251
|
Hu B, Ouyang G. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
252
|
Gupta J, Care A, Goodfellow L, Alfirevic Z, Lian LY, Müller-Myhsok B, Alfirevic A, Phelan M. Metabolic profiling of maternal serum of women at high-risk of spontaneous preterm birth using NMR and MGWAS approach. Biosci Rep 2021; 41:BSR20210759. [PMID: 34402867 PMCID: PMC8415214 DOI: 10.1042/bsr20210759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Preterm birth (PTB) is a leading global cause of infant mortality. Risk factors include genetics, lifestyle choices and infection. Understanding the mechanism of PTB could aid the development of novel approaches to prevent PTB. This study aimed to investigate the metabolic biomarkers of PTB in early pregnancy and the association of significant metabolites with participant genotypes. Maternal sera collected at 16 and 20 weeks of gestation, from women who previously experienced PTB (high-risk) and women who did not (low-risk controls), were analysed using 1H nuclear magnetic resonance (NMR) metabolomics and genome-wide screening microarray. ANOVA and probabilistic neural network (PNN) modelling were performed on the spectral bins. Metabolomics genome-wide association (MGWAS) of the spectral bins and genotype data from the same participants was applied to determine potential metabolite-gene pathways. Phenylalanine, acetate and lactate metabolite differences between PTB cases and controls were obtained by ANOVA and PNN showed strong prediction at week 20 (AUC = 0.89). MGWAS identified several metabolite bins with strong genetic associations. Cis-eQTL analysis highlighted TRAF1 (involved in the inflammatory pathway) local to a non-coding SNP associated with lactate at week 20 of gestation. MGWAS of a well-defined cohort of participants highlighted a lactate-TRAF1 relationship that could potentially contribute to PTB.
Collapse
Affiliation(s)
- Juhi K. Gupta
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Angharad Care
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Laura Goodfellow
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Zarko Alfirevic
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Bertram Müller-Myhsok
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Max Planck Institute of Psychiatry, Munich 80804, Germany
| | - Ana Alfirevic
- Wolfson Centre for Personalised Medicine, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3GL, UK
- Harris-Wellbeing Research Centre, University Department, Liverpool Women’s Hospital, Liverpool, L8 7SS, UK
| | - Marie M. Phelan
- NMR Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| |
Collapse
|
253
|
NMF-Based Approach for Missing Values Imputation of Mass Spectrometry Metabolomics Data. Molecules 2021; 26:molecules26195787. [PMID: 34641330 PMCID: PMC8510447 DOI: 10.3390/molecules26195787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
In mass spectrometry (MS)-based metabolomics, missing values (NAs) may be due to different causes, including sample heterogeneity, ion suppression, spectral overlap, inappropriate data processing, and instrumental errors. Although a number of methodologies have been applied to handle NAs, NA imputation remains a challenging problem. Here, we propose a non-negative matrix factorization (NMF)-based method for NA imputation in MS-based metabolomics data, which makes use of both global and local information of the data. The proposed method was compared with three commonly used methods: k-nearest neighbors (kNN), random forest (RF), and outlier-robust (ORI) missing values imputation. These methods were evaluated from the perspectives of accuracy of imputation, retrieval of data structures, and rank of imputation superiority. The experimental results showed that the NMF-based method is well-adapted to various cases of data missingness and the presence of outliers in MS-based metabolic profiles. It outperformed kNN and ORI and showed results comparable with the RF method. Furthermore, the NMF method is more robust and less susceptible to outliers as compared with the RF method. The proposed NMF-based scheme may serve as an alternative NA imputation method which may facilitate biological interpretations of metabolomics data.
Collapse
|
254
|
Basit A, Shah ST, Ullah I, Muntha ST, Mohamed HI. Microbe-assisted phytoremediation of environmental pollutants and energy recycling in sustainable agriculture. Arch Microbiol 2021; 203:5859-5885. [PMID: 34545411 DOI: 10.1007/s00203-021-02576-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/25/2021] [Accepted: 09/12/2021] [Indexed: 01/17/2023]
Abstract
The perception of phytoremediation is efficiently utilized as an eco-friendly practice of green plants combating and cleaning up the stressed environment without harming it. The industrial revolution was followed by the green revolution which fulfilled the food demands of the growing population caused an increase in yield per unit area in crop production, but it also increased the use of synthetic fertilizers in agriculture. Globally, the intensive use of inorganic fertilizers in agriculture has led to serious health problems and irreversible environmental damage. Biofertilizers improve the growth of the plant and can be applied as an alternative to chemical/synthetic fertilizers. Cyanobacteria, bacteria, and fungi are known as some of the principal microbe groups used to produce biofertilizers that form symbiotic associations with plants. Microorganisms perform a key role in phosphate solubilization and mobilization, nitrogen fixation, nutrient management, biotic elicitors and probiotics, and pollution management (biodegradation agents), specifically bacteria which also help in atmospheric nitrogen fixation and are thus available for the growth of the plant. Management or biodegradation of hazardous chemical residues and heavy metals produced by a huge number of large-scale industries should be given primary importance to be transformed by various bacterial strains, fungi, algae. Currently, modern omics technologies such as metagenomic, transcriptomic, and proteomic are being used to develop strategies for studying the ecology of microorganisms, as well as their use in environmental monitoring and bioremediation. This review briefly discusses some of the major groups of microorganisms that can perform different functions responsible for plant health, crop production, phytoremediation and also focus on the omics techniques reportedly used in environmental monitoring to tackle the pollution load.
Collapse
Affiliation(s)
- Abdul Basit
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Syed Tanveer Shah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Izhar Ullah
- Department of Horticulture, Faculty of Crop Production, The University of Agriculture Peshawar, Peshawar, 25120, Pakistan
| | - Sidra Tul Muntha
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Heba I Mohamed
- Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
255
|
Pedrosa MC, Lima L, Heleno S, Carocho M, Ferreira ICFR, Barros L. Food Metabolites as Tools for Authentication, Processing, and Nutritive Value Assessment. Foods 2021; 10:2213. [PMID: 34574323 PMCID: PMC8465241 DOI: 10.3390/foods10092213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Secondary metabolites are molecules with unlimited applications that have been gaining importance in various industries and studied from many angles. They are mainly used for their bioactive capabilities, but due to the improvement of sensibility in analytical chemistry, they are also used for authentication and as a quality control parameter for foods, further allowing to help avoid food adulteration and food fraud, as well as helping understand the nutritional value of foods. This manuscript covers the examples of secondary metabolites that have been used as qualitative and authentication molecules in foods, from production, through processing and along their shelf-life. Furthermore, perspectives of analytical chemistry and their contribution to metabolite detection and general perspectives of metabolomics are also discussed.
Collapse
Affiliation(s)
| | | | | | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.C.P.); (L.L.); (S.H.); (I.C.F.R.F.); (L.B.)
| | | | | |
Collapse
|
256
|
Kuleš J, Rubić I, Beer Ljubić B, Bilić P, Barić Rafaj R, Brkljačić M, Burchmore R, Eckersall D, Mrljak V. Combined Untargeted and Targeted Metabolomics Approaches Reveal Urinary Changes of Amino Acids and Energy Metabolism in Canine Babesiosis With Different Levels of Kidney Function. Front Microbiol 2021; 12:715701. [PMID: 34603243 PMCID: PMC8484968 DOI: 10.3389/fmicb.2021.715701] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Canine babesiosis is a tick-borne disease with a worldwide distribution, caused by the haemoprotozoan parasites of the genus Babesia. One of the most prevalent complication is acute kidney injury, and an early diagnosis of altered kidney function remains a challenge for veterinary practice. The aim of this study was to assess the urine metabolic profile from dogs with babesiosis and different degree of kidney function using untargeted and targeted MS-based metabolomics approaches. In this study, 22 dogs naturally infected with Babesia canis and 12 healthy dogs were included. Untargeted metabolomics approach identified 601 features with a differential abundance between the healthy group and groups of dogs with babesiosis and different level of kidney function, with 27 of them identified as a match to known standards; while targeted approach identified 17 metabolites with significantly different concentrations between the groups. A pattern of significantly altered metabolites referring to the inflammatory host response, oxidative stress, and energy metabolism modulation in babesiosis was presented. Our findings have demonstrated that kidney dysfunction accompanying canine babesiosis was associated with changes in amino acid metabolism, energy metabolism, fatty acid metabolism, and biochemical pathways such as urea cycle and ammonia detoxication. These findings will enable the inclusion of urinary markers for the detection and monitoring of renal damage in babesiosis, as well as in other similar diseases.
Collapse
Affiliation(s)
- Josipa Kuleš
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Rubić
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Petra Bilić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Renata Barić Rafaj
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Mirna Brkljačić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - David Eckersall
- College of Medical, Veterinary, and Life Sciences, Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vladimir Mrljak
- Laboratory of Proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
257
|
Schütz D, Achten E, Creydt M, Riedl J, Fischer M. Non-Targeted LC-MS Metabolomics Approach towards an Authentication of the Geographical Origin of Grain Maize ( Zea mays L.) Samples. Foods 2021; 10:foods10092160. [PMID: 34574275 PMCID: PMC8466891 DOI: 10.3390/foods10092160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Safety along the food and feed supply chain is an emerging topic and closely linked to the ability to analytical trace the geographical origin of food or feed. In this study, ultra-performance liquid chromatography coupled with electrospray ionization quadrupole-time-of-flight mass spectrometry was used to trace back the geographical origin of 151 grain maize (Zea mays L.) samples from seven countries using a high resolution non-targeted metabolomics approach. Multivariate data analysis and univariate statistics were used to identify promising marker features related to geographical origin. Classification using only 20 selected markers with the Random Forest algorithm led to 90.5% correctly classified samples with 100 times repeated 10-fold cross-validation. The selected markers were assigned to the class of triglycerides, diglycerides and phospholipids. The marker set was further evaluated for its ability to separate between one sample class and the rest of the dataset, yielding accuracies above 89%. This demonstrates the high potential of the non-polar metabolome to authenticate the geographic origin of grain maize samples. Furthermore, this suggests that focusing on only a few lipids with high potential for grain maize authentication could be a promising approach for later transfer of the method to routine analysis.
Collapse
Affiliation(s)
- David Schütz
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (D.S.); (M.C.)
| | - Elisabeth Achten
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (E.A.); (J.R.)
| | - Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (D.S.); (M.C.)
| | - Janet Riedl
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; (E.A.); (J.R.)
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (D.S.); (M.C.)
