201
|
Metz A, Wollenhaupt J, Glöckner S, Messini N, Huber S, Barthel T, Merabet A, Gerber HD, Heine A, Klebe G, Weiss MS. Frag4Lead: growing crystallographic fragment hits by catalog using fragment-guided template docking. Acta Crystallogr D Struct Biol 2021; 77:1168-1182. [PMID: 34473087 PMCID: PMC8411975 DOI: 10.1107/s2059798321008196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
In recent years, crystallographic fragment screening has matured into an almost routine experiment at several modern synchrotron sites. The hits of the screening experiment, i.e. small molecules or fragments binding to the target protein, are revealed along with their 3D structural information. Therefore, they can serve as useful starting points for further structure-based hit-to-lead development. However, the progression of fragment hits to tool compounds or even leads is often hampered by a lack of chemical feasibility. As an attractive alternative, compound analogs that embed the fragment hit structurally may be obtained from commercial catalogs. Here, a workflow is reported based on filtering and assessing such potential follow-up compounds by template docking. This means that the crystallographic binding pose was integrated into the docking calculations as a central starting parameter. Subsequently, the candidates are scored on their interactions within the binding pocket. In an initial proof-of-concept study using five starting fragments known to bind to the aspartic protease endothiapepsin, 28 follow-up compounds were selected using the designed workflow and their binding was assessed by crystallography. Ten of these compounds bound to the active site and five of them showed significantly increased affinity in isothermal titration calorimetry of up to single-digit micromolar affinity. Taken together, this strategy is capable of efficiently evolving the initial fragment hits without major synthesis efforts and with full control by X-ray crystallography.
Collapse
Affiliation(s)
- Alexander Metz
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Steffen Glöckner
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Niki Messini
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Simon Huber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Tatjana Barthel
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Ahmed Merabet
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Hans-Dieter Gerber
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Andreas Heine
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Gerhard Klebe
- Department of Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Manfred S. Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
202
|
Abstract
Antibiotics, nowadays, are not only used for the treatment of human diseases but also used in animal and poultry farming to increase production. Overuse of antibiotics leads to their circulation in the food chain due to unmanaged discharge. These circulating antibiotics and their residues are a major cause of antimicrobial resistance (AMR), so comprehensive and multifaceted measures aligning with the One Health approach are crucial to curb the emergence and dissemination of antibiotic resistance through the food chain. Different chromatographic techniques and capillary electrophoresis (CE) are being widely used for the separation and detection of antibiotics and their residues from food samples. However, the matrix present in food samples interferes with the proper detection of the antibiotics, which are present in trace concentrations. This review is focused on the scientific literature published in the last decade devoted to the detection of antibiotics in food products. Various extraction methods are employed for the enrichment of antibiotics from a wide variety of food samples; however, solid-phase extraction (SPE) techniques are often used for the extraction of antibiotics from food products and biological samples. In addition, this review has scrutinized how changing instrumental composition, organization, and working parameters in the chromatography and CE can greatly impact the identification and quantification of antibiotic residues. This review also summarized recent advancements in other detection methods such as immunological assays, surface-enhanced Raman spectroscopy (SERS)-based assays, and biosensors which have emerged as rapid, sensitive, and selective tools for accurate detection and quantification of traces of antibiotics.
Collapse
|
203
|
Karastogianni S, Diamantidou D, Girousi S. Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex. BIOSENSORS 2021; 11:294. [PMID: 34562884 PMCID: PMC8465974 DOI: 10.3390/bios11090294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 05/27/2023]
Abstract
Voltammetric techniques have been considered as an important analytical tool applied to the determination of trace concentrations of many biological molecules including ascorbic acid. In this paper, ascorbic acid was detected by square wave voltammetry, using graphene oxide paste as a working electrode, modified by a film of a manganese(II) complex compound. Various factors, such as the effect of pH, affecting the response characteristics of the modified electrode were investigated. The relationship between the peak height and ascorbic acid concentration within the modified working electrode was investigated, using the calibration graph. The equation of the calibration graph was found to be: I = 0.0550γac + 0.155 with R2 = 0.9998, where I is the SWV current and γac is the mass concentration of ascorbic acid. The LOD and LOQ of the proposed method were determined to be 1.288 μg/L and 3.903 μg/L, respectively. Several compounds, such as riboflavin, biotin, and ions, such as Fe and Cu, were tested and it seemed that they did not interfere with the analytic signal. The proposed procedure was successfully applied in the determination of ascorbic acid in Rosa canina hips.
Collapse
Affiliation(s)
| | | | - Stella Girousi
- Analytical Chemistry Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.K.); (D.D.)
| |
Collapse
|
204
|
Thakur A, Tan Z, Kameyama T, El-Khateeb E, Nagpal S, Malone S, Jamwal R, Nwabufo CK. Bioanalytical strategies in drug discovery and development. Drug Metab Rev 2021; 53:434-458. [PMID: 34310243 DOI: 10.1080/03602532.2021.1959606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A reliable, rapid, and effective bioanalytical method is essential for the determination of the pharmacokinetic, pharmacodynamic, and toxicokinetic parameters that inform the safety and efficacy profile of investigational drugs. The overall goal of bioanalytical method development is to elucidate the procedure and operating conditions under which a method can sufficiently extract, qualify, and/or quantify the analyte(s) of interest and/or their metabolites for the intended purpose. Given the difference in the physicochemical properties of small and large molecule drugs, different strategies need to be adopted for the development of an effective and efficient bioanalytical method. Herein, we provide an overview of different sample preparation strategies, analytical platforms, as well as procedures for achieving high throughput for bioanalysis of small and large molecule drugs.
Collapse
Affiliation(s)
- Aarzoo Thakur
- Innovations in Food and Chemical Safety, Agency for Science, Technology, and Research, Singapore, Singapore.,Skin Research Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Zhiyuan Tan
- Department of Early Clinical Development, dMed-Clinipace, Shanghai, China
| | - Tsubasa Kameyama
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Shakti Nagpal
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | - Rohitash Jamwal
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | | |
Collapse
|
205
|
Woollard G, McWhinney B, Greaves RF, Punyalack W. Total pathway to method validation. Clin Chem Lab Med 2021; 58:e257-e261. [PMID: 32609639 DOI: 10.1515/cclm-2020-0525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/29/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Gerald Woollard
- Member RCPAQAP-AACB Advisory Committees, St Leonards, NSW, Australia
- Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| | - Brett McWhinney
- Member RCPAQAP-AACB Advisory Committees, St Leonards, NSW, Australia
- Analytical Chemistry Unit, Department of Chemical Pathology, RBWH, Herston, QLD, Australia
| | - Ronda F Greaves
- Member RCPAQAP-AACB Advisory Committees, St Leonards, NSW, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Executive, Emerging Technologies Division, International Federation of Clinical Chemistry and Laboratory Medicine, Milan, Italy
| | - Wilson Punyalack
- Member RCPAQAP-AACB Advisory Committees, St Leonards, NSW, Australia
- The Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP), St Leonards, NSW, Australia
| |
Collapse
|
206
|
Effect of Polymerization Time on Residual Monomer Release in Dental Composite: In Vitro Study. INT J POLYM SCI 2021. [DOI: 10.1155/2021/8101075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Light activated resin-based composites are the most accepted and used materials among clinicians. The aim of this study is to determine the amount of residual monomer released from nanofiller composite resins for different polymerization times and storage periods in vitro. To this purpose, Tetric Ceram (Ivoclar, Liechtenstein), Clearfil Majesty Posterior (Kuraray, Japan), Grandio (VOCO, Germany), and Filtek Ultimate Universal (3M, USA) were used as nanofiller resin composites samples. Four groups (
, diameter: 5 mm, thickness: 2 mm) of each material were fabricated, and each group was exposed to three different polymerization time (10, 20 and 40 sec). High-performance liquid chromatography (HPLC) was used to measure the amount of monomers released over 1, 15, and 30 days. The highest amount of monomer release was seen in Tetric EvoCream composite, while the least monomer release was seen in Clearfil Majesty composite. Regardless of the polymerization time, material, or storage period, the highest amount of eluted monomer was Bis-GMA. It is observed that there is no statistically significant difference between various polymerization times. Monomer release reached its highest level on the 15th day and decreased on the 30th day for all composites. Polymerization time did not affect the monomer release from the composites, but the type of the monomers and concentration of the filler used in the composites affected the amount of released monomers. The use of TEGDMA (co)monomer reduced the monomer release.
Collapse
|
207
|
Märtson AG, Edwina AE, Burgerhof JGM, Berger SP, de Joode A, Damman K, Verschuuren EAM, Blokzijl H, Bakker M, Span LF, van der Werf TS, Touw DJ, Sturkenboom MGG, Knoester M, Alffenaar JWC. Ganciclovir therapeutic drug monitoring in transplant recipients. J Antimicrob Chemother 2021; 76:2356-2363. [PMID: 34160036 PMCID: PMC8361328 DOI: 10.1093/jac/dkab195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/18/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The use of (val)ganciclovir is complicated by toxicity, slow response to treatment and acquired resistance. OBJECTIVES To evaluate a routine therapeutic drug monitoring (TDM) programme for ganciclovir in a transplant patient population. METHODS An observational study was performed in transplant recipients from June 2018 to February 2020. Dose adjustments were advised by the TDM pharmacist as part of clinical care. For prophylaxis, a trough concentration (Cmin) of 1-2 mg/L and an AUC24h of >50 mg·h/L were aimed for. For treatment, a Cmin of 2-4 mg/L and an AUC24h of 80-120 mg·h/L were aimed for. RESULTS Ninety-five solid organ and stem cell transplant patients were enrolled. Overall, 450 serum concentrations were measured; with a median of 3 (IQR = 2-6) per patient. The median Cmin and AUC24h in the treatment and prophylaxis groups were 2.0 mg/L and 90 mg·h/L and 0.9 mg/L and 67 mg·h/L, respectively. Significant intra- and inter-patient patient variability was observed. The majority of patients with an estimated glomerular filtration rate of more than 120 mL/min/1.73 m2 and patients on continuous veno-venous haemofiltration showed underexposure. The highest Cmin and AUC24h values were associated with the increase in liver function markers and decline in WBC count as compared with baseline. CONCLUSIONS This study revealed that a standard weight and kidney function-based dosing regimen resulted in highly variable ganciclovir Cmin and under- and over-exposure were observed in patients on dialysis and in patients with increased renal function. Clearly there is a need to explore the impact of concentration-guided dose adjustments in a prospective study.
