251
|
Aries ML, Cloninger MJ. NMR Hydrophilic Metabolomic Analysis of Bacterial Resistance Pathways Using Multivalent Antimicrobials with Challenged and Unchallenged Wild Type and Mutated Gram-Positive Bacteria. Int J Mol Sci 2021; 22:ijms222413606. [PMID: 34948402 PMCID: PMC8715671 DOI: 10.3390/ijms222413606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022] Open
Abstract
Multivalent membrane disruptors are a relatively new antimicrobial scaffold that are difficult for bacteria to develop resistance to and can act on both Gram-positive and Gram-negative bacteria. Proton Nuclear Magnetic Resonance (1H NMR) metabolomics is an important method for studying resistance development in bacteria, since this is both a quantitative and qualitative method to study and identify phenotypes by changes in metabolic pathways. In this project, the metabolic differences between wild type Bacillus cereus (B. cereus) samples and B. cereus that was mutated through 33 growth cycles in a nonlethal dose of a multivalent antimicrobial agent were identified. For additional comparison, samples for analysis of the wild type and mutated strains of B. cereus were prepared in both challenged and unchallenged conditions. A C16-DABCO (1,4-diazabicyclo-2,2,2-octane) and mannose functionalized poly(amidoamine) dendrimer (DABCOMD) were used as the multivalent quaternary ammonium antimicrobial for this hydrophilic metabolic analysis. Overall, the study reported here indicates that B. cereus likely change their peptidoglycan layer to protect themselves from the highly positively charged DABCOMD. This membrane fortification most likely leads to the slow growth curve of the mutated, and especially the challenged mutant samples. The association of these sample types with metabolites associated with energy expenditure is attributed to the increased energy required for the membrane fortifications to occur as well as to the decreased diffusion of nutrients across the mutated membrane.
Collapse
|
252
|
Chacko S, Haseeb YB, Haseeb S. Metabolomics Work Flow and Analytics in Systems Biology. Curr Mol Med 2021; 22:870-881. [PMID: 34923941 DOI: 10.2174/1566524022666211217102105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022]
Abstract
Metabolomics is an omics approach of systems biology that involves the development and assessment of large-scale, comprehensive biochemical analysis tools for metabolites in biological systems. This review describes the metabolomics workflow and provides an overview of current analytic tools used for the quantification of metabolic profiles. We explain analytic tools such as mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, ionization techniques, and approaches for data extraction and analysis.
Collapse
Affiliation(s)
- Sanoj Chacko
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Yumna B Haseeb
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sohaib Haseeb
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
253
|
Mallol R, Vallvé JC, Solà R, Girona J, Bergmann S, Correig X, Rock E, Winklhofer-Roob BM, Rehues P, Guardiola M, Masana L, Ribalta J. Statistical mediation of the relationships between chronological age and lipoproteins by nonessential amino acids in healthy men. Comput Struct Biotechnol J 2021; 19:6169-6178. [PMID: 34900130 PMCID: PMC8632714 DOI: 10.1016/j.csbj.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/26/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
Aging is a major risk factor for metabolic impairment that may lead to age-related diseases such as cardiovascular disease. Different mechanisms that may explain the interplay between aging and lipoproteins, and between aging and low-molecular-weight metabolites (LMWMs), in the metabolic dysregulation associated with age-related diseases have been described separately. Here, we statistically evaluated the possible mediation effects of LMWMs on the relationships between chronological age and lipoprotein concentrations in healthy men ranging from 19 to 75 years of age. Relative and absolute concentrations of LMWMs and lipoproteins, respectively, were assessed by nuclear magnetic resonance (NMR) spectroscopy. Multivariate linear regression and mediation analysis were conducted to explore the associations between age, lipoproteins and LMWMs. The statistical significance of the identified mediation effects was evaluated using the bootstrapping technique, and the identified mediation effects were validated on a publicly available dataset. Chronological age was statistically associated with five lipoprotein classes and subclasses. The mediation analysis showed that serine mediated 24.1% (95% CI: 22.9 – 24.7) of the effect of age on LDL-P, and glutamate mediated 17.9% (95% CI: 17.6 – 18.5) of the effect of age on large LDL-P. In the publicly available data, glutamate mediated the relationship between age and an NMR-derived surrogate of cholesterol. Our results suggest that the age-related increase in LDL particles may be mediated by a decrease in the nonessential amino acid glutamate. Future studies may contribute to a better understanding of the potential biological role of glutamate and LDL particles in aging mechanisms and age-related diseases.
Collapse
Affiliation(s)
- Roger Mallol
- La Salle, Ramon Llull University, Barcelona, Spain.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Joan Carles Vallvé
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Rosa Solà
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josefa Girona
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xavier Correig
- Metabolomics Platform, Department of Electronic Engineering, Rovira i Virgili University, IISPV, Tarragona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Edmond Rock
- UMMM, INRA-Theix, St. Genes Champanelle, France
| | - Brigitte M Winklhofer-Roob
- Human Nutrition and Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
| | - Pere Rehues
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Montse Guardiola
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lluís Masana
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josep Ribalta
- Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Rovira i Virgili University, IISPV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
254
|
The Preventive Effect of Cardiac Sympathetic Denervation Induced by 6-OHDA on Myocardial Ischemia-Reperfusion Injury: The Changes of lncRNA/circRNAs-miRNA-mRNA Network of the Upper Thoracic Spinal Cord in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2492286. [PMID: 34880964 PMCID: PMC8648479 DOI: 10.1155/2021/2492286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
In this study, we investigated whether chemical 6-hydroxydopamine (6-OHDA) stimuli caused cardiac sympathetic denervation (SD), and we analyzed gene expression profiles to determine the changes in the lncRNA/circRNAs-miRNA-mRNA network in the affected spinal cord segments to identify putative target genes and molecular pathways in rats with myocardial ischemia–reperfusion injury (MIRI). Our results showed that cardiac sympathetic denervation induced by 6-OHDA alleviated MIRI. Compared with the ischemia reperfusion (IR, MIRI model) group, there were 148 upregulated and 51 downregulated mRNAs, 165 upregulated and 168 downregulated lncRNAs, 70 upregulated and 52 downregulated circRNAs, and 12 upregulated and 11 downregulated miRNAs in the upper thoracic spinal cord of the SD-IR group. Furthermore, we found that the differential genes related to cellular components were mainly enriched in extracellular and cortical cytoskeleton, and molecular functions were mainly enriched in chemokine activity. Pathway analysis showed that the differentially expressed genes were mainly related to the interaction of cytokines and cytokine receptors, sodium ion reabsorption, cysteine and methionine metabolism, mucoglycan biosynthesis, cGMP-PKG signaling pathway, and MAPK signaling pathway. In conclusion, the lncRNA/circRNAs-miRNA-mRNA networks in the upper thoracic spinal cord play an important role in the preventive effect of cardiac sympathetic denervation induced by 6-OHDA on MIRI, which offers new insights into the pathogenesis of MIRI and provides new targets for MIRI.
Collapse
|
255
|
Hosseini E, Ghasemi JB, Daraei B, Asadi G, Adib N. Near-infrared spectroscopy and machine learning-based classification and calibration methods in detection and measurement of anionic surfactant in milk. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
256
|
Chandran J, Bellad A, Ramarajan MG, Rangiah K. Applications of quantitative metabolomics to revolutionize early diagnosis of inborn errors of metabolism in India. ANALYTICAL SCIENCE ADVANCES 2021; 2:546-563. [PMID: 38715861 PMCID: PMC10989570 DOI: 10.1002/ansa.202100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/05/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2024]
Abstract
Inborn errors of metabolism (IEMs) are a group of disorders caused by disruption of metabolic pathways, which leads to accumulation, decreased circulating levels, or increased excretion of metabolites as a consequence of the underlying genetic defects. These heterogeneous groups of disorders cause significant neonatal and infant mortality across the whole world and it is of utmost concern for developing countries like India owing to lack of awareness and standard preventive strategies like newborn screening (NBS). Though the predictive cumulative incidence of IEMs is said to be ∼1:800 newborns, data pertaining to the true prevalence of individual IEMs is not available in the context of Indian population. There is a need for a large population-based study to get a clear picture of the prevalence of different IEMs. One of the best ways to screen for IEMs is by applying advanced liquid chromatography-mass spectrometry (LC-MS) technology using a quantitative metabolomics approaches such as selected or multiple reaction monitoring (SRM or MRM). Recent developments in LC-MS/MRM based quantification of marker metabolites in newborns have opened a novel opportunity to screen multiple disorders simultaneously from a minuscule volume of biological fluids. In this review article, we have highlighted how LC-MS/MRM based metabolomics approach with its high sensitivity and diagnostic capability can make an impact on the nation's public health through NBS programs.