- Correspondence:
| |
Collapse
|
258
|
Human age-declined saliva metabolic markers determined by LC-MS. Sci Rep 2021; 11:18135. [PMID: 34518599 PMCID: PMC8437986 DOI: 10.1038/s41598-021-97623-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/26/2021] [Indexed: 01/20/2023] Open
Abstract
Metabolites in human biofluids reflect individual physiological states influenced by various factors. Using liquid chromatography-mass spectrometry (LC–MS), we conducted non-targeted, non-invasive metabolomics using saliva of 27 healthy volunteers in Okinawa, comprising 13 young (30 ± 3 year) and 14 elderly (76 ± 4 year) subjects. Few studies have comprehensively identified age-dependent changes in salivary metabolites. Among 99 salivary metabolites, 21 were statistically age-related. All of the latter decline in abundance with advancing age, except ATP, which increased 1.96-fold in the elderly, possibly due to reduced ATP consumption. Fourteen age-linked and highly correlated compounds function in a metabolic network involving the pentose-phosphate pathway, glycolysis/gluconeogenesis, amino acids, and purines/pyrimidines nucleobases. The remaining seven less strongly correlated metabolites, include ATP, anti-oxidation-related glutathione disulfide, muscle-related acetyl-carnosine, N-methyl-histidine, creatinine, RNA-related dimethyl-xanthine and N-methyl-adenosine. In addition, glutamate and N-methyl-histidine are related to taste, so their decline suggests that the elderly lose some ability to taste. Reduced redox metabolism and muscle activity are suggested by changes in glutathione and acetyl-carnosine. These age-linked salivary metabolites together illuminate a metabolic network that reflects a decline of oral functions during human aging.
Collapse
|
259
|
Chaby LE, Lasseter HC, Contrepois K, Salek RM, Turck CW, Thompson A, Vaughan T, Haas M, Jeromin A. Cross-Platform Evaluation of Commercially Targeted and Untargeted Metabolomics Approaches to Optimize the Investigation of Psychiatric Disease. Metabolites 2021; 11:609. [PMID: 34564425 PMCID: PMC8466258 DOI: 10.3390/metabo11090609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolomics methods often encounter trade-offs between quantification accuracy and coverage, with truly comprehensive coverage only attainable through a multitude of complementary assays. Due to the lack of standardization and the variety of metabolomics assays, it is difficult to integrate datasets across studies or assays. To inform metabolomics platform selection, with a focus on posttraumatic stress disorder (PTSD), we review platform use and sample sizes in psychiatric metabolomics studies and then evaluate five prominent metabolomics platforms for coverage and performance, including intra-/inter-assay precision, accuracy, and linearity. We found performance was variable between metabolite classes, but comparable across targeted and untargeted approaches. Within all platforms, precision and accuracy were highly variable across classes, ranging from 0.9-63.2% (coefficient of variation) and 0.6-99.1% for accuracy to reference plasma. Several classes had high inter-assay variance, potentially impeding dissociation of a biological signal, including glycerophospholipids, organooxygen compounds, and fatty acids. Coverage was platform-specific and ranged from 16-70% of PTSD-associated metabolites. Non-overlapping coverage is challenging; however, benefits of applying multiple metabolomics technologies must be weighed against cost, biospecimen availability, platform-specific normative levels, and challenges in merging datasets. Our findings and open-access cross-platform dataset can inform platform selection and dataset integration based on platform-specific coverage breadth/overlap and metabolite-specific performance.
Collapse
Affiliation(s)
- Lauren E. Chaby
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Heather C. Lasseter
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Reza M. Salek
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, World Health Organisation, 150 Cours Albert Thomas, CEDEX 08, 69372 Lyon, France;
| | - Christoph W. Turck
- Max Planck Institute of Psychiatry, Proteomics and Biomarkers, 80804 Munich, Germany;
| | - Andrew Thompson
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Timothy Vaughan
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Magali Haas
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| | - Andreas Jeromin
- Cohen Veterans Bioscience, New York, NY 10018, USA; (L.E.C.); (H.C.L.); (A.T.); (T.V.); (M.H.)
| |
Collapse
|
260
|
Murgia F, Monni G, Corda V, Hendren AJ, Paci G, Piras A, Ibba RM, Atzori L. Metabolomics Analysis of Amniotic Fluid in Euploid Foetuses with Thickened Nuchal Translucency by Gas Chromatography-Mass Spectrometry. Life (Basel) 2021; 11:913. [PMID: 34575062 PMCID: PMC8466859 DOI: 10.3390/life11090913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Persistence of a fetal thickened nuchal translucency (NT), one of the most sensitive and specific individual markers of fetal disorders, is strongly correlated with the possibility of a genetic syndrome, congenital infections, or other malformations. Thickened NT can also be found in normal pregnancies. Several of its pathophysiological aspects still remain unexplained. Metabolomics could offer a fresh opportunity to explore maternal-foetal metabolism in an effort to explain its physiological and pathological mechanisms. For this prospective case-control pilot study, thirty-nine samples of amniotic fluids were collected, divisible into 12 euploid foetuses with an enlarged nuchal translucency (>NT) and 27 controls (C). Samples were analyzed using gas chromatography mass spectrometry. Multivariate and univariate statistical analyses were performed to find a specific metabolic pattern of >NT class. The correlation between the metabolic profile and clinical parameters was evaluated (NT showed an R2 = 0.75, foetal crown-rump length showed R2 = 0.65, pregnancy associated plasma protein-A showed R2 = 0.60). Nine metabolites significantly differing between >NT foetuses and C were detected: 2-hydroxybutyric acid, 3-hydroxybutyric, 1,5 Anydro-Sorbitol, cholesterol, erythronic acid, fructose, malic acid, threitol, and threonine, which were linked to altered pathways involved in altered energetic pathways. Through the metabolomics approach, it was possible to identify a specific metabolic fingerprint of the fetuses with >NT.
Collapse
Affiliation(s)
- Federica Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (G.P.); (L.A.)
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Giovanni Monni
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Valentina Corda
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Aran J. Hendren
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Giulia Paci
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (G.P.); (L.A.)
| | - Alba Piras
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Rosa M. Ibba
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico A.Cao, 09121 Cagliari, Italy; (V.C.); (A.P.); (R.M.I.)
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (G.P.); (L.A.)
| |
Collapse
|
261
|
Sindhu KJ, Venkatesan N, Karunagaran D. MicroRNA Interactome Multiomics Characterization for Cancer Research and Personalized Medicine: An Expert Review. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:545-566. [PMID: 34448651 DOI: 10.1089/omi.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) that are mutually modulated by their interacting partners (interactome) are being increasingly noted for their significant role in pathogenesis and treatment of various human cancers. Recently, miRNA interactome dissected with multiomics approaches has been the subject of focus since individual tools or methods failed to provide the necessary comprehensive clues on the complete interactome. Even though single-omics technologies such as proteomics can uncover part of the interactome, the biological and clinical understanding still remain incomplete. In this study, we present an expert review of studies involving multiomics approaches to identification of miRNA interactome and its application in mechanistic characterization, classification, and therapeutic target identification in a variety of cancers, and with a focus on proteomics. We also discuss individual or multiple miRNA-based interactome identification in various pathological conditions of relevance to clinical medicine. Various new single-omics methods that can be integrated into multiomics cancer research and the computational approaches to analyze and predict miRNA interactome are also highlighted in this review. In all, we contextulize the power of multiomics approaches and the importance of the miRNA interactome to achieve the vision and practice of predictive, preventive, and personalized medicine in cancer research and clinical oncology.
Collapse
Affiliation(s)
- K J Sindhu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nalini Venkatesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
262
|
Comparative metabolomics analysis reveals the metabolic regulation mechanism of yellow pigment overproduction by Monascus using ammonium chloride as a nitrogen source. Appl Microbiol Biotechnol 2021; 105:6369-6379. [PMID: 34402939 DOI: 10.1007/s00253-021-11395-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023]
Abstract
Monascus yellow pigments (MYPs), as food colorants, are of great interest to the food industry, because of their beneficial biological activities. In this study, a comparative metabolomics strategy revealed the metabolic regulatory mechanism of MYP overproduction, comparing ammonium chloride with peptone as nitrogen sources. Metabolomics-based multivariate regression modeling showed that metabolic biomarkers/modules, such as glucose, lactate, and the pentose phosphate (PP) pathway, were closely associated with the biosynthesis of MYPs. Exogenous addition of glucose increased production of MYPs, whereas lactate reduced it. Inhibition of the PP pathway with dehydroepiandrosterone decreased MYP production, while increasing the shunting production of orange and red pigments. All these treatments significantly changed the expression profiles of the pigment biosynthetic gene cluster and the mycelial morphology. Overall, this study demonstrates the feasibility of elucidating the mechanism of MYP biosynthesis by comprehensive metabolomics analysis, as well as discovering potential engineering targets of efficiency improvements to commercial MYP production. KEY POINTS: • Comparative metabolomics revealed the biomarkers/modules of MYP production. • A rational exogenously adding strategy was implemented to regulate MYP synthesis. • Expression profiles of gene cluster and mycelial morphology were characterized.
Collapse
|
263
|
Mass spectrometry based metabolomics approach on the elucidation of volatile metabolites formation in fermented foods: A mini review. Food Sci Biotechnol 2021; 30:881-890. [PMID: 34395019 PMCID: PMC8302692 DOI: 10.1007/s10068-021-00917-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolomics can be applied for comparative and quantitative analyses of the metabolic changes induced by microorganisms during fermentation. In particular, mass spectrometry (MS) is a powerful tool for metabolomics that is widely used for elucidating biomarkers and patterns of metabolic changes. Fermentation involves the production of volatile metabolites via diverse and complex metabolic pathways by the activities of microbial enzymes. These metabolites can greatly affect the organoleptic properties of fermented foods. This review provides an overview of the MS-based metabolomics techniques applied in studies of fermented foods, and the major metabolic pathways and metabolites (e.g., sugars, amino acids, and fatty acids) derived from their metabolism. In addition, we suggest an efficient tool for understanding the metabolic patterns and for identifying novel markers in fermented foods.