Collapse
Affiliation(s)
- Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- Corresponding author. E-mail:
| | - Angela E. Edwina
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Johannes G. M. Burgerhof
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Stefan P. Berger
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Groningen, The Netherlands
| | - Anoek de Joode
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Groningen, The Netherlands
| | - Kevin Damman
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, The Netherlands
| | - Erik A. M. Verschuuren
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands
| | - Hans Blokzijl
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Martijn Bakker
- University of Groningen, University Medical Center Groningen, Department of Hematology, Groningen, The Netherlands
| | - Lambert F. Span
- University of Groningen, University Medical Center Groningen, Department of Hematology, Groningen, The Netherlands
| | - Tjip S. van der Werf
- University of Groningen, University Medical Center Groningen, Department of Internal Medicine, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands
| | - Daan J. Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Marieke G. G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Marjolein Knoester
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Jan W. C. Alffenaar
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, New South Wales, Sydney, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
208
|
Antioxidant Activity, α-Glucosidase Inhibition and UHPLC-ESI-MS/MS Profile of Shmar ( Arbutus pavarii Pamp). PLANTS 2021; 10:plants10081659. [PMID: 34451703 PMCID: PMC8398081 DOI: 10.3390/plants10081659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 01/09/2023]
Abstract
The genus Arbutus (Ericaceae) has been traditionally used in folk medicine due to its phytomedicinal properties, especially Arbutus pavarii Pamp. However, this plant has not been evaluated for its efficacy, quality, and consistency to support the traditional uses, potentially in treating diabetes. Despite previous studies that revealed the biological activities of A. pavarii as antioxidant and α-glucosidase inhibitory agents, scientific reports on the bioactive compounds that contribute to its health benefits are still scarce. Therefore, this research focused on the evaluation of antioxidant and α-glucosidase inhibitory activities of the methanol crude extracts and various fractions of the leaf and stem bark, as well as on metabolite profiling of the methanol crude extracts. The extracts and fractions were evaluated for total phenolic (TPC) and total flavonoid (TFC) contents, as well as the DPPH free radical scavenging, ferric reducing antioxidant power (FRAP), and α-glucosidase inhibitory activities. Methanol crude extracts of the leaf and stem bark were then subjected to UHPLC-ESI-MS/MS. To the best of our knowledge, the comparative evaluation of the antioxidant and α-glucosidase inhibitory activities of the leaf and stem bark of A. pavarii, as well as of the respective solvent fractions, is reported herein for the first time. Out of these extracts, the methanolic crude extracts and polar fractions (ethyl acetate and butanol fractions) showed significant bioactivities. The DPPH free radical and α-glucosidase inhibitions was highest in the leaf ethyl acetate fraction, with IC50 of 6.39 and 4.93 µg/mL, respectively, while the leaf methanol crude extract and butanol fraction exhibited the highest FRAP with 82.95 and 82.17 mmol Fe (II)/g extract. The UHPLC-ESI-MS/MS analysis resulted in the putative identification of a total of 76 compounds from the leaf and stem bark, comprising a large proportion of plant phenolics (flavonoids and phenolic acids), terpenoids, and fatty acid derivatives. Results from the present study showed that the different parts of A. pavarii had potent antioxidant and α-glucosidase inhibitory activities, which could potentially prevent oxidative damage or diabetes-related problems. These findings may strengthen the traditional claim on the medicinal value of A. pavarii.
Collapse
|
209
|
Deprez S, Stove CP. Fully Automated Dried Blood Bpot Extraction coupled to Liquid Chromatography-tandem Mass Spectrometry for Therapeutic Drug Monitoring of Immunosuppressants. J Chromatogr A 2021; 1653:462430. [PMID: 34384960 DOI: 10.1016/j.chroma.2021.462430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Patients receiving immunosuppressant therapy, require intensive follow-up via therapeutic drug monitoring (TDM). This puts quite a burden on the patient involving frequent hospital visits and venipunctures and could (partially) be resolved by the use of dried blood microsamples (e.g. dried blood spots, DBS). One of the drawbacks of the use of DBS is the requirement for a dedicated, manual sample preparation. Fully automated DBS extraction systems, online coupled to standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) configurations, could provide a solution for that. The aim of this study was to evaluate the use of the DBS-MS 500, online coupled to an LC-MS/MS system, for the TDM of immunosuppressants using DBS. Two methods for the quantification of tacrolimus, sirolimus, everolimus and cyclosporin A, in both DBS and whole blood, were developed and validated based on international guidelines. For the DBS method also DBS-specific parameters were taken into account. Both methods proved to be accurate and reproducible with biases below 11% (20% for the LLOQ) and CVs (%) below 14% (with a single exception) (20% for the LLOQ) over a calibration range from 1 to 50 ng/mL for tacrolimus, sirolimus and everolimus and 20 to 1500 ng/mL for cyclosporin A. Reproducible (CV < 15%) IS-compensated relative recovery values were obtained. However, a hematocrit-dependent relative recovery was observed for DBS, with lower hematocrit values yielding higher relative recoveries (and vice versa). Relative to the reference hematocrit of 0.37, this difference exceeded 15% at hematocrit extremes (0.18 and 0.60). Application on venous left-over patient samples showed reasonable agreement between the results of both methodologies (8,6,9 and 9/10 mean DBS results within 20% of the mean whole blood result for tacrolimus, sirolimus, everolimus and cyclosporin A, respectively), although also here an impact of the hematocrit could be discerned. As a next step, larger patient sets are needed to allow a better insight on how (correction for) the hct effect affects the quantification of immunosuppressants via fully automated DBS analysis.
Collapse
Affiliation(s)
- Sigrid Deprez
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| |
Collapse
|
210
|
Zhang Z, Ghosh A, Connolly PJ, King P, Wilde T, Wang J, Dong Y, Li X, Liao D, Chen H, Tian G, Suarez J, Bonnette WG, Pande V, Diloreto KA, Shi Y, Patel S, Pietrak B, Szewczuk L, Sensenhauser C, Dallas S, Edwards JP, Bachman KE, Evans DC. Gut-Restricted Selective Cyclooxygenase-2 (COX-2) Inhibitors for Chemoprevention of Colorectal Cancer. J Med Chem 2021; 64:11570-11596. [PMID: 34279934 DOI: 10.1021/acs.jmedchem.1c00890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective cyclooxygenase (COX)-2 inhibitors have been extensively studied for colorectal cancer (CRC) chemoprevention. Celecoxib has been reported to reduce the incidence of colorectal adenomas and CRC but is also associated with an increased risk of cardiovascular events. Here, we report a series of gut-restricted, selective COX-2 inhibitors characterized by high colonic exposure and minimized systemic exposure. By establishing acute ex vivo 18F-FDG uptake attenuation as an efficacy proxy, we identified a subset of analogues that demonstrated statistically significant in vivo dose-dependent inhibition of adenoma progression and survival extension in an APCmin/+ mouse model. However, in vitro-in vivo correlation analysis showed their chemoprotective effects were driven by residual systemic COX-2 inhibition, rationalizing their less than expected efficacies and highlighting the challenges associated with COX-2-mediated CRC disease chemoprevention.
Collapse
Affiliation(s)
- Zhuming Zhang
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Avijit Ghosh
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter J Connolly
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Peter King
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Thomas Wilde
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Jianyao Wang
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Yawei Dong
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Xueliang Li
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Daohong Liao
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Hao Chen
- Chemistry, Pharmaron Beijing, Co. Ltd., No. 6, TaiHe Road, BDA Beijing 100176, P. R. China
| | - Gaochao Tian
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Javier Suarez
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - William G Bonnette
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Vineet Pande
- Discovery Chemistry, Janssen Research and Development, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Karen A Diloreto
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Yifan Shi
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Shefali Patel
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Beth Pietrak
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Lawrence Szewczuk
- Discovery Technology and Molecular Pharmacology, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Carlo Sensenhauser
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Shannon Dallas
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - James P Edwards
- Discovery Chemistry, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - Kurtis E Bachman
- Oncology Discovery, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| | - David C Evans
- Drug Metabolism and Pharmacokinetics, Janssen Research and Development, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
211
|
Tagwerker C, Baig I, Brunson EJ, Dutra-Smith D, Carias MJ, de Zoysa RS, Smith DJ. Multiplex Analysis of 230 Medications and 30 Illicit Compounds in Dried Blood Spots and Urine. J Anal Toxicol 2021; 45:581-592. [PMID: 32886782 DOI: 10.1093/jat/bkaa125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Drugs of abuse and medication reconciliation testing can benefit from analysis methods capable of detecting a broader range of drug classes and analytes. Mass spectrometry analysis of a wide variety of commonly prescribed medications and over-the-counter drugs per sample also allows for application of a drug-drug interaction (DDI) algorithm to detect adverse drug reactions. In order to prevent adulteration of commonly collected clinical samples such as urine, dried blood spots (DBS) present a reliable alternative. A novel method is described for qualitative and quantitative multiplex analysis of 230 parent drugs, 30 illicit drugs and 43 confirmatory metabolites by HPLC-MS-MS This method is applicable to DBS specimens collected by volumetric absorptive microsamplers and confirmable in urine specimens. A patient cohort (n = 67) providing simultaneous urine specimens and DBS resulted in 100% positive predictive values of medications or illicits confirmed by detection of a parent drug and/or its metabolite during routine medication adherence analysis. An additional 5,508 DBS specimens screened (n = 5,575) showed 5,428 (97%) with an inconsistent positive compared to the provided medication list (including caffeine, cotinine or ethanol metabolites), 29 (0.5%) with no medication list and no unexpected positive results (consistent negative) and 22 (0.4%) showed all positive results matching the provided medication list (consistent positive). A DDI algorithm applied to all positive results revealed 17% with serious and 56% with moderate DDI warnings. Comprehensive DBS analysis proves a reliable alternative to urine drug testing for extended medication reconciliation, with the added advantage of detecting DDIs.
Collapse
Affiliation(s)
- Christian Tagwerker
- NRCC (CC/CT) - Alcala Testing and Analysis Services, 3703 Camino del Rio South #100-A, San Diego, CA, 92108
| | | | | | | | | | | | - David J Smith
- Laboratory and Medical Director - Alcala Testing and Analysis Services
| |
Collapse
|
212
|
Kim KH, Lee SY, Baek JH, Lee SY, Kim JY, Yoo JS. Measuring fucosylated alpha-fetoprotein in hepatocellular carcinoma: A comparison of μTAS and parallel reaction monitoring. Proteomics Clin Appl 2021; 15:e2000096. [PMID: 33764665 DOI: 10.1002/prca.202000096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Fucosylation of alpha-fetoprotein (AFP) is closely correlated with the diagnosis of patients with hepatocellular carcinoma (HCC). In current, a micro-total analysis system (μTAS) using immunoassay has been developed for determining fucosylated AFP EXPERIMENTAL DESIGN: We compared two analytical methods, μTAS and liquid chromatography-parallel reaction monitoring mass spectrometry (LC-PRM MS), for the measurement of fucosylated AFP in serum to evaluate the usefulness of the results. For this purpose, serum samples were used (cirrhosis, n = 105; HCC, n = 105), and we have discussed the analytical performance of these two methods RESULTS: We observed a correlation (R2 = 0.84) between LC-PRM MS and μTAS using samples where fucosylated levels were measured by both methods. The fucosylated level of AFP by LC-PRM MS better differentiated between cirrhosis and HCC patients than those by μTAS (AUC = 0.910 vs. 0.861), particularly in subgroups with a level of total AFP < 20 ng/mL (0.973 vs. 0.874) and in early stage (I and II) patients (0.922 vs. 0.835) CONCLUSIONS AND CLINICAL RELEVANCE: From this comparative study we can suggest that the LC-PRM MS is applicable in the measurement of fucosylated AFP from human serum and is more useful for early diagnosis of HCC. CLINICAL RELEVANCE Fucosylation of AFP is used for the detection of HCC. A micro-total analysis system (μTAS) has been only developed for measuring fucosylation of AFP in clinical research. This study reports the fucosylation of AFP in human serum samples from cirrhosis and HCC patients using the μTAS and a LC-PRM MS to evaluate fucosylation of AFP from each method. As a result, LC-PRM MS is complementary to the conventional μTAS method. Furthermore, LC-PRM MS provides a higher diagnostic accuracy than the μTAS in patients with low AFP levels and an early stage.