Collapse
Affiliation(s)
| | - Anikha Bellad
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Madan Gopal Ramarajan
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kannan Rangiah
- Institute of BioinformaticsBangaloreKarnatakaIndia
- Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
257
|
McMichael LE, Heath H, Johnson CM, Fanter R, Alarcon N, Quintana-Diaz A, Pilolla K, Schaffner A, Jelalian E, Wing RR, Brito A, Phelan S, La Frano MR. Metabolites involved in purine degradation, insulin resistance, and fatty acid oxidation are associated with prediction of Gestational diabetes in plasma. Metabolomics 2021; 17:105. [PMID: 34837546 PMCID: PMC8741304 DOI: 10.1007/s11306-021-01857-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) significantly increases maternal and fetal health risks, but factors predictive of GDM are poorly understood. OBJECTIVES Plasma metabolomics analyses were conducted in early pregnancy to identify potential metabolites associated with prediction of GDM. METHODS Sixty-eight pregnant women with overweight/obesity from a clinical trial of a lifestyle intervention were included. Participants who developed GDM (n = 34; GDM group) were matched on treatment group, age, body mass index, and ethnicity with those who did not develop GDM (n = 34; Non-GDM group). Blood draws were completed early in pregnancy (10-16 weeks). Plasma samples were analyzed by UPLC-MS using three metabolomics assays. RESULTS One hundred thirty moieties were identified. Thirteen metabolites including pyrimidine/purine derivatives involved in uric acid metabolism, carboxylic acids, fatty acylcarnitines, and sphingomyelins (SM) were different when comparing the GDM vs. the Non-GDM groups (p < 0.05). The most significant differences were elevations in the metabolites' hypoxanthine, xanthine and alpha-hydroxybutyrate (p < 0.002, adjusted p < 0.02) in GDM patients. A panel consisting of four metabolites: SM 14:0, hypoxanthine, alpha-hydroxybutyrate, and xanthine presented the highest diagnostic accuracy with an AUC = 0.833 (95% CI: 0.572686-0.893946), classifying as a "very good panel". CONCLUSION Plasma metabolites mainly involved in purine degradation, insulin resistance, and fatty acid oxidation, were altered in early pregnancy in connection with subsequent GDM development.
Collapse
Affiliation(s)
- Lauren E McMichael
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Hannah Heath
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Rob Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Noemi Alarcon
- Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407, USA
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Adilene Quintana-Diaz
- Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407, USA
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Kari Pilolla
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Andrew Schaffner
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA
- Department of Statistics, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Elissa Jelalian
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Rena R Wing
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow Medical University, Moscow, Russia
- World-Class Research Center Digital Biodesign and Personalized Healthcare, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Suzanne Phelan
- Department of Kinesiology and Public Health, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407, USA
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA.
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA, USA.
- Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, USA.
| |
Collapse
|
258
|
Culberson AL, Chilmonczyk MA, Kottke PA, Bowles-Welch AC, Ghoshal D, Fedorov AG. Sample-to-analysis platform for rapid intracellular mass spectrometry from small numbers of cells. LAB ON A CHIP 2021; 21:4696-4706. [PMID: 34751694 PMCID: PMC8721559 DOI: 10.1039/d1lc00884f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Real-time, advanced diagnostics of the biochemical state within cells remains a significant challenge for research and development, production, and application of cell-based therapies. The fundamental biochemical processes and mechanisms of action of such advanced therapies are still largely unknown, including the critical quality attributes that correlate to therapeutic function, performance, and potency and the critical process parameters that impact quality throughout cell therapy manufacturing. An integrated microfluidic platform has been developed for in-line analysis of a small number of cells via direct infusion nano-electrospray ionization mass spectrometry. Central to this platform is a microfabricated cell processing device that prepares cells from limited sample volumes removed directly from cell culture systems. The sample-to-analysis workflow overcomes the labor intensive, time-consuming, and destructive nature of existing mass spectrometry approaches for analysis of cells. By providing rapid, high-throughput analyses of the intracellular state, this platform enables untargeted discovery of critical quality attributes and their real-time, in-process monitoring.
Collapse
Affiliation(s)
- Austin L Culberson
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Mason A Chilmonczyk
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Peter A Kottke
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Annie C Bowles-Welch
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrei G Fedorov
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
259
|
Abstract
Enzymes are represented across a vast space of protein sequences and structural forms and have activities that far exceed the best chemical catalysts; however, engineering them to have novel or enhanced activity is limited by technologies for sensing product formation. Here, we describe a general and scalable approach for characterizing enzyme activity that uses the metabolism of the host cell as a biosensor by which to infer product formation. Since different products consume different molecules in their synthesis, they perturb host metabolism in unique ways that can be measured by mass spectrometry. This provides a general way by which to sense product formation, to discover unexpected products and map the effects of mutagenesis. The testing of engineered enzymes represents a bottleneck. Here the authors report a screening method combining microfluidics and mass spectrometry, to map the catalysis of a mutated enzyme, characterise the range of products generated and recover the sequences of variants with desired activities.
Collapse
|
260
|
Gupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, Kumar R, Gautam V. Mass Spectrometry-Based Technology and Workflows for Studying the Chemistry of Fungal Endophyte Derived Bioactive Compounds. ACS Chem Biol 2021; 16:2068-2086. [PMID: 34724607 DOI: 10.1021/acschembio.1c00581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive compounds have gained substantial attention in research and have conferred great advancements in the industrial and pharmacological fields. Highly diverse fungi and their metabolome serve as a big platform to be explored for their diverse bioactive compounds. Omics tools coupled with bioinformatics, statistical, and well-developed algorithm tools have elucidated immense knowledge about fungal endophyte derived bioactive compounds. Further, these compounds are subjected to chromatography-gas chromatography and liquid chromatography (LC), spectroscopy-nuclear magnetic resonance (NMR), and "soft ionization" technique-matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) based analytical techniques for structural characterization. The mass spectrometry (MS)-based approach, being highly sensitive, reproducible, and reliable, produces quick and high-profile identification. Coupling these techniques with MS has resulted in a descriptive account of the identification and quantification of fungal endophyte derived bioactive compounds. This paper emphasizes the workflows of the above-mentioned techniques, their advancement, and future directions to study the unraveled area of chemistry of fungal endophyte-derived bioactive compounds.
Collapse
Affiliation(s)
- Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Brijesh Kumar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| |
Collapse
|
261
|
Single-Cell Multiomics Analysis for Drug Discovery. Metabolites 2021; 11:metabo11110729. [PMID: 34822387 PMCID: PMC8623556 DOI: 10.3390/metabo11110729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 02/02/2023] Open
Abstract
Given the heterogeneity seen in cell populations within biological systems, analysis of single cells is necessary for studying mechanisms that cannot be identified on a bulk population level. There are significant variations in the biological and physiological function of cell populations due to the functional differences within, as well as between, single species as a result of the specific proteome, transcriptome, and metabolome that are unique to each individual cell. Single-cell analysis proves crucial in providing a comprehensive understanding of the biological and physiological properties underlying human health and disease. Omics technologies can help to examine proteins (proteomics), RNA molecules (transcriptomics), and the chemical processes involving metabolites (metabolomics) in cells, in addition to genomes. In this review, we discuss the value of multiomics in drug discovery and the importance of single-cell multiomics measurements. We will provide examples of the benefits of applying single-cell omics technologies in drug discovery and development. Moreover, we intend to show how multiomics offers the opportunity to understand the detailed events which produce or prevent disease, and ways in which the separate omics disciplines complement each other to build a broader, deeper knowledge base.
Collapse
|
262
|
Nayim P, Sudhir K, Mbaveng AT, Kuete V, Sanjukta M. In Vitro Anticancer Activity of Imperata cylindrica Root's Extract toward Human Cervical Cancer and Identification of Potential Bioactive Compounds. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4259777. [PMID: 34708121 PMCID: PMC8545510 DOI: 10.1155/2021/4259777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
Imperata cylindrica is traditionally used to cure several diseases including cancer, wounds, and hypertension. The present study was designed to investigate the anticancer activity of the methanolic root extract of I. cylindrica (IC-MeOH). The water-soluble tetrazolium-1 and colony formation assays were used to check the proliferation ability of the cells. Cell apoptosis and cell cycle were measured by flow cytometry-based fluorescence-activated cell sorting. The ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) analysis was used for the metabolites profiling of IC-MeOH. Based on high-mass accuracy, spectral data, and previous reports, tentative compound identifications were assigned. Our findings revealed that IC-MeOH inhibited the proliferation of HeLa and CaSki cells. The plant extract was also found to induce a concentration- and time-dependent apoptosis and cell cycle arrest in the G0/G1 phase (IC50 value) in CaSki cell line. Analysis of IC-MeOH permitted the identification of 10 compounds already reported for their anticancer activity, epicatechin, curcumin, (-)-yatein, caffeic acid, myricetin, jatrorrhizine, harmaline, cinnamaldehyde, dobutamine, and syringin. In conclusion, IC-MeOH is a rich source of cytotoxic metabolites that inhibits human cervical cancer proliferation via apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Paul Nayim
- University of Dschang, Department of Biochemistry, P.O. Box 1499 Bafoussam, Dschang, Cameroon
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore, 560065 Karnataka, India
| | - Krishna Sudhir
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore, 560065 Karnataka, India
| | - Armelle T. Mbaveng
- University of Dschang, Department of Biochemistry, P.O. Box 1499 Bafoussam, Dschang, Cameroon
| | - Victor Kuete
- University of Dschang, Department of Biochemistry, P.O. Box 1499 Bafoussam, Dschang, Cameroon
| | - Mukherjee Sanjukta
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore, 560065 Karnataka, India
| |
Collapse
|
263
|
Mohammad S, Bhattacharjee J, Vasanthan T, Harris CS, Bainbridge SA, Adamo KB. Metabolomics to understand placental biology: Where are we now? Tissue Cell 2021; 73:101663. [PMID: 34653888 DOI: 10.1016/j.tice.2021.101663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Metabolomics, the application of analytical chemistry methodologies to survey the chemical composition of a biological system, is used to globally profile and compare metabolites in one or more groups of samples. Given that metabolites are the terminal end-products of cellular metabolic processes, or 'phenotype' of a cell, tissue, or organism, metabolomics is valuable to the study of the maternal-fetal interface as it has the potential to reveal nuanced complexities of a biological system as well as differences over time or between individuals. The placenta acts as the primary site of maternal-fetal exchange, the success of which is paramount to growth and development of offspring during pregnancy and beyond. Although the study of metabolomics has proven moderately useful for the screening, diagnosis, and understanding of the pathophysiology of pregnancy complications, the placental metabolome in the context of a healthy pregnancy remains poorly characterized and understood. Herein, we discuss the technical aspects of metabolomics and review the current literature describing the placental metabolome in human and animal models, in the context of health and disease. Finally, we highlight areas for future opportunities in the emerging field of placental metabolomics.