Collapse
|
264
|
Xu R, Lee J, Chen L, Zhu J. Enhanced detection and annotation of small molecules in metabolomics using molecular-network-oriented parameter optimization. Mol Omics 2021; 17:665-676. [PMID: 34355227 DOI: 10.1039/d1mo00005e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolomics, especially the large-scale untargeted metabolomics, generates massive amounts of data on a regular basis, which often needs to be filtered, screened, analyzed and annotated via a variety of approaches. Data-dependent-acquisition (DDA) mode including inclusion and exclusion rules for tandem mass spectrometry (MS) is routinely used to perform such analyses. While the parameters of data acquisition are important in these processes, there is a lack of systematic studies on these parameters that can be used in data collection to generate metabolic features for molecular-network (MN) analysis on the Global Natural Products Social Molecular Networking (GNPS) platform. To explore the key parameters that impact the formation and quality of MNs, several data-acquisition parameters for metabolomic studies were proposed in this study. The influences of MS1 resolution, normalized collision energy (NCE), intensity threshold, and exclusion time on GNPS analyses were demonstrated. Moreover, an optimization workflow dedicated to Thermo Scientific QE Hybrid Orbitrap instruments is described, and a comparison of phytochemical contents from two forms of black raspberry extract was performed based on the GNPS MN results. Overall, we expect this study to provide additional thoughts on developing a natural-product-analysis workflow using the GNPS network, and to shed some light on future analyses that utilize similar instrumental setups.
Collapse
Affiliation(s)
- Rui Xu
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Jisun Lee
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Li Chen
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Jiangjiang Zhu
- Human Nutrition Program, The Ohio State University, Columbus, Ohio 43210, USA. and James Comprehensive Cancer Center, The Ohio State University, 400 W 12th Ave, Columbus, Ohio 43210, USA
| |
Collapse
|
265
|
Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, Voelcker NH, Cifuentes-Rius A, Elnathan R. Engineering Micro–Nanomaterials for Biomedical Translation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Maria Alba
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Terence Tieu
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
| | - Ziqiu Tong
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Rajpreet Singh Minhas
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
| | - Nicolas H. Voelcker
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Commonwealth Scientific and Industrial Research Organisation (CSIRO) Clayton VIC 3168 Australia
- INM-Leibniz Institute for New Materials Campus D2 2 Saarbrücken 66123 Germany
| | - Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
- Melbourne Centre for Nanofabrication Victorian Node of the Australian National Fabrication Facility 151 Wellington Road Clayton VIC 3168 Australia
- Department of Materials Science and Engineering Monash University 22 Alliance Lane Clayton VIC 3168 Australia
| |
Collapse
|
266
|
Tabago MKAG, Calingacion MN, Garcia J. Recent advances in NMR-based metabolomics of alcoholic beverages. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 2:100009. [PMID: 35415632 PMCID: PMC8991939 DOI: 10.1016/j.fochms.2020.100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 01/14/2023]
Abstract
Alcoholic beverages have a complex chemistry that can be influenced by their alcoholic content, origin, fermentation process, additives, and contaminants. The complex composition of these beverages leave them susceptible to fraud, potentially compromising their authenticity, quality, and market value, thus increasing risks to consumers' health. In recent years, intensive studies have been carried out on alcoholic beverages using different analytical techniques to evaluate the authenticity, variety, age, and fermentation processes that were used. Among these techniques, NMR-based metabolomics holds promise in profiling the chemistry of alcoholic beverages, especially in Asia where metabolomics studies on alcoholic beverages remain limited.
Collapse
Affiliation(s)
- Maria Krizel Anne G. Tabago
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Mariafe N. Calingacion
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| | - Joel Garcia
- Chemistry Department, De La Salle University, 2401 Taft Avenue, Malate, Manila, Metro Manila 1004, Philippines
| |
Collapse
|
267
|
Zareena B, Khadim A, Jeelani SUY, Hussain S, Ali A, Musharraf SG. High-Throughput Detection of an Alkaloidal Plant Metabolome in Plant Extracts Using LC-ESI-QTOF-MS. J Proteome Res 2021; 20:3826-3839. [PMID: 34308647 DOI: 10.1021/acs.jproteome.1c00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant alkaloids represent a diverse group of nitrogen-containing natural products. These compounds are considered valuable in drug discovery and development. High-throughput identification of such plant secondary metabolites in complex plant extracts is essential for drug discovery, lead optimization, and understanding the biological pathway. The present study aims to rapidly identify different classes of alkaloids in plant extracts through the liquid chromatography with electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) approach using 161 isolated and purified alkaloids. These are biologically important unique alkaloids belonging to different sub-classes such as isoquinoline, quinoline, indole, tropane, pyridine, piperidine, quinolizidine, aporphine, steroidal, and terpenoid. The majority of these are not available commercially and are known to manifest valuable biological activities. Four pools of a maximum of 50 phytostandards each were prepared, based on their log P value to minimize co-elution for rapid and cost-effective analyses. MS/MS spectra were acquired in the positive ionization mode by using their [M + H]+ and/or [M + Na]+ with both the average collisional energy (25.5-62 eV) and individual collisional energies (10, 20, 30, and 40 eV). Accurate mass, high-resolution mass spectrometry (HR-MS) data, MS/MS data, and retention times were curated for each compound. The developed LC-MS/MS method was successfully used to interrogate and fast dereplicate alkaloids in 13 medicinal plant extracts and a herbal formulation. A total of 56 alkaloids were identified based on the reference standard retention times (RTs), HR-MS spectra, and/or MS/MS spectra. The MS data have been submitted to the MetaboLights online database (MTBLS2914). The mass spectrometric and chromatographic data will be useful for the discovery of new congeners and the study of biological pathways of alkaloids in the plant kingdom.
Collapse
Affiliation(s)
- Bibi Zareena
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Adeeba Khadim
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Usama Y Jeelani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Saddam Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Arslan Ali
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.,Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
268
|
Homorogan C, Nitusca D, Enatescu V, Schubart P, Moraru C, Socaciu C, Marian C. Untargeted Plasma Metabolomic Profiling in Patients with Major Depressive Disorder Using Ultra-High Performance Liquid Chromatography Coupled with Mass Spectrometry. Metabolites 2021; 11:466. [PMID: 34357360 PMCID: PMC8306682 DOI: 10.3390/metabo11070466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a neuropsychiatric illness with an increasing incidence and a shortfall of efficient diagnostic tools. Interview-based diagnostic tools and clinical examination often lead to misdiagnosis and inefficient systematic treatment selection. Diagnostic and treatment monitoring biomarkers are warranted for MDD. Thus, the emerging field of metabolomics is a promising tool capable of portraying the metabolic repertoire of biomolecules from biological samples in a minimally invasive fashion. Herein, we report an untargeted metabolomic profiling performed in plasma samples of 11 MDD patients, at baseline (MDD1) and at 12 weeks following antidepressant therapy with escitalopram (MDD2), and in 11 healthy controls (C), using ultra-high performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-QTOF-(ESI+)-MS). We found two putative metabolites ((phosphatidylserine PS (16:0/16:1) and phosphatidic acid PA (18:1/18:0)) as having statistically significant increased levels in plasma samples of MDD1 patients compared to healthy subjects. ROC analysis revealed an AUC value of 0.876 for PS (16:0/16:1), suggesting a potential diagnostic biomarker role. In addition, PS (18:3/20:4) was significantly decreased in MDD2 group compared to MDD1, with AUC value of 0.785.
Collapse
Affiliation(s)
- Claudia Homorogan
- Doctoral School, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
| | - Diana Nitusca
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| | - Virgil Enatescu
- Discipline of Psychiatry, Department of Neurosciences, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania
| | - Philip Schubart
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| | - Corina Moraru
- BIODIATECH, Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania; (C.M.); (C.S.)
| | - Carmen Socaciu
- BIODIATECH, Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania; (C.M.); (C.S.)
| | - Catalin Marian
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| |
Collapse
|
269
|
Schultheiss UT, Kosch R, Kotsis F, Altenbuchinger M, Zacharias HU. Chronic Kidney Disease Cohort Studies: A Guide to Metabolome Analyses. Metabolites 2021; 11:460. [PMID: 34357354 PMCID: PMC8304377 DOI: 10.3390/metabo11070460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Kidney diseases still pose one of the biggest challenges for global health, and their heterogeneity and often high comorbidity load seriously hinders the unraveling of their underlying pathomechanisms and the delivery of optimal patient care. Metabolomics, the quantitative study of small organic compounds, called metabolites, in a biological specimen, is gaining more and more importance in nephrology research. Conducting a metabolomics study in human kidney disease cohorts, however, requires thorough knowledge about the key workflow steps: study planning, sample collection, metabolomics data acquisition and preprocessing, statistical/bioinformatics data analysis, and results interpretation within a biomedical context. This review provides a guide for future metabolomics studies in human kidney disease cohorts. We will offer an overview of important a priori considerations for metabolomics cohort studies, available analytical as well as statistical/bioinformatics data analysis techniques, and subsequent interpretation of metabolic findings. We will further point out potential research questions for metabolomics studies in the context of kidney diseases and summarize the main results and data availability of important studies already conducted in this field.
Collapse
Affiliation(s)
- Ulla T. Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (U.T.S.); (F.K.)
- Department of Medicine IV—Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Robin Kosch
- Computational Biology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (U.T.S.); (F.K.)