Collapse
Affiliation(s)
- Kwang Hoe Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sang Yoon Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Je-Hyun Baek
- R&D Center for Clinical Mass Spectrometry, Seegene Medical Foundation, Seoul, Republic of Korea
| | - Soo-Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
213
|
Alffenaar JWC, Jongedijk EM, van Winkel CAJ, Sariko M, Heysell SK, Mpagama S, Touw DJ. A mobile microvolume UV/visible light spectrophotometer for the measurement of levofloxacin in saliva. J Antimicrob Chemother 2021; 76:423-429. [PMID: 33089322 PMCID: PMC7816168 DOI: 10.1093/jac/dkaa420] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) for personalized dosing of fluoroquinolones has been recommended to optimize efficacy and reduce acquired drug resistance in the treatment of MDR TB. Therefore, the aim of this study was to develop a simple, low-cost, robust assay for TDM using mobile UV/visible light (UV/VIS) spectrophotometry to quantify levofloxacin in human saliva at the point of care for TB endemic settings. METHODS All experiments were performed on a mobile UV/VIS spectrophotometer. The levofloxacin concentration was quantified by using the amplitude of the second-order spectrum between 300 and 400 nm of seven calibrators. The concentration of spiked samples was calculated from the spectrum amplitude using linear regression. The method was validated for selectivity, specificity, linearity, accuracy and precision. Drugs frequently co-administered were tested for interference. RESULTS The calibration curve was linear over a range of 2.5-50.0 mg/L for levofloxacin, with a correlation coefficient of 0.997. Calculated accuracy ranged from -5.2% to 2.4%. Overall precision ranged from 2.1% to 16.1%. Application of the Savitsky-Golay method reduced the effect of interferents on the quantitation of levofloxacin. Although rifampicin and pyrazinamide showed analytical interference at the lower limit of quantitation of levofloxacin concentrations, this interference had no implication on decisions regarding the levofloxacin dose. CONCLUSIONS A simple UV/VIS spectrophotometric method to quantify levofloxacin in saliva using a mobile nanophotometer has been validated. This method can be evaluated in programmatic settings to identify patients with low levofloxacin drug exposure to trigger personalized dose adjustment.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Claudia A J van Winkel
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | | | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
214
|
Piendl SK, Schönfelder T, Polack M, Weigelt L, van der Zwaag T, Teutenberg T, Beckert E, Belder D. Integration of segmented microflow chemistry and online HPLC/MS analysis on a microfluidic chip system enabling enantioselective analyses at the nanoliter scale. LAB ON A CHIP 2021; 21:2614-2624. [PMID: 34008641 DOI: 10.1039/d1lc00078k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, we introduce an approach to merge droplet microfluidics with an HPLC/MS functionality on a single chip to analyze the contents of individual droplets. This is achieved by a mechanical rotor-stator interface that precisely positions a microstructured PEEK rotor on a microfluidic chip in a pressure-tight manner. The developed full-body fused silica chip, manufactured by selective laser-induced etching, contained a segmented microflow compartment followed by a packed HPLC channel, which were interconnected by the microfluidic PEEK rotor on the fused silica lid with hair-thin through-holes. This enabled the targeted and leakage-free transfer of 10 nL fractions of droplets as small as 25 nL from the segmented microflow channel into the HPLC compartment that operated at pressures of up to 60 bar. In a proof of concept study, this approach was successfully applied to monitor reactions at the nanoliter scale and to distinguish the formed enantiomers.
Collapse
Affiliation(s)
- Sebastian K Piendl
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Thomas Schönfelder
- Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Laura Weigelt
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Till van der Zwaag
- Institut für Energie - und Umwelttechnik e. V., Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Thorsten Teutenberg
- Institut für Energie - und Umwelttechnik e. V., Bliersheimer Str. 58-60, 47229, Duisburg, Germany
| | - Erik Beckert
- Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Albert-Einstein-Str. 7, 07745 Jena, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
215
|
Han F, Li W, Jin Y, Wang F, Yuan B, Xu H. Rapid and Sensitive LC-MS/MS Method for Simultaneous Determination of Three First-Line Oral Antituberculosis Drug in Plasma. J Chromatogr Sci 2021; 59:432-438. [PMID: 33434918 DOI: 10.1093/chromsci/bmaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/30/2020] [Accepted: 11/29/2020] [Indexed: 11/14/2022]
Abstract
A bioanalytical method for simultaneous quantification of isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB) in plasma was developed and validated using high-performance liquid chromatography with tandem mass spectrometry. After extracted by protein precipitation with acetonitrile, the analytes were separated on a Waters XBridge Amide column by isocratic elution with acetonitrile and 5 mM ammonium acetate solution containing 0.3% formic acid (77:23, v/v) at a flow rate of 0.5 mL/min. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with an electrospray ionization source in positive mode by monitoring the selected ion transitions at m/z 205.2 → 116.1, m/z 137.9 → 121.2, m/z 124.3 → 78.9 and m/z 213.1 → 122.4 for EMB, INH, PZA and EMB-d8 Internal standard (IS), respectively. The calibration curves were linear over the range of 0.0125-2.00 μg/mL for EMB, 0.0625-10.0 μg/mL for INH and 0.250-40.0 μg/mL for PZA. Neither cross-analytes inter-conversion nor matrix effects were observed. The intra- and inter-assay precision (%RSD) values were within 8.80%, and accuracy (%RE) ranged from -11.13 to 13.49%, indicating that the precision and accuracy were well within the acceptable limits of variation. The method would be helpful for analysis of EMB, INH and PZA in plasma samples from clinical pharmacokinetics and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Fei Han
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiwei Li
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Jin
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fang Wang
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Yuan
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haiyan Xu
- Department of Pharmaceutical Analysis, Pharmacy School, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
216
|
Vejar-Vivar C, García-Valverde MT, Mardones C, Lucena R, Cárdenas S. Polydopamine coated hypodermic needles as a microextraction device for the determination of tricyclic antidepressants in oral fluid by direct infusion MS/MS. RSC Adv 2021; 11:22683-22690. [PMID: 35480419 PMCID: PMC9034363 DOI: 10.1039/d1ra02721b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 01/24/2023] Open
Abstract
In-needle microextraction consists of the confinement of the sorbent, by coating or packing, inside a metallic needle. The size of the needles reduces the eluent requirements providing an efficient preconcentration of the analytes. In this work, hypodermic needles coated with polydopamine (PDA) are presented as microextraction devices to isolate six tricyclic antidepressants from oral fluid samples. The coating consists of the in-surface polymerization of dopamine at pH 8.5 and mild conditions (room temperature and water as solvent). The PDA coating over the stainless-steel surface confers the needles with a high extraction ability towards the target analytes. After the extraction, the eluates were analyzed by direct infusion MS spectrometry, working in multiple reaction monitoring (MRM) mode, which provided a sample throughput of 30 samples per hour. The variables affecting the synthesis (number of coating cycles, the concentration of dopamine, and needle surface pre-treatment) and the extraction (sample salinity, sample loading cycles, and the number of elution strokes) were studied in depth. Under the optimum conditions, a matrix-matched calibration model was built. The limits of quantification are between 2 and 5 ng mL−1 with linear ranges up to 1000 ng mL−1 for all analytes. The precision, expressed as relative standard deviation (RSD), is better than 10% for all analytes. Accuracy was calculated as recovery, and the obtained values are between 84% and 107%. A single-blind assay was also performed to evaluate the suitability of the method for real application. Hypodermic needles coated with polydopamine for the extraction of antidepressants.![]()
Collapse
Affiliation(s)
- Carmina Vejar-Vivar
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain .,Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción Casilla 237, Correo 3 Concepción Chile
| | - María Teresa García-Valverde
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción Casilla 237, Correo 3 Concepción Chile
| | - Rafael Lucena
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| | - Soledad Cárdenas
- Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
217
|
Karastogianni S, Girousi S. Square Wave Voltammetric (SWV) Determination of Cyanocobalamin (Vitamin B12) in Pharmaceuticals and Supplements on a Carbon Paste Electrode (CPE) Modified by a Manganese(II) Polymeric Film. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1937195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sophia Karastogianni
- Chemistry Department, Analytical Chemistry Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stella Girousi
- Chemistry Department, Analytical Chemistry Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
218
|
Xu X, Hu Q, Liu D, Qiu H, Shameem M, Li N. Characterization of Proteinaceous Particles in Monoclonal Antibody Drug Products Using Mass Spectrometry. J Pharm Sci 2021; 110:3403-3409. [PMID: 34139261 DOI: 10.1016/j.xphs.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
In recent years, monoclonal antibodies (mAb) have become one of the most important classes of therapeutic proteins. Among many of the quality attributes monitored and controlled throughout therapeutic antibody development, particulate matter is one of the critical quality attributes (CQAs) for drug products. Visible and subvisible particulates in drug products may pose safety and immunogenicity risks to patients and therefore are tightly controlled and regulated. Characterization of the particle composition in drug products is essential to understand the origin of particulates and their mechanism of formation. In this study, we developed a liquid chromatography-mass spectrometry (LC-MS) based method and integrated it into the typical particulate characterization workflow to identify and quantify the composition of proteinaceous particles isolated from a therapeutic mAb drug product. The LC-MS workflow provides a useful tool to study particle formation and monitor the protein composition of particulates during therapeutic mAb development.
Collapse
Affiliation(s)
- Xiaobin Xu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Qingyan Hu
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Dingjiang Liu
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Mohammed Shameem
- Formulation Development, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
219
|
Rao PV, Rao AL, Maheswara Prasad SVU. Development and Validation of a Method for Simultaneous Estimation of Sitagliptin and Ertugliflozin in Rat Plasma by LC-MS method. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200630123120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The development of sound bioanalytical LC-MS (liquid chromatography-mass
spectroscopy) method(s) is of paramount importance during the process of drug discovery, development
and culminating in a marketing approval. The use of oral antidiabetic agents has been increased
significantly from the last decades and till now no bioanalytical method is available for quantitation of
sitagliptin (SG) and ertugliflozin (EG) in biological matrix which can be applied to pharmacokinetic
studies using LC-MS/MS.
Objective:
To develop a new, rapid and sensitive LC–MS/MS method for the simultaneous estimation of sitagliptin (SG)
and ertugliflozin (EG) in rat plasma by liquid–liquid extraction method (LLE) using deutereated sitagliptin (SGd6) and
ertugliflozin (EGd6).
Methods:
Chromatographic separation was carried out on a reverse phase Waters, Xetrra C18 (150mm x
4.6mm, 2μm) column using a mixture of acetonitrile and OPA buffer (50:50v/v) at a flow rate of
1ml/min in isocratic mode. Quantification was achieved using an electrospray ion interface operating in
positive mode, under Multiple Reaction Monitoring (MRM) conditions.
Results:
The method showed excellent linearity over the concentration range of 5.00- 75.00pg/mL for sitagliptin and 0.75-
11.35pg/mL ertugliflozin. The intra-batch and inter batch precision (%CV) was ≤ 4.3% and matrix effect (%CV) was
0.02% and 0.12% for sitagliptin at HQC and LQC, respectively. Matrix effect (%CV) was 0.08% and 0.33% for
ertugliflozin at HQC and LQC, respectively.
Conclusion:
The simplicity of the method allows for application in laboratories, presents a valuable tool for
pharmacokinetic studies. The particular assay has been proficiently put on pharmacokinetic study in rats subjects.
Collapse
Affiliation(s)
| | - Atmakuri Lakshmana Rao
- Vallabhaneni Venkatadri. Institute of Pharmaceutical Sciences, Gudlavalleru, A.P-521 356, India
| | | |
Collapse
|
220
|
Tian F, Li SY. Determination of Epsilon Aminocaproic Acid Based on Charge Transfer Complexation with p-Nitrophenlol by Spectrophotometry. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666200211104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Spectrophotometry was investigated for the determination of epsilon aminocaproic
acid (EACA) with p-nitrophenol (PNP). The method was based on Charge Transfer (CT)
complexation of this drug as n-electron donor with π-acceptor PNP.
Methods:
The experiment indicated that CT complexation was carried out at room temperature for 10
minutes in dimethyl sulfoxide solvent. The spectrum obtained for EACA/PNP system showed the maximum
absorption band at a wavelength of 425 nm. The stoichiometry of the CT complex was found to
be a 1:1 ratio by Job’s method between the donor and the acceptor. Different variables affecting the
complexation were carefully studied and optimized. At the optimum reaction conditions, Beer’s law
was obeyed in a concentration limit of 1~6 μg mL-1. The relative standard deviation was less than
2.9%. The apparent molar absorptivity was determined to be 1.86×104 L mol-1cm-1 at 425 nm. The CT
complexation was also confirmed by both FTIR and 1H NMR measurements.
Results:
The thermodynamic properties and reaction mechanism of the CT complexation have been
discussed.
Conclusion:
The developed method could be applied successfully for the determination of the studied
compound in its pharmaceutical dosage forms with good precision and accuracy compared to the official
method comprising t- and F-tests.
Collapse
Affiliation(s)
- Fang Tian
- Department of Chemistry, Taiyuan Normal University, Jinzhong,China
| | - Sheng-Yun Li
- Department of Chemistry, Taiyuan Normal University, Jinzhong,China
| |
Collapse
|
221
|
Structural and Biophysical Characterization of the HCV E1E2 Heterodimer for Vaccine Development. Viruses 2021; 13:v13061027. [PMID: 34072451 PMCID: PMC8227786 DOI: 10.3390/v13061027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
An effective vaccine for the hepatitis C virus (HCV) is a major unmet medical and public health need, and it requires an antigen that elicits immune responses to multiple key conserved epitopes. Decades of research have generated a number of vaccine candidates; based on these data and research through clinical development, a vaccine antigen based on the E1E2 glycoprotein complex appears to be the best choice. One bottleneck in the development of an E1E2-based vaccine is that the antigen is challenging to produce in large quantities and at high levels of purity and antigenic/functional integrity. This review describes the production and characterization of E1E2-based vaccine antigens, both membrane-associated and a novel secreted form of E1E2, with a particular emphasis on the major challenges facing the field and how those challenges can be addressed.
Collapse
|
222
|
Handayani I, Saad H, Ratnakomala S, Lisdiyanti P, Kusharyoto W, Krause J, Kulik A, Wohlleben W, Aziz S, Gross H, Gavriilidou A, Ziemert N, Mast Y. Mining Indonesian Microbial Biodiversity for Novel Natural Compounds by a Combined Genome Mining and Molecular Networking Approach. Mar Drugs 2021; 19:316. [PMID: 34071728 PMCID: PMC8227522 DOI: 10.3390/md19060316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Indonesia is one of the most biodiverse countries in the world and a promising resource for novel natural compound producers. Actinomycetes produce about two thirds of all clinically used antibiotics. Thus, exploiting Indonesia's microbial diversity for actinomycetes may lead to the discovery of novel antibiotics. A total of 422 actinomycete strains were isolated from three different unique areas in Indonesia and tested for their antimicrobial activity. Nine potent bioactive strains were prioritized for further drug screening approaches. The nine strains were cultivated in different solid and liquid media, and a combination of genome mining analysis and mass spectrometry (MS)-based molecular networking was employed to identify potential novel compounds. By correlating secondary metabolite gene cluster data with MS-based molecular networking results, we identified several gene cluster-encoded biosynthetic products from the nine strains, including naphthyridinomycin, amicetin, echinomycin, tirandamycin, antimycin, and desferrioxamine B. Moreover, 16 putative ion clusters and numerous gene clusters were detected that could not be associated with any known compound, indicating that the strains can produce novel secondary metabolites. Our results demonstrate that sampling of actinomycetes from unique and biodiversity-rich habitats, such as Indonesia, along with a combination of gene cluster networking and molecular networking approaches, accelerates natural product identification.
Collapse
Affiliation(s)
- Ira Handayani
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
- Department of Phytochemistry and Plant Systematics, Division of Pharmaceutical Industries, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Shanti Ratnakomala
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia;
| | - Puspita Lisdiyanti
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Wien Kusharyoto
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta-Bogor KM.46, Cibinong, West Java 16911, Indonesia; (P.L.); (W.K.)
| | - Janina Krause
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
| | - Saefuddin Aziz
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; (H.S.); (S.A.); (H.G.)
| | - Athina Gavriilidou
- Applied Natural Products Genome Mining, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (A.G.); (N.Z.)
| | - Nadine Ziemert
- Applied Natural Products Genome Mining, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (A.G.); (N.Z.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; (I.H.); (J.K.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Department of Microbiology, Technical University of Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|
223
|
Sharma TSK, Hwa KY. Facile Synthesis of Ag/AgVO 3/N-rGO Hybrid Nanocomposites for Electrochemical Detection of Levofloxacin for Complex Biological Samples Using Screen-Printed Carbon Paste Electrodes. Inorg Chem 2021; 60:6585-6599. [PMID: 33878862 DOI: 10.1021/acs.inorgchem.1c00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silver vanadate nanorods (β-AgVO3) with silver nanoparticles (Ag-NPs) decorated on the surface of the rods were synthesized by using simple hydrothermal technique and later anchored onto nitrogen-doped reduced graphene oxide (N-rGO) to make a novel nanocomposite. Experimental analyses were carried out to identify the electronic configuration by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis, which revealed monoclinic patterns of the C12/m1 space group with Wulff construction forming beta silver vanadate (β-AgVO3) crystals with optical density and phase transformations. Ag nucleation showed consistent results with metallic formation and electronic changes occurring in [AgO5] and [AgO3] clusters. Transmission electron microscopy and field-emission scanning electron microscopy with elemental mapping and EDX analysis of the morphology reveals the nanorod structure for β-AgVO3 with AgNPs on the surface and sheets for N-rGO. Additionally, a novel electrochemical sensor is constructed by using Ag/AgVO3/N-rGO on screen-printed carbon paste electrodes for the detection of antiviral drug levofloxacin (LEV) which is used as a primary antibiotic in controlling COVID-19. Using differential pulse voltammetry, LEV is determined with a low detection limit of 0.00792 nm for a linear range of 0.09-671 μM with an ultrahigh sensitivity of 152.19 μA μM-1 cm-2. Furthermore, modified electrode performance is tested by real-time monitoring using biological and river samples.
Collapse
Affiliation(s)
- Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan.,Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan.,Center for Biomedical Industry, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan.,Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106, Taiwan.,Center for Biomedical Industry, National Taipei University of Technology, Taipei 106, Taiwan
| |
Collapse
|
224
|
Sharma B, Shahanshah MFH, Gupta S, Gupta V. Recent advances in the diagnosis of COVID-19: a bird's eye view. Expert Rev Mol Diagn 2021; 21:475-491. [PMID: 33423567 PMCID: PMC7938659 DOI: 10.1080/14737159.2021.1874354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The COVID-19 pandemic is still escalating and has shaped an extraordinary and pressing need for rapid diagnostics with high sensitivity and specificity. Prompt diagnosis is the key to mitigate this situation. As several diagnostic tools for COVID-19 are already available and others are still under development, mandating a comprehensive review of the efficacy of existing tools and evaluate the potential of others. AREAS COVERED Currently explored platforms for SARS-CoV-2 diagnostics and surveillance centered on qRT-PCR, RT-PCR, CRISPR, microarray, LAMP, lateral flow immunoassays, proteomics-based approaches, and radiological scans are overviewed and summarized in this review along with their advantages and downsides. A narrative literature review was carried out by accessing the freely available online databases to encapsulate the developments in medical diagnostics. EXPERT OPINION An ideal detection method should be sensitive, specific, rapid, cost-effective, and should allow early diagnosis of the infection as near as possible to the point of care that could alter the current situation for the better. Medical diagnostics is a highly dynamic field as no diagnostic method available for SARS-CoV-2 detection offers a perfect solution and requires more attention and continuous R&D to challenge the present-day pandemic situation.
Collapse
Affiliation(s)
- Bhawna Sharma
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | | | - Sanjay Gupta
- Independent Scholar Former Head and Professor, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| |
Collapse
|
225
|
Breunis LJ, Wassenaar S, Sibbles BJ, Aaldriks AA, Bijma HH, Steegers EAP, Koch BCP. Objective assessment of alcohol consumption in early pregnancy using phosphatidylethanol: a cross-sectional study. BMC Pregnancy Childbirth 2021; 21:342. [PMID: 33931032 PMCID: PMC8086351 DOI: 10.1186/s12884-021-03804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Background Alcohol consumption during pregnancy is associated with major birth defects and developmental disabilities. Questionnaires concerning alcohol consumption during pregnancy underestimate alcohol use while the use of a reliable and objective biomarker for alcohol consumption enables more accurate screening. Phosphatidylethanol can detect low levels of alcohol consumption in the previous two weeks. In this study we aimed to biochemically assess the prevalence of alcohol consumption during early pregnancy using phosphatidylethanol in blood and compare this with self-reported alcohol consumption. Methods To evaluate biochemically assessed prevalence of alcohol consumption during early pregnancy using phosphatidylethanol levels, we conducted a prospective, cross-sectional, single center study in the largest tertiary hospital of the Netherlands. All adult pregnant women who were under the care of the obstetric department of the Erasmus MC and who underwent routine blood testing at a gestational age of less than 15 weeks were eligible. No specified informed consent was needed. Results The study was conducted between September 2016 and October 2017. In total, we received 1,002 residual samples of 992 women. After applying in- and exclusion criteria we analyzed 684 samples. Mean gestational age of all included women was 10.3 weeks (SD 1.9). Of these women, 36 (5.3 %) tested positive for phosphatidylethanol, indicating alcohol consumption in the previous two weeks. Of women with a positive phosphatidylethanol test, 89 % (n = 32) did not express alcohol consumption to their obstetric care provider. Conclusions One in nineteen women consumed alcohol during early pregnancy with a high percentage not reporting this use to their obstetric care provider. Questioning alcohol consumption by an obstetric care provider did not successfully identify (hazardous) alcohol consumption. Routine screening with phosphatidylethanol in maternal blood can be of added value to identify women who consume alcohol during pregnancy.
Collapse
Affiliation(s)
- Leonieke J Breunis
- Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands.
| | - Sophie Wassenaar
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Barbara J Sibbles
- Department of Pediatrics, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Ab A Aaldriks
- Department of Psychiatry, Reinier de Graaf Hospital, Reinier de Graafweg 5, 2625 AD, Delft, the Netherlands
| | - Hilmar H Bijma
- Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Eric A P Steegers
- Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| |
Collapse
|
226
|
Antiochia R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. BIOSENSORS 2021; 11:110. [PMID: 33917183 PMCID: PMC8067807 DOI: 10.3390/bios11040110] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the state of the art of paper-based biosensors (PBBs) for coronavirus disease 2019 (COVID-19) detection. Three categories of PBB are currently being been used for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostics, namely for viral gene, viral antigen and antibody detection. The characteristics, the analytical performance, the advantages and drawbacks of each type of biosensor are highlighted and compared with traditional methods. It is hoped that this review will be useful for scientists for the development of novel PBB platforms with enhanced performance for helping to contain the COVID-19 outbreak, by allowing early diagnosis at the point of care (POC).
Collapse
Affiliation(s)
- Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
227
|
Determination of Antiviral Drugs and Their Metabolites Using Micro-Solid Phase Extraction and UHPLC-MS/MS in Reversed-Phase and Hydrophilic Interaction Chromatography Modes. Molecules 2021; 26:molecules26082123. [PMID: 33917128 PMCID: PMC8067820 DOI: 10.3390/molecules26082123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
Two new ultra-high performance liquid chromatography (UHPLC) methods for analyzing 21 selected antivirals and their metabolites were optimized, including sample preparation step, LC separation conditions, and tandem mass spectrometry detection. Micro-solid phase extraction in pipette tips was used to extract antivirals from the biological material of Hanks balanced salt medium of pH 7.4 and 6.5. These media were used in experiments to evaluate the membrane transport of antiviral drugs. Challenging diversity of physicochemical properties was overcome using combined sorbent composed of C18 and ion exchange moiety, which finally allowed to cover the whole range of tested antivirals. For separation, reversed-phase (RP) chromatography and hydrophilic interaction liquid chromatography (HILIC), were optimized using extensive screening of stationary and mobile phase combinations. Optimized RP-UHPLC separation was carried out using BEH Shield RP18 stationary phase and gradient elution with 25 mmol/L formic acid in acetonitrile and in water. HILIC separation was accomplished with a Cortecs HILIC column and gradient elution with 25 mmol/L ammonium formate pH 3 and acetonitrile. Tandem mass spectrometry (MS/MS) conditions were optimized in both chromatographic modes, but obtained results revealed only a little difference in parameters of capillary voltage and cone voltage. While RP-UHPLC-MS/MS exhibited superior separation selectivity, HILIC-UHPLC-MS/MS has shown substantially higher sensitivity of two orders of magnitude for many compounds. Method validation results indicated that HILIC mode was more suitable for multianalyte methods. Despite better separation selectivity achieved in RP-UHPLC-MS/MS, the matrix effects were noticed while using both chromatographic modes leading to signal enhancement in RP and signal suppression in HILIC.
Collapse
|
228
|
Gausi K, Wiesner L, Norman J, Wallis CL, Onyango‐Makumbi C, Chipato T, Haas DW, Browning R, Chakhtoura N, Montepiedra G, Aaron L, McCarthy K, Bradford S, Vhembo T, Stranix‐Chibanda L, Masheto GR, Violari A, Mmbaga BT, Aurpibul L, Bhosale R, Nevrekhar N, Rouzier V, Kabugho E, Mutambanengwe M, Chanaiwa V, Nyati M, Mhembere T, Tongprasert F, Hesseling A, Shin K, Zimmer B, Costello D, Jean‐Philippe P, Sterling TR, Theron G, Weinberg A, Gupta A, Denti P. Pharmacokinetics and Drug-Drug Interactions of Isoniazid and Efavirenz in Pregnant Women Living With HIV in High TB Incidence Settings: Importance of Genotyping. Clin Pharmacol Ther 2021; 109:1034-1044. [PMID: 32909316 PMCID: PMC8048881 DOI: 10.1002/cpt.2044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/30/2020] [Indexed: 01/11/2023]
Abstract
The World Health Organization guidelines recommend that individuals living with HIV receive ≥ 6 months of isoniazid preventive therapy, including pregnant women. Yet, plasma isoniazid exposure during pregnancy, in the antiretroviral therapy era, has not been well-described. We investigated pregnancy-induced and pharmacogenetic-associated pharmacokinetic changes and drug-drug interactions between isoniazid and efavirenz in pregnant women. Eight hundred forty-seven women received isoniazid for 28 weeks, either during pregnancy or at 12 weeks postpartum, and 786 women received efavirenz. After adjusting for NAT2 and CYP2B6 genotype and weight, pregnancy increased isoniazid and efavirenz clearance by 26% and 15%, respectively. Isoniazid decreased efavirenz clearance by 7% in CYP2B6 normal metabolizers and 13% in slow and intermediate metabolizers. Overall, both isoniazid and efavirenz exposures were reduced during pregnancy, but the main determinants of drug concentration were NAT2 and CYP2B6 genotypes, which resulted in a five-fold difference for both drugs between rapid and slow metabolizers.
Collapse
Affiliation(s)
- Kamunkhwala Gausi
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Lubbe Wiesner
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Jennifer Norman
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | | | | | - Tsungai Chipato
- Department of Obstetrics and GynaecologyUniversity of Zimbabwe College of Health SciencesHarareZimbabwe
| | - David W. Haas
- Departments of Medicine, Pharmacology, Pathology, Microbiology, and ImmunologyVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of Internal MedicineMeharry Medical CollegeNashvilleTennesseeUSA
| | - Renee Browning
- Division of AIDSNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Nahida Chakhtoura
- National Institutes of Health (NIH), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)BethesdaMarylandUSA
| | - Grace Montepiedra
- Center for Biostatistics in AIDS ResearchHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | - Lisa Aaron
- Center for Biostatistics in AIDS ResearchHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
| | | | | | - Tichaona Vhembo
- Department of Obstetrics and GynaecologyUniversity of Zimbabwe College of Health SciencesHarareZimbabwe
| | - Lynda Stranix‐Chibanda
- Department of Obstetrics and GynaecologyUniversity of Zimbabwe College of Health SciencesHarareZimbabwe
| | | | - Avy Violari
- The Perinatal HIV Research UnitUniversity of the WitwatersrandJohannesburgSouth Africa
| | | | - Linda Aurpibul
- Research Institute for Health SciencesChiang Mai UniversityChiang MaiThailand
| | | | - Neetal Nevrekhar
- Byramjee Jeejeebhoy Government College–Johns Hopkins Clinical Research SitePuneIndia
| | - Vanessa Rouzier
- Weill Cornell Center for Global Health New YorkNew YorkNew YorkUSA
- Centres GHESKIOPort‐au‐PrinceHaiti
| | | | - Mercy Mutambanengwe
- University of Zimbabwe College of Health Sciences Clinical Trials Research CentreHarareZimbabwe
| | - Vongai Chanaiwa
- University of Zimbabwe College of Health Sciences Clinical Trials Research CentreHarareZimbabwe
| | - Mandisa Nyati
- Perinatal HIV Research UnitUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Tsungai Mhembere
- University of Zimbabwe College of Health Sciences Clinical Trials Research CentreHarareZimbabwe
| | - Fuanglada Tongprasert
- Department of Obstetrics and GynecologyFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Anneke Hesseling
- Department of Paediatrics and Child HealthThe Desmond Tutu TB CenterStellenbosch UniversityTygerbergSouth Africa
| | - Katherine Shin
- Division of AIDSNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | | | | | - Patrick Jean‐Philippe
- Division of AIDSNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Timothy R. Sterling
- Vanderbilt Tuberculosis CenterVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Gerhard Theron
- Department of Obstetrics and GynaecologyStellenbosch UniversityCape TownSouth Africa
| | - Adriana Weinberg
- University of Colorado Denver Anschutz Medical CampusAuroraColoradoUSA
| | - Amita Gupta
- Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Paolo Denti
- Division of Clinical PharmacologyDepartment of MedicineUniversity of Cape TownCape TownSouth Africa
| | | |
Collapse
|
229
|
Electrochemical sensors as a versatile tool for the quantitative analysis of Vitamin B12. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01574-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
230
|
Ahmed RS, Mohammed RS. Assessment of uranium concentration in blood of Iraqi females diagnosed with breast cancer. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:193-201. [PMID: 33221962 DOI: 10.1007/s00411-020-00881-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/07/2020] [Indexed: 06/11/2023]
Abstract
Cancer is a widespread significant health problem in Iraq and contributes 11% to total deaths. Throughout the Gulf Wars of 1991 and 2003, about 1200 tons of ammunition were dropped around Iraq. After the wars, cancer incidence in Iraq is about 7,000 to 8,000 cancers cases per year, and the overall incidence of lymphoma, leukemia, breast cancer, and lung cancer has increased twofold and even tripled, as compared to the time before the wars. This increase could result from environmental pollution with radioactive materials including uranium, as cancer can be caused by ionizing radiation. To investigate this hypothesis, uranium concentration in the blood of 64 Iraqi females has been measured by means of CR-39 track etch detectors (42 blood samples collected from females diagnosed with breast cancer and 22 blood samples from females without breast cancer). The results show that the uranium concentrations ranged from 19.1 ± 0.3 to 238.4 ± 0.4 with an average value of 94.9 ± 5.0 ng L-1 in the blood of women with breast cancer and from 5.2 ± 0.2 to 18.7 ± 0.04 with an average value of 10.5 ± 0.1 ng L-1 in the blood of women without breast cancer. In comparison with the literature data, elevated levels of uranium concentration were recorded in both groups, and significantly higher average uranium concentrations were found in the blood of women with breast cancer as compared to those in the blood samples of women without breast cancer. It is concluded that there is a correlation between the incidence of breast cancer in Iraqi women and elevated levels of uranium concentrations in their blood. Whether this is a casual relationship is unclear, because cancer can be caused by various carcinogens, including environmental pollution in the region.
Collapse
Affiliation(s)
- Rasha S Ahmed
- Department of Physiology, College of Medicine, Al-Nahrain University, Alkadhimiya, PO box 70010, Baghdad, Iraq.
| | - Raghad S Mohammed
- Department of Physics, College of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
231
|
Abstract
Pulmonary arterial hypertension (PAH) occurs in women more than men whereas survival in men is worse than in women. In recent years, much research has been carried out to understand these sex differences in PAH. This article discusses clinical and preclinical studies that have investigated the influences of sex, serotonin, obesity, estrogen, estrogen synthesis, and estrogen metabolism on bone morphogenetic protein receptor type II signaling, the pulmonary circulation and right ventricle in both heritable and idiopathic pulmonary hypertension.
Collapse
Affiliation(s)
- Hannah Morris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland; Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Scotland
| | - Nina Denver
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Hicham Labazi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Kirsty Mair
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland.
| |
Collapse
|
232
|
Kim NS, Choi HS, Lim NY, Lee JH, Kim H, Baek SY. Application of Simultaneously Validated UHPLC-PDA and LC–ESI–MS/MS Methods for Determining 22 Antidepressants and Anxiolytics in Food Matrix Samples. Chromatographia 2021. [DOI: 10.1007/s10337-020-04000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
233
|
Fully automated peptide mapping multi-attribute method by liquid chromatography-mass spectrometry with robotic liquid handling system. J Pharm Biomed Anal 2021; 198:113988. [PMID: 33676166 DOI: 10.1016/j.jpba.2021.113988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 11/20/2022]
Abstract
The multi-attribute method (MAM) based on liquid chromatography (LC)-tandem mass spectrometry is emerging as a powerful tool to directly monitor multiple product quality attributes simultaneously. To better implement MAM, either for product characterization or for quality control (QC), there is a need for a robust, universal, and high-throughput workflow that can be broadly adopted in different laboratories with minimal barriers to implementation. Manual preparation of samples for MAM, however, is labor intensive and produces nontrivial variations across analysts and laboratories. We describe the development of a fully automated peptide mapping procedure with a high-throughput robotic liquid handling system to improve sample handling capacity and outcome reproducibility while saving analyst hands-on time. Our procedure features the automation of a "microdialysis" step, an efficient desalting approach prior to proteolytic digestion that optimizes digestion completeness and consistency each time. The workflow is completely hands-free and requires the analyst only to pre-normalize the sample concentrations and to load buffers and reagents at their designated positions on the robotic deck. The robotic liquid handler performs all the subsequent preparation steps and stores the digested samples on a chiller unit to await retrieval for further analysis. We also demonstrate that the manual and automated procedures are comparable with regard to protein sequence coverage, digestion completeness and consistency, and quantification of posttranslational modifications. Notably, in contrast to a previously reported automated sample preparation protocol that relied on customized accessories, all components in our automation procedure are commercial products that are readily available. In addition, we also present the high-throughput data analysis workflow by using Protein Metrics. The automation procedure can be applied cross-functionally in the biopharmaceutical industry and, given its practicality and reproducibility, can pave the way for MAM implementation in QC laboratories.
Collapse
|
234
|
van Beek SW, Ter Heine R, Alffenaar JWC, Magis-Escurra C, Aarnoutse RE, Svensson EM. A Model-Informed Method for the Purpose of Precision Dosing of Isoniazid in Pulmonary Tuberculosis. Clin Pharmacokinet 2021; 60:943-953. [PMID: 33615419 PMCID: PMC8249295 DOI: 10.1007/s40262-020-00971-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 11/26/2022]
Abstract
Background and Objective This study aimed to develop and evaluate a population pharmacokinetic model and limited sampling strategy for isoniazid to be used in model-based therapeutic drug monitoring. Methods A population pharmacokinetic model was developed based on isoniazid and acetyl-isoniazid pharmacokinetic data from seven studies with in total 466 patients from three continents. Three limited sampling strategies were tested based on the available sampling times in the dataset and practical considerations. The tested limited sampling strategies sampled at 2, 4, and 6 h, 2 and 4 h, and 2 h after dosing. The model-predicted area under the concentration–time curve from 0 to 24 h (AUC24) and the peak concentration from the limited sampling strategies were compared to predictions using the full pharmacokinetic curve. Bias and precision were assessed using the mean error (ME) and the root mean square error (RMSE), both expressed as a percentage of the mean model-predicted AUC24 or peak concentration on the full pharmacokinetic curve. Results Performance of the developed model was acceptable and the uncertainty in parameter estimations was generally low (the highest relative standard error was 39% coefficient of variation). The limited sampling strategy with sampling at 2 and 4 h was determined as most suitable with an ME of 1.1% and RMSE of 23.4% for AUC24 prediction, and ME of 2.7% and RMSE of 23.8% for peak concentration prediction. For the performance of this strategy, it is important that data on both isoniazid and acetyl-isoniazid are used. If only data on isoniazid are available, a limited sampling strategy using 2, 4, and 6 h can be employed with an ME of 1.7% and RMSE of 20.9% for AUC24 prediction, and ME of 1.2% and RMSE of 23.8% for peak concentration prediction. Conclusions A model-based therapeutic drug monitoring strategy for personalized dosing of isoniazid using sampling at 2 and 4 h after dosing was successfully developed. Prospective evaluation of this strategy will show how it performs in a clinical therapeutic drug monitoring setting. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-020-00971-2.
Collapse
Affiliation(s)
- Stijn W van Beek
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein zuid 10, 864, 6500 HB, Nijmegen, The Netherlands.
| | - Rob Ter Heine
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein zuid 10, 864, 6500 HB, Nijmegen, The Netherlands
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - Cecile Magis-Escurra
- Department of Respiratory Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein zuid 10, 864, 6500 HB, Nijmegen, The Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein zuid 10, 864, 6500 HB, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
235
|
Jia XX, Yao ZY, Gao ZX, Fan ZC. The Role of Suspension Array Technology in Rapid Detection of Foodborne Pollutants: Applications and Future Challenges. Crit Rev Anal Chem 2021; 52:1408-1421. [PMID: 33611988 DOI: 10.1080/10408347.2021.1882833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Food safety is an important livelihood issue, which has always been focused attention by countries and governments all over the world. As food supply chains are becoming global, food quality control is essential for consumer protection as well as for the food industry. In recent years, a great part of food analysis is carried out using new techniques for rapid detection. As the first biochip technology that has been approved by the Food and Drug Administration (FDA), there is an increasing interest in suspension array technology (SAT) for food and environmental analysis with advantages of rapidity, high accuracy, sensitivity, and throughput. Therefore, it is important for researchers to understand the development and application of this technology in food industry. Herein, we summarized the principle and composition of SAT and its application in food safety monitoring. The utility of SAT in detection of foodborne microorganisms, residues of agricultural and veterinary drugs, genetically modified food and allergens in recent years is elaborated, and the further development direction of SAT is envisaged.
Collapse
Affiliation(s)
- Xue-Xia Jia
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China.,Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zi-Yi Yao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhi-Xian Gao
- Institute of Environmental and Operational Medicine, Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin, P. R. China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, China International Scientific & Technological Cooperation Base for Health Biotechnology, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
236
|
Carpentieri D, Colvard A, Petersen J, Marsh W, David-Dirgo V, Huentelman M, Pirrotte P, Sivakumaran TA. Mind the Quality Gap When Banking on Dry Blood Spots. Biopreserv Biobank 2021; 19:136-142. [PMID: 33567235 DOI: 10.1089/bio.2020.0131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dry blood spots (DBS) offer many advantages over other blood banking protocols due to the reduction of time and equipment needed for collection and the ease of processing, storage, and shipment. In addition, the sample size makes it a very attractive method when considering the banking of small pediatric samples. On that note, the Centers for Disease Control and Prevention (CDC) preanalytical standards for DBS are commonly used in the worldwide mass spectrometry-based inborn errors of metabolism screening programs. However, these guidelines may not apply for analytes and protocols not included in these programs. In fact, the availability of leftover samples and the ongoing interest in protocols outside this scenario are providing us with new DBS biobanking insights. Herein, we review the literature for indicators that should be considered in the design of prospective fit for purpose DBS biobanks, especially for those focused mostly on pediatric and OMIC platforms.
Collapse
Affiliation(s)
- David Carpentieri
- Department of Pathology and Laboratory Medicine, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Amber Colvard
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Jackie Petersen
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - William Marsh
- Department of Biorepository, Mayo Clinic, Phoenix, Arizona, USA
| | - Victoria David-Dirgo
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matt Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - T A Sivakumaran
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
237
|
López-González RC, Juárez-Campusano YS, Rodríguez-Chávez JL, Delgado-Lamas G, Medrano SMA, Martínez-Peniche RÁ, Pacheco-Aguilar JR. Antagonistic Activity of Bacteria Isolated from Apple in Different Fruit Development Stages against Blue Mold Caused by Penicillium expansum. THE PLANT PATHOLOGY JOURNAL 2021; 37:24-35. [PMID: 33551694 PMCID: PMC7847758 DOI: 10.5423/ppj.oa.07.2020.0121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Blue mold caused by Penicillium expansum is one of the most significant postharvest diseases of apples. Some microorganisms associated with the surface of ripening apples possess the ability to inhibit the growth of P. expansum. However, the existing literature about their colonization in the stages before ripening is not explored in depth. This study aims to characterize the antagonistic capacity of bacterial populations from five fruit development stages of 'Royal Gala' apples. The results have shown that the density of the bacterial populations decreases throughout the ripening stages of fruit (from 1.0 × 105 to 1.1 × 101 cfu/cm2). A total of 25 bacterial morphotypes (corresponding to five genera identified by 16S RNA) were differentiated in which Bacillus stood out as a predominant genus. In the in vitro antagonism tests, 10 Bacillus strains (40%) inhibited the mycelial growth of P. expansum from 30.1% to 60.1%, while in fruit bioassays, the same strains reduced the fruit rot ranging from 12% to 66%. Moreover, the bacterial strains with antagonistic activity increased in the ripening fruit stage. B. subtilis subsp. spiziennii M24 obtained the highest antagonistic activity (66.9% of rot reduction). The matrix-assisted laser desorption ionization- time of flight mass spectrometry analysis revealed that bacteria with antagonistic activity produce antifungal lipopeptides from iturin and fengycin families.
Collapse
Affiliation(s)
| | - Yara Suhan Juárez-Campusano
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 7600, México
| | - José Luis Rodríguez-Chávez
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 7600, México
| | - Guillermo Delgado-Lamas
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Sofía María Arvizu Medrano
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 7600, México
| | - Ramón Álvar Martínez-Peniche
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 7600, México
| | - Juan Ramiro Pacheco-Aguilar
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 7600, México
| |
Collapse
|
238
|
Kim Y, Yeo I, Huh I, Kim J, Han D, Jang JY, Kim Y. Development and Multiple Validation of the Protein Multi-marker Panel for Diagnosis of Pancreatic Cancer. Clin Cancer Res 2021; 27:2236-2245. [PMID: 33504556 DOI: 10.1158/1078-0432.ccr-20-3929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To develop and validate a protein-based, multi-marker panel that provides superior pancreatic ductal adenocarcinoma (PDAC) detection abilities with sufficient diagnostic performance. EXPERIMENTAL DESIGN A total of 959 plasma samples from patients at multiple medical centers were used. To construct an optimal, diagnostic, multi-marker panel, we applied data preprocessing procedure to biomarker candidates. The multi-marker panel was developed using a training set comprised of 261 PDAC cases and 290 controls. Subsequent evaluations were performed in a validation set comprised of 65 PDAC cases and 72 controls. Further validation was performed in an independent set comprised of 75 PDAC cases and 47 controls. RESULTS A multi-marker panel containing 14 proteins was developed. The multi-marker panel achieved AUCs of 0.977 and 0.953 for the training set and validation set, respectively. In an independent validation set, the multi-marker panel yielded an AUC of 0.928. The diagnostic performance of the multi-marker panel showed significant improvements compared with carbohydrate antigen (CA) 19-9 alone (training set AUC = 0.977 vs. 0.872, P < 0.001; validation set AUC = 0.953 vs. 0.832, P < 0.01; independent validation set AUC = 0.928 vs. 0.771, P < 0.001). When the multi-marker panel and CA 19-9 were combined, the diagnostic performance of the combined panel was improved for all sets. CONCLUSIONS This multi-marker panel and the combined panel showed statistically significant improvements in diagnostic performance compared with CA 19-9 alone and has the potential to complement CA 19-9 as a diagnostic marker in clinical practice.
Collapse
Affiliation(s)
- Yoseop Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, College of Engineering, Seoul, Republic of South Korea
| | - Injoon Yeo
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of South Korea
| | - Iksoo Huh
- College of Nursing and Research Institute of Nursing Science, Seoul National University, Seoul, Republic of South Korea
| | - Jaenyeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, College of Engineering, Seoul, Republic of South Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of South Korea
| | - Jin-Young Jang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of South Korea.
| | - Youngsoo Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, College of Engineering, Seoul, Republic of South Korea. .,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of South Korea.,Institute of Bioengineering, Seoul National University, Seoul, Republic of South Korea
| |
Collapse
|
239
|
Huang X, Xu X, Partridge MA, Chen J, Koehler-Stec E, Sumner G, Qiu H, Torri A, Li N. Isotyping and Semi-Quantitation of Monkey Anti-Drug Antibodies by Immunocapture Liquid Chromatography-Mass Spectrometry. AAPS J 2021; 23:16. [PMID: 33404777 PMCID: PMC7788027 DOI: 10.1208/s12248-020-00538-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
There is an urgent demand to develop new technologies to characterize immunogenicity to biotherapeutics. Here, we developed an immunocapture LC-MS assay to isotype and semi-quantify monkey anti-drug antibodies (ADAs) to fully human monoclonal antibody (mAb) drugs. ADAs were isolated from serum samples using an immunocapture step with the Fab of the full-length mAb cross-linked to magnetic beads to minimize matrix interference. A positive monoclonal antibody control against the human immunoglobulin kappa light chain was used as a calibration standard for ADA quantitation. The final LC-MS method contains 17 multiple reaction monitoring (MRM) transitions and an optimized 15-min LC method. The results suggested that IgG1 was the most abundant isotype in ADA-positive samples. IgG2 and IgG4 were identified at lower levels, whereas IgG3 and IgA levels were only observed at very minor levels. In addition, levels of total ADA measured by the LC-MS assay were comparable to results obtained using a traditional ligand binding assay (LBA). The LC-MS ADA assay enabled rapid immunogenicity assessment with additional isotype information that LBAs cannot provide.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Xiaobin Xu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA.
| | - Michael A Partridge
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Jihua Chen
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Ellen Koehler-Stec
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Giane Sumner
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA.
| | - Albert Torri
- Bioanalytical Sciences, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| |
Collapse
|
240
|
Bressán IG, Giménez MI, Llesuy SF. Validation of a simple liquid chromatography coupled to tandem mass spectrometry method for the simultaneous determination of tacrolimus, sirolimus, everolimus and cyclosporin A in dried matrix on paper discs. J Mass Spectrom Adv Clin Lab 2021; 19:7-19. [PMID: 34820661 PMCID: PMC8601012 DOI: 10.1016/j.jmsacl.2021.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/02/2022] Open
Abstract
INTRODUCTION Due to its high specificity and sensitivity, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the gold standard method for immunosuppressant quantification in therapeutic drug monitoring. In this context, dried blood spots (DBS) have become a promising strategy as a sample collection procedure. Although the advantages of DBS over venipuncture are well known, this approach has limitations that strongly influence the acceptance of analytical results. Among them, the most important is hematocrit (Ht). The easiest way of overcoming this problem is by analyzing complete spots. In this strategy, called dried matrix on paper discs (DMPD), blood is volumetrically applied on pre-punched discs. OBJECTIVES To validate an LC-MS/MS method for the quantification of tacrolimus, sirolimus, everolimus and cyclosporin A using DMPD. METHODS The procedure was validated according to international guidelines using a commercial kit. The following performance parameters were evaluated: selectivity, carryover, linearity, accuracy, precision, lower limit of quantitation, relative recovery, commutability and stability. In addition, a method comparison study was performed to evaluate the clinical influence of Ht on the results. RESULTS All performance parameters were within acceptance criteria and, hence, it was determined that the validated method is fit for the intended purpose. Likewise, calculated bias values on medical decision levels showed that there was no clinical influence of Ht on the results. CONCLUSION Unlike other similar methodologies that have been published, here, a simple method has been fully validated. This is the first LC-MS/MS methodology adapting a commercial kit to use DMPD as a sampling strategy.
Collapse
Key Words
- C0, Pre-dose trough concentration
- C2, 2-hour post-dose concentration
- CS, Calibration standard
- CV%, Coefficient of variation
- DBS, Dried blood spots
- DMPS, Dried matrix on paper discs
- Dried matrix on paper discs (DMPD)
- ESI+, Positive electrospray source ionization mode
- Hematocrit
- Ht, Hematocrit
- ICb95%, 95% confidence interval for intercepts
- ICm95%, 95% confidence interval for slopes
- Immunosuppressants
- LC-MS/MS, Liquid chromatography coupled to tandem mass spectrometry
- LLOQ, Lower limit of quantitation
- LSS, Limited sampling strategy
- Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)
- Method comparison
- PCDBS, Pre-cut dried blood spots
- PDBS, Perforated dried blood spots
- PIs, Prediction intervals
- QC, Quality control samples
- R%, Relative recovery
- RE%, Percentage of the relative error
- ZnSO4·7H2O, Zinc sulfate heptahydrate
- [M+NH4]+, Ammoniated adduct
- mTOR, Mechanistic target of Rapamycin
Collapse
Affiliation(s)
- Ignacio Guillermo Bressán
- Laboratory of Mass Spectrometry, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Department of Chemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| | - María Isabel Giménez
- Laboratory of Mass Spectrometry, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Department of Clinical Biochemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| | - Susana Francisca Llesuy
- Department of Chemistry, Instituto Universitario Escuela de Medicina del Hospital Italiano, Buenos Aires, Argentina
| |
Collapse
|
241
|
de Koster N, Clark CP, Kohler I. Past, present, and future developments in enantioselective analysis using capillary electromigration techniques. Electrophoresis 2021; 42:38-57. [PMID: 32914880 PMCID: PMC7821218 DOI: 10.1002/elps.202000151] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/22/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Enantioseparation of chiral products has become increasingly important in a large diversity of academic and industrial applications. The separation of chiral compounds is inherently challenging and thus requires a suitable analytical technique that can achieve high resolution and sensitivity. In this context, CE has shown remarkable results so far. Chiral CE offers an orthogonal enantioselectivity and is typically considered less costly than chromatographic techniques, since only minute amounts of chiral selectors are needed. Several CE approaches have been developed for chiral analysis, including chiral EKC and chiral CEC. Enantioseparations by EKC benefit from the wide variety of possible pseudostationary phases that can be employed. Chiral CEC, on the other hand, combines chromatographic separation principles with the bulk fluid movement of CE, benefitting from reduced band broadening as compared to pressure-driven systems. Although UV detection is conventionally used for these approaches, MS can also be considered. CE-MS represents a promising alternative due to the increased sensitivity and selectivity, enabling the chiral analysis of complex samples. The potential contamination of the MS ion source in EKC-MS can be overcome using partial-filling and counter-migration techniques. However, chiral analysis using monolithic and open-tubular CEC-MS awaits additional method validation and a dedicated commercial interface. Further efforts in chiral CE are expected toward the improvement of existing techniques, the development of novel pseudostationary phases, and establishing the use of chiral ionic liquids, molecular imprinted polymers, and metal-organic frameworks. These developments will certainly foster the adoption of CE(-MS) as a well-established technique in routine chiral analysis.
Collapse
Affiliation(s)
- Nicky de Koster
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Charles P. Clark
- Leiden Academic Centre for Drug Research, Division of Systems Biomedicine and PharmacologyLeiden UniversityLeidenThe Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
242
|
Gastelum-Arellanez A, Esquivel-Días J, Lopez-Padilla R, Robledo VH, Paulina R, Beltrán MF, Saucedo-Lucero JO. Assessment of persistent indoor VOCs inside public transport during winter season. CHEMOSPHERE 2021; 263:128127. [PMID: 33297116 DOI: 10.1016/j.chemosphere.2020.128127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
The present work intends to analyze the pollution level at the indoor environments of the public transport units of León Guanajuato, Mexico during winter season. An identification and quantification of persistent organic pollutants were carried out within three of the principal bus lines of the city in order to determine their possible origin, the differences in the levels of contamination between routes, and the potential risk to the health of the users, these analyses were carried out with different statistical techniques (ANOVA, PCA, and correlation network maps). Fourteen different organic compounds were identified as persistent pollutants. Although toluene and hexane were the compounds that were detected at the highest concentrations (average of 86.52 ± 56.1 μg m-3 and 183.33 ± 10.7 μg m-3, respectively), the correlation analysis showed that xylene, styrene, and ethylbenzene were the compounds that were mostly related to the other compounds identified as persistent. Otherwise, the statistical analysis of the concentration of these pollutants allowed to establish the fuel combustion vapors as the main source of these compounds. In the same way, the potential exposition health risk to the users were calculated in accordance to the Environmental Protection Agency of United States on those commuters grouped as students and workers. This analysis shown that the xylenes are the most representative organic pollutant in this particulate indoor spaces, and is the one with potential to generate a greater risk to the health of the bus-users, this without demising the potential danger of other pollutants.
Collapse
Affiliation(s)
- Argel Gastelum-Arellanez
- CIATEC AC, Centro de Innovación Aplicada en Tecnologías Competitivas, León México, Omega No. 201 Col. Industrial Delta C.P, 37545, León, Gto, Mexico; Cátedra CONACYT, Centro de Innovación Aplicada en Tecnologías Competitivas (CIATEC AC), Omega No. 201, Col. Industrial Delta C.P., 37545, León, Gto, Mexico
| | - Jovanni Esquivel-Días
- CIATEC AC, Centro de Innovación Aplicada en Tecnologías Competitivas, León México, Omega No. 201 Col. Industrial Delta C.P, 37545, León, Gto, Mexico
| | - Rigoberto Lopez-Padilla
- Universidad de Guanajuato, Departamento de Ingeniería Electrónica, División de Ingenierías Campus Irapuato-Salamanca, Mexico
| | - Víctor Hugo Robledo
- CIATEC AC, Centro de Innovación Aplicada en Tecnologías Competitivas, León México, Omega No. 201 Col. Industrial Delta C.P, 37545, León, Gto, Mexico
| | - Rodríguez Paulina
- CIATEC AC, Centro de Innovación Aplicada en Tecnologías Competitivas, León México, Omega No. 201 Col. Industrial Delta C.P, 37545, León, Gto, Mexico
| | - Mónica Fabiola Beltrán
- CIATEC AC, Centro de Innovación Aplicada en Tecnologías Competitivas, León México, Omega No. 201 Col. Industrial Delta C.P, 37545, León, Gto, Mexico
| | - José Octavio Saucedo-Lucero
- CIATEC AC, Centro de Innovación Aplicada en Tecnologías Competitivas, León México, Omega No. 201 Col. Industrial Delta C.P, 37545, León, Gto, Mexico.
| |
Collapse
|
243
|
Auclair J, Rathore AS. The Multi-Attribute Method (MAM) for the Characterization of Biopharmaceuticals. LCGC NORTH AMERICA 2021. [DOI: 10.56530/lcgc.na.gi5577l2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade or so, biopharmaceuticals have gained market share and become more complex in their composition. Therefore, new analytical workflows are needed to address these advances, and one of those workflows that has gained substantial traction over the last several years is the multi-attribute method (MAM). MAM was originally developed to be used throughout the product life cycle, from process development through quality control, and has become even more popular as quality by design (QbD) has become a more prevalent approach for biopharmaceutical development. MAM is designed to monitor critical quality attributes (CQAs) simultaneously and directly, such as sequence, post-translational modifications, and impurities, making it a more streamlined and productive workflow for biopharmaceutical analysis. In this column, we will discuss the role of liquid chromatography and mass spectrometry in MAM, as well as other new technologies and anticipated advances of MAM that are on the horizon.
Collapse
|
244
|
Indapurkar AS, Eangoor P, Yeh JS, Vakkalanka M, Cashman JR, Knaack JS. A Method for Diagnosing Organophosphate Pesticide Exposure in Humans using Liquid Chromatography Coupled Tandem Mass Spectrometry. J Anal Toxicol 2020; 46:bkaa197. [PMID: 33367644 DOI: 10.1093/jat/bkaa197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022] Open
Abstract
Organophosphate (OP) pesticides are commonly utilized worldwide for agricultural purposes and pose a health threat through air, ground, and water contamination. Here, we present a convenient method for diagnosing exposure to OP pesticides in humans. This immunoprecipitation method relies on extraction of butyrylcholinesterase (BChE), a biomarker of OP poisoning that adducts OP compounds, from human serum using agarose beads conjugated to anti-BChE antibodies. Extracted BChE was then digested with pepsin and analyzed for unadducted and OP-adducted peptides by high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). To characterize and validate this method, pooled human plasma was exposed to parathion and dichlorvos to form diethoxyphospho, aged ethoxyphospho and dimethoxyphospho adducts with BChE. Untreated plasma was also analyzed for unadducted peptides. Additionally, samples were analyzed using Ellman's assay to measure BChE functional activity. The percent inhibition of BChE was 53.5±5.76 and 95.2±0.37%, respectively, for plasma treated with parathion for 1 hour and 24 hours. The percent inhibition was 97.2±0.98 for plasma treated with dichlorvos for 1 hour. The percent inhibition was 97.9±0.41% when the plasma treated with parathion for 1 hour, parathion for 24 hour and dichlorvos for 1 hour were mixed. Individual adducts were quantified in a single chromatographic run. Untreated plasma contained 26.4±1.87 ng/mL of unadducted BChE and no adducted peptides. In contrast, the plasma sample treated with both pesticides contained no unadducted BChE, but did contain 9.46±1.10, 10.9±0.98 and 14.1±1.10 ng/mL of diethoxyphospho, aged-ethoxy, and dimethoxyphospho peptides, respectively. The ability to identify and measure BChE and BChE adducts to parathion and dichlorvos is expected to be useful for diagnosing human exposure to multiple OP pesticides.
Collapse
Affiliation(s)
- Amruta S Indapurkar
- Department of Pharmaceutical Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia, 30341, United States
| | - Padmanabhan Eangoor
- Department of Pharmaceutical Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia, 30341, United States
| | - Jihee Stephanie Yeh
- Department of Pharmaceutical Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia, 30341, United States
| | - Manideepika Vakkalanka
- Department of Pharmaceutical Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia, 30341, United States
| | - John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, California, 92121, United States
| | - Jennifer S Knaack
- Department of Pharmaceutical Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia, 30341, United States
| |
Collapse
|
245
|
Makey DM, Shchurik V, Wang H, Lhotka HR, Stoll DR, Vazhentsev A, Mangion I, Regalado EL, Ahmad IAH. Mapping the Separation Landscape in Two-Dimensional Liquid Chromatography: Blueprints for Efficient Analysis and Purification of Pharmaceuticals Enabled by Computer-Assisted Modeling. Anal Chem 2020; 93:964-972. [PMID: 33301312 DOI: 10.1021/acs.analchem.0c03680] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent developments in two-dimensional liquid chromatography (2D-LC) now make separation and analysis of very complex mixtures achievable. Despite being such a powerful chromatographic tool, current 2D-LC technology requires a series of arduous method development activities poorly suited for a fast-paced industrial environment. Recent introductions of new technologies including active solvent modulation and a support for multicolumn 2D-LC are helping to overcome this stigma. However, many chromatography practitioners believe that the lack of a systematic way to effectively optimize 2D-LC separations is a missing link in securing the viability of 2D-LC as a mainstay for industrial applications. In this work, a computer-assisted modeling approach that dramatically simplifies both offline and online 2D-LC method developments is introduced. Our methodology is based on mapping the separation landscape of pharmaceutically relevant mixtures across both first (1D) and second (2D) dimensions using LC Simulator (ACD/Labs) software. Retention models for 1D and 2D conditions were built using a minimal number of multifactorial modeling experiments (2 × 2 or 3 × 3 parameters: gradient slope, column temperature, and different column and mobile phase combinations). The approach was first applied to online 2D-LC analysis involving achiral and chiral separations of complex mixtures of enantiomeric species. In these experiments, the retention models proved to be quite accurate for both the 1D and 2D separations, with retention time differences between experiments and simulations of less than 3.5%. This software-based concept was also demonstrated for offline 2D-LC purification of drug substances.
Collapse
Affiliation(s)
- Devin M Makey
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States.,Department of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Vladimir Shchurik
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Hayley R Lhotka
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States.,Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States
| | - Andrey Vazhentsev
- Advanced Chemistry Development, Inc., Toronto, Ontario M5C 1B5, Canada
| | - Ian Mangion
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
246
|
Agadellis E, Tartaglia A, Locatelli M, Kabir A, Furton KG, Samanidou V. Mixed-mode fabric phase sorptive extraction of multiple tetracycline residues from milk samples prior to high performance liquid chromatography-ultraviolet analysis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
247
|
Vernerová A, Kujovská Krčmová L, Melichar B, Švec F. Non-invasive determination of uric acid in human saliva in the diagnosis of serious disorders. Clin Chem Lab Med 2020; 59:797-812. [PMID: 33554551 DOI: 10.1515/cclm-2020-1533] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 11/15/2022]
Abstract
This review summarizes and critically evaluates the published approaches and recent trends in sample pre-treatment, as well as both separation and non-separation techniques used for the determination of uric acid (UA) in saliva. UA is the final product of purine nucleotide catabolism in humans. UA concentrations in biological fluids such as serum, plasma, and urine represent an important biomarker of diseases including gout, hyperuricemia, or disorders associated with oxidative stress. Previous studies reported correlation between UA concentrations detected in saliva and in the blood. The interest in UA has been increasing during the past 20 years from a single publication in 2000 to 34 papers in 2019 according to MEDLINE search using term "uric acid in saliva". The evaluation of salivary UA levels can contribute to non-invasive diagnosis of many serious diseases. Increased salivary UA concentration is associated with cancer, HIV, gout, and hypertension. In contrast, low UA levels are associated with Alzheimer disease, progression of multiple sclerosis, and mild cognitive impairment.
Collapse
Affiliation(s)
- Andrea Vernerová
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.,The Department of Clinical Biochemistry and Diagnostics, University Hospital, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.,The Department of Clinical Biochemistry and Diagnostics, University Hospital, Hradec Králové, Czech Republic
| | - Bohuslav Melichar
- The Department of Oncology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - František Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
248
|
Simultaneous Monitoring and Comparison of Multiple Product Quality Attributes for Cell Culture Processes at Different Scales Using a LC/MS/MS Based Multi-Attribute Method. J Pharm Sci 2020; 109:3319-3329. [DOI: 10.1016/j.xphs.2020.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2023]
|
249
|
Abstract
Biological signaling pathways are underpinned by protein switches that sense and respond to molecular inputs. Inspired by nature, engineered protein switches have been designed to directly transduce analyte binding into a quantitative signal in a simple, wash-free, homogeneous assay format. As such, they offer great potential to underpin point-of-need diagnostics that are needed across broad sectors to improve access, costs, and speed compared to laboratory assays. Despite this, protein switch assays are not yet in routine diagnostic use, and a number of barriers to uptake must be overcome to realize this potential. Here, we review the opportunities and challenges in engineering protein switches for rapid diagnostic tests. We evaluate how their design, comprising a recognition element, reporter, and switching mechanism, relates to performance and identify areas for improvement to guide further optimization. Recent modular switches that enable new analytes to be targeted without redesign are crucial to ensure robust and efficient development processes. The importance of translational steps toward practical implementation, including integration into a user-friendly device and thorough assay validation, is also discussed.
Collapse
Affiliation(s)
- Hope Adamson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lars J. C. Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
250
|
Adrait A, Dumonceau JM, Delhaye M, Annessi-Ramseyer I, Frossard JL, Couté Y, Farina A. Liquid Biopsy of Bile based on Targeted Mass Spectrometry for the Diagnosis of Malignant Biliary Strictures. Clin Transl Sci 2020; 14:148-152. [PMID: 33048472 PMCID: PMC7877827 DOI: 10.1111/cts.12890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Bile holds biomarkers of malignant biliary strictures (MBS) but is unsuited for automated analyzers used in routine diagnostic laboratories. Selected reaction monitoring (SRM) is a flexible high‐throughput analytical approach based on targeted mass spectrometry (MS) already implemented in clinical settings. We tested the hypothesis that SRM could be used to quantify cancer biomarkers in human bile. An SRM‐based assay was developed to simultaneously quantify up to 37 peptides from 13 bile proteins in a developmental cohort of 15 patients (MBS, n = 8; benign biliary stricture or obstruction (BBS), n = 7). The most reliable biomarkers were then absolutely quantified by SRM in a verification cohort of 67 patients (MBS, n = 37; BBS, n = 30). The diagnostic performances of single and combined biomarkers were assessed. In the developmental cohort, SRM‐based analysis revealed six protein biomarkers with significantly higher peptide ratios (endogenous vs. standard) in bile from MBS vs. BBS. In the verification cohort, five of these biomarkers proved good diagnostic ability (individual receiver operating characteristic‐area under the receiver operating characteristic curve (ROC‐AUC) up to 0.889, accuracies from 67.8% to 83.1%). Combining bile biomarkers and serum CA19‐9 in 2 panels allowed differentiating MBS from BBS with up to 0.929 ROC‐AUC and 89.8% accuracy. In this study, a newly developed SRM‐based assay proved able to simultaneously quantify multiple biomarkers in bile samples. The combination of bile biomarkers with serum CA19‐9 was highly accurate for the diagnosis of MBS. Liquid biopsy of bile based on targeted MS is eligible to support MBS diagnosis in clinical practice.
Collapse
Affiliation(s)
- Annie Adrait
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | | | - Myriam Delhaye
- Department of Gastroenterology, Hepatopancreatology and GI Oncology, Erasme University Hospital, Brussels, Belgium
| | | | - Jean-Louis Frossard
- Department of Medicine, Geneva University, Geneva, Switzerland.,Division of Gastroenterology, Geneva University Hospitals, Geneva, Switzerland
| | - Yohann Couté
- University Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble, France
| | - Annarita Farina
- Department of Medicine, Geneva University, Geneva, Switzerland.,Division of Gastroenterology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|