Collapse
Affiliation(s)
- S Mohammad
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - J Bhattacharjee
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - T Vasanthan
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - C S Harris
- Department of Biology & Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - S A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada
| | - K B Adamo
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
264
|
Janssen K, Mähler B, Rust J, Bierbaum G, McCoy VE. The complex role of microbial metabolic activity in fossilization. Biol Rev Camb Philos Soc 2021; 97:449-465. [PMID: 34649299 DOI: 10.1111/brv.12806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria play an important role in the fossilization of soft tissues; their metabolic activities drive the destruction of the tissues and also strongly influence mineralization. Some environmental conditions, such as anoxia, cold temperatures, and high salinity, are considered widely to promote fossilization by modulating bacterial activity. However, bacteria are extremely diverse, and have developed metabolic adaptations to a wide range of stressful conditions. Therefore, the influence of the environment on bacterial activity, and of their metabolic activity on fossilization, is complex. A number of examples illustrate that simple, general assumptions about the role of bacteria in soft tissue fossilization cannot explain all preservational pathways: (i) experimental results show that soft tissues of cnidaria decay less in oxic than anoxic conditions, and in the fossil record are found more commonly in fossil sites deposited under oxic conditions rather than anoxic environments; (ii) siderite concretions, which often entomb soft tissue fossils, precipitate due to a complex mixture of sulfate- and iron reduction by some bacterial species, running counter to original theories that iron reduction is the primary driver of siderite concretion growth; (iii) arthropod brains, now widely accepted to be preserved in many Cambrian fossil sites, are one of the first structures to decay in taphonomic experiments, indicating that their fossilization processes are complex and influenced by bacterial activity. In order to expand our understanding of the complex process of bacterially driven soft tissue fossilization, more research needs to be done, on fossils themselves and in taphonomic experiments, to determine how the complex variation in microbial metabolic activity influences decay and mineralization.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Bastian Mähler
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Jes Rust
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211, U.S.A
| |
Collapse
|
265
|
González-Sálamo J, Varela-Martínez DA, González-Curbelo MÁ, Hernández-Borges J. The Role of Chromatographic and Electromigration Techniques in Foodomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1336:31-49. [PMID: 34628626 DOI: 10.1007/978-3-030-77252-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Foodomics is the discipline aimed at studying the prevention of diseases by food, identifying chemical, biological and biochemical food contaminants, determining changes in genetically modified foods, identifying biomarkers able to confirm the authenticity and quality of foods or studying the safety, quality and traceability of foods, among other issues. It is mainly based on the use of genomic, transcriptomic, proteomic and metabolomic tools, among others, in order to understand the effect of food on animals and humans at the level of genes, messenger ribonucleic acid, proteins and metabolites. Since the first definition of Foodomics, a reasonable number of works have shown the extremely high possibilities of this discipline, which is highly based on the use of advanced analytical hyphenated techniques - especially for proteomics and metabolomics. This book chapter aims at providing a general description of the role of chromatographic and electromigration techniques that are currently being applied to achieve the main objectives of Foodomics, particularly in the proteomic and metabolomic fields, since most published works have been focused on these approaches, and to highlight relevant applications.
Collapse
Affiliation(s)
- Javier González-Sálamo
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Diana Angélica Varela-Martínez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.,Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad EAN, Bogotá D.C., Colombia
| | | | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain. .,Instituto Universitario de Enfermedades Tropicales y Salud Pública, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain.
| |
Collapse
|
266
|
Araújo AM, Carvalho F, Guedes de Pinho P, Carvalho M. Toxicometabolomics: Small Molecules to Answer Big Toxicological Questions. Metabolites 2021; 11:692. [PMID: 34677407 PMCID: PMC8539642 DOI: 10.3390/metabo11100692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Given the high biological impact of classical and emerging toxicants, a sensitive and comprehensive assessment of the hazards and risks of these substances to organisms is urgently needed. In this sense, toxicometabolomics emerged as a new and growing field in life sciences, which use metabolomics to provide new sets of susceptibility, exposure, and/or effects biomarkers; and to characterize in detail the metabolic responses and altered biological pathways that various stressful stimuli cause in many organisms. The present review focuses on the analytical platforms and the typical workflow employed in toxicometabolomic studies, and gives an overview of recent exploratory research that applied metabolomics in various areas of toxicology.
Collapse
Affiliation(s)
- Ana Margarida Araújo
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº228, 4050-313 Porto, Portugal
- FP-I3ID, FP-ENAS, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| |
Collapse
|
267
|
Chung MK, Smith MR, Lin Y, Walker DI, Jones D, Patel CJ, Kong SW. Plasma metabolomics of autism spectrum disorder and influence of shared components in proband families. EXPOSOME 2021; 1:osab004. [PMID: 35028569 PMCID: PMC8739333 DOI: 10.1093/exposome/osab004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022]
Abstract
Prevalence of autism spectrum disorder (ASD) has been increasing in the United States in the past decades. The exact mechanisms remain enigmatic, and diagnosis of the disease still relies primarily on assessment of behavior. We first used a case-control design (75 idiopathic cases and 29 controls, enrolled at Boston Children's Hospital from 2007-2012) to identify plasma biomarkers of ASD through a metabolome-wide association study approach. Then we leveraged a family-based design (31 families) to investigate the influence of shared genetic and environmental components on the autism-associated features. Using untargeted high-resolution mass spectrometry metabolomics platforms, we detected 19 184 features. Of these, 191 were associated with ASD (false discovery rate < 0.05). We putatively annotated 30 features that had an odds ratio (OR) between <0.01 and 5.84. An identified endogenous metabolite, O-phosphotyrosine, was associated with an extremely low autism odds (OR 0.17; 95% confidence interval 0.06-0.39). We also found that glutathione metabolism was associated with ASD (P = 0.048). Correlations of the significant features between proband and parents were low (median = 0.09). Of the 30 annotated features, the median correlations within families (proband-parents) were -0.15 and 0.24 for the endogenous and exogenous metabolites, respectively. We hypothesize that, without feature identification, family-based correlation analysis of autism-associated features can be an alternative way to assist the prioritization of potentially diagnostic features. A panel of ASD diagnostic metabolic markers with high specificity could be derived upon further studies.
Collapse
Affiliation(s)
- Ming Kei Chung
- Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Matthew Ryan Smith
- Division of Pulmonary Medicine, Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Yufei Lin
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dean Jones
- Division of Pulmonary Medicine, Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
268
|
Zhou L, Yu D, Zheng S, Ouyang R, Wang Y, Xu G. Gut microbiota-related metabolome analysis based on chromatography-mass spectrometry. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
269
|
Asselstine V, Lam S, Miglior F, Brito LF, Sweett H, Guan L, Waters SM, Plastow G, Cánovas A. The potential for mitigation of methane emissions in ruminants through the application of metagenomics, metabolomics, and other -OMICS technologies. J Anim Sci 2021; 99:6377879. [PMID: 34586400 PMCID: PMC8480417 DOI: 10.1093/jas/skab193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ruminant supply chains contribute 5.7 gigatons of CO2-eq per annum, which represents approximately 80% of the livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH4), accounting for approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors influence cattle CH4 production, such as breed, genetic makeup, diet, management practices, and physiological status of the host. The influence of genetic variability on CH4 yield in ruminants indicates that genomic selection for reduced CH4 emissions is possible. Although the microbiology of CH4 production has been studied, further research is needed to identify key differences in the host and microbiome genomes and how they interact with one another. The advancement of “-omics” technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved understanding of genetic mechanisms associated with CH4 production and the interaction between the microbiome profile and host genetics will increase the rate of genetic progress for reduced CH4 emissions. Through a systems biology approach, various “-omics” technologies can be combined to unravel genomic regions and genetic markers associated with CH4 production, which can then be used in selective breeding programs. This comprehensive review discusses current challenges in applying genomic selection for reduced CH4 emissions, and the potential for “-omics” technologies, especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different levels of biological information using a systems biology approach is also discussed, which can assist in understanding the underlying genetic mechanisms and biology of CH4 production traits in ruminants and aid in reducing agriculture’s overall environmental footprint.