- Department of Medicine IV—Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Michael Altenbuchinger
- Institute of Medical Bioinformatics, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Helena U. Zacharias
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
270
|
Wang X, Yan M, Zhou J, Song W, Xiao Y, Cui C, Gao W, Ke F, Zhu J, Gu Z, Hou R. Delivery of acetamiprid to tea leaves enabled by porous silica nanoparticles: efficiency, distribution and metabolism of acetamiprid in tea plants. BMC PLANT BIOLOGY 2021; 21:337. [PMID: 34271878 PMCID: PMC8283891 DOI: 10.1186/s12870-021-03120-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/01/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Pesticide residue and its poor utilization remains problematic in agricultural development. To address the issue, a nano-pesticide has been developed by incorporating pesticide acetamiprid in porous silica nanoparticles. RESULTS This nano-pesticide had an acetamiprid loading content of 354.01 mg g-1. Testing LC50 value against tea aphids of the commercial preparation was three times that of the nano-pesticide. In tea seedlings (Camellia sinensis L.), acetamiprid was transported upward from the stem to the young leaves. On day 30, the average retained concentrations in tea leaves treated with the commercial preparation were about 1.3 times of that in the nano-pesticide preparation. The residual concentrations of dimethyl-acetamiprid in leaves for plants treated with the commercial preparation were about 1.1 times of that in the nano-pesticide preparation. Untargeted metabolomics of by LC-MS on the young leaves of tea seedlings under nano-pesticide and commercial pesticide treatments showed significant numbers of differentially expressed metabolites (P < 0.05 and VIP > 1). Between the nano-pesticide treatment group and the commercial preparation treatment group there were 196 differentially expressed metabolites 2 h after treatment, 200 (7th day), 207 (21st day), and 201 (30th day) in negative ion mode, and 294 (2nd h), 356 (7th day), and 286 (30th day) in positive ion mode. Preliminary identification showed that the major differentially expressed metabolites were glutamic acid, salicylic acid, p-coumaric acid, ribonic acid, glutamine, naringenin diglucoside, sanguiin H4, PG (34:2) and epiafzelechin. CONCLUSIONS This work demonstrated that our nano-pesticide outperformed the conventional pesticide acetamiprid in terms of insecticidal activity and pesticide residue, and the absorption, transportation and metabolism of nano-pesticide in tea plant were different, which pave a new pathway for pest control in agricultural sector.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Min Yan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Jie Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wei Song
- Hefei Customs District Technical Center, Safety, Anhui Key Lab of Analysis and Detection for Food, Hefei, 230022 China
| | - Yu Xiao
- Hefei Customs District Technical Center, Safety, Anhui Key Lab of Analysis and Detection for Food, Hefei, 230022 China
| | - Chuanjian Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Wanjun Gao
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Fei Ke
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Jing Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| | - Zi Gu
- School of Chemical Engineering, The University of New South Wales, Sydney, 2052 NSW Australia
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
271
|
Lephatsi MM, Meyer V, Piater LA, Dubery IA, Tugizimana F. Plant Responses to Abiotic Stresses and Rhizobacterial Biostimulants: Metabolomics and Epigenetics Perspectives. Metabolites 2021; 11:457. [PMID: 34357351 PMCID: PMC8305699 DOI: 10.3390/metabo11070457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
In response to abiotic stresses, plants mount comprehensive stress-specific responses which mediate signal transduction cascades, transcription of relevant responsive genes and the accumulation of numerous different stress-specific transcripts and metabolites, as well as coordinated stress-specific biochemical and physiological readjustments. These natural mechanisms employed by plants are however not always sufficient to ensure plant survival under abiotic stress conditions. Biostimulants such as plant growth-promoting rhizobacteria (PGPR) formulation are emerging as novel strategies for improving crop quality, yield and resilience against adverse environmental conditions. However, to successfully formulate these microbial-based biostimulants and design efficient application programs, the understanding of molecular and physiological mechanisms that govern biostimulant-plant interactions is imperatively required. Systems biology approaches, such as metabolomics, can unravel insights on the complex network of plant-PGPR interactions allowing for the identification of molecular targets responsible for improved growth and crop quality. Thus, this review highlights the current models on plant defence responses to abiotic stresses, from perception to the activation of cellular and molecular events. It further highlights the current knowledge on the application of microbial biostimulants and the use of epigenetics and metabolomics approaches to elucidate mechanisms of action of microbial biostimulants.
Collapse
Affiliation(s)
- Motseoa M. Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Vanessa Meyer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg 2050, South Africa;
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (L.A.P.); (I.A.D.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
272
|
Shi SW, Lou Q, Fang Q. Petrel Probe: An Integrated In Situ Sampling and Injection Interface for Fast, High-Efficiency Liquid Chromatography-Mass Spectrometry Analysis. Anal Chem 2021; 93:10114-10121. [PMID: 34260217 DOI: 10.1021/acs.analchem.1c01005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we describe an in situ analysis probe, Petrel probe, highly integrating multiple functions of in situ sampling, in situ sample injection, high-performance liquid chromatography (HPLC) separation, and mass spectrometry (MS) electrospray. The Petrel probe was fabricated based on a single capillary, which consists of a micrometer-sized hole for sampling, a packed column for LC separation, and a tapered tip for MS electrospray. The design of the Petrel probe was optimized to obtain higher structural strength, and a polytetrafluoroethylene (PTFE) chip was used for sealing the probe-sampling hole to meet the high-pressure (∼30 MPa) requirement of LC manifold. On the basis of the Petrel probe, we developed a novel valveless LC injection method, that is, the probe pressing microamount in situ (PPMI) injection method, which performs sample injection by pressing the probe-sampling hole on the PTFE chip, using the mobile phase to dissolve the sample dry spot in the sampling area on the chip, and injecting it into the LC column under high-pressure conditions for separation and subsequent MS analysis. The LC-MS system with the PPMI injection method exhibits rapid injection and separation speed, as well as minimum injection dead volume. It can yield a high separation efficiency comparable to those of conventional HPLC systems. The present system was optimized using standard peptide samples, and four peptides were separated within 11 min in a probe with an effective column length of 5 cm, achieving the highest theoretical plate number up to ∼5,500,000/m. The system was also applied in the separation of cytochrome C digest to demonstrate its separation ability for complex samples, and 21 peptides were detected in 8 min with an amino-acid coverage of 83%.
Collapse
Affiliation(s)
- Shao-Wen Shi
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qi Lou
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310058, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310007, China.,Hangzhou Innovation Center, Zhejiang University, Hangzhou 311200, China.,College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
273
|
Lavarello C, Barco S, Bartolucci M, Panfoli I, Magi E, Tripodi G, Petretto A, Cangemi G. Development of an Accurate Mass Retention Time Database for Untargeted Metabolomic Analysis and Its Application to Plasma and Urine Pediatric Samples. Molecules 2021; 26:molecules26144256. [PMID: 34299531 PMCID: PMC8303579 DOI: 10.3390/molecules26144256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 01/17/2023] Open
Abstract
Liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is currently the method of choice for untargeted metabolomic analysis. The availability of established protocols to achieve a high confidence identification of metabolites is crucial. The aim of this work is to describe the workflow that we have applied to build an Accurate Mass Retention Time (AMRT) database using a commercial metabolite library of standards. LC-HRMS analysis was carried out using a Vanquish Horizon UHPLC system coupled to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Milan, Italy). The fragmentation spectra, obtained with 12 collision energies, were acquired for each metabolite, in both polarities, through flow injection analysis. Several chromatographic conditions were tested to obtain a protocol that yielded stable retention times. The adopted chromatographic protocol included a gradient separation using a reversed phase (Waters Acquity BEH C18) and a HILIC (Waters Acquity BEH Amide) column. An AMRT database of 518 compounds was obtained and tested on real plasma and urine samples analyzed in data-dependent acquisition mode. Our AMRT library allowed a level 1 identification, according to the Metabolomics Standards Initiative, of 132 and 124 metabolites in human pediatric plasma and urine samples, respectively. This library represents a starting point for future metabolomic studies in pediatric settings.
Collapse
Affiliation(s)
- Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (C.L.); (M.B.)
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16146 Genoa, Italy;
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analyses, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (G.T.); (G.C.)
| | - Martina Bartolucci
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (C.L.); (M.B.)
| | - Isabella Panfoli
- DIFAR-Biochemistry Laboratory, University of Genoa, 16132 Genova, Italy;
| | - Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, 16146 Genoa, Italy;
| | - Gino Tripodi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analyses, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (G.T.); (G.C.)
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (C.L.); (M.B.)
- Correspondence: ; Tel.: +39-01056362911
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analyses, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.B.); (G.T.); (G.C.)
| |
Collapse
|
274
|
van Roekel EH, Bours MJL, van Delden L, Breukink SO, Aquarius M, Keulen ETP, Gicquiau A, Viallon V, Rinaldi S, Vineis P, Arts ICW, Gunter MJ, Leitzmann MF, Scalbert A, Weijenberg MP. Longitudinal associations of physical activity with plasma metabolites among colorectal cancer survivors up to 2 years after treatment. Sci Rep 2021; 11:13738. [PMID: 34215757 PMCID: PMC8253824 DOI: 10.1038/s41598-021-92279-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/20/2021] [Indexed: 11/09/2022] Open
Abstract
We investigated longitudinal associations of moderate-to-vigorous physical activity (MVPA) and light-intensity physical activity (LPA) with plasma concentrations of 138 metabolites after colorectal cancer (CRC) treatment. Self-reported physical activity data and blood samples were obtained at 6 weeks, and 6, 12 and 24 months post-treatment in stage I-III CRC survivors (n = 252). Metabolite concentrations were measured by tandem mass spectrometry (BIOCRATES AbsoluteIDQp180 kit). Linear mixed models were used to evaluate confounder-adjusted longitudinal associations. Inter-individual (between-participant differences) and intra-individual associations (within-participant changes over time) were assessed as percentage difference in metabolite concentration per 5 h/week of MVPA or LPA. At 6 weeks post-treatment, participants reported a median of 6.5 h/week of MVPA (interquartile range:2.3,13.5) and 7.5 h/week of LPA (2.0,15.8). Inter-individual associations were observed with more MVPA being related (FDR-adjusted q-value < 0.05) to higher concentrations of arginine, citrulline and histidine, eight lysophosphatidylcholines, nine diacylphosphatidylcholines, 13 acyl-alkylphosphatidylcholines, two sphingomyelins, and acylcarnitine C10:1. No intra-individual associations were found. LPA was not associated with any metabolite. More MVPA was associated with higher concentrations of several lipids and three amino acids, which have been linked to anti-inflammatory processes and improved metabolic health. Mechanistic studies are needed to investigate whether these metabolites may affect prognosis.
Collapse
Affiliation(s)
- Eline H van Roekel
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Martijn J L Bours
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Linda van Delden
- Department of Epidemiology, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands
| | - Stéphanie O Breukink
- Department of Surgery, GROW School for Oncology and Developmental Biology & NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Michèl Aquarius
- Department of Gastroenterology, VieCuri Medical Center, Venlo, the Netherlands
| | - Eric T P Keulen
- Department of Internal Medicine and Gastroenterology, Zuyderland Medical Centre, Sittard-Geleen, the Netherlands
| | - Audrey Gicquiau
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Vivian Viallon
- Nutritional Methodology and Biostatistics Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Sabina Rinaldi
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
- Italian Institute of Technology, Genoa, Italy
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- Department of Epidemiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Marc J Gunter
- Nutritional Epidemiology Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Augustin Scalbert
- Biomarkers Group, Nutrition and Metabolism Section, International Agency for Research On Cancer (IARC-WHO), Lyon, France
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| |
Collapse
|
275
|
Li JT, Zeng N, Yan ZP, Liao T, Ni GX. A review of applications of metabolomics in osteoarthritis. Clin Rheumatol 2021; 40:2569-2579. [PMID: 33219452 DOI: 10.1007/s10067-020-05511-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) represents the most prevalent and disabling arthritis worldwide due to its heterogeneous and progressive articular degradation. However, effective and timely diagnosis and fundamental treatment for this disorder are lacking. Metabolomics, a growing field in life science research in recent years, has the potential to detect many metabolites and thus explains the underlying pathophysiological processes. Hence, new specific metabolic markers and related metabolic pathways can be identified for OA. In this review, we aimed to provide an overview of studies related to the metabolomics of OA in animal models and humans to describe the metabolic changes and related pathways for OA. The present metabolomics studies reveal that the pathogenesis of OA may be significantly related to perturbations of amino acid metabolism. These altered amino acids (e.g., branched-chain amino acids, arginine, and alanine), as well as phospholipids, were identified as potential biomarkers to distinguish patients with OA from healthy individuals.
