coefficient of determination, or R2, of 0.9713 and a maximum monolayer capacity of 151.2 mg/g and 181.6 mg/g for physical and chemical activated mixed seaweed biomass. There was a significant relationship between the R2 values of chemically modified and physically modified biomass. The findings demonstrate that pseudo-second-order kinetics more accurately represent the adsorption process than pseudo-first-order and Elovich models. Thermodynamic experiments validated the endothermic, spontaneous and favourable characteristics of the removal process. According to the results of the current study, PMSB and CMSB may be used as effective adsorbents to remove Cd (II) from aqueous solutions.
Collapse
Affiliation(s)
- P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Pavithra Swaminaathan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
223
|
Rocchetti G, Becchi PP, Vezzulli F, Rebecchi A, Lambri M, Lucini L. Rennets differing in chymosin-to-pepsin ratio shape the metabolomic and sensory profile of Grana Padano PDO cheese during ripening. Food Res Int 2024; 195:114958. [PMID: 39277232 DOI: 10.1016/j.foodres.2024.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Utilizing different chymosin and pepsin ratios in cheesemaking may represent a potential strategy to shape the sensory profile of hard cheeses. This study investigated the impact of rennet with varying chymosin and pepsin ratios on the chemical profile and sensory attributes of Grana Padano PDO cheese at different ripening times (10 to 20 months). The research involved the analysis of hard cheese manufactured with distinct calf chymosin percentages (99 %, 95 %, and 83 %), exploiting sensory analyses and untargeted metabolomics to identify marker compounds correlating with specific sensory traits. The results demonstrated that varying the rennet composition significantly affected sensory profile; in particular, the rennet made by 83 % chymosin and 17 % pepsin generated a more complex sensory profile starting from 12 months. AMOPLS and ASCA analysis on untargeted metabolomics signatures revealed that ripening time was the only significant factor when compared with rennet type and the interaction ripening x rennet. Finally, at more advanced ripening times, 3-methylbutanoic acid and homoethone were significantly up-accumulated in cheese samples manufactured with higher pepsin percentages, likely explaining sensory outcomes. This study provides valuable insights into using rennet to tailor the sensory qualities of hard cheeses, underscoring the importance of enzyme selection in cheese manufacturing to drive innovation in the dairy industry.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Pier Paolo Becchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Fosca Vezzulli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Milena Lambri
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
224
|
Destro F, Wu W, Srinivasan P, Joseph J, Bal V, Neufeld C, Wolfrum JM, Manalis SR, Sinskey AJ, Springs SL, Barone PW, Braatz RD. The state of technological advancement to address challenges in the manufacture of rAAV gene therapies. Biotechnol Adv 2024; 76:108433. [PMID: 39168354 DOI: 10.1016/j.biotechadv.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Current processes for the production of recombinant adeno-associated virus (rAAV) are inadequate to meet the surging demand for rAAV-based gene therapies. This article reviews recent advances that hold the potential to address current limitations in rAAV manufacturing. A multidisciplinary perspective on technological progress in rAAV production is presented, underscoring the necessity to move beyond incremental refinements and adopt a holistic strategy to address existing challenges. Since several recent reviews have thoroughly covered advancements in upstream technology, this article provides only a concise overview of these developments before moving to pivotal areas of rAAV manufacturing not well covered in other reviews, including analytical technologies for rapid and high-throughput measurement of rAAV quality attributes, mathematical modeling for platform and process optimization, and downstream approaches to maximize efficiency and rAAV yield. Novel technologies that have the potential to address the current gaps in rAAV manufacturing are highlighted. Implementation challenges and future research directions are critically discussed.
Collapse
Affiliation(s)
- Francesco Destro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivekananda Bal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
225
|
Hu M, Lv X, Wang Y, Ma L, Zhang Y, Dai H. Recent advance on lignin-containing nanocelluloses: The key role of lignin. Carbohydr Polym 2024; 343:122460. [PMID: 39174133 DOI: 10.1016/j.carbpol.2024.122460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Abstract
Nanocelluloses (NCs) isolated from lignocellulosic resources usually require harsh chemical pretreatments to remove lignin, which face constraints such as high energy consumption and inefficient resource utilization. An alternative strategy involving the partial retention of lignin can be adopted to endow NCs with better versatility and functionality. The resulting lignin-containing nanocelluloses (LNCs) generally possess better mechanical property, thermal stability, barrier property, antioxidant activity, and surface hydrophobicity than lignin-free NCs, which have attracted extensive interest as a promising green nanomaterial for numerous applications. This review provides a comprehensive overview of the recent advances in the preparation, properties, and food application of LNCs. The effect of residual lignin on the preparation and properties of LNCs is discussed. Furthermore, the key roles of lignin in the properties of LNCs, including particle size, crystalline structure, dispersibility, thermal, mechanical, antibacterial, rheological and adhesion properties, are summarized comprehensively. Furthermore, capitalizing on their dietary fiber and nanostructure properties, the food applications of LNCs in the forms of films, gels and emulsions are also discussed. Finally, the challenges and opportunities regarding the development of LNCs are provided.
Collapse
Affiliation(s)
- Mengtao Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
226
|
Si H, Xie F, Yang R, Gu W, Wu S, Zhang J, Zhang Y, Qiao Y. Recent developments in enzymatic preparation, physicochemical properties, bioactivity, and application of resistant starch type III from staple food grains. Int J Biol Macromol 2024; 279:135521. [PMID: 39260638 DOI: 10.1016/j.ijbiomac.2024.135521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Resistant starch (RS) was classified into five types and referred to the starch that cannot be digested and absorbed by the small intestine of healthy human beings. Among them, RS3 has received a lot of attention from researchers because of its good functional properties and greater application prospects. Meanwhile, the enzymatic method is widely used in the preparation of RS3 because of its high efficiency and environmental protection. α-Amylase and pullulanase as the main enzymes can effectively improve the yield of RS3. The physical properties of RS3 have an excellent potential for application in improving food crispness, texture and producing low glycemic index (GI) foods. It is more valuable because it has biological activities such as inducing apoptosis in tumor cells, lowering intestinal pH, and regulating blood glucose, etc. This paper summarized the current research progress of RS3 from different staple food grains, including current applications of enzymes commonly used in the preparation of RS3, physical properties and biological activities of RS3, and the application of RS3 in different areas to provide a theoretical basis for future research on RS3 as well as further development and applications based on the market requirement.
Collapse
Affiliation(s)
- Haoyu Si
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Fan Xie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruifang Yang
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Wei Gu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Songheng Wu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jing Zhang
- Shanghai Jingliang Industry (Group) Co., Ltd., Shanghai 201210, China
| | - Yi Zhang
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Yongjin Qiao
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; Shanghai Shuneng Irradiation Technology Co., Ltd., Shanghai 201401, China.
| |
Collapse
|
227
|
Yuan P, Chen Z, Xu M, Cai W, Liu Z, Sun D. Microbial cell factories using Paenibacillus: status and perspectives. Crit Rev Biotechnol 2024; 44:1386-1402. [PMID: 38105503 DOI: 10.1080/07388551.2023.2289342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 12/19/2023]
Abstract
Considered a "Generally Recognized As Safe" (GRAS) bacterium, the plant growth-promoting rhizobacterium Paenibacillus has been widely applied in: agriculture, medicine, industry, and environmental remediation. Paenibacillus species not only accelerate plant growth and degrade toxic substances in wastewater and soil but also produce industrially-relevant enzymes and antimicrobial peptides. Due to a lack of genetic manipulation tools and methods, exploitation of the bioresources of naturally isolated Paenibacillus species has long been limited. Genetic manipulation tools and methods continue to improve in Paenibacillus, such as shuttle plasmids, promoters, and genetic tools of CRISPR. Furthermore, genetic transformation systems develop gradually, including: penicillin-mediated transformation, electroporation, and magnesium amino acid-mediated transformation. As genetic manipulation methods of homologous recombination and CRISPR-mediated editing system have developed gradually, Paenibacillus has come to be regarded as a promising microbial chassis for biomanufacturing, expanding its application scope, such as: industrial enzymes, bioremediation and bioadsorption, surfactants, and antibacterial agents. In this review, we describe the applications of Paenibacillus bioproducts, and then discuss recent advances and future challenges in the development of genetic manipulation systems in this genus. This work highlights the potential of Paenibacillus as a new microbial chassis for mining bioresources.
Collapse
Affiliation(s)
- Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mengtao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenfeng Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
228
|
Tang S, Zhao J, Liu C, Huang D, Tian J, Yang Y. Immobilization of Coprinus comatus with magnetic alginate hydrogel microsphere for improving the antioxidant activity of fermentation products. Prep Biochem Biotechnol 2024; 54:1253-1262. [PMID: 38648492 DOI: 10.1080/10826068.2024.2345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Coprinus comatus is an edible mushroom and its fermented product possesses antioxidant activity. In this study, to further enhance the antioxidant activity and improve the reusability of the strain, calcium alginate hydrogel was used as the carrier for embedding and immobilizing Coprinus comatus. The effects of CaCl2 concentration, sodium alginate concentration, microsphere diameter, and the amount of magnetic particle on the antioxidant activity of fermented products were investigated. The results showed that the magnetic immobilized microsphere prepared by 2.50% CaCl2, 2.00% sodium alginate and 0.50% Fe3O4 had the best fermentation antioxidant activity (EC50 was 0.43 ± 0.01 mg/mL) when the diameter was 5 mm, which increased by 24.56% compared to the initial activity. Besides, the microsphere showed strong reusability, the antioxidant activity was still better than the free strain after being used five times. This study not only enhanced the antioxidant activity of Coprinus comatus fermented product through immobilization, but also provided an effective method for microbial fermentation.
Collapse
Affiliation(s)
- Shanshan Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Jia Zhao
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Chang Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Dezhi Huang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
229
|
Boruta T, Foryś M, Pawlikowska W, Englart G, Bizukojć M. Initial pH determines the morphological characteristics and secondary metabolite production in Aspergillus terreus and Streptomyces rimosus cocultures. Arch Microbiol 2024; 206:452. [PMID: 39485516 PMCID: PMC11530516 DOI: 10.1007/s00203-024-04186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/10/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024]
Abstract
The influence of the initial pH on the morphology and secondary metabolite production in cocultures and axenic cultures of Aspergillus terreus and Streptomyces rimosus was investigated. The detected secondary metabolites (6 of bacterial and 4 of fungal origin) were not found in the cultures initiated at pH values less than or equal to 4.0. The highest mean levels of oxytetracycline were recorded in S. rimosus axenic culture at pH 5.0. Initiating the axenic culture at pH 5.9 led to visibly lower product levels, yet the presence of A. terreus reduced the negative effect of non-optimal pH and led to higher oxytetracycline titer than in the corresponding S. rimosus axenic culture. The cocultivation initiated at pH 5.0 or 5.9 triggered the formation of oxidized rimocidin. The products of A. terreus were absent in the cocultures. At pH 4.0, the striking morphological differences between the coculture and the axenic cultures were recorded.
Collapse
Affiliation(s)
- Tomasz Boruta
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland.
| | - Martyna Foryś
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland
| | - Weronika Pawlikowska
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland
| | - Grzegorz Englart
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland
| | - Marcin Bizukojć
- Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland
| |
Collapse
|
230
|
Li Y, Liu X, Sun X, Li H, Wang S, Tian W, Xiang C, Zhang X, Zheng J, Wang H, Zhang L, Cao L, Wong CCL, Liu Z. Gut dysbiosis impairs intestinal renewal and lipid absorption in Scarb2 deficiency-associated neurodegeneration. Protein Cell 2024; 15:818-839. [PMID: 38635907 PMCID: PMC11528516 DOI: 10.1093/procel/pwae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Scavenger receptor class B, member 2 (SCARB2) is linked to Gaucher disease and Parkinson's disease. Deficiency in the SCARB2 gene causes progressive myoclonus epilepsy (PME), a rare group of inherited neurodegenerative diseases characterized by myoclonus. We found that Scarb2 deficiency in mice leads to age-dependent dietary lipid malabsorption, accompanied with vitamin E deficiency. Our investigation revealed that Scarb2 deficiency is associated with gut dysbiosis and an altered bile acid pool, leading to hyperactivation of FXR in intestine. Hyperactivation of FXR impairs epithelium renewal and lipid absorption. Patients with SCARB2 mutations have a severe reduction in their vitamin E levels and cannot absorb dietary vitamin E. Finally, inhibiting FXR or supplementing vitamin E ameliorates the neuromotor impairment and neuropathy in Scarb2 knockout mice. These data indicate that gastrointestinal dysfunction is associated with SCARB2 deficiency-related neurodegeneration, and SCARB2-associated neurodegeneration can be improved by addressing the nutrition deficits and gastrointestinal issues.
Collapse
Affiliation(s)
- Yinghui Li
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xue Sun
- First School of Clinical Medicine, Peking University First Hospital, Peking University, Beijing 100034, China
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shige Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wotu Tian
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Biophysics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuyuan Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Haifang Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Catherine C L Wong
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Peking University, Beijing 100084, China
| | - Zhihua Liu
- Institute for Immunology and School of Basic Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
231
|
Chen H, Xia A, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100480. [PMID: 39309319 PMCID: PMC11416670 DOI: 10.1016/j.ese.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.
Collapse
Affiliation(s)
- Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Huchao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
232
|
Jiang Y, Chang Z, Xu Y, Zhan X, Wang Y, Gao M. Advances in molecular enzymology of β-1,3-glucanases: A comprehensive review. Int J Biol Macromol 2024; 279:135349. [PMID: 39242004 DOI: 10.1016/j.ijbiomac.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
β-1,3-Glucanases are essential enzymes involved in the hydrolysis of β-1,3-glucans, with significant biological and industrial relevance. These enzymes are derived from diverse sources, including bacteria, fungi, plants, and animals, each exhibiting unique substrate specificities and biochemical properties. This review provides an in-depth analysis of the natural sources and ecological roles of β-1,3-glucanases, exploring their enzymatic properties such as optimal pH, temperature, molecular weight, isoelectric points, and kinetic parameters, which are crucial for understanding their functionality and stability. Advances in molecular enzymology are discussed, focusing on gene cloning, expression in systems like Escherichia coli and Pichia pastoris, and structural-functional relationships. The reaction mechanisms and the role of non-catalytic carbohydrate-binding modules in enhancing substrate hydrolysis are examined. Industrial applications of β-1,3-glucanases are highlighted, including the production of β-1,3-glucooligosaccharides, uses in the food industry, biological control of plant pathogens, and nutritional roles. This review aims to provide a foundation for future research, improving the efficiency and robustness of β-1,3-glucanases for various industrial applications.
Collapse
Affiliation(s)
- Yun Jiang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zepeng Chang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Minjie Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
233
|
Wu X, Cai C, Cen Q, Fu G, Lu X, Zheng H, Zhang Q, Cui X, Liu Y. Efficient catalytic removal of phenolic pollutants by laccase from Coriolopsis gallica: Binding interaction and polymerization mechanism. Int J Biol Macromol 2024; 279:135272. [PMID: 39226979 DOI: 10.1016/j.ijbiomac.2024.135272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Laccase is a green catalyst that can efficiently catalyze phenolic pollutants, and its catalytic efficiency is closely related to the interaction between enzyme and substrates. To investigate the binding effects between enzyme and phenolic pollutants, phenol, p-chlorophenol, and bisphenol A were used as substrates in this study. We focused on the removal and catalytic mechanism of these pollutants in water using yellow laccase derived from Coriolopsis gallica. The enzymatic catalytic products were characterized using Ultraviolet-Visible Absorption Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR), and High-Resolution Mass Spectrometry (HRMS), and the catalytic mechanism of laccase on phenolic pollutants was further explored by molecular docking. Based on the structural characterization and molecular docking results, the possible polymerization pathways of these phenolic compounds were speculated. Laccase catalyzed phenol to produce phenolic hydroxyl radicals, their para-radicals, and ortho-radicals, which polymerized to form oligomers linked by benzene‑oxygen-benzene and benzene-benzene. P-chlorophenol produced phenolic hydroxyl radicals and their ortho-radicals, polymerizing to form oligomers connected by benzene‑oxygen-benzene or benzene-benzene. The CC bond of the isopropyl group of bisphenol A broke to formed an intermediate product, which was further polymerized to formed a benzene‑oxygen-benzene linked oligomer.
Collapse
Affiliation(s)
- Xiaodan Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Changjun Cai
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qingjing Cen
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China.
| | - Xuan Lu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hongli Zheng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, Jiangxi 330200, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion of Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
234
|
Liu G, Yuan H, Chen Y, Mao L, Yang C, Zhang R, Zhang G. Magnetic silica-coated cutinase immobilized via ELPs biomimetic mineralization for efficient nano-PET degradation. Int J Biol Macromol 2024; 279:135414. [PMID: 39245124 DOI: 10.1016/j.ijbiomac.2024.135414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The proliferation of nano-plastic particles (NPs) poses severe environmental hazards, urgently requiring effective biodegradation methods. Herein, a novel method was developed for degrading nano-PET (polyethylene terephthalate) using immobilized cutinases. Nano-PET particles were prepared using a straightforward method, and biocompatible elastin-like polypeptide-magnetic nanoparticles (ELPs-MNPs) were obtained as magnetic cores via biomimetic mineralization. Using one-pot synthesis with the cost-effective precursor tetraethoxysilane (TEOS), silica-coated magnetically immobilized ELPs-tagged cutinase (ET-C@SiO2@MNPs) were produced. ET-C@SiO2@MNPs showed rapid magnetic separation within 30 s, simplifying recovery and reuse. ET-C@SiO2@MNPs retained 86 % of their initial activity after 11 cycles and exhibited superior hydrolytic capabilities for nano-PET, producing 0.515 mM TPA after 2 h of hydrolysis, which was 96.6 % that of free enzymes. Leveraging ELPs biomimetic mineralization, this approach offers a sustainable and eco-friendly solution for PET-nanoplastic degradation, highlighting the potential of ET-C@SiO2@MNPs in effective nanoplastic waste management and contributing to environmental protection and sustainable development.
Collapse
Affiliation(s)
- Guanzhang Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Hang Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yaxin Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; School of Chemistry and Molecular Biology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lei Mao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Chun Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
235
|
Lin SP, Hong L, Hsieh CC, Lin YH, Chou YC, Santoso SP, Hsieh CW, Tsai TY, Cheng KC. In situ modification of foaming bacterial cellulose with chitosan and its application to active food packaging. Int J Biol Macromol 2024; 279:135114. [PMID: 39233147 DOI: 10.1016/j.ijbiomac.2024.135114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Owing to a lack of specific biological functions, bacterial cellulose (BC) has been restricted in its application to the field of active packaging. In this study, we developed antimicrobial packaging materials using foaming BC (FBC) with chitosan (CS) and applied it to the preservation of chilled sea bass. The material property analysis demonstrated that 1.5 % CS/FBC maintained a high water content of 91 %, a swelling ratio of 75.6 %, great stress of 1.61 MPa, and great strain of 1.87 %. CS incorporation into FBC also decreased its crystallinity from 73.39 % to 69.3 %. Meanwhile, 1.5 % CS/FBC also provided great antimicrobial ability against Escherichia coli and Staphylococcus aureus by approximately 2 log colony-forming units/mL inhibition utilizing contact-killing. Results of the preservation assessment indicated that 1.5 % CS/FBC efficiently inhibited Shewanella putrefaciens growth, reduced total volatile basic nitrogen release, and slightly inhibited lipid oxidation. Based on the above results, CS/FBC is an ecofriendly biomaterial produced from a microorganism that possesses high absorbency and strong antibacterial properties, making it suitable for development as antibacterial active packaging.
Collapse
Affiliation(s)
- Shin-Ping Lin
- School of Food Safety, College of Nutrition, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Ling Hong
- Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
| | - Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan; Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Yun-Hsin Lin
- Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan
| | - Yu-Chieh Chou
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, 37 Kalijudan, Surabaya 60114, Indonesia
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University, 510 Zhongzheng Rd., Xinzhuang Dist., New Taipei City 242062, Taiwan
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan; Institute of Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Optometry, Asia University, 500 Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
236
|
VanArsdale E, Kelly E, Sayer CV, Vora GJ, Tschirhart T. Engineering xylose induction in Vibrio natriegens for biomanufacturing applications. Biotechnol Bioeng 2024; 121:3572-3581. [PMID: 39031482 DOI: 10.1002/bit.28804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
Xylose is an abundant, inexpensive and readily available carbohydrate common in minimally processed feedstocks such as seaweed and algae. While a wide variety of marine microbes have evolved to utilize seaweed and algae, only a few currently have the requisite characteristics and genetic engineering tools necessary to entertain the use of these underutilized feedstocks. The rapidly growing Gram-negative halophilic bacterium Vibrio natriegens is one such chassis. In this study, we engineered and tested xylose induction in V. natriegens as a tool for scalable bioproduction applications. First, we created a sensing construct based on the xylose operon from Escherichia coli MG1665 and measured its activity using a fluorescent reporter and identified that cellular import plays a key role in induction strength and that expression required the XylR transcription factor. Next, we identified that select deletions of the promoter region enhance gene expression, limiting the effect of carbohydrate repression when xylose is used as an inducer in the presence of industrially relevant carbon sources. Lastly, we used the optimized constructs to produce the biopolymer melanin using seawater mimetic media. One of these formulations utilized a nori-based seaweed extract as an inducer and demonstrated melanin yields comparable to previously optimized methods using a more traditional and costly inducer. Together, the results demonstrate that engineering xylose induction in V. natriegens can provide an effective and lower cost option for timed biosynthesis in scalable biomanufacturing applications using renewable feedstocks.
Collapse
Affiliation(s)
- Eric VanArsdale
- National Research Council, United States Naval Research Laboratory, Washington, District of Columbia, USA
| | - Erin Kelly
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Cameron V Sayer
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Gary J Vora
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| | - Tanya Tschirhart
- United States Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, District of Columbia, USA
| |
Collapse
|
237
|
Liu F. Safety assessment of drug impurities for patient safety: A comprehensive review. Regul Toxicol Pharmacol 2024; 153:105715. [PMID: 39369763 DOI: 10.1016/j.yrtph.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/03/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Drug impurities are undesirable but unavoidable chemicals which can occur throughout the drug life cycle. The safety implications of drug impurities can be significant given that they can impact safety, quality, and efficacy of drug products and that certain drug impurities are mutagenic, carcinogenic, or teratogenic. The characteristics of drug impurities could be specific to drug modalities (e.g., small molecules vs. biologics). The commonly encountered drug impurities include elemental impurity, residual solvent, organic impurity, host cell protein and DNA, residual viral vector, extractable and leachable, and particle. They can cause various adverse effects such as immunogenicity, infection, genotoxicity, and carcinogenicity upon significant exposure. Therefore, the effective control of these drug impurities is central for patient safety. Regulations and guidelines are available for drug developers to manage them. Their qualification is obtained based on authoritative qualification thresholds or safety assessment following the classic toxicological risk assessment. The current review focuses on the safety assessment science and methodology used for diverse types of drug impurities. Due to the different nature of diverse drug impurities, their safety assessment represents a significant challenge for drug developers.
Collapse
Affiliation(s)
- Frank Liu
- Safe Product Services LLC, Pittsfield, MA, USA.
| |
Collapse
|
238
|
Li H, Zhao X, Liu L, Yao M, Han Y, Li R, Liu J, Zhang J. Resin screening and process optimization for erythritol mother liquor chromatographic separation. Prep Biochem Biotechnol 2024; 54:1294-1305. [PMID: 38742596 DOI: 10.1080/10826068.2024.2349936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In order to improve the utilization value of the erythritol mother liquor, the separation and purification of the erythritol mother liquor was selected in this study. The selected chromatographic separation programme for erythritol crystallizing mother liquor is as follows: Firstly, erythritol is resolved from mannitol and arabitol with DTF-01Ca (Suqing Group) resin and then mannitol is resolved from arabitol with 99Ca/320 (Dowex) resin. At the same time, the chromatographic conditions of the DTF-01Ca (Suqing Group) and 99Ca/320 (Dowex) resins were optimized, resulting in an optimal separation temperature and mobile phase flow rate of 70 °C, 10 ml/min. On this basis, a single-column chromatographic model was used to calculate the TD model parameter (N ) and the mass transfer coefficient (k m ) of the separation of erythritol mother liquor by DTF-01Ca (Suqing Group) and 99Ca/320 (Dowex) resins. The adsorption isotherms, TD model parameter (N ) and the mass transfer coefficient (k m ) provides data references for the design and operation of the simulated moving beds (SMB) separation system for the industrial-scale separation of erythritol crystallizing mother liquor.
Collapse
Affiliation(s)
- Haiyang Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiangying Zhao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liping Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Mingjing Yao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanlei Han
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiguo Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jianjun Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
239
|
Yadav N, Chauhan VS. Advancements in peptide-based antimicrobials: A possible option for emerging drug-resistant infections. Adv Colloid Interface Sci 2024; 333:103282. [PMID: 39276418 DOI: 10.1016/j.cis.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
In recent years, multidrug-resistant pathogenic microorganisms (MDROs) have emerged as a severe threat to human health, exhibiting robust resistance to traditional antibiotics. This has created a formidable challenge in modern medicine as we grapple with limited options to combat these resilient bacteria. Despite extensive efforts by scientists to develop new antibiotics targeting these pathogens, the quest for novel antibacterial molecules has become increasingly arduous. Fortunately, nature offers a potential solution in the form of cationic antimicrobial peptides (AMPs) and their synthetic counterparts. AMPs, naturally occurring peptides, have displayed promising efficacy in fighting bacterial infections by disrupting bacterial cell membranes, hindering their survival and reproduction. These peptides, along with their synthetic mimics, present an exciting alternative in combating antibiotic resistance. They hold the potential to emerge as a formidable tool against MDROs, offering hope for improved strategies to protect communities. Extensive research has explored the diversity, history, and structure-properties relationship of AMPs, investigating their amphiphilic nature for membrane disruption and mechanisms of action. However, despite their therapeutic promise, AMPs face several documented limitations. Among these challenges, poor pharmacokinetic properties stand out, impeding the attainment of therapeutic levels in the body. Additionally, some AMPs exhibit toxicity and susceptibility to protease cleavage, leading to a short half-life and reduced efficacy in animal models. These limitations pose obstacles in developing effective treatments based on AMPs. Furthermore, the high manufacturing costs associated with AMPs could significantly hinder their widespread use. In this review, we aim to present experimental and theoretical insights into different AMPs, focusing specifically on antibacterial peptides (ABPs). Our goal is to offer a concise overview of peptide-based drug candidates, drawing from a wide array of literature and peer-reviewed studies. We also explore recent advancements in AMP development and discuss the challenges researchers face in moving these molecules towards clinical trials. Our main objective is to offer a comprehensive overview of current AMP and ABP research to guide the development of more precise and effective therapies for bacterial infections.
Collapse
Affiliation(s)
- Nitin Yadav
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| | - Virander S Chauhan
- Gandhi Institute of Technology and Management, Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India; Molecular Medicine, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Biotide Solutions LLP, B-23, Geetanjali Enclave, Malviya Nagar, New Delhi 110017, India.
| |
Collapse
|
240
|
Jin XH, Park MS, Jang MH, Kim CS, Kim YY. Effects of organic and inorganic selenium mixes in pregnant sows on piglet growth, selenium levels in serum and milk, and selenium deposition in newborn piglet tissues. Anim Biosci 2024; 37:1923-1932. [PMID: 39402947 DOI: 10.5713/ab.24.0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
OBJECTIVE This study was conducted to evaluate the effects of organic and inorganic selenium mixes in pregnant sows on piglet growth, selenium levels in serum and milk, and selenium deposition in newborn piglet tissues. METHODS A total of 44 multiparous sows (Yorkshire×Landrace) with average body weight (BW), backfat thickness, and parity were assigned to one of the three treatments with 14 or 15 sows per treatment in a completely randomized design. The treatments were as follows: i) Control, corn-soybean meal-based diet with no addition of selenium premix; ii) ISOS (mixed inorganic selenium and organic selenium) 30, a basal diet supplemented with 0.15 ppm of inorganic Se and 0.15 ppm of organic Se; iii) ISOS50, a basal diet supplemented with 0.25 ppm of inorganic Se and 0.25 ppm of organic Se. RESULTS At day 21 of lactation, supplementing a high level of mixed Se at 0.50 ppm resulted in higher piglet BW and weight gain than adding a low level of mixed Se at 0.30 ppm (p<0.05). Selenium concentration of colostrum in sows fed ISOS50 diet was significantly higher than those in sows fed ISOS30 diet (p<0.05). Selenium concentrations in the serum at days 90 and 110 of gestation and 24 hours postpartum were highest when sows were fed ISOS50 diet (p<0.05). Additionally, increasing levels of mixed Se led to an increase in piglet serum Se concentration at 24 hours postpartum (p<0.05). Before ingesting colostrum, piglets from sows fed a mixed selenium (Se) diet had significantly higher kidney Se concentrations compared to those from the control group, with the ISOS50 treatment showing the most significant difference (p<0.05). CONCLUSION Supplementation of the gestation diet with 0.5 ppm of mixed Se may improve piglet growth performance, increase Se concentrations in milk, and enhance Se status in the serum of sows, as well as in the serum and tissues of their offspring.
Collapse
Affiliation(s)
- Xing Hao Jin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Min Soo Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Min Hyuk Jang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Cheon Soo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Yoo Yong Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
241
|
Vajente M, Clerici R, Ballerstedt H, Blank LM, Schmidt S. Using Cupriavidus necator H16 to Provide a Roadmap for Increasing Electroporation Efficiency in Nonmodel Bacteria. ACS Synth Biol 2024. [PMID: 39482869 DOI: 10.1021/acssynbio.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bacteria are a treasure trove of metabolic reactions, but most industrial biotechnology applications rely on a limited set of established host organisms. In contrast, adopting nonmodel bacteria for the production of various chemicals of interest is often hampered by their limited genetic amenability coupled with their low transformation efficiency. In this study, we propose a series of steps that can be taken to increase electroporation efficiency in nonmodel bacteria. As a test strain, we use Cupriavidus necator H16, a lithoautotrophic bacterium that has been engineered to produce a wide range of products from CO2 and hydrogen. However, its low electroporation efficiency hampers the high-throughput genetic engineering required to develop C. necator into an industrially relevant host organism. Thus, conjugation has often been the method of choice for introducing exogenous DNA, especially when introducing large plasmids or suicide plasmids. We first propose a species-independent technique based on natively methylated DNA and Golden Gate assembly to increase one-pot cloning and electroporation efficiency by 70-fold. Second, bioinformatic tools were used to predict defense systems and develop a restriction avoidance strategy that was used to introduce suicide plasmids by electroporation to obtain a domesticated strain. The results are discussed in the context of metabolic engineering of nonmodel bacteria.
Collapse
Affiliation(s)
- Matteo Vajente
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Riccardo Clerici
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
242
|
Polenogova OV, Kryukova NA, Klementeva T, Artemchenko AS, Lukin AD, Khodyrev VP, Slepneva I, Vorontsova Y, Glupov VV. The influence of inactivated entomopathogenic bacterium Bacillus thuringiensis on the immune responses of the Colorado potato beetle. PeerJ 2024; 12:e18259. [PMID: 39494291 PMCID: PMC11531747 DOI: 10.7717/peerj.18259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/17/2024] [Indexed: 11/05/2024] Open
Abstract
Background Invasion of microorganisms into the gut of insects triggers a cascade of immune reactions accompanied by increased synthesis of effectors (such as antimicrobial peptides, cytokines, and amino acids), leading to changes in the physiological state of the host. We hypothesized that even an inactivated bacterium can induce an immune response in an insect. The aim of this study was to compare the roles of reactive oxygen species (ROS) formation and of the response of detoxification and antioxidant systems in a Colorado potato beetle (CPB) larval model in the first hours after invasion by either an inactivated or live bacterium. Methods The influence of per os inoculation with inactivated entomopathogenic bacterium Bacillus thuringiensis var. tenebrionis (Bt) on the survival and physiological and biochemical parameters of CPB larvae was assessed as changes in the total hemocyte count (THC), activity of phenoloxidases (POs), glutathione-S-transferases (GSTs), nonspecific esterases (ESTs), catalase, peroxidases, superoxide dismutases (SODs) and formation of reactive oxygen species (ROS). Results A series of changes occurred within the hemolymph and the midgut of CPBs inoculated with inactivated Bt at 12 h after inoculation. These physiological and biochemical alterations serve to mediate generalized resistance to pathogens. The changes were associated with an increase in the THC and a 1.4-2.2-fold enhancement of detoxification enzymatic activities (such as GST and EST) as well as increased levels of antioxidants (especially peroxidases) in hemolymph in comparison to the control group. Suppressed EST activity and reduced ROS formation were simultaneously detectable in the larval midgut. Inoculation of beetle larvae with active Bt cells yielded similar results (elevated THC and suppressed PO activity). A fundamental difference in the immune activation processes between larvae that ingested the inactivated bacterium and larvae that had consumed the active bacterium was that the inactivated bacterium did not influence ROS formation in the hemolymph but did reduce their formation in the midgut. At 24 h postinfection with active Bt, ROS levels went up in both the hemolymph and the midgut. This was accompanied by a significant 5.7-fold enhancement of SOD activity and a 5.3-fold suppression of peroxidase activity. The observed alterations may be due to within-gut toxicity caused by early-stage bacteriosis. The imbalance in the antioxidant system and the accumulation of products toxic to the "putative" pathogen can activate detoxification mechanisms, including those of an enzymatic nature (EST and GST). The activation of detoxification processes and of innate immune responses is probably due to the recognition of the "putative" pathogen by gut epithelial cells and is similar in many respects to the immune response at early stages of bacteriosis.
Collapse
Affiliation(s)
- Olga V. Polenogova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A. Kryukova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana Klementeva
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anna S. Artemchenko
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | - Viktor P. Khodyrev
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Irina Slepneva
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Yana Vorontsova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Viktor V. Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
243
|
Fan L, Mei X, Huang Y, Zheng W, Wei P, Jiang M, Dong W. Advanced applications in enzyme-induced electrospun nanofibers. NANOSCALE 2024; 16:19606-19619. [PMID: 39370938 DOI: 10.1039/d4nr03404j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Electrospun nanofibers, renowned for their high specific surface area, robust mechanical properties, and versatile chemical functionalities, offer a promising platform for enzyme immobilization. Over the past decade, significant strides have been made in developing enzyme-induced electrospun nanofibers (EIEN). This review systematically summarizes the advanced applications of EIEN which are fabricated using both non-specific immobilization methods including interfacial adsorption (direct adsorption, cross-linking, and covalent binding) and encapsulation, and specific immobilization techniques (coordination and affinity immobilization). Future research should prioritize optimizing immobilization techniques to achieve a balance between enzyme activity, stability, and cost-effectiveness, thereby facilitating the industrialization of EIEN. We elucidate the rationale behind various immobilization methods and their applications, such as wastewater treatment, biosensors, and biomedicine. We aim to provide guidelines for developing suitable EIEN immobilization techniques tailored to specific future applications.
Collapse
Affiliation(s)
- Lingling Fan
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Xingyu Mei
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Yigen Huang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Wenxiang Zheng
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Ping Wei
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| | - Min Jiang
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Weiliang Dong
- Key Laboratory for Waste Plastics Biocatalytic Degradation and Recycling, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| |
Collapse
|
244
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
245
|
Pérez-Rubio P, Romero EL, Cervera L, Gòdia F, Nielsen LK, Lavado-García J. Title: Systematic insights into cell density-dependent transcriptional responses upon medium replacements. Biomed Pharmacother 2024; 181:117640. [PMID: 39486366 DOI: 10.1016/j.biopha.2024.117640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Understanding the molecular mechanisms governing transfection efficiency and particle secretion in high cell density cultures is critical to overcome the cell density effect upon transient gene expression. The effect of different conditioned media in HEK293 transcriptome at low and high cell density is explored. A systematic pair-wise comparative study was performed to shed light on the effect on previous phenotypical characteristics of different media conditions: fresh, exhausted and media depleted from extracellular vesicles (EVs) as well as associated proteins and RNAs. The obtained results suggest that restorative effects observed in transfection efficiency when employing EV-depleted media may arise predominantly from physicochemical alterations rather than cellular processes. A significant downregulation of genes associated with nucleocytoplasmic transport for the conditions involving the use of exhausted or EV-depleted media was observed. Moreover, upregulation of histone-related genes in EV-depleted media suggest a role for histone signaling in response to cellular stress or growth limitations, thereby highlighting the potential of manipulating histone levels as a promising strategy to enhance transient transfection. It was also corroborated that the accumulation of extracellular matrix proteins upon cell growth may inhibit transfection by an already-known competitive effect between cell membrane-bound and free proteoglycans. Proteomic characterization of EV-depleted media further unveiled enrichment of pathways associated with infection response and double-strand DNA breaks, suggesting that HEK293 cells undergo an induced infection-like state that disrupts cellular processes. Importantly, the study reveals that EV-depleted media stimulates virion release pathways underscoring the complex interplay between extracellular vesicles and viral budding.
Collapse
Affiliation(s)
- Pol Pérez-Rubio
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain.
| | - Elianet Lorenzo Romero
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Laura Cervera
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Lars Keld Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Australia
| | - Jesús Lavado-García
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
246
|
Cai XL, Yao X, Zhang L, Chai YH, Liu X, Liu WW, Zhang RX, Fan YY, Xiao X. Dual-directional regulation of extracellular respiration in Shewanella oneidensis for intelligently treating multi-nuclide contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136371. [PMID: 39488975 DOI: 10.1016/j.jhazmat.2024.136371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Radionuclide contamination has become a global environmental concern due to the high mobility and toxicity of certain isotopes. Bioreduction mediated by electrochemically active bacteria (EAB) with unique extracellular electron transfer (EET) capability is recognized as a promising approach for nuclear waste treatment. However, it is difficult to achieve bidirectional regulation of EET pathway through traditional genetic manipulation, limiting the bioremediation application of EAB. Here, we designed and optimized a novel Esa quorum sensing (EQS) system for highly efficient gene expression and interleaved cellular functional output. By promoting dimethyl sulfoxide reductase at low cell density and increasing the synthesis of electron conductive complex and flavins at high cell density, the EQS system dynamically switched the extracellular respiratory pathway of Shewanella oneidensis MR-1 according to cell density. The engineered strain exhibited precise switching and substantial improvement in the extracellular remediation of multiple nuclides, sequentially increasing the reduction of iodine IO3- and uranium U(VI) by 2.51- and 2.05-fold compared with the control, respectively. Furthermore, a mobile bacterial biofilm material was fabricated for collecting uranium precipitates coupled with U(VI) reduction. This work clearly demonstrates that EQS system contributes to the bidirectional regulation of EET pathway in EAB, providing an effective and refined strategy for bioremediation of multi-nuclide contamination.
Collapse
Affiliation(s)
- Xin-Lu Cai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Yao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Li Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yu-Han Chai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xuan Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Wen-Wen Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ruo-Xi Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| |
Collapse
|
247
|
Sangeeta, Sharma D, Ramniwas S, Mugabi R, Uddin J, Nayik GA. Revolutionizing Mushroom processing: Innovative techniques and technologies. Food Chem X 2024; 23:101774. [PMID: 39280230 PMCID: PMC11402429 DOI: 10.1016/j.fochx.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/24/2024] [Indexed: 09/18/2024] Open
Abstract
In recent years, the global mushroom industry has seen remarkable growth due to its nutritional benefits, increasing market value, and rising consumer demand. Mushrooms are valued for their unique flavor, low sugar and salt, and rich Vitamin D content. In India as well as across the globe, mushroom cultivation is becoming increasingly popular among new entrepreneurs, leveraging the diverse agro-climatic conditions and substantial agricultural waste. Various government policies are also fostering research and development in this sector. To extend shelf life and preserve quality, various preservation techniques are employed, including drying, freezing, canning, high-pressure processing and modified atmosphere packaging. Furthermore, cutting-edge technologies such as nuclear magnetic resonance and spectroscopy are improving post-harvest processing, helping to maintain sensory properties and nutritional content. Automation is also transforming mushroom processing by enhancing efficiency and scalability. This review examines the innovative methods and technologies driving advancements in mushroom production and quality worldwide.
Collapse
Affiliation(s)
- Sangeeta
- Department of Agriculture & Food Processing, Guru Nanak College, Budhlada, Mansa, Punjab, India
| | - Dhriti Sharma
- Department of Agriculture & Food Processing, Guru Nanak College, Budhlada, Mansa, Punjab, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Gulzar Ahmad Nayik
- Marwadi University Research Centre, Department of Microbiology, Marwadi University, Rajkot, Gujarat 360003, India
| |
Collapse
|
248
|
Xu T, Hao W, Du R, Dai D, Wang C, Li S, Lin CSK, Cha R, Yan J, Li C. Mercaptoimidazole-capped gold nanoparticles as a potent agent against plant pathogenic fungi. J Mater Chem B 2024; 12:10949-10961. [PMID: 39344784 DOI: 10.1039/d4tb01032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Plant pathogenic fungi pose a substantial challenge to agricultural production, but the conventional fungicide-based approaches are losing importance. As agents with broad-spectrum antibacterial effects, gold nanoparticles (Au NPs) are found to have antifungal effects; however, no study has examined their application in agriculture as fungicides. Accordingly, this study investigates the activity of 2-mercaptoimidazole-capped Au NPs (MI-Au NPs) against the 'top' plant pathogenic fungi, finding that they could inhibit Magnaporthe oryzae, Botrytis cinerea, Fusarium pseudograminearum and Colletotrichum destructivum by inducing cytoplasmic leakage. Moreover, MI-Au NPs are found to protect plants from infection by B. cinerea. Specifically, pot experiments demonstrate that MI-Au NPs decrease the incidence rate of B. cinerea infection in Arabidopsis thaliana from 74.6% to 6.2% and in Solanum lycopersicum from 100% to 10.9%, outperforming those achieved by imazalil. Furthermore, the biosafety assays reveal that MI-Au NPs cannot penetrate the cuticle of plant cells or negatively influence plant growth, and it is safe to mammalian cells. In summary, the findings of this study will support the development of NP-based antifungal agents for use in agriculture.
Collapse
Affiliation(s)
- Tang Xu
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenshuai Hao
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Dai Dai
- Department of Environmental Systems Science, ETH Zürich, Zurich 8092, Switzerland
| | - Cuixia Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Suhua Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing, 100050, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Chong Li
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
249
|
Javid H, Oryani MA, Rezagholinejad N, Hashemzadeh A, Karimi-Shahri M. Unlocking the potential of RGD-conjugated gold nanoparticles: a new frontier in targeted cancer therapy, imaging, and metastasis inhibition. J Mater Chem B 2024; 12:10786-10817. [PMID: 39351647 DOI: 10.1039/d4tb00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In the rapidly evolving field of cancer therapeutics, the potential of gold nanoparticles (AuNPs) conjugated with RGD peptides has emerged as a promising avenue for targeted therapy and imaging. Despite numerous studies demonstrating the effectiveness of RGD-conjugated AuNPs in specifically targeting tumor cells and enhancing radiation therapy (RT), a comprehensive review of these advancements is currently lacking. This review aims to fill this critical gap in the literature. Our analysis reveals that RGD-conjugated AuNPs have shown significant promise in improving the diagnosis and treatment of various types of cancer, including breast cancer. However, the full potential of this technology is yet to be realized. The development of multifunctional nanoplatforms incorporating AuNPs has opened new horizons for targeted therapy, dual-mode imaging, and inhibition of tumor growth and metastasis. This review is of paramount importance as it provides a comprehensive overview of the current state of research in this area, and highlights the areas where further research is needed. It is hoped that this review will inspire further investigations into this promising nanotechnology, ultimately leading to improved cancer diagnosis and therapy. Therefore, the findings presented in this review underscore the potential of AuNPs conjugated with RGD peptides as a revolutionary approach in cancer therapeutics. It is our fervent hope that this review will serve as a catalyst for further research in this exciting field.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
250
|
Luo H, Ruan H, Ye C, Jiang W, Wang X, Chen S, Chen Z, Li D. Plant-derived leaf vein scaffolds for the sustainable production of dog cell-cultured meat. Food Chem X 2024; 23:101603. [PMID: 39100247 PMCID: PMC11295996 DOI: 10.1016/j.fochx.2024.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Animal cell culture technology in the production of slaughter-free meat offers ethical advantages with regards to animal welfare, rendering it a more socially acceptable approach for dog meat production. In this study, edible plant-derived scaffold was used as a platform for cell expansion to construct cell-cultured dog meat slices. Primary dog skeletal muscle satellite cells (MSCs) and adipose stem cells (ASCs) were isolated and cultured as seed cells, and 3D spheroid culture in vitro promoted MSCs and ASCs myogenic and adipogenic differentiation, respectively. Natural leaf veins (NLV) were produced as edible mesh scaffolds to create 3D engineered dog muscle and fat tissues. After MSCs and ASCs adhered, proliferated and differentiated on the NLV scaffolds, and muscle and fat slices were produced with cultured dog muscle fibers and adipocytes, respectively. These findings demonstrate the potential of plant-derived NLV scaffolds in the production of cultured dog meat.
Collapse
Affiliation(s)
- Huina Luo
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Huimin Ruan
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Cailing Ye
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Wenkang Jiang
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| | - Xin Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shengfeng Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zhisheng Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Dongsheng Li
- Pet Cell Research Center, Deja Lab, Foshan, Guangdong, China
| |
Collapse
|