Collapse
Affiliation(s)
- Victoria Asselstine
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Stephanie Lam
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Hannah Sweett
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Leluo Guan
- Livestock Gentec, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2C8, Canada
| | - Sinead M Waters
- Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, C15 PW93, Ireland
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, T6G 2C8, Canada
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
270
|
Hu B, Ouyang G. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116368] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
271
|
Gupta J, Care A, Goodfellow L, Alfirevic Z, Lian LY, Müller-Myhsok B, Alfirevic A, Phelan M. Metabolic profiling of maternal serum of women at high-risk of spontaneous preterm birth using NMR and MGWAS approach. Biosci Rep 2021; 41:BSR20210759. [PMID: 34402867 PMCID: PMC8415214 DOI: 10.1042/bsr20210759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Preterm birth (PTB) is a leading global cause of infant mortality. Risk factors include genetics, lifestyle choices and infection. Understanding the mechanism of PTB could aid the development of novel approaches to prevent PTB. This study aimed to investigate the metabolic biomarkers of PTB in early pregnancy and the association of significant metabolites with participant genotypes. Maternal sera collected at 16 and 20 weeks of gestation, from women who previously experienced PTB (high-risk) and women who did not (low-risk controls), were analysed using 1H nuclear magnetic resonance (NMR) metabolomics and genome-wide screening microarray. ANOVA and probabilistic neural network (PNN) modelling were performed on the spectral bins. Metabolomics genome-wide association (MGWAS) of the spectral bins and genotype data from the same participants was applied to determine potential metabolite-gene pathways. Phenylalanine, acetate and lactate metabolite differences between PTB cases and controls were obtained by ANOVA and PNN showed strong prediction at week 20 (AUC = 0.89). MGWAS identified several metabolite bins with strong genetic associations. Cis-eQTL analysis highlighted TRAF1 (involved in the inflammatory pathway) local to a non-coding SNP associated with lactate at week 20 of gestation. MGWAS of a well-defined cohort of participants highlighted a lactate-TRAF1 relationship that could potentially contribute to PTB.
Collapse
Affiliation(s)
- Juhi K. Gupta
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Angharad Care
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Laura Goodfellow
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Zarko Alfirevic
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Bertram Müller-Myhsok
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Ana Alfirevic
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Marie M. Phelan
- NMR Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
272
|
NMF-Based Approach for Missing Values Imputation of Mass Spectrometry Metabolomics Data. Molecules 2021; 26:molecules26195787. [PMID: 34641330 PMCID: PMC8510447 DOI: 10.3390/molecules26195787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In mass spectrometry (MS)-based metabolomics, missing values (NAs) may be due to different causes, including sample heterogeneity, ion suppression, spectral overlap, inappropriate data processing, and instrumental errors. Although a number of methodologies have been applied to handle NAs, NA imputation remains a challenging problem. Here, we propose a non-negative matrix factorization (NMF)-based method for NA imputation in MS-based metabolomics data, which makes use of both global and local information of the data. The proposed method was compared with three commonly used methods: k-nearest neighbors (kNN), random forest (RF), and outlier-robust (ORI) missing values imputation. These methods were evaluated from the perspectives of accuracy of imputation, retrieval of data structures, and rank of imputation superiority. The experimental results showed that the NMF-based method is well-adapted to various cases of data missingness and the presence of outliers in MS-based metabolic profiles. It outperformed kNN and ORI and showed results comparable with the RF method. Furthermore, the NMF method is more robust and less susceptible to outliers as compared with the RF method. The proposed NMF-based scheme may serve as an alternative NA imputation method which may facilitate biological interpretations of metabolomics data.
Collapse
|
273
|
Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 2021; 203:5859-5885. [PMID: 34545411 DOI: 10.1007/s00203-021-02576-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and cleaning up the stressed environment without harming it. The industrial revolution was followed by the green revolution which fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environmental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics techniques reportedly used in environmental monitoring to tackle the pollution load.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Sidra Tul Muntha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
274
|
Pedrosa MC, Lima L, Heleno S, Carocho M, Ferreira ICFR, Barros L. Food Metabolites as Tools for Authentication, Processing, and Nutritive Value Assessment. Foods 2021; 10:2213. [PMID: 34574323 PMCID: PMC8465241 DOI: 10.3390/foods10092213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Secondary metabolites are molecules with unlimited applications that have been gaining importance in various industries and studied from many angles. They are mainly used for their bioactive capabilities, but due to the improvement of sensibility in analytical chemistry, they are also used for authentication and as a quality control parameter for foods, further allowing to help avoid food adulteration and food fraud, as well as helping understand the nutritional value of foods. This manuscript covers the examples of secondary metabolites that have been used as qualitative and authentication molecules in foods, from production, through processing and along their shelf-life. Furthermore, perspectives of analytical chemistry and their contribution to metabolite detection and general perspectives of metabolomics are also discussed.
Collapse
Affiliation(s)
| | | | | | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.C.P.); (L.L.); (S.H.); (I.C.F.R.F.); (L.B.)
| | | | | |
Collapse
|
275
|
Kuleš J, Rubić I, Beer Ljubić B, Bilić P, Barić Rafaj R, Brkljačić M, Burchmore R, Eckersall D, Mrljak V. Combined Untargeted and Targeted Metabolomics Approaches Reveal Urinary Changes of Amino Acids and Energy Metabolism in Canine Babesiosis With Different Levels of Kidney Function. Front Microbiol 2021; 12:715701. [PMID: 34603243 PMCID: PMC8484968 DOI: 10.3389/fmicb.2021.715701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Canine babesiosis is a tick-borne disease with a worldwide distribution, caused by the haemoprotozoan parasites of the genus Babesia. One of the most prevalent complication is acute kidney injury, and an early diagnosis of altered kidney function remains a challenge for veterinary practice. The aim of this study was to assess the urine metabolic profile from dogs with babesiosis and different degree of kidney function using untargeted and targeted MS-based metabolomics approaches. In this study, 22 dogs naturally infected with Babesia canis and 12 healthy dogs were included. Untargeted metabolomics approach identified 601 features with a differential abundance between the healthy group and groups of dogs with babesiosis and different level of kidney function, with 27 of them identified as a match to known standards; while targeted approach identified 17 metabolites with significantly different concentrations between the groups. A pattern of significantly altered metabolites referring to the inflammatory host response, oxidative stress, and energy metabolism modulation in babesiosis was presented. Our findings have demonstrated that kidney dysfunction accompanying canine babesiosis was associated with changes in amino acid metabolism, energy metabolism, fatty acid metabolism, and biochemical pathways such as urea cycle and ammonia detoxication. These findings will enable the inclusion of urinary markers for the detection and monitoring of renal damage in babesiosis, as well as in other similar diseases.
Collapse
Affiliation(s)
- Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Petra Bilić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mirna Brkljačić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - David Eckersall
- College of Medical, Veterinary, and Life Sciences, Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vladimir Mrljak
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
276
|
Schütz D, Achten E, Creydt M, Riedl J, Fischer M. Non-Targeted LC-MS Metabolomics Approach towards an Authentication of the Geographical Origin of Grain Maize ( Zea mays L.) Samples. Foods 2021; 10:foods10092160. [PMID: 34574275 PMCID: PMC8466891 DOI: 10.3390/foods10092160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Safety along the food and feed supply chain is an emerging topic and closely linked to the ability to analytical trace the geographical origin of food or feed. In this study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight mass spectrometry was used to trace back the geographical origin of 151 grain maize (Zea mays L.) samples from seven countries using a high resolution non-targeted metabolomics approach. Multivariate data analysis and univariate statistics were used to identify promising marker features related to geographical origin. Classification using only 20 selected markers with the Random Forest algorithm led to 90.5% correctly classified samples with 100 times repeated 10-fold cross-validation. The selected markers were assigned to the class of triglycerides, diglycerides and phospholipids. The marker set was further evaluated for its ability to separate between one sample class and the rest of the dataset, yielding accuracies above 89%. This demonstrates the high potential of the non-polar metabolome to authenticate the geographic origin of grain maize samples. Furthermore, this suggests that focusing on only a few lipids with high potential for grain maize authentication could be a promising approach for later transfer of the method to routine analysis.
Collapse
Affiliation(s)
- David Schütz
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (D.S.); (M.C.)
| | - Elisabeth Achten
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (E.A.); (J.R.)
| | - Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (D.S.); (M.C.)
| | - Janet Riedl
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (E.A.); (J.R.)
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (D.S.); (M.C.)
- Correspondence:
| |
Collapse
|
277
|
Human age-declined saliva metabolic markers determined by LC-MS. Sci Rep 2021; 11:18135. [PMID: 34518599 PMCID: PMC8437986 DOI: 10.1038/s41598-021-97623-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Metabolites in human biofluids reflect individual physiological states influenced by various factors. Using liquid chromatography-mass spectrometry (LC–MS), we conducted non-targeted, non-invasive metabolomics using saliva of 27 healthy volunteers in Okinawa, comprising 13 young (30 ± 3 year) and 14 elderly (76 ± 4 year) subjects. Few studies have comprehensively identified age-dependent changes in salivary metabolites. Among 99 salivary metabolites, 21 were statistically age-related. All of the latter decline in abundance with advancing age, except ATP, which increased 1.96-fold in the elderly, possibly due to reduced ATP consumption. Fourteen age-linked and highly correlated compounds function in a metabolic network involving the pentose-phosphate pathway, glycolysis/gluconeogenesis, amino acids, and purines/pyrimidines nucleobases. The remaining seven less strongly correlated metabolites, include ATP, anti-oxidation-related glutathione disulfide, muscle-related acetyl-carnosine, N-methyl-histidine, creatinine, RNA-related dimethyl-xanthine and N-methyl-adenosine. In addition, glutamate and N-methyl-histidine are related to taste, so their decline suggests that the elderly lose some ability to taste. Reduced redox metabolism and muscle activity are suggested by changes in glutathione and acetyl-carnosine. These age-linked salivary metabolites together illuminate a metabolic network that reflects a decline of oral functions during human aging.
Collapse
|
278
|
Chaby LE, Lasseter HC, Contrepois K, Salek RM, Turck CW, Thompson A, Vaughan T, Haas M, Jeromin A. Cross-Platform Evaluation of Commercially Targeted and Untargeted Metabolomics Approaches to Optimize the Investigation of Psychiatric Disease. Metabolites 2021; 11:609. [PMID: 34564425 PMCID: PMC8466258 DOI: 10.3390/metabo11090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolomics methods often encounter trade-offs between quantification accuracy and coverage, with truly comprehensive coverage only attainable through a multitude of complementary assays. Due to the lack of standardization and the variety of metabolomics assays, it is difficult to integrate datasets across studies or assays. To inform metabolomics platform selection, with a focus on posttraumatic stress disorder (PTSD), we review platform use and sample sizes in psychiatric metabolomics studies and then evaluate five prominent metabolomics platforms for coverage and performance, including intra-/inter-assay precision, accuracy, and linearity. We found performance was variable between metabolite classes, but comparable across targeted and untargeted approaches. Within all platforms, precision and accuracy were highly variable across classes, ranging from 0.9-63.2% (coefficient of variation) and 0.6-99.1% for accuracy to reference plasma. Several classes had high inter-assay variance, potentially impeding dissociation of a biological signal, including glycerophospholipids, organooxygen compounds, and fatty acids. Coverage was platform-specific and ranged from 16-70% of PTSD-associated metabolites. Non-overlapping coverage is challenging; however, benefits of applying multiple metabolomics technologies must be weighed against cost, biospecimen availability, platform-specific normative levels, and challenges in merging datasets. Our findings and open-access cross-platform dataset can inform platform selection and dataset integration based on platform-specific coverage breadth/overlap and metabolite-specific performance.
Collapse
Affiliation(s)
- Lauren E. Chaby
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Heather C. Lasseter
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Reza M. Salek
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, World Health Organisation, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| | - Christoph W. Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, 80804 Munich, Germany;
| | - Andrew Thompson
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Timothy Vaughan
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Magali Haas
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Andreas Jeromin
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| |
Collapse
|
279
|
Murgia F, Monni G, Corda V, Hendren AJ, Paci G, Piras A, Ibba RM, Atzori L. Metabolomics Analysis of Amniotic Fluid in Euploid Foetuses with Thickened Nuchal Translucency by Gas Chromatography-Mass Spectrometry. Life (Basel) 2021; 11:913. [PMID: 34575062 PMCID: PMC8466859 DOI: 10.3390/life11090913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Persistence of a fetal thickened nuchal translucency (NT), one of the most sensitive and specific individual markers of fetal disorders, is strongly correlated with the possibility of a genetic syndrome, congenital infections, or other malformations. Thickened NT can also be found in normal pregnancies. Several of its pathophysiological aspects still remain unexplained. Metabolomics could offer a fresh opportunity to explore maternal-foetal metabolism in an effort to explain its physiological and pathological mechanisms. For this prospective case-control pilot study, thirty-nine samples of amniotic fluids were collected, divisible into 12 euploid foetuses with an enlarged nuchal translucency (>NT) and 27 controls (C). Samples were analyzed using gas chromatography mass spectrometry. Multivariate and univariate statistical analyses were performed to find a specific metabolic pattern of >NT class. The correlation between the metabolic profile and clinical parameters was evaluated (NT showed an R2 = 0.75, foetal crown-rump length showed R2 = 0.65, pregnancy associated plasma protein-A showed R2 = 0.60). Nine metabolites significantly differing between >NT foetuses and C were detected: 2-hydroxybutyric acid, 3-hydroxybutyric, 1,5 Anydro-Sorbitol, cholesterol, erythronic acid, fructose, malic acid, threitol, and threonine, which were linked to altered pathways involved in altered energetic pathways. Through the metabolomics approach, it was possible to identify a specific metabolic fingerprint of the fetuses with >NT.
Collapse
Affiliation(s)
- Federica Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (G.P.); (L.A.)
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Giovanni Monni
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Valentina Corda
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Aran J. Hendren
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Giulia Paci
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (G.P.); (L.A.)
| | - Alba Piras
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Rosa M. Ibba
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (G.P.); (L.A.)
| |
Collapse
|
280
|
Sindhu KJ, Venkatesan N, Karunagaran D. MicroRNA Interactome Multiomics Characterization for Cancer Research and Personalized Medicine: An Expert Review. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:545-566. [PMID: 34448651 DOI: 10.1089/omi.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) that are mutually modulated by their interacting partners (interactome) are being increasingly noted for their significant role in pathogenesis and treatment of various human cancers. Recently, miRNA interactome dissected with multiomics approaches has been the subject of focus since individual tools or methods failed to provide the necessary comprehensive clues on the complete interactome. Even though single-omics technologies such as proteomics can uncover part of the interactome, the biological and clinical understanding still remain incomplete. In this study, we present an expert review of studies involving multiomics approaches to identification of miRNA interactome and its application in mechanistic characterization, classification, and therapeutic target identification in a variety of cancers, and with a focus on proteomics. We also discuss individual or multiple miRNA-based interactome identification in various pathological conditions of relevance to clinical medicine. Various new single-omics methods that can be integrated into multiomics cancer research and the computational approaches to analyze and predict miRNA interactome are also highlighted in this review. In all, we contextulize the power of multiomics approaches and the importance of the miRNA interactome to achieve the vision and practice of predictive, preventive, and personalized medicine in cancer research and clinical oncology.
Collapse
Affiliation(s)
- K J Sindhu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nalini Venkatesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
281
|
Comparative metabolomics analysis reveals the metabolic regulation mechanism of yellow pigment overproduction by Monascus using ammonium chloride as a nitrogen source. Appl Microbiol Biotechnol 2021; 105:6369-6379. [PMID: 34402939 DOI: 10.1007/s00253-021-11395-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Monascus yellow pigments (MYPs), as food colorants, are of great interest to the food industry, because of their beneficial biological activities. In this study, a comparative metabolomics strategy revealed the metabolic regulatory mechanism of MYP overproduction, comparing ammonium chloride with peptone as nitrogen sources. Metabolomics-based multivariate regression modeling showed that metabolic biomarkers/modules, such as glucose, lactate, and the pentose phosphate (PP) pathway, were closely associated with the biosynthesis of MYPs. Exogenous addition of glucose increased production of MYPs, whereas lactate reduced it. Inhibition of the PP pathway with dehydroepiandrosterone decreased MYP production, while increasing the shunting production of orange and red pigments. All these treatments significantly changed the expression profiles of the pigment biosynthetic gene cluster and the mycelial morphology. Overall, this study demonstrates the feasibility of elucidating the mechanism of MYP biosynthesis by comprehensive metabolomics analysis, as well as discovering potential engineering targets of efficiency improvements to commercial MYP production. KEY POINTS: • Comparative metabolomics revealed the biomarkers/modules of MYP production. • A rational exogenously adding strategy was implemented to regulate MYP synthesis. • Expression profiles of gene cluster and mycelial morphology were characterized.
Collapse
|
282
|
Mass spectrometry based metabolomics approach on the elucidation of volatile metabolites formation in fermented foods: A mini review. Food Sci Biotechnol 2021; 30:881-890. [PMID: 34395019 PMCID: PMC8302692 DOI: 10.1007/s10068-021-00917-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolomics can be applied for comparative and quantitative analyses of the metabolic changes induced by microorganisms during fermentation. In particular, mass spectrometry (MS) is a powerful tool for metabolomics that is widely used for elucidating biomarkers and patterns of metabolic changes. Fermentation involves the production of volatile metabolites via diverse and complex metabolic pathways by the activities of microbial enzymes. These metabolites can greatly affect the organoleptic properties of fermented foods. This review provides an overview of the MS-based metabolomics techniques applied in studies of fermented foods, and the major metabolic pathways and metabolites (e.g., sugars, amino acids, and fatty acids) derived from their metabolism. In addition, we suggest an efficient tool for understanding the metabolic patterns and for identifying novel markers in fermented foods.
Collapse
|
283
|
Xu R, Lee J, Chen L, Zhu J. Enhanced detection and annotation of small molecules in metabolomics using molecular-network-oriented parameter optimization. Mol Omics 2021; 17:665-676. [PMID: 34355227 DOI: 10.1039/d1mo00005e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolomics, especially the large-scale untargeted metabolomics, generates massive amounts of data on a regular basis, which often needs to be filtered, screened, analyzed and annotated via a variety of approaches. Data-dependent-acquisition (DDA) mode including inclusion and exclusion rules for tandem mass spectrometry (MS) is routinely used to perform such analyses. While the parameters of data acquisition are important in these processes, there is a lack of systematic studies on these parameters that can be used in data collection to generate metabolic features for molecular-network (MN) analysis on the Global Natural Products Social Molecular Networking (GNPS) platform. To explore the key parameters that impact the formation and quality of MNs, several data-acquisition parameters for metabolomic studies were proposed in this study. The influences of MS1 resolution, normalized collision energy (NCE), intensity threshold, and exclusion time on GNPS analyses were demonstrated. Moreover, an optimization workflow dedicated to Thermo Scientific QE Hybrid Orbitrap instruments is described, and a comparison of phytochemical contents from two forms of black raspberry extract was performed based on the GNPS MN results. Overall, we expect this study to provide additional thoughts on developing a natural-product-analysis workflow using the GNPS network, and to shed some light on future analyses that utilize similar instrumental setups.
Collapse
Affiliation(s)
- Rui Xu
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Jisun Lee
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Li Chen
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Jiangjiang Zhu
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA. and James Comprehensive Cancer Center, The Ohio State University, 400 W 12th Ave, Columbus, Ohio 43210, USA
| |
Collapse
|
284
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
285
|
Tabago MKAG, Calingacion MN, Garcia J. Recent advances in NMR-based metabolomics of alcoholic beverages. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100009. [PMID: 35415632 PMCID: PMC8991939 DOI: 10.1016/j.fochms.2020.100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 01/14/2023]
Abstract
Alcoholic beverages have a complex chemistry that can be influenced by their alcoholic content, origin, fermentation process, additives, and contaminants. The complex composition of these beverages leave them susceptible to fraud, potentially compromising their authenticity, quality, and market value, thus increasing risks to consumers' health. In recent years, intensive studies have been carried out on alcoholic beverages using different analytical techniques to evaluate the authenticity, variety, age, and fermentation processes that were used. Among these techniques, NMR-based metabolomics holds promise in profiling the chemistry of alcoholic beverages, especially in Asia where metabolomics studies on alcoholic beverages remain limited.
Collapse
Affiliation(s)
- Maria Krizel Anne G. Tabago
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Mariafe N. Calingacion
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Joel Garcia
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| |
Collapse
|
286
|
Zareena B, Khadim A, Jeelani SUY, Hussain S, Ali A, Musharraf SG. High-Throughput Detection of an Alkaloidal Plant Metabolome in Plant Extracts Using LC-ESI-QTOF-MS. J Proteome Res 2021; 20:3826-3839. [PMID: 34308647 DOI: 10.1021/acs.jproteome.1c00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant alkaloids represent a diverse group of nitrogen-containing natural products. These compounds are considered valuable in drug discovery and development. High-throughput identification of such plant secondary metabolites in complex plant extracts is essential for drug discovery, lead optimization, and understanding the biological pathway. The present study aims to rapidly identify different classes of alkaloids in plant extracts through the liquid chromatography with electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) approach using 161 isolated and purified alkaloids. These are biologically important unique alkaloids belonging to different sub-classes such as isoquinoline, quinoline, indole, tropane, pyridine, piperidine, quinolizidine, aporphine, steroidal, and terpenoid. The majority of these are not available commercially and are known to manifest valuable biological activities. Four pools of a maximum of 50 phytostandards each were prepared, based on their log P value to minimize co-elution for rapid and cost-effective analyses. MS/MS spectra were acquired in the positive ionization mode by using their [M + H]+ and/or [M + Na]+ with both the average collisional energy (25.5-62 eV) and individual collisional energies (10, 20, 30, and 40 eV). Accurate mass, high-resolution mass spectrometry (HR-MS) data, MS/MS data, and retention times were curated for each compound. The developed LC-MS/MS method was successfully used to interrogate and fast dereplicate alkaloids in 13 medicinal plant extracts and a herbal formulation. A total of 56 alkaloids were identified based on the reference standard retention times (RTs), HR-MS spectra, and/or MS/MS spectra. The MS data have been submitted to the MetaboLights online database (MTBLS2914). The mass spectrometric and chromatographic data will be useful for the discovery of new congeners and the study of biological pathways of alkaloids in the plant kingdom.
Collapse
Affiliation(s)
- Bibi Zareena
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Adeeba Khadim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Usama Y Jeelani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saddam Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
287
|
Homorogan C, Nitusca D, Enatescu V, Schubart P, Moraru C, Socaciu C, Marian C. Untargeted Plasma Metabolomic Profiling in Patients with Major Depressive Disorder Using Ultra-High Performance Liquid Chromatography Coupled with Mass Spectrometry. Metabolites 2021; 11:466. [PMID: 34357360 PMCID: PMC8306682 DOI: 10.3390/metabo11070466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a neuropsychiatric illness with an increasing incidence and a shortfall of efficient diagnostic tools. Interview-based diagnostic tools and clinical examination often lead to misdiagnosis and inefficient systematic treatment selection. Diagnostic and treatment monitoring biomarkers are warranted for MDD. Thus, the emerging field of metabolomics is a promising tool capable of portraying the metabolic repertoire of biomolecules from biological samples in a minimally invasive fashion. Herein, we report an untargeted metabolomic profiling performed in plasma samples of 11 MDD patients, at baseline (MDD1) and at 12 weeks following antidepressant therapy with escitalopram (MDD2), and in 11 healthy controls (C), using ultra-high performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-QTOF-(ESI+)-MS). We found two putative metabolites ((phosphatidylserine PS (16:0/16:1) and phosphatidic acid PA (18:1/18:0)) as having statistically significant increased levels in plasma samples of MDD1 patients compared to healthy subjects. ROC analysis revealed an AUC value of 0.876 for PS (16:0/16:1), suggesting a potential diagnostic biomarker role. In addition, PS (18:3/20:4) was significantly decreased in MDD2 group compared to MDD1, with AUC value of 0.785.
Collapse
Affiliation(s)
- Claudia Homorogan
- Doctoral School, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
| | - Diana Nitusca
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| | - Virgil Enatescu
- Discipline of Psychiatry, Department of Neurosciences, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania
| | - Philip Schubart
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| | - Corina Moraru
- BIODIATECH, Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania; (C.M.); (C.S.)
| | - Carmen Socaciu
- BIODIATECH, Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania; (C.M.); (C.S.)
| | - Catalin Marian
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| |
Collapse
|
288
|
Schultheiss UT, Kosch R, Kotsis F, Altenbuchinger M, Zacharias HU. Chronic Kidney Disease Cohort Studies: A Guide to Metabolome Analyses. Metabolites 2021; 11:460. [PMID: 34357354 PMCID: PMC8304377 DOI: 10.3390/metabo11070460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Kidney diseases still pose one of the biggest challenges for global health, and their heterogeneity and often high comorbidity load seriously hinders the unraveling of their underlying pathomechanisms and the delivery of optimal patient care. Metabolomics, the quantitative study of small organic compounds, called metabolites, in a biological specimen, is gaining more and more importance in nephrology research. Conducting a metabolomics study in human kidney disease cohorts, however, requires thorough knowledge about the key workflow steps: study planning, sample collection, metabolomics data acquisition and preprocessing, statistical/bioinformatics data analysis, and results interpretation within a biomedical context. This review provides a guide for future metabolomics studies in human kidney disease cohorts. We will offer an overview of important a priori considerations for metabolomics cohort studies, available analytical as well as statistical/bioinformatics data analysis techniques, and subsequent interpretation of metabolic findings. We will further point out potential research questions for metabolomics studies in the context of kidney diseases and summarize the main results and data availability of important studies already conducted in this field.
Collapse
Affiliation(s)
- Ulla T. Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (U.T.S.); (F.K.)
- Department of Medicine IV—Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Robin Kosch
- Computational Biology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (U.T.S.); (F.K.)
- Department of Medicine IV—Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Michael Altenbuchinger
- Institute of Medical Bioinformatics, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Helena U. Zacharias
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
289
|
Wang X, Yan M, Zhou J, Song W, Xiao Y, Cui C, Gao W, Ke F, Zhu J, Gu Z, Hou R. Delivery of acetamiprid to tea leaves enabled by porous silica nanoparticles: efficiency, distribution and metabolism of acetamiprid in tea plants. BMC PLANT BIOLOGY 2021; 21:337. [PMID: 34271878 PMCID: PMC8283891 DOI: 10.1186/s12870-021-03120-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/01/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Pesticide residue and its poor utilization remains problematic in agricultural development. To address the issue, a nano-pesticide has been developed by incorporating pesticide acetamiprid in porous silica nanoparticles. RESULTS This nano-pesticide had an acetamiprid loading content of 354.01 mg g-1. Testing LC50 value against tea aphids of the commercial preparation was three times that of the nano-pesticide. In tea seedlings (Camellia sinensis L.), acetamiprid was transported upward from the stem to the young leaves. On day 30, the average retained concentrations in tea leaves treated with the commercial preparation were about 1.3 times of that in the nano-pesticide preparation. The residual concentrations of dimethyl-acetamiprid in leaves for plants treated with the commercial preparation were about 1.1 times of that in the nano-pesticide preparation. Untargeted metabolomics of by LC-MS on the young leaves of tea seedlings under nano-pesticide and commercial pesticide treatments showed significant numbers of differentially expressed metabolites (P < 0.05 and VIP > 1). Between the nano-pesticide treatment group and the commercial preparation treatment group there were 196 differentially expressed metabolites 2 h after treatment, 200 (7th day), 207 (21st day), and 201 (30th day) in negative ion mode, and 294 (2nd h), 356 (7th day), and 286 (30th day) in positive ion mode. Preliminary identification showed that the major differentially expressed metabolites were glutamic acid, salicylic acid, p-coumaric acid, ribonic acid, glutamine, naringenin diglucoside, sanguiin H4, PG (34:2) and epiafzelechin. CONCLUSIONS This work demonstrated that our nano-pesticide outperformed the conventional pesticide acetamiprid in terms of insecticidal activity and pesticide residue, and the absorption, transportation and metabolism of nano-pesticide in tea plant were different, which pave a new pathway for pest control in agricultural sector.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Min Yan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Jie Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wei Song
- Hefei Customs District Technical Center, Safety, Anhui Key Lab of Analysis and Detection for Food, Hefei, 230022 China
| | - Yu Xiao
- Hefei Customs District Technical Center, Safety, Anhui Key Lab of Analysis and Detection for Food, Hefei, 230022 China
| | - Chuanjian Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Wanjun Gao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Fei Ke
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Jing Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Zi Gu
- School of Chemical Engineering, The University of New South Wales, Sydney, 2052 NSW Australia
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
290
|
Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021; 11:457. [PMID: 34357351 PMCID: PMC8305699 DOI: 10.3390/metabo11070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.
Collapse
Affiliation(s)
- Motseoa M. Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
291
|
Shi SW, Lou Q, Fang Q. Petrel Probe: An Integrated In Situ Sampling and Injection Interface for Fast, High-Efficiency Liquid Chromatography-Mass Spectrometry Analysis. Anal Chem 2021; 93:10114-10121. [PMID: 34260217 DOI: 10.1021/acs.analchem.1c01005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we describe an in situ analysis probe, Petrel probe, highly integrating multiple functions of in situ sampling, in situ sample injection, high-performance liquid chromatography (HPLC) separation, and mass spectrometry (MS) electrospray. The Petrel probe was fabricated based on a single capillary, which consists of a micrometer-sized hole for sampling, a packed column for LC separation, and a tapered tip for MS electrospray. The design of the Petrel probe was optimized to obtain higher structural strength, and a polytetrafluoroethylene (PTFE) chip was used for sealing the probe-sampling hole to meet the high-pressure (∼30 MPa) requirement of LC manifold. On the basis of the Petrel probe, we developed a novel valveless LC injection method, that is, the probe pressing microamount in situ (PPMI) injection method, which performs sample injection by pressing the probe-sampling hole on the PTFE chip, using the mobile phase to dissolve the sample dry spot in the sampling area on the chip, and injecting it into the LC column under high-pressure conditions for separation and subsequent MS analysis. The LC-MS system with the PPMI injection method exhibits rapid injection and separation speed, as well as minimum injection dead volume. It can yield a high separation efficiency comparable to those of conventional HPLC systems. The present system was optimized using standard peptide samples, and four peptides were separated within 11 min in a probe with an effective column length of 5 cm, achieving the highest theoretical plate number up to ∼5,500,000/m. The system was also applied in the separation of cytochrome C digest to demonstrate its separation ability for complex samples, and 21 peptides were detected in 8 min with an amino-acid coverage of 83%.
Collapse
Affiliation(s)
- Shao-Wen Shi
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310007, China.,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
292
|
Lavarello C, Barco S, Bartolucci M, Panfoli I, Magi E, Tripodi G, Petretto A, Cangemi G. Development of an Accurate Mass Retention Time Database for Untargeted Metabolomic Analysis and Its Application to Plasma and Urine Pediatric Samples. Molecules 2021; 26:molecules26144256. [PMID: 34299531 PMCID: PMC8303579 DOI: 10.3390/molecules26144256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
Liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is currently the method of choice for untargeted metabolomic analysis. The availability of established protocols to achieve a high confidence identification of metabolites is crucial. The aim of this work is to describe the workflow that we have applied to build an Accurate Mass Retention Time (AMRT) database using a commercial metabolite library of standards. LC-HRMS analysis was carried out using a Vanquish Horizon UHPLC system coupled to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Milan, Italy). The fragmentation spectra, obtained with 12 collision energies, were acquired for each metabolite, in both polarities, through flow injection analysis. Several chromatographic conditions were tested to obtain a protocol that yielded stable retention times. The adopted chromatographic protocol included a gradient separation using a reversed phase (Waters Acquity BEH C18) and a HILIC (Waters Acquity BEH Amide) column. An AMRT database of 518 compounds was obtained and tested on real plasma and urine samples analyzed in data-dependent acquisition mode. Our AMRT library allowed a level 1 identification, according to the Metabolomics Standards Initiative, of 132 and 124 metabolites in human pediatric plasma and urine samples, respectively. This library represents a starting point for future metabolomic studies in pediatric settings.
Collapse
Affiliation(s)
- Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (C.L.); (M.B.)
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16146 Genoa, Italy;
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analyses, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (G.T.); (G.C.)
| | - Martina Bartolucci
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (C.L.); (M.B.)
| | - Isabella Panfoli
- DIFAR-Biochemistry Laboratory, University of Genoa, 16132 Genova, Italy;
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16146 Genoa, Italy;
| | - Gino Tripodi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analyses, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (G.T.); (G.C.)
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (C.L.); (M.B.)
- Correspondence: ; Tel.: +39-01056362911
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analyses, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (G.T.); (G.C.)
| |
Collapse
|
293
|
van Roekel EH, Bours MJL, van Delden L, Breukink SO, Aquarius M, Keulen ETP, Gicquiau A, Viallon V, Rinaldi S, Vineis P, Arts ICW, Gunter MJ, Leitzmann MF, Scalbert A, Weijenberg MP. Longitudinal associations of physical activity with plasma metabolites among colorectal cancer survivors up to 2 years after treatment. Sci Rep 2021; 11:13738. [PMID: 34215757 PMCID: PMC8253824 DOI: 10.1038/s41598-021-92279-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/20/2021] [Indexed: 11/09/2022] Open
Abstract
We investigated longitudinal associations of moderate-to-vigorous physical activity (MVPA) and light-intensity physical activity (LPA) with plasma concentrations of 138 metabolites after colorectal cancer (CRC) treatment. Self-reported physical activity data and blood samples were obtained at 6 weeks, and 6, 12 and 24 months post-treatment in stage I-III CRC survivors (n = 252). Metabolite concentrations were measured by tandem mass spectrometry (BIOCRATES AbsoluteIDQp180 kit). Linear mixed models were used to evaluate confounder-adjusted longitudinal associations. Inter-individual (between-participant differences) and intra-individual associations (within-participant changes over time) were assessed as percentage difference in metabolite concentration per 5 h/week of MVPA or LPA. At 6 weeks post-treatment, participants reported a median of 6.5 h/week of MVPA (interquartile range:2.3,13.5) and 7.5 h/week of LPA (2.0,15.8). Inter-individual associations were observed with more MVPA being related (FDR-adjusted q-value < 0.05) to higher concentrations of arginine, citrulline and histidine, eight lysophosphatidylcholines, nine diacylphosphatidylcholines, 13 acyl-alkylphosphatidylcholines, two sphingomyelins, and acylcarnitine C10:1. No intra-individual associations were found. LPA was not associated with any metabolite. More MVPA was associated with higher concentrations of several lipids and three amino acids, which have been linked to anti-inflammatory processes and improved metabolic health. Mechanistic studies are needed to investigate whether these metabolites may affect prognosis.
Collapse
Affiliation(s)
- Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Linda van Delden
- Department of Epidemiology, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Developmental Biology & NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Michèl Aquarius
- Department of Gastroenterology, VieCuri Medical Center, Venlo, the Netherlands
| | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - Audrey Gicquiau
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Vivian Viallon
- Nutritional Methodology and Biostatistics Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Sabina Rinaldi
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Italian Institute of Technology, Genoa, Italy
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Marc J Gunter
- Nutritional Epidemiology Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Augustin Scalbert
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
294
|
Li JT, Zeng N, Yan ZP, Liao T, Ni GX. A review of applications of metabolomics in osteoarthritis. Clin Rheumatol 2021; 40:2569-2579. [PMID: 33219452 DOI: 10.1007/s10067-020-05511-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) represents the most prevalent and disabling arthritis worldwide due to its heterogeneous and progressive articular degradation. However, effective and timely diagnosis and fundamental treatment for this disorder are lacking. Metabolomics, a growing field in life science research in recent years, has the potential to detect many metabolites and thus explains the underlying pathophysiological processes. Hence, new specific metabolic markers and related metabolic pathways can be identified for OA. In this review, we aimed to provide an overview of studies related to the metabolomics of OA in animal models and humans to describe the metabolic changes and related pathways for OA. The present metabolomics studies reveal that the pathogenesis of OA may be significantly related to perturbations of amino acid metabolism. These altered amino acids (e.g., branched-chain amino acids, arginine, and alanine), as well as phospholipids, were identified as potential biomarkers to distinguish patients with OA from healthy individuals.
Collapse
Affiliation(s)
- Jie-Ting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Ni Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Tao Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
295
|
Alseekh S, Aharoni A, Brotman Y, Contrepois K, D'Auria J, Ewald J, C Ewald J, Fraser PD, Giavalisco P, Hall RD, Heinemann M, Link H, Luo J, Neumann S, Nielsen J, Perez de Souza L, Saito K, Sauer U, Schroeder FC, Schuster S, Siuzdak G, Skirycz A, Sumner LW, Snyder MP, Tang H, Tohge T, Wang Y, Wen W, Wu S, Xu G, Zamboni N, Fernie AR. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods 2021; 18:747-756. [PMID: 34239102 PMCID: PMC8592384 DOI: 10.1038/s41592-021-01197-1] [Citation(s) in RCA: 471] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - John D'Auria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jan Ewald
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - Jennifer C Ewald
- Interfaculty Institute of Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Paul D Fraser
- Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Robert D Hall
- BU Bioscience, Wageningen Research, Wageningen, the Netherlands
- Laboratory of Plant Physiology, Wageningen University, Wageningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China
| | - Steffen Neumann
- Bioinformatics and Scientific Data, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Jens Nielsen
- BioInnovation Institute, Copenhagen, Denmark
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Kazuki Saito
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Uwe Sauer
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Stefan Schuster
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - Gary Siuzdak
- Center for Metabolomics and Mass Spectrometry, Scripps Research Institute, La Jolla, CA, USA
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Lloyd W Sumner
- Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, MO, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Takayuki Tohge
- Department of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Nicola Zamboni
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
296
|
Busso-Lopes AF, Carnielli CM, Winck FV, Patroni FMDS, Oliveira AK, Granato DC, E Costa RAP, Domingues RR, Pauletti BA, Riaño-Pachón DM, Aricetti J, Caldana C, Graner E, Coletta RD, Dryden K, Fox JW, Paes Leme AF. A Reductionist Approach Using Primary and Metastatic Cell-Derived Extracellular Vesicles Reveals Hub Proteins Associated with Oral Cancer Prognosis. Mol Cell Proteomics 2021; 20:100118. [PMID: 34186243 PMCID: PMC8350068 DOI: 10.1016/j.mcpro.2021.100118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/28/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has high mortality rates that are largely associated with lymph node metastasis. However, the molecular mechanisms that drive OSCC metastasis are unknown. Extracellular vesicles (EVs) are membrane-bound particles that play a role in intercellular communication and impact cancer development and progression. Thus, profiling EVs would be of great significance to decipher their role in OSCC metastasis. For that purpose, we used a reductionist approach to map the proteomic, miRNA, metabolomic, and lipidomic profiles of EVs derived from human primary tumor (SCC-9) cells and matched lymph node metastatic (LN1) cells. Distinct omics profiles were associated with the metastatic phenotype, including 670 proteins, 217 miRNAs, 26 metabolites, and 63 lipids differentially abundant between LN1 cell– and SCC-9 cell–derived EVs. A multi-omics integration identified 11 ‘hub proteins’ significantly decreased at the metastatic site compared with primary tumor–derived EVs. We confirmed the validity of these findings with analysis of data from multiple public databases and found that low abundance of seven ‘hub proteins’ in EVs from metastatic lymph nodes (ALDH7A1, CAD, CANT1, GOT1, MTHFD1, PYGB, and SARS) is correlated with reduced survival and tumor aggressiveness in patients with cancer. In summary, this multi-omics approach identified proteins transported by EVs that are associated with metastasis and which may potentially serve as prognostic markers in OSCC. Proteomic, miRNA, metabolomic, and lipidomic profiles were mapped in oral cancer EVs. The molecular profile of EVs was associated with the lymph node metastatic phenotype. A multi-omics integrative analysis revealed 11 highly connected ‘hub proteins.’ ‘Hub proteins’ from EVs are candidates as prognostic markers in oral cancer.
Collapse
Affiliation(s)
- Ariane Fidelis Busso-Lopes
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Carolina Moretto Carnielli
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Flavia Vischi Winck
- Laboratório de Biologia de Sistemas Regulatórios, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Malta de Sá Patroni
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Ana Karina Oliveira
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Rute Alves Pereira E Costa
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Romênia Ramos Domingues
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Bianca Alves Pauletti
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório de Biologia de Sistemas Regulatórios, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana Aricetti
- Laboratório Nacional de Biorrenováveis - LNBR, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Edgard Graner
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Ricardo Della Coletta
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Kelly Dryden
- Molecular Electron Microscopy Core, University of Virginia, Charlottesville, Virginia, USA
| | - Jay William Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Adriana Franco Paes Leme
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil.
| |
Collapse
|
297
|
Monni G, Atzori L, Corda V, Dessolis F, Iuculano A, Hurt KJ, Murgia F. Metabolomics in Prenatal Medicine: A Review. Front Med (Lausanne) 2021; 8:645118. [PMID: 34249959 PMCID: PMC8267865 DOI: 10.3389/fmed.2021.645118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pregnancy is a complicated and insidious state with various aspects to consider, including the well-being of the mother and child. Developing better non-invasive tests that cover a broader range of disorders with lower false-positive rates is a fundamental necessity in the prenatal medicine field, and, in this sense, the application of metabolomics could be extremely useful. Metabolomics measures and analyses the products of cellular biochemistry. As a biomarker discovery tool, the integrated holistic approach of metabolomics can yield new diagnostic or therapeutic approaches. In this review, we identify and summarize prenatal metabolomics studies and identify themes and controversies. We conducted a comprehensive search of PubMed and Google Scholar for all publications through January 2020 using combinations of the following keywords: nuclear magnetic resonance, mass spectrometry, metabolic profiling, prenatal diagnosis, pregnancy, chromosomal or aneuploidy, pre-eclampsia, fetal growth restriction, pre-term labor, and congenital defect. Metabolite detection with high throughput systems aided by advanced bioinformatics and network analysis allowed for the identification of new potential prenatal biomarkers and therapeutic targets. We took into consideration the scientific papers issued between the years 2000-2020, thus observing that the larger number of them were mainly published in the last 10 years. Initial small metabolomics studies in perinatology suggest that previously unidentified biochemical pathways and predictive biomarkers may be clinically useful. Although the scientific community is considering metabolomics with increasing attention for the study of prenatal medicine as well, more in-depth studies would be useful in order to advance toward the clinic world as the obtained results appear to be still preliminary. Employing metabolomics approaches to understand fetal and perinatal pathophysiology requires further research with larger sample sizes and rigorous testing of pilot studies using various omics and traditional hypothesis-driven experimental approaches.
Collapse
Affiliation(s)
- Giovanni Monni
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Corda
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Francesca Dessolis
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Ambra Iuculano
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - K. Joseph Hurt
- Divisions of Maternal Fetal Medicine and Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Federica Murgia
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
298
|
In Vitro Metabolism of Donepezil in Liver Microsomes Using Non-Targeted Metabolomics. Pharmaceutics 2021; 13:pharmaceutics13070936. [PMID: 34201744 PMCID: PMC8309179 DOI: 10.3390/pharmaceutics13070936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Donepezil is a reversible acetylcholinesterase inhibitor that is currently the most commonly prescribed drug for the treatment of Alzheimer’s disease. In general, donepezil is known as a safe and well-tolerated drug, and it was not associated with liver abnormalities in several clinical trials. However, rare cases of drug-related liver toxicity have been reported since it has become commercially available. Few studies have investigated the metabolic profile of donepezil, and the mechanism of liver damage caused by donepezil has not been elucidated. In this study, the in vitro metabolism of donepezil was investigated using liquid chromatography–tandem mass spectrometry based on a non-targeted metabolomics approach. To identify metabolites, the data were subjected to multivariate data analysis and molecular networking. A total of 21 donepezil metabolites (17 in human liver microsomes, 21 in mice liver microsomes, and 17 in rat liver microsomes) were detected including 14 newly identified metabolites. One potential reactive metabolite was identified in rat liver microsomal incubation samples. Metabolites were formed through four major metabolic pathways: (1) O-demethylation, (2) hydroxylation, (3) N-oxidation, and (4) N-debenzylation. This study indicates that a non-targeted metabolomics approach combined with molecular networking is a reliable tool to identify and detect unknown drug metabolites.
Collapse
|
299
|
Li L, Wang D, Sun C, Li Y, Lu H, Wang X. Comprehensive Lipidome and Metabolome Profiling Investigations of Panax quinquefolius and Application in Different Growing Regions Using Liquid Chromatography Coupled with Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6710-6719. [PMID: 34080852 DOI: 10.1021/acs.jafc.1c02241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Panax quinquefolius is one of the most recognized ginseng species. In this study, lipidome and metabolome extraction methods for P. quinquefolius were optimized with methanol/methyl-tert-butyl ether/water (0.3 mg/1 μL/6 μL/8 μL). A total of 497 metabolites were identified, including 365 lipids and 76 ginsenosides. Comprehensive lipidome profiling was first performed for P. quinquefolius, in which 32.6% glycerophospholipids, 39.5% glycerolipids, 9.3% sphingolipids, 3.3% sterol lipids, and 15.3% fatty acyls were identified. Orthogonal partial least squares discrimination analysis (OPLS-DA) showed obvious metabolomic differences in two growing regions of China. In the northern growing region, the ratio of bilayer- to nonbilayer-forming membrane lipids (PCs/PEs, DGDGs/MGDGs), the degree of unsaturation of acyl chains in galactolipids, and the content of membrane glycerophospholipids were increased. In the eastern growing region, the synthesis of storage lipids, ceramides, and fatty acyls was increased, and secondary metabolism was enhanced with 24 differential ginsenosides found. The investigation deepens the understanding of metabolic regulation mechanisms of P. quinquefolius.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Daijie Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yue Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Heng Lu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
300
|
Chu X, Zhang B, Koeken VACM, Gupta MK, Li Y. Multi-Omics Approaches in Immunological Research. Front Immunol 2021; 12:668045. [PMID: 34177908 PMCID: PMC8226116 DOI: 10.3389/fimmu.2021.668045] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system plays a vital role in health and disease, and is regulated through a complex interactive network of many different immune cells and mediators. To understand the complexity of the immune system, we propose to apply a multi-omics approach in immunological research. This review provides a complete overview of available methodological approaches for the different omics data layers relevant for immunological research, including genetics, epigenetics, transcriptomics, proteomics, metabolomics, and cellomics. Thereafter, we describe the various methods for data analysis as well as how to integrate different layers of omics data. Finally, we discuss the possible applications of multi-omics studies and opportunities they provide for understanding the complex regulatory networks as well as immune variation in various immune-related diseases.
Collapse
Affiliation(s)
- Xiaojing Chu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Valerie A. C. M. Koeken
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manoj Kumar Gupta
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|