Collapse
Affiliation(s)
- Jie-Ting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Ni Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Zhi-Peng Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Tao Liao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Guo-Xin Ni
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
276
|
Alseekh S, Aharoni A, Brotman Y, Contrepois K, D'Auria J, Ewald J, C Ewald J, Fraser PD, Giavalisco P, Hall RD, Heinemann M, Link H, Luo J, Neumann S, Nielsen J, Perez de Souza L, Saito K, Sauer U, Schroeder FC, Schuster S, Siuzdak G, Skirycz A, Sumner LW, Snyder MP, Tang H, Tohge T, Wang Y, Wen W, Wu S, Xu G, Zamboni N, Fernie AR. Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods 2021; 18:747-756. [PMID: 34239102 PMCID: PMC8592384 DOI: 10.1038/s41592-021-01197-1] [Citation(s) in RCA: 407] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Mass spectrometry-based metabolomics approaches can enable detection and quantification of many thousands of metabolite features simultaneously. However, compound identification and reliable quantification are greatly complicated owing to the chemical complexity and dynamic range of the metabolome. Simultaneous quantification of many metabolites within complex mixtures can additionally be complicated by ion suppression, fragmentation and the presence of isomers. Here we present guidelines covering sample preparation, replication and randomization, quantification, recovery and recombination, ion suppression and peak misidentification, as a means to enable high-quality reporting of liquid chromatography- and gas chromatography-mass spectrometry-based metabolomics-derived data.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - John D'Auria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jan Ewald
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - Jennifer C Ewald
- Interfaculty Institute of Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Paul D Fraser
- Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Robert D Hall
- BU Bioscience, Wageningen Research, Wageningen, the Netherlands
- Laboratory of Plant Physiology, Wageningen University, Wageningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, China
| | - Steffen Neumann
- Bioinformatics and Scientific Data, Leibniz Institute for Plant Biochemistry, Halle, Germany
| | - Jens Nielsen
- BioInnovation Institute, Copenhagen, Denmark
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Kazuki Saito
- Plant Molecular Science Center, Chiba University, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Uwe Sauer
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Stefan Schuster
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - Gary Siuzdak
- Center for Metabolomics and Mass Spectrometry, Scripps Research Institute, La Jolla, CA, USA
| | - Aleksandra Skirycz
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Lloyd W Sumner
- Department of Biochemistry and MU Metabolomics Center, University of Missouri, Columbia, MO, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Takayuki Tohge
- Department of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | - Weiwei Wen
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Nicola Zamboni
- Institute for Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Institute of Plants Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
277
|
Busso-Lopes AF, Carnielli CM, Winck FV, Patroni FMDS, Oliveira AK, Granato DC, E Costa RAP, Domingues RR, Pauletti BA, Riaño-Pachón DM, Aricetti J, Caldana C, Graner E, Coletta RD, Dryden K, Fox JW, Paes Leme AF. A Reductionist Approach Using Primary and Metastatic Cell-Derived Extracellular Vesicles Reveals Hub Proteins Associated with Oral Cancer Prognosis. Mol Cell Proteomics 2021; 20:100118. [PMID: 34186243 PMCID: PMC8350068 DOI: 10.1016/j.mcpro.2021.100118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/28/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) has high mortality rates that are largely associated with lymph node metastasis. However, the molecular mechanisms that drive OSCC metastasis are unknown. Extracellular vesicles (EVs) are membrane-bound particles that play a role in intercellular communication and impact cancer development and progression. Thus, profiling EVs would be of great significance to decipher their role in OSCC metastasis. For that purpose, we used a reductionist approach to map the proteomic, miRNA, metabolomic, and lipidomic profiles of EVs derived from human primary tumor (SCC-9) cells and matched lymph node metastatic (LN1) cells. Distinct omics profiles were associated with the metastatic phenotype, including 670 proteins, 217 miRNAs, 26 metabolites, and 63 lipids differentially abundant between LN1 cell– and SCC-9 cell–derived EVs. A multi-omics integration identified 11 ‘hub proteins’ significantly decreased at the metastatic site compared with primary tumor–derived EVs. We confirmed the validity of these findings with analysis of data from multiple public databases and found that low abundance of seven ‘hub proteins’ in EVs from metastatic lymph nodes (ALDH7A1, CAD, CANT1, GOT1, MTHFD1, PYGB, and SARS) is correlated with reduced survival and tumor aggressiveness in patients with cancer. In summary, this multi-omics approach identified proteins transported by EVs that are associated with metastasis and which may potentially serve as prognostic markers in OSCC. Proteomic, miRNA, metabolomic, and lipidomic profiles were mapped in oral cancer EVs. The molecular profile of EVs was associated with the lymph node metastatic phenotype. A multi-omics integrative analysis revealed 11 highly connected ‘hub proteins.’ ‘Hub proteins’ from EVs are candidates as prognostic markers in oral cancer.
Collapse
Affiliation(s)
- Ariane Fidelis Busso-Lopes
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Carolina Moretto Carnielli
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Flavia Vischi Winck
- Laboratório de Biologia de Sistemas Regulatórios, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fábio Malta de Sá Patroni
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Ana Karina Oliveira
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Daniela Campos Granato
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Rute Alves Pereira E Costa
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Romênia Ramos Domingues
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Bianca Alves Pauletti
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório de Biologia de Sistemas Regulatórios, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Juliana Aricetti
- Laboratório Nacional de Biorrenováveis - LNBR, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg, Potsdam-Golm, Germany
| | - Edgard Graner
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Ricardo Della Coletta
- Departamento de Diagnóstico Oral, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Kelly Dryden
- Molecular Electron Microscopy Core, University of Virginia, Charlottesville, Virginia, USA
| | - Jay William Fox
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Adriana Franco Paes Leme
- Laboratório Nacional de Biociências - LNBio, Centro Nacional de Pesquisa em Energia e Materiais - CNPEM, Campinas, SP, Brazil.
| |
Collapse
|
278
|
Monni G, Atzori L, Corda V, Dessolis F, Iuculano A, Hurt KJ, Murgia F. Metabolomics in Prenatal Medicine: A Review. Front Med (Lausanne) 2021; 8:645118. [PMID: 34249959 PMCID: PMC8267865 DOI: 10.3389/fmed.2021.645118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pregnancy is a complicated and insidious state with various aspects to consider, including the well-being of the mother and child. Developing better non-invasive tests that cover a broader range of disorders with lower false-positive rates is a fundamental necessity in the prenatal medicine field, and, in this sense, the application of metabolomics could be extremely useful. Metabolomics measures and analyses the products of cellular biochemistry. As a biomarker discovery tool, the integrated holistic approach of metabolomics can yield new diagnostic or therapeutic approaches. In this review, we identify and summarize prenatal metabolomics studies and identify themes and controversies. We conducted a comprehensive search of PubMed and Google Scholar for all publications through January 2020 using combinations of the following keywords: nuclear magnetic resonance, mass spectrometry, metabolic profiling, prenatal diagnosis, pregnancy, chromosomal or aneuploidy, pre-eclampsia, fetal growth restriction, pre-term labor, and congenital defect. Metabolite detection with high throughput systems aided by advanced bioinformatics and network analysis allowed for the identification of new potential prenatal biomarkers and therapeutic targets. We took into consideration the scientific papers issued between the years 2000-2020, thus observing that the larger number of them were mainly published in the last 10 years. Initial small metabolomics studies in perinatology suggest that previously unidentified biochemical pathways and predictive biomarkers may be clinically useful. Although the scientific community is considering metabolomics with increasing attention for the study of prenatal medicine as well, more in-depth studies would be useful in order to advance toward the clinic world as the obtained results appear to be still preliminary. Employing metabolomics approaches to understand fetal and perinatal pathophysiology requires further research with larger sample sizes and rigorous testing of pilot studies using various omics and traditional hypothesis-driven experimental approaches.
Collapse
Affiliation(s)
- Giovanni Monni
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Valentina Corda
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Francesca Dessolis
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - Ambra Iuculano
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
| | - K. Joseph Hurt
- Divisions of Maternal Fetal Medicine and Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Federica Murgia
- Department of Prenatal and Preimplantation Genetic Diagnosis and Fetal Therapy, Ospedale Pediatrico Microcitemico “A.Cao,”Cagliari, Italy
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
279
|
In Vitro Metabolism of Donepezil in Liver Microsomes Using Non-Targeted Metabolomics. Pharmaceutics 2021; 13:pharmaceutics13070936. [PMID: 34201744 PMCID: PMC8309179 DOI: 10.3390/pharmaceutics13070936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/17/2022] Open
Abstract
Donepezil is a reversible acetylcholinesterase inhibitor that is currently the most commonly prescribed drug for the treatment of Alzheimer’s disease. In general, donepezil is known as a safe and well-tolerated drug, and it was not associated with liver abnormalities in several clinical trials. However, rare cases of drug-related liver toxicity have been reported since it has become commercially available. Few studies have investigated the metabolic profile of donepezil, and the mechanism of liver damage caused by donepezil has not been elucidated. In this study, the in vitro metabolism of donepezil was investigated using liquid chromatography–tandem mass spectrometry based on a non-targeted metabolomics approach. To identify metabolites, the data were subjected to multivariate data analysis and molecular networking. A total of 21 donepezil metabolites (17 in human liver microsomes, 21 in mice liver microsomes, and 17 in rat liver microsomes) were detected including 14 newly identified metabolites. One potential reactive metabolite was identified in rat liver microsomal incubation samples. Metabolites were formed through four major metabolic pathways: (1) O-demethylation, (2) hydroxylation, (3) N-oxidation, and (4) N-debenzylation. This study indicates that a non-targeted metabolomics approach combined with molecular networking is a reliable tool to identify and detect unknown drug metabolites.
Collapse
|
280
|
Li L, Wang D, Sun C, Li Y, Lu H, Wang X. Comprehensive Lipidome and Metabolome Profiling Investigations of Panax quinquefolius and Application in Different Growing Regions Using Liquid Chromatography Coupled with Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6710-6719. [PMID: 34080852 DOI: 10.1021/acs.jafc.1c02241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Panax quinquefolius is one of the most recognized ginseng species. In this study, lipidome and metabolome extraction methods for P. quinquefolius were optimized with methanol/methyl-tert-butyl ether/water (0.3 mg/1 μL/6 μL/8 μL). A total of 497 metabolites were identified, including 365 lipids and 76 ginsenosides. Comprehensive lipidome profiling was first performed for P. quinquefolius, in which 32.6% glycerophospholipids, 39.5% glycerolipids, 9.3% sphingolipids, 3.3% sterol lipids, and 15.3% fatty acyls were identified. Orthogonal partial least squares discrimination analysis (OPLS-DA) showed obvious metabolomic differences in two growing regions of China. In the northern growing region, the ratio of bilayer- to nonbilayer-forming membrane lipids (PCs/PEs, DGDGs/MGDGs), the degree of unsaturation of acyl chains in galactolipids, and the content of membrane glycerophospholipids were increased. In the eastern growing region, the synthesis of storage lipids, ceramides, and fatty acyls was increased, and secondary metabolism was enhanced with 24 differential ginsenosides found. The investigation deepens the understanding of metabolic regulation mechanisms of P. quinquefolius.
Collapse
Affiliation(s)
- Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Daijie Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yue Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Heng Lu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
281
|
Chu X, Zhang B, Koeken VACM, Gupta MK, Li Y. Multi-Omics Approaches in Immunological Research. Front Immunol 2021; 12:668045. [PMID: 34177908 PMCID: PMC8226116 DOI: 10.3389/fimmu.2021.668045] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system plays a vital role in health and disease, and is regulated through a complex interactive network of many different immune cells and mediators. To understand the complexity of the immune system, we propose to apply a multi-omics approach in immunological research. This review provides a complete overview of available methodological approaches for the different omics data layers relevant for immunological research, including genetics, epigenetics, transcriptomics, proteomics, metabolomics, and cellomics. Thereafter, we describe the various methods for data analysis as well as how to integrate different layers of omics data. Finally, we discuss the possible applications of multi-omics studies and opportunities they provide for understanding the complex regulatory networks as well as immune variation in various immune-related diseases.
Collapse
Affiliation(s)
- Xiaojing Chu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Valerie A. C. M. Koeken
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manoj Kumar Gupta
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
282
|
Naoumkina M, Thyssen GN, Fang DD, Bechere E, Li P, Florane CB. Mapping-by-sequencing the locus of EMS-induced mutation responsible for tufted-fuzzless seed phenotype in cotton. Mol Genet Genomics 2021; 296:1041-1049. [PMID: 34110475 DOI: 10.1007/s00438-021-01802-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
Cotton fiber mutants are valuable resources for studying functions of altered genes and their roles in fiber development. The n4t is a recessive tufted-fuzzless seed mutant created through chemical mutagenesis with ethyl methanesulfonate. Genetic analysis indicated that the tufted-fuzzless phenotype is controlled by a single recessive locus. In this study, we developed an F2 population of 602 progeny plants and sequenced the genomes of the parents and two DNA bulks from F2 progenies showing the mutant phenotype. We identified DNA sequence variants between the tufted-fuzzless mutant and wild type by aligning the sequence reads to the reference TM-1 genome and designed subgenome-specific SNP markers. We mapped the n4t locus on chromosome D04 within a genomic interval of about 411 kb. In this region, seven genes showed significant differential expression between the tufted-fuzzless mutant and wild type. Possible candidate genes are discussed in this study. The utilization of the n4t mutant along with other fiber mutants will facilitate our understanding of the molecular mechanisms of cotton fiber cell growth and development.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA.,Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA
| | - Efrem Bechere
- Crop Genetics Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Ping Li
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA
| | | |
Collapse
|
283
|
Foodomics technology: promising analytical methods of functional activities of plant polyphenols. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03781-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
284
|
Metabolomics analysis of the soapberry (Sapindus mukorossi Gaertn.) pericarp during fruit development and ripening based on UHPLC-HRMS. Sci Rep 2021; 11:11657. [PMID: 34079016 PMCID: PMC8172880 DOI: 10.1038/s41598-021-91143-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
Soapberry (Sapindus mukorossi Gaertn.) is a multi-functional tree with widespread application in toiletries, biomedicine, biomass energy, and landscaping. The pericarp of soapberry can be used as a medicine or detergent. However, there is currently no systematic study on the chemical constituents of soapberry pericarp during fruit development and ripening, and the dynamic changes in these constituents still unclear. In this study, a non-targeted metabolomics approach using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) was used to comprehensively profile the variations in metabolites in the soapberry pericarp at eight fruit growth stages. The metabolome coverage of UHPLC-HRMS on a HILIC column was higher than that of a C18 column. A total of 111 metabolites were putatively annotated. Principal component analysis and hierarchical clustering analysis of pericarp metabolic composition revealed clear metabolic shifts from early (S1–S2) to late (S3–S5) development stages to fruit ripening stages (S6–S8). Furthermore, pairwise comparison identified 57 differential metabolites that were involved in 18 KEGG pathways. Early fruit development stages (S1–S2) were characterized by high levels of key fatty acids, nucleotides, organic acids, and phosphorylated intermediates, whereas fruit ripening stages (S6–S8) were characterized by high contents of bioactive and valuable metabolites, such as troxipide, vorinostat, furamizole, alpha-tocopherol quinone, luteolin, and sucrose. S8 (fully developed and mature stage) was the most suitable stage for fruit harvesting to utilize the pericarp. To the best of our knowledge, this was the first metabolomics study of the soapberry pericarp during whole fruit growth. The results could offer valuable information for harvesting, processing, and application of soapberry pericarp, as well as highlight the metabolites that could mediate the biological activity or properties of this medicinal plant.
Collapse
|
285
|
Murgia F, Gagliano A, Tanca MG, Or-Geva N, Hendren A, Carucci S, Pintor M, Cera F, Cossu F, Sotgiu S, Atzori L, Zuddas A. Metabolomic Characterization of Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Front Neurosci 2021; 15:645267. [PMID: 34121984 PMCID: PMC8194687 DOI: 10.3389/fnins.2021.645267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/27/2021] [Indexed: 01/21/2023] Open
Abstract
Introduction PANS is a controversial clinical entity, consisting of a complex constellation of psychiatric symptoms, adventitious changes, and expression of various serological alterations, likely sustained by an autoimmune/inflammatory disease. Detection of novel biomarkers of PANS is highly desirable for both diagnostic and therapeutic management of affected patients. Analysis of metabolites has proven useful in detecting biomarkers for other neuroimmune-psychiatric diseases. Here, we utilize the metabolomics approach to determine whether it is possible to define a specific metabolic pattern in patients affected by PANS compared to healthy subjects. Design This observational case-control study tested consecutive patients referred for PANS between June 2019 to May 2020. A PANS diagnosis was confirmed according to the PANS working criteria (National Institute of Mental Health [NIMH], 2010). Healthy age and sex-matched subjects were recruited as controls. Methods Thirty-four outpatients referred for PANS (mean age 9.5 years; SD 2.9, 71% male) and 25 neurotypical subjects matched for age and gender, were subjected to metabolite analysis. Serum samples were obtained from each participant and were analyzed using Nuclear Magnetic Resonance (NMR) spectroscopy. Subsequently, multivariate and univariate statistical analyses and Receiver Operator Curves (ROC) were performed. Results Separation of the samples, in line with the presence of PANS diagnosis, was observed by applying a supervised model (R2X = 0.44, R2Y = 0.54, Q2 = 0.44, p-value < 0.0001). The significantly altered variables were 2-Hydroxybutyrate, glycine, glutamine, histidine, tryptophan. Pathway analysis indicated that phenylalanine, tyrosine, and tryptophan metabolism, as well as glutamine and glutamate metabolism, exhibited the largest deviations from neurotypical controls. Conclusion We found a unique plasma metabolic profile in PANS patients, significantly differing from that of healthy children, that suggests the involvement of specific patterns of neurotransmission (tryptophan, glycine, histamine/histidine) as well as a more general state of neuroinflammation and oxidative stress (glutamine, 2-Hydroxybutyrate, and tryptophan-kynurenine pathway) in the disorder. This metabolomics study offers new insights into biological mechanisms underpinning the disorder and supports research of other potential biomarkers implicated in PANS.
Collapse
Affiliation(s)
- Federica Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Antonella Gagliano
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Child and Adolescent Neuropsychiatry Unit, "A. Cao" Peditric Hosptal, "G. Brotzu" Hospital Trust, Cagliari, Italy
| | - Marcello G Tanca
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Noga Or-Geva
- Interdepartmental Program in Immunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Aran Hendren
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sara Carucci
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Child and Adolescent Neuropsychiatry Unit, "A. Cao" Peditric Hosptal, "G. Brotzu" Hospital Trust, Cagliari, Italy
| | - Manuela Pintor
- Child and Adolescent Neuropsychiatry Unit, "A. Cao" Peditric Hosptal, "G. Brotzu" Hospital Trust, Cagliari, Italy
| | - Francesca Cera
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Fausto Cossu
- Paediatric Clinic, "A. Cao" Hospital, Cagliari, Italy
| | - Stefano Sotgiu
- Child Neuropsychiatry Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandro Zuddas
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Child and Adolescent Neuropsychiatry Unit, "A. Cao" Peditric Hosptal, "G. Brotzu" Hospital Trust, Cagliari, Italy
| |
Collapse
|
286
|
Hancox TPM, Skene DJ, Dallmann R, Dunn WB. Tick-Tock Consider the Clock: The Influence of Circadian and External Cycles on Time of Day Variation in the Human Metabolome-A Review. Metabolites 2021; 11:328. [PMID: 34069741 PMCID: PMC8161100 DOI: 10.3390/metabo11050328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
The past decade has seen a large influx of work investigating time of day variation in different human biofluid and tissue metabolomes. The driver of this daily variation can be endogenous circadian rhythms driven by the central and/or peripheral clocks, or exogenous diurnal rhythms driven by behavioural and environmental cycles, which manifest as regular 24 h cycles of metabolite concentrations. This review, of all published studies to date, establishes the extent of daily variation with regard to the number and identity of 'rhythmic' metabolites observed in blood, saliva, urine, breath, and skeletal muscle. The probable sources driving such variation, in addition to what metabolite classes are most susceptible in adhering to or uncoupling from such cycles is described in addition to a compiled list of common rhythmic metabolites. The reviewed studies show that the metabolome undergoes significant time of day variation, primarily observed for amino acids and multiple lipid classes. Such 24 h rhythms, driven by various factors discussed herein, are an additional source of intra/inter-individual variation and are thus highly pertinent to all studies applying untargeted and targeted metabolomics platforms, particularly for the construction of biomarker panels. The potential implications are discussed alongside proposed minimum reporting criteria suggested to acknowledge time of day variation as a potential influence of results and to facilitate improved reproducibility.
Collapse
Affiliation(s)
- Thomas P. M. Hancox
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Robert Dallmann
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK;
| | - Warwick B. Dunn
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
287
|
Feizi N, Hashemi-Nasab FS, Golpelichi F, Saburouh N, Parastar H. Recent trends in application of chemometric methods for GC-MS and GC×GC-MS-based metabolomic studies. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116239] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
288
|
Hikosaka M, Iwahashi F, Yamato S. Metabolomic analysis of Schoenoplectus juncoides reveals common markers of acetolactate synthase inhibition among paddy weeds. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 174:104827. [PMID: 33838720 DOI: 10.1016/j.pestbp.2021.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Despite the increase in pressure for reducing the use of chemical pesticides in agriculture, herbicides remain one of the efficient tools for augmenting food production. Various herbicide-resistant weeds against most herbicidal modes of action (MoA) are emerging worldwide, and therefore, the necessity of developing herbicides with novel MoA is increasing. Toward this, rigid methods of determining MOA that can be applied for various weeds species are required. Despite the existence of weed species with resistance to acetolactate synthase (ALS) inhibitors, inhibition of ALS remains one of the most widely used herbicidal MoAs containing more than 50 commercial active ingredients. Here, we aimed to identify marker metabolites that are indicative of ALS inhibition. We performed non-targeted and targeted metabolomics using ALS inhibitor-treated Schoenoplectus juncoides. We identified internal metabolite markers for ALS inhibition, with excellent selectivity for ALS inhibitors and herbicides with different MOAs in various weed species. These markers will enable us to evaluate ALS inhibitory activity of chemicals in vivo in a wide variety of weed species.
Collapse
Affiliation(s)
- Masashi Hikosaka
- Health & Crop Science Research Laboratory, Sumitomo Chemical Co., Ltd, Takarazuka, Hyogo 665-8555, Japan.
| | - Fukumatsu Iwahashi
- Health & Crop Science Research Laboratory, Sumitomo Chemical Co., Ltd, Takarazuka, Hyogo 665-8555, Japan.
| | - Seiji Yamato
- Health & Crop Science Research Laboratory, Sumitomo Chemical Co., Ltd, Takarazuka, Hyogo 665-8555, Japan.
| |
Collapse
|
289
|
Miyamoto K, Hirayama A, Sato Y, Ikeda S, Maruyama M, Soga T, Tomita M, Nakamura M, Matsumoto M, Yoshimura N, Miyamoto T. A Metabolomic Profile Predictive of New Osteoporosis or Sarcopenia Development. Metabolites 2021; 11:metabo11050278. [PMID: 33924750 PMCID: PMC8145554 DOI: 10.3390/metabo11050278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
The increasing number of patients with osteoporosis and sarcopenia is a global concern among countries with progressively aging societies. The high medical costs of treating those patients suggest that prevention rather than treatment is preferable. We enrolled 729 subjects who attended both the second and third surveys of the Research on Osteoarthritis/Osteoporosis Against Disability (ROAD) study. Blood samples were collected from subjects at the second survey, and then a comprehensive metabolomic analysis was performed. It was found that 35 had newly developed osteoporosis at the third survey performed four years later, and 39 were newly diagnosed with sarcopenia at the third survey. In the second survey, we found that serum Gly levels were significantly higher even after adjustment for age, sex, and BMI in subjects with newly developed osteoporosis relative to those who remained osteoporosis-negative during the four-year follow-up. We also show that serum taurine levels were significantly lower at the second survey, even after adjustment for age, sex, and BMI in subjects with newly developed sarcopenia during the four-year follow-up compared with those not diagnosed with sarcopenia at the second or third surveys. Though our sample size and odds ratios were small, increased Gly and decreased taurine levels were found to be predictive of new development of osteoporosis and sarcopenia, respectively, within four years.
Collapse
Affiliation(s)
- Kana Miyamoto
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan;
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (A.H.); (S.I.); (M.M.); (T.S.); (M.T.)
| | - Yuiko Sato
- Department of Orthopedic Surgery, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.N.); (M.M.)
- Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (A.H.); (S.I.); (M.M.); (T.S.); (M.T.)
| | - Midori Maruyama
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (A.H.); (S.I.); (M.M.); (T.S.); (M.T.)
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (A.H.); (S.I.); (M.M.); (T.S.); (M.T.)
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan; (A.H.); (S.I.); (M.M.); (T.S.); (M.T.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.N.); (M.M.)
| | - Morio Matsumoto
- Department of Orthopedic Surgery, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.N.); (M.M.)
| | - Noriko Yoshimura
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical and Research Center, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan;
- Department of Orthopedic Surgery, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan; (Y.S.); (M.N.); (M.M.)
- Department of Advanced Therapy for Musculoskeletal Disorders II, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Musculoskeletal Reconstruction and Regeneration Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- Correspondence: ; Tel.: +81-96-373-5226
| |
Collapse
|
290
|
Abstract
Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.
Collapse
|
291
|
Kumar R, Tung TC, Ng TH, Chang CC, Chen YL, Chen YM, Lin SS, Wang HC. Metabolic Alterations in Shrimp Stomach During Acute Hepatopancreatic Necrosis Disease and Effects of Taurocholate on Vibrio parahaemolyticus. Front Microbiol 2021; 12:631468. [PMID: 33959104 PMCID: PMC8093816 DOI: 10.3389/fmicb.2021.631468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), a recently emerged bacterial shrimp disease, has increased shrimp mortality and caused huge economic losses in many Asian countries. However, molecular factors underlying pathogenesis of this disease remain largely unknown. Our objective was to characterize metabolic alterations in shrimp stomach during AHPND and determine effects of taurocholate on AHPND-causing Vibrio parahaemolyticus. Based on metabolomics, pathways for lipid metabolism and for primary bile acid (BA) synthesis were majorly affected following AHPND infection. Bile acid metabolites, namely taurocholate, were downregulated in the metabolomics database. This prompted us to study effects of taurocholate on biofilm formation, PirAB vp toxin release and biofilm detachment capabilities in AHPND-causing V. parahaemolyticus. Treatment of this bacterium with high concentration of taurocholate, a primary bile acid, induced biofilm formation, PirAB vp toxin release and facilitated the dispersion of bacterial cells. Taken together, our findings suggest that AHPND infection can affect the lipid metabolites in shrimp stomach, and further suggest that the primary bile acid taurocholate is important for the virulence of AHPND-causing V. parahaemolyticus.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Teng-Chun Tung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tze Hann Ng
- International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.,Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Che-Chih Chang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Lun Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Min Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.,International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
292
|
Dejakaisaya H, Harutyunyan A, Kwan P, Jones NC. Altered metabolic pathways in a transgenic mouse model suggest mechanistic role of amyloid precursor protein overexpression in Alzheimer's disease. Metabolomics 2021; 17:42. [PMID: 33876332 DOI: 10.1007/s11306-021-01793-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/11/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The mechanistic role of amyloid precursor protein (APP) in Alzheimer's disease (AD) remains unclear. OBJECTIVES Here, we aimed to identify alterations in cerebral metabolites and metabolic pathways in cortex, hippocampus and serum samples from Tg2576 mice, a widely used mouse model of AD. METHODS Metabolomic profilings using liquid chromatography-mass spectrometry were performed and analysed with MetaboAnalyst and weighted correlation network analysis (WGCNA). RESULTS Expressions of 11 metabolites in cortex, including hydroxyphenyllactate-linked to oxidative stress-and phosphatidylserine-lipid metabolism-were significantly different between Tg2576 and WT mice (false discovery rate < 0.05). Four metabolic pathways from cortex, including glycerophospholipid metabolism and pyrimidine metabolism, and one pathway (sulphur metabolism) from hippocampus, were significantly enriched in Tg2576 mice. Network analysis identified five pathways, including alanine, aspartate and glutamate metabolism, and mitochondria electron transport chain, that were significantly correlated with AD genotype. CONCLUSIONS Changes in metabolite concentrations and metabolic pathways are present in the early stage of APP pathology, and may be important for AD development and progression.
Collapse
Affiliation(s)
- Hattapark Dejakaisaya
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Anna Harutyunyan
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, 3052, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, 3004, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, VIC, 3004, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
293
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
294
|
Yazd HS, Rubio VY, Chamberlain CA, Yost RA, Garrett TJ. Metabolomic and lipidomic characterization of an X-chromosome deletion disorder in neural progenitor cells by UHPLC-HRMS. J Mass Spectrom Adv Clin Lab 2021; 20:11-24. [PMID: 34820667 PMCID: PMC8601009 DOI: 10.1016/j.jmsacl.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Intellectual disorders involving deletions of the X chromosome present a difficult task in the determination of a connection between symptoms and metabolites that could lead to treatment options. One specific disorder of X-chromosomal deletion, Fragile X syndrome, is the most frequently occurring of intellectual disabilities. Previous metabolomic studies have been limited to mouse models that may not have sufficiently revealed the full biochemical diversity of the disease in humans. OBJECTIVES The primary objective of this study was to elucidate the human biochemistry in X-chromosomal deletion disorders through metabolomic and lipidomic profiling, using cells from a X-deletion patient as a representative case. METHODS Metabolomic and lipidomic analysis was performed by UHPLC-HRMS on neural progenitor (NP) cells isolated from an afflicted female patient versus normal neural progenitor cells. RESULTS Results showed perturbations in several metabolic pathways, including those of arginine and proline, that significantly impact both neurotransmitter generation and overall brain function. Coincidently, dysregulation was observed for lipids involved in both cellular structure and membrane integrity. The trends of observed metabolomic changes, as well as lipidomic profiling from identified features, are discussed. CONCLUSION The lipidomic and metabolomic profiles of NP cell samples exhibited significant differentiation associated with partial deletion of the X chromosome. These findings suggest that rare X-chromosomal deletion disorders are not only a mental disorder limited to alterations in local neuronal functions, but are also metabolic diseases.
Collapse
Key Words
- BMP, Bis(monoacylglycero) phosphate
- Cer-NS, Ceramide nonhydroxyfatty acid-sphingosines
- Fragile X syndrome
- GL, Glycerolipid
- HexCer-NS, Hexosylceramide nonhydroxyfatty acid-sphingosines
- LPC, Lysophosphatidylcholines
- Lipidomics
- Metabolomics
- Microdeletion
- PC, Phosphatidylcholine
- PE, Phosphatidylethanolamine
- PG, Phosphatidylglycerol
- SM, Sphingomyelin
- SP, Sphingolipid
- ST, Sterol
- Xq27.3-Xq28
Collapse
Affiliation(s)
- Hoda Safari Yazd
- Department of Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Vanessa Y. Rubio
- Department of Chemistry, University of Florida, Gainesville, FL 32610, USA
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Casey A. Chamberlain
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard A. Yost
- Department of Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J. Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
295
|
Su L, Yang C, Meng J, Zhou L, Zhang C. Comparative transcriptome and metabolome analysis of Ostrinia furnacalis female adults under UV-A exposure. Sci Rep 2021; 11:6797. [PMID: 33762675 PMCID: PMC7990960 DOI: 10.1038/s41598-021-86269-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
Ultraviolet A (UV-A) radiation is a significant environmental factor that causes photoreceptor damage, apoptosis, and oxidative stress in insects. Ostrinia furnacalis is an important pest of corn. To understand the adaptation mechanisms of insect response to UV-A exposure, this study revealed differentially expressed genes (DEGs) and differently expressed metabolites (DEMs) in O. furnacalis under UV-A exposure. Three complementary DNA libraries were constructed from O. furnacalis adult females (CK, UV1h, and UV2h), and 50,106 expressed genes were obtained through Illumina sequencing. Of these, 157 and 637 DEGs were detected in UV1h and UV2h after UV-A exposure for 1 and 2 h, respectively, compared to CK, with 103 and 444 upregulated and 54 and 193 downregulated genes, respectively. Forty four DEGs were detected in UV2h compared to UV1h. Comparative transcriptome analysis between UV-treated and control groups revealed signal transduction, detoxification and stress response, immune defense, and antioxidative system involvement. Metabolomics analysis showed that 181 (UV1h vs. CK), 111 (UV2h vs. CK), and 34 (UV2h vs. UV1h) DEMs were obtained in positive ion mode, while 135 (UV1h vs. CK), 93 (UV2h vs. CK), and 36 (UV2h vs. UV1h) DEMs were obtained in negative ion mode. Moreover, UV-A exposure disturbed amino acid, sugar, and lipid metabolism. These findings provide insight for further studies on how insects protect themselves under UV-A stress.
Collapse
Affiliation(s)
- Li Su
- grid.443382.a0000 0004 1804 268XInstitute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Changli Yang
- grid.443382.a0000 0004 1804 268XInstitute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Jianyu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, 550081 People’s Republic of China
| | - Lv Zhou
- grid.443382.a0000 0004 1804 268XInstitute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Changyu Zhang
- grid.443382.a0000 0004 1804 268XInstitute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| |
Collapse
|
296
|
Zhou M, Varol A, Efferth T. Multi-omics approaches to improve malaria therapy. Pharmacol Res 2021; 167:105570. [PMID: 33766628 DOI: 10.1016/j.phrs.2021.105570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
Malaria contributes to the most widespread infectious diseases worldwide. Even though current drugs are commercially available, the ever-increasing drug resistance problem by malaria parasites poses new challenges in malaria therapy. Hence, searching for efficient therapeutic strategies is of high priority in malaria control. In recent years, multi-omics technologies have been extensively applied to provide a more holistic view of functional principles and dynamics of biological mechanisms. We briefly review multi-omics technologies and focus on recent malaria progress conducted with the help of various omics methods. Then, we present up-to-date advances for multi-omics approaches in malaria. Next, we describe resistance phenomena to established antimalarial drugs and underlying mechanisms. Finally, we provide insight into novel multi-omics approaches, new drugs and vaccine developments and analyze current gaps in multi-omics research. Although multi-omics approaches have been successfully used in malaria studies, they are still limited. Many gaps need to be filled to bridge the gap between basic research and treatment of malaria patients. Multi-omics approaches will foster a better understanding of the molecular mechanisms of Plasmodium that are essential for the development of novel drugs and vaccines to fight this disastrous disease.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
297
|
Jendoubi T. Approaches to Integrating Metabolomics and Multi-Omics Data: A Primer. Metabolites 2021; 11:184. [PMID: 33801081 PMCID: PMC8003953 DOI: 10.3390/metabo11030184] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolomics deals with multiple and complex chemical reactions within living organisms and how these are influenced by external or internal perturbations. It lies at the heart of omics profiling technologies not only as the underlying biochemical layer that reflects information expressed by the genome, the transcriptome and the proteome, but also as the closest layer to the phenome. The combination of metabolomics data with the information available from genomics, transcriptomics, and proteomics offers unprecedented possibilities to enhance current understanding of biological functions, elucidate their underlying mechanisms and uncover hidden associations between omics variables. As a result, a vast array of computational tools have been developed to assist with integrative analysis of metabolomics data with different omics. Here, we review and propose five criteria-hypothesis, data types, strategies, study design and study focus- to classify statistical multi-omics data integration approaches into state-of-the-art classes under which all existing statistical methods fall. The purpose of this review is to look at various aspects that lead the choice of the statistical integrative analysis pipeline in terms of the different classes. We will draw particular attention to metabolomics and genomics data to assist those new to this field in the choice of the integrative analysis pipeline.
Collapse
Affiliation(s)
- Takoua Jendoubi
- Department of Statistical Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
298
|
Silva E, Perez da Graça J, Porto C, Martin do Prado R, Nunes E, Corrêa Marcelino-Guimarães F, Conrado Meyer M, Jorge Pilau E. Untargeted Metabolomics Analysis by UHPLC-MS/MS of Soybean Plant in a Compatible Response to Phakopsora pachyrhizi Infection. Metabolites 2021; 11:metabo11030179. [PMID: 33808519 PMCID: PMC8003322 DOI: 10.3390/metabo11030179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023] Open
Abstract
Phakopsora pachyrhizi is a biotrophic fungus, causer of the disease Asian Soybean Rust, a severe crop disease of soybean and one that demands greater investment from producers. Thus, research efforts to control this disease are still needed. We investigated the expression of metabolites in soybean plants presenting a resistant genotype inoculated with P. pachyrhizi through the untargeted metabolomics approach. The analysis was performed in control and inoculated plants with P. pachyrhizi using UHPLC-MS/MS. Principal component analysis (PCA) and the partial least squares discriminant analysis (PLS-DA), was applied to the data analysis. PCA and PLS-DA resulted in a clear separation and classification of groups between control and inoculated plants. The metabolites were putative classified and identified using the Global Natural Products Social Molecular Networking platform in flavonoids, isoflavonoids, lipids, fatty acyls, terpenes, and carboxylic acids. Flavonoids and isoflavonoids were up-regulation, while terpenes were down-regulated in response to the soybean–P. pachyrhizi interaction. Our data provide insights into the potential role of some metabolites as flavonoids and isoflavonoids in the plant resistance to ASR. This information could result in the development of resistant genotypes of soybean to P. pachyrhizi, and effective and specific products against the pathogen.
Collapse
Affiliation(s)
- Evandro Silva
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
| | - José Perez da Graça
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina 86001-970, PR, Brazil; (J.P.d.G.); (F.C.M.-G.); (M.C.M.)
| | - Carla Porto
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
- MsBioscience, Quintino Bocaiúva 298, Street, Maringá 87020-160, PR, Brazil
| | - Rodolpho Martin do Prado
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
| | - Estela Nunes
- Brazilian Agricultural Research Corporation Swine & Poultry, BR-153, Km 110 Rd, Concórdia 89715-899, SC, Brazil;
| | | | - Mauricio Conrado Meyer
- Brazilian Agricultural Research Corporation Soybean, Carlos João Strass Rd, Londrina 86001-970, PR, Brazil; (J.P.d.G.); (F.C.M.-G.); (M.C.M.)
| | - Eduardo Jorge Pilau
- Laboratory of Biomolecules and Mass Spectrometry, Department of Chemistry, State University of Maringá, 5790, Colombo Av, Maringá 87020-080, PR, Brazil; (E.S.); (C.P.); (R.M.d.P.)
- Correspondence:
| |
Collapse
|
299
|
Lima AR, Pinto J, Amaro F, Bastos MDL, Carvalho M, Guedes de Pinho P. Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics. Metabolites 2021; 11:181. [PMID: 33808897 PMCID: PMC8003702 DOI: 10.3390/metabo11030181] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its screening, serum prostate specific antigen (PSA) test has been largely performed over the past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease. Metabolomics has been widely applied in cancer biomarker discovery due to the well-known metabolic reprogramming characteristic of cancer cells. Most of the metabolomic studies have reported alterations in urine of PCa patients due its noninvasive collection, but the analysis of prostate tissue metabolome is an ideal approach to disclose specific modifications in PCa development. This review aims to summarize and discuss the most recent findings from tissue and urine metabolomic studies applied to PCa biomarker discovery. Eighteen metabolites were found consistently altered in PCa tissue among different studies, including alanine, arginine, uracil, glutamate, fumarate, and citrate. Urine metabolomic studies also showed consistency in the dysregulation of 15 metabolites and, interestingly, alterations in the levels of valine, taurine, leucine and citrate were found in common between urine and tissue studies. These findings unveil that the impact of PCa development in human metabolome may offer a promising strategy to find novel biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Joana Pinto
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Filipa Amaro
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
- UFP Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Praça Nove de Abril, 349, 4249-004 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.P.); (F.A.); (M.d.L.B.)
| |
Collapse
|
300
|
Metabolomic-based clinical studies and murine models for acute pancreatitis disease: A review. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166123. [PMID: 33713791 DOI: 10.1016/j.bbadis.2021.166123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis (AP) is one of the most common gastroenterological disorders requiring hospitalization and is associated with substantial morbidity and mortality. Metabolomics nowadays not only help us to understand cellular metabolism to a degree that was not previously obtainable, but also to reveal the importance of the metabolites in physiological control, disease onset and development. An in-depth understanding of metabolic phenotyping would be therefore crucial for accurate diagnosis, prognosis and precise treatment of AP. In this review, we summarized and addressed the metabolomics design and workflow in AP studies, as well as the results and analysis of the in-depth of research. Based on the metabolic profiling work in both clinical populations and experimental AP models, we described the metabolites with potential utility as biomarkers and the correlation between the altered metabolites and AP status. Moreover, the disturbed metabolic pathways correlated with biological function were discussed in the end. A practical understanding of current and emerging metabolomic approaches applicable to AP and use of the metabolite information presented will aid in designing robust metabolomics and biological experiments that result in identification of unique biomarkers and mechanisms, and ultimately enhanced clinical decision-making.
Collapse
|