251
|
Asada S, Kitamura T. Clonal hematopoiesis and associated diseases: A review of recent findings. Cancer Sci 2021; 112:3962-3971. [PMID: 34328684 PMCID: PMC8486184 DOI: 10.1111/cas.15094] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Recent genome‐wide studies have revealed that aging or chronic inflammation can cause clonal expansion of cells in normal tissues. Clonal hematopoiesis has been the most intensively studied form of clonal expansion in the last decade. Clonal hematopoiesis of indeterminate potential (CHIP) is an age‐related phenomenon observed in elderly individuals with no history of hematological malignancy. The most frequently mutated genes in CHIP are DNMT3A, TET2, and ASXL1, which are associated with initiation of leukemia. Importantly, CHIP has been the focus of a number of studies because it is an independent risk factor for myeloid malignancy, cardiovascular disease (CVD), and all‐cause mortality. Animal models recapitulating human CHIP revealed that CHIP‐associated mutations alter the number and function of hematopoietic stem and progenitor cells (HSPCs) and promote leukemic transformation. Moreover, chronic inflammation caused by infection or aging confers a fitness advantage to the CHIP‐associated mutant HSPCs. Myeloid cells, such as macrophages with a CHIP‐associated mutation, accelerate chronic inflammation and are associated with increased levels of inflammatory cytokines. This positive feedback loop between CHIP and chronic inflammation promotes development of atherosclerosis and chronic heart failure and thereby increases the risk for CVD. Notably, HSPCs with a CHIP‐associated mutation may alter not only innate but also acquired immune cells. This suggests that CHIP is involved in the development of solid cancers or immune disorders, such as aplastic anemia. In this review, we provide an overview of recent findings on CHIP. We also discuss potential interventions for treating CHIP and preventing myeloid transformation and CVD progression.
Collapse
Affiliation(s)
- Shuhei Asada
- The Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan.,Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
252
|
Smith AM, LaValle TA, Shinawi M, Ramakrishnan SM, Abel HJ, Hill CA, Kirkland NM, Rettig MP, Helton NM, Heath SE, Ferraro F, Chen DY, Adak S, Semenkovich CF, Christian DL, Martin JR, Gabel HW, Miller CA, Ley TJ. Functional and epigenetic phenotypes of humans and mice with DNMT3A Overgrowth Syndrome. Nat Commun 2021; 12:4549. [PMID: 34315901 PMCID: PMC8316576 DOI: 10.1038/s41467-021-24800-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023] Open
Abstract
Germline pathogenic variants in DNMT3A were recently described in patients with overgrowth, obesity, behavioral, and learning difficulties (DNMT3A Overgrowth Syndrome/DOS). Somatic mutations in the DNMT3A gene are also the most common cause of clonal hematopoiesis, and can initiate acute myeloid leukemia (AML). Using whole genome bisulfite sequencing, we studied DNA methylation in peripheral blood cells of 11 DOS patients and found a focal, canonical hypomethylation phenotype, which is most severe with the dominant negative DNMT3AR882H mutation. A germline mouse model expressing the homologous Dnmt3aR878H mutation phenocopies most aspects of the human DOS syndrome, including the methylation phenotype and an increased incidence of spontaneous hematopoietic malignancies, suggesting that all aspects of this syndrome are caused by this mutation.
Collapse
Affiliation(s)
- Amanda M Smith
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Taylor A LaValle
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sai M Ramakrishnan
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley J Abel
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl A Hill
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO, USA
| | - Nicole M Kirkland
- Department of Pathology and Anatomical Science, University of Missouri School of Medicine, Columbia, MO, USA
| | - Michael P Rettig
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nichole M Helton
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharon E Heath
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca Ferraro
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - David Y Chen
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Diana L Christian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenna R Martin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Miller
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy J Ley
- Division of Oncology, Section of Stem Cell Biology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
253
|
Barabino SML, Citterio E, Ronchi AE. Transcription Factors, R-Loops and Deubiquitinating Enzymes: Emerging Targets in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13153753. [PMID: 34359655 PMCID: PMC8345071 DOI: 10.3390/cancers13153753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The advent of DNA massive sequencing technologies has allowed for the first time an extensive look into the heterogeneous spectrum of genes and mutations underpinning myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML). In this review, we wish to explore the most recent advances and the rationale for the potential therapeutic interest of three main actors in myelo-leukemic transformation: transcription factors that govern myeloid differentiation; RNA splicing factors, which ensure proper mRNA maturation and whose mutations increase R-loops formation; and deubiquitinating enzymes, which contribute to genome stability in hematopoietic stem cells (HSCs). Abstract Myeloid neoplasms encompass a very heterogeneous family of diseases characterized by the failure of the molecular mechanisms that ensure a balanced equilibrium between hematopoietic stem cells (HSCs) self-renewal and the proper production of differentiated cells. The origin of the driver mutations leading to preleukemia can be traced back to HSC/progenitor cells. Many properties typical to normal HSCs are exploited by leukemic stem cells (LSCs) to their advantage, leading to the emergence of a clonal population that can eventually progress to leukemia with variable latency and evolution. In fact, different subclones might in turn develop from the original malignant clone through accumulation of additional mutations, increasing their competitive fitness. This process ultimately leads to a complex cancer architecture where a mosaic of cellular clones—each carrying a unique set of mutations—coexists. The repertoire of genes whose mutations contribute to the progression toward leukemogenesis is broad. It encompasses genes involved in different cellular processes, including transcriptional regulation, epigenetics (DNA and histones modifications), DNA damage signaling and repair, chromosome segregation and replication (cohesin complex), RNA splicing, and signal transduction. Among these many players, transcription factors, RNA splicing proteins, and deubiquitinating enzymes are emerging as potential targets for therapeutic intervention.
Collapse
|
254
|
Tallan A, Stanton BZ. Inducible Protein Degradation to Understand Genome Architecture. Biochemistry 2021; 60:2387-2396. [PMID: 34292716 DOI: 10.1021/acs.biochem.1c00306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We review exciting recent advances in protein degradation, with a focus on chromatin structure. In our analysis of the literature, we highlight studies of kinetic control of protein stability for cohesin, condensin, ATP-dependent chromatin remodeling, and pioneer transcription factors. With new connections emerging between chromatin remodeling and genome structure, we anticipate exciting developments at the intersection of these topics to be revealed in the coming years. Moreover, we pay special attention to the 20-year anniversary of PROTACs, with an overview of E3 ligase/target pairings and central questions that might lead to the next generation of PROTACs with an expanded scope and generality. While steady-state experimental measurements with constitutive genome editing are impactful, we highlight complementary approaches for rapid kinetic protein degradation to uncover early targeting functions and to understand the central determinants of genome structure-function relationships.
Collapse
Affiliation(s)
- Alexi Tallan
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, 700 Children's Drive, Columbus, Ohio 43205, United States.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Benjamin Z Stanton
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Center for Childhood Cancer and Blood Diseases, 700 Children's Drive, Columbus, Ohio 43205, United States.,Molecular, Cellular, and Developmental Biology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States.,Department of Pediatrics, The Ohio State University College of Medicine, 370 West 9th Avenue, Columbus, Ohio 43210, United States.,Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, 370 West 9th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
255
|
Yao Y, Chai X, Gong C, Zou L. WT1 inhibits AML cell proliferation in a p53-dependent manner. Cell Cycle 2021; 20:1552-1560. [PMID: 34288813 DOI: 10.1080/15384101.2021.1951938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
WT1 has been reported to function as an oncogene and a tumor suppressor in acute myeloid leukemia (AML). The molecular mechanisms have not yet been fully elucidated. Here, we report that p53, served as a tumor suppressor, plays a critical role in regulating the function of WT1 in AML. For details, we performed a meta-analysis on 1131 AML cases, showing that WT1 gene mutation and TP53 gene exhibited a mutually exclusive predisposition in AML. p53 can be recruited to the promoter region of WT1's target genes to modulate their expression by physically interacting with WT1. The AML-derived p53 mutation (p53R248Q) can disrupt the interaction between WT1 and p53, resulting in the loss of modulation of WT1's target genes. Furthermore, wild-type p53 maintained the anti-proliferation activity of WT1 in AML cells. In contrast, WT1 promoted AML cell proliferation in the absence of p53 (or mutated p53). In conclusion, we demonstrated a novel explanation of the controversial function of WT1 in AML. These results provided a mechanism by which WT1 inhibited AML cell proliferation in a p53-dependent manner.
Collapse
Affiliation(s)
- Yiyun Yao
- Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xingxing Chai
- Department of Hematology, The Second People's Hospital of Lianyungang City, Jiangsu 222000, China
| | - Chen Gong
- Department of Geriatric Medicine, The Second People's Hospital of Lianyungang City, Jiangsu 222000, China
| | - Lifang Zou
- Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
256
|
DNA Methylation and Intra-Clonal Heterogeneity: The Chronic Myeloid Leukemia Model. Cancers (Basel) 2021; 13:cancers13143587. [PMID: 34298798 PMCID: PMC8307727 DOI: 10.3390/cancers13143587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic Myeloid Leukemia (CML) is a model to investigate the impact of tumor intra-clonal heterogeneity in personalized medicine. Indeed, tyrosine kinase inhibitors (TKIs) target the BCR-ABL fusion protein, which is considered the major CML driver. TKI use has highlighted the existence of intra-clonal heterogeneity, as indicated by the persistence of a minority subclone for several years despite the presence of the target fusion protein in all cells. Epigenetic modifications could partly explain this heterogeneity. This review summarizes the results of DNA methylation studies in CML. Next-generation sequencing technologies allowed for moving from single-gene to genome-wide analyses showing that methylation abnormalities are much more widespread in CML cells. These data showed that global hypomethylation is associated with hypermethylation of specific sites already at diagnosis in the early phase of CML. The BCR-ABL-independence of some methylation profile alterations and the recent demonstration of the initial intra-clonal DNA methylation heterogeneity suggests that some DNA methylation alterations may be biomarkers of TKI sensitivity/resistance and of disease progression risk. These results also open perspectives for understanding the epigenetic/genetic background of CML predisposition and for developing new therapeutic strategies.
Collapse
|
257
|
Papaioannou D, Ozer HG, Nicolet D, Urs AP, Herold T, Mrózek K, Batcha AM, Metzeler KH, Yilmaz AS, Volinia S, Bill M, Kohlschmidt J, Pietrzak M, Walker CJ, Carroll AJ, Braess J, Powell BL, Eisfeld AK, Uy GL, Wang ES, Kolitz JE, Stone RM, Hiddemann W, Byrd JC, Bloomfield CD, Garzon R. Clinical and molecular relevance of genetic variants in the non-coding transcriptome of patients with cytogenetically normal acute myeloid leukemia. Haematologica 2021; 107. [PMID: 34261293 PMCID: PMC9052895 DOI: 10.3324/haematol.2020.266643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Expression levels of long non-coding RNA (lncRNA) have been shown to associate with clinical outcome of patients with cytogenetically normal acute myeloid leukemia (CN-AML). However, the frequency and clinical significance of genetic variants in the nucleotide sequences of lncRNA in AML patients is unknown. Herein, we analyzed total RNA sequencing data of 377 younger adults (aged <60 years) with CN-AML, who were comprehensively characterized with regard to clinical outcome. We used available genomic databases and stringent filters to annotate genetic variants unequivocally located in the non-coding transcriptome of AML patients. We detected 981 variants, which are recurrently present in lncRNA that are expressed in leukemic blasts. Among these variants, we identified a cytosine-to-thymidine variant in the lncRNA RP5-1074L1.4 and a cytosine-to-thymidine variant in the lncRNA SNHG15, which independently associated with longer survival of CN-AML patients. The presence of the SNHG15 cytosine-to-thymidine variant was also found to associate with better outcome in an independent dataset of CN-AML patients, despite differences in treatment protocols and RNA sequencing techniques. In order to gain biological insights, we cloned and overexpressed both wild-type and variant versions of the SNHG15 lncRNA. In keeping with its negative prognostic impact, overexpression of the wild-type SNHG15 associated with higher proliferation rate of leukemic blasts when compared with the cytosine-to-thymidine variant. We conclude that recurrent genetic variants of lncRNA that are expressed in the leukemic blasts of CN-AML patients have prognostic and potential biological significance.
Collapse
Affiliation(s)
- Dimitrios Papaioannou
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, NYU Langone Health, New York, NY, USA,*DP and HGO contributed equally as co-first authors
| | - Hatice G. Ozer
- The Ohio State University, Department of Biomedical Informatics, Columbus, OH, USA,*DP and HGO contributed equally as co-first authors
| | - Deedra Nicolet
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA,Alliance Statistics and Data Center, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Amog P. Urs
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Krzysztof Mrózek
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Aarif M.N. Batcha
- Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich, Munich, Germany,Medical Data Integration Center (MeDIC), University Hospital, LMU Munich, Germany
| | - Klaus H. Metzeler
- Department of Hematology, Cell Therapy & Hemostaseology, University Hospital Leipzig, Leipzig, Germany
| | - Ayse S. Yilmaz
- The Ohio State University, Department of Biomedical Informatics, Columbus, OH, USA
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marius Bill
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Jessica Kohlschmidt
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA,Alliance Statistics and Data Center, The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA
| | - Maciej Pietrzak
- The Ohio State University, Department of Biomedical Informatics, Columbus, OH, USA
| | - Christopher J. Walker
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Andrew J. Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Bayard L. Powell
- The Comprehensive Cancer Center of Wake Forest University, Winston-Salem, NC, USA
| | - Ann-Kathrin Eisfeld
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Geoffrey L. Uy
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Eunice S. Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jonathan E. Kolitz
- Monter Cancer Center, Hofstra Northwell School of Medicine, Lake Success, NY, USA
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA
| | | | - John C. Byrd
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
| | - Clara D. Bloomfield
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,CDB and RG contributed equally as co-senior authors
| | - Ramiro Garzon
- The Ohio State University, Comprehensive Cancer Center, Columbus, OH, USA,CDB and RG contributed equally as co-senior authors
| |
Collapse
|
258
|
Osman A, Patel JL. Diagnostic Challenge and Clinical Dilemma: The Long Reach of Clonal Hematopoiesis. Clin Chem 2021; 67:1062-1070. [PMID: 34263288 DOI: 10.1093/clinchem/hvab105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/11/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Widespread application of massively parallel sequencing has resulted in recognition of clonal hematopoiesis in various clinical settings and on a relatively frequent basis. Somatic mutations occur in individuals with normal blood counts, and increase in frequency with age. The genes affected are the same genes that are commonly mutated in overt myeloid malignancies such as acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). This phenomenon is referred to as clonal hematopoiesis of indeterminate potential (CHIP). CONTENT In this review, we explore the diagnostic and clinical implications of clonal hematopoiesis. In addition to CHIP, clonal hematopoiesis may be seen in patients with cytopenia who do not otherwise meet criteria for hematologic malignancy, a condition referred to as clonal cytopenia of undetermined significance (CCUS). Distinguishing CHIP and CCUS from overt myeloid neoplasm is a challenge to diagnosticians due to the overlapping mutational landscape observed in these conditions. We describe helpful laboratory and clinical features in making this distinction. CHIP confers a risk of progression to overt hematologic malignancy similar to other premalignant states. CHIP is also associated with a proinflammatory state with multisystem implications and increased mortality risk due to cardiovascular events. The current approach to follow up and management of patients with clonal hematopoiesis is described. SUMMARY Nuanced understanding of clonal hematopoiesis is essential for diagnosis and clinical management of patients with hematologic conditions. Further data are needed to more accurately predict the natural history and guide management of these patients with respect to both malignant progression as well as nonhematologic sequelae.
Collapse
Affiliation(s)
- Afaf Osman
- Division of Hematology and Hematologic Malignancies, University of Utah, and Huntsman Cancer Institute, Salt Lake City, UT
| | - Jay L Patel
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
259
|
Egan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer 2021; 68:e28979. [PMID: 33844444 DOI: 10.1002/pbc.28979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease that requires a multifaceted treatment approach. Although outcomes for low-risk AML have improved significantly over recent decades, high-risk AML continues to be associated with an adverse prognosis. Recent advances in molecular diagnostics, risk stratification, and supportive care have contributed to improvements in outcomes in pediatric AML. Targeted approaches, for example, the use of tyrosine kinase inhibitors to treat FLT3-ITD AML, offer promise and are currently undergoing clinical investigation in pediatric patients. New approaches to hematopoietic stem cell transplantation, including the use of haploidentical donors, are significantly expanding donor options for patients with high-risk AML. This review provides an overview of recent advances in the treatment of pediatric AML that are likely to have clinical impact and reshape the standard of care.
Collapse
Affiliation(s)
- Grace Egan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yogi Chopra
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Mourad
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Kuang-Yueh Chiang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Johann Hitzler
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
260
|
Wang Y, Sano S, Ogawa H, Horitani K, Evans MA, Yura Y, Miura-Yura E, Doviak H, Walsh K. Murine models of clonal hematopoiesis to assess mechanisms of cardiovascular disease. Cardiovasc Res 2021; 118:1413-1432. [PMID: 34164655 DOI: 10.1093/cvr/cvab215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Clonal hematopoiesis (CH) is a phenomenon whereby somatic mutations confer a fitness advantage to hematopoietic stem and progenitor cells (HSPC) and thus facilitate their aberrant clonal expansion. These mutations are carried into progeny leukocytes leading to a situation whereby a substantial fraction of an individual's blood cells originate from the HSPC mutant clone. Although this condition rarely progresses to a hematological malignancy, circulating blood cells bearing the mutation have the potential to affect other organ systems as they infiltrate into tissues under both homeostatic and disease conditions. Epidemiological and clinical studies have revealed that CH is highly prevalent in the elderly and is associated with an increased risk of cardiovascular disease and mortality. Recent experimental studies in murine models have assessed the most commonly mutated "driver" genes associated with CH, and have provided evidence for mechanistic connections between CH and cardiovascular disease. A deeper understanding of the mechanisms by which specific CH mutations promote disease pathogenesis is of importance, as it could pave the way for individualized therapeutic strategies targeting the pathogenic CH gene mutations in the future. Here, we review the epidemiology of CH and the mechanistic work from studies using murine disease models, with a particular focus on the strengths and limitations of these experimental systems. We intend for this review to help investigators select the most appropriate models to study CH in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cardiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emiri Miura-Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
261
|
From the (Epi)Genome to Metabolism and Vice Versa; Examples from Hematologic Malignancy. Int J Mol Sci 2021; 22:ijms22126321. [PMID: 34204821 PMCID: PMC8231625 DOI: 10.3390/ijms22126321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Hematologic malignancies comprise a heterogeneous group of neoplasms arising from hematopoietic cells or their precursors and most commonly presenting as leukemias, lymphomas, and myelomas. Genetic analyses have uncovered recurrent mutations which initiate or accumulate in the course of malignant transformation, as they provide selective growth advantage to the cell. These include mutations in genes encoding transcription factors and epigenetic regulators of metabolic genes, as well as genes encoding key metabolic enzymes. The resulting alterations contribute to the extensive metabolic reprogramming characterizing the transformed cell, supporting its increased biosynthetic needs and allowing it to withstand the metabolic stress that arises as a consequence of increased metabolic rates and changes in its microenvironment. Interestingly, this cross-talk is bidirectional, as metabolites also signal back to the nucleus and, via their widespread effects on modulating epigenetic modifications, shape the chromatin landscape and the transcriptional programs of the cell. In this article, we provide an overview of the main metabolic changes and relevant genetic alterations that characterize malignant hematopoiesis and discuss how, in turn, metabolites regulate epigenetic events during this process. The aim is to illustrate the intricate interrelationship between the genome (and epigenome) and metabolism and its relevance to hematologic malignancy.
Collapse
|
262
|
Nachun D, Lu AT, Bick AG, Natarajan P, Weinstock J, Szeto MD, Kathiresan S, Abecasis G, Taylor KD, Guo X, Tracy R, Durda P, Liu Y, Johnson C, Rich SS, Van Den Berg D, Laurie C, Blackwell T, Papanicolaou GJ, Correa A, Raffield LM, Johnson AD, Murabito J, Manson JE, Desai P, Kooperberg C, Assimes TL, Levy D, Rotter JI, Reiner AP, Whitsel EA, Wilson JG, Horvath S, Jaiswal S, the NHLBI Trans‐Omics for Precision Medicine (TOPMed) Consortium. Clonal hematopoiesis associated with epigenetic aging and clinical outcomes. Aging Cell 2021; 20:e13366. [PMID: 34050697 PMCID: PMC8208788 DOI: 10.1111/acel.13366] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Accepted: 03/27/2021] [Indexed: 12/13/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common precursor state for blood cancers that most frequently occurs due to mutations in the DNA-methylation modifying enzymes DNMT3A or TET2. We used DNA-methylation array and whole-genome sequencing data from four cohorts together comprising 5522 persons to study the association between CHIP, epigenetic clocks, and health outcomes. CHIP was strongly associated with epigenetic age acceleration, defined as the residual after regressing epigenetic clock age on chronological age, in several clocks, ranging from 1.31 years (GrimAge, p < 8.6 × 10-7 ) to 3.08 years (EEAA, p < 3.7 × 10-18 ). Mutations in most CHIP genes except DNA-damage response genes were associated with increases in several measures of age acceleration. CHIP carriers with mutations in multiple genes had the largest increases in age acceleration and decrease in estimated telomere length. Finally, we found that ~40% of CHIP carriers had acceleration >0 in both Hannum and GrimAge (referred to as AgeAccelHG+). This group was at high risk of all-cause mortality (hazard ratio 2.90, p < 4.1 × 10-8 ) and coronary heart disease (CHD) (hazard ratio 3.24, p < 9.3 × 10-6 ) compared to those who were CHIP-/AgeAccelHG-. In contrast, the other ~60% of CHIP carriers who were AgeAccelHG- were not at increased risk of these outcomes. In summary, CHIP is strongly linked to age acceleration in multiple clocks, and the combination of CHIP and epigenetic aging may be used to identify a population at high risk for adverse outcomes and who may be a target for clinical interventions.
Collapse
|
263
|
Zeng Z, Ly C, Daver N, Cortes J, Kantarjian HM, Andreeff M, Konopleva M. High-throughput proteomic profiling reveals mechanisms of action of AMG925, a dual FLT3-CDK4/6 kinase inhibitor targeting AML and AML stem/progenitor cells. Ann Hematol 2021; 100:1485-1496. [PMID: 33787984 DOI: 10.1007/s00277-021-04493-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022]
Abstract
FLT3 mutations, which are found in a third of patients with acute myeloid leukemia (AML), are associated with poor prognosis. Responses to currently available FLT3 inhibitors in AML patients are typically transient and followed by disease recurrence. Thus, FLT3 inhibitors with new inhibitory mechanisms are needed to improve therapeutic outcomes. AMG925 is a novel, potent, small-molecule dual inhibitor of FLT3 and CDK4/6. In this study. we determined the antileukemic effects and mechanisms of action of AMG925 in AML cell lines and primary samples, in particular AML stem/progenitor cells. AMG925 inhibited cell growth and promoted apoptosis in AML cells with or without FLT3 mutations. Reverse-phase protein array profiling confirmed its on-target effects on FLT3-CDK4/6-regulated pathways and identified unrevealed signaling network alterations in AML blasts and stem/progenitor cells in response to AMG925. Mass cytometry identified pathways that may confer resistance to AMG925 in phenotypically defined AML stem/progenitor cells and demonstrated that combined blockade of FLT3-CDK4/6 and AKT/mTOR signaling facilitated stem cell death. Our findings provide a rationale for the mechanism-based inhibition of FLT3-CDK4/6 and for combinatorial approaches to improve the efficacy of FLT3 inhibition in both FLT3 wild-type and FLT3-mutated AML.
Collapse
Affiliation(s)
- Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charlie Ly
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
264
|
Nie Y, Su L, Li W, Gao S. Novel insights of acute myeloid leukemia with CEBPA deregulation: Heterogeneity dissection and re-stratification. Crit Rev Oncol Hematol 2021; 163:103379. [PMID: 34087345 DOI: 10.1016/j.critrevonc.2021.103379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/21/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia with bi-allelic CEBPA mutation was categorized as an independent disease entity with favorable prognosis, however, recent researches have revealed huge heterogeneity within this disease group, and for some patients, relapse remained a major cause of treatment failure. Further risk stratification is essentially needed. Here by reviewing the latest literature, we summarized the characteristics of CEBPA mutation profiles and clinical features, with a special intention of dissecting the heterogeneity within the seemingly homogeneous AML with bi-allelic CEBPA mutations. Specifically, non-classical CEBPA mutation, miscellaneous companion genetic aberrations and the presence of germline CEBPA mutation are three major sources of heterogeneity. Identifying these factors can help us predict patients at a higher risk of relapse, for whom aggressive treatment may be recommended. Novel therapeutic approaches regarding manipulating potentially druggable targets as well as the debate over post remission consolidation regimens has also been discussed.
Collapse
Affiliation(s)
- Yuanyuan Nie
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Long Su
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China
| | - Wei Li
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China; Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, 130012, China
| | - Sujun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun, 130012, China.
| |
Collapse
|
265
|
Targeted Therapeutic Approach Based on Understanding of Aberrant Molecular Pathways Leading to Leukemic Proliferation in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2021; 22:ijms22115789. [PMID: 34071627 PMCID: PMC8198876 DOI: 10.3390/ijms22115789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous hematopoietic neoplasm with various genetic abnormalities in myeloid stem cells leading to differentiation arrest and accumulation of leukemic cells in bone marrow (BM). The multiple genetic alterations identified in leukemic cells at diagnosis are the mainstay of World Health Organization classification for AML and have important prognostic implications. Recently, understanding of heterogeneous and complicated molecular abnormalities of the disease could lead to the development of novel targeted therapeutic agents. In the past years, gemtuzumab ozogamicin, BCL-2 inhibitors (venetovlax), IDH 1/2 inhibitors (ivosidenib and enasidenib) FLT3 inhibitors (midostaurin, gilteritinib, and enasidenib), and hedgehog signaling pathway inhibitors (gladegib) have received US Food and Drug Administration (FDA) approval for the treatment of AML. Especially, AML patients with elderly age and/or significant comorbidities are not currently suitable for intensive chemotherapy. Thus, novel therapeutic planning including the abovementioned target therapies could lead to improve clinical outcomes in the patients. In the review, we will present various important and frequent molecular abnormalities of AML and introduce the targeted agents of AML that received FDA approval based on the previous studies.
Collapse
|
266
|
Measurable residual disease in elderly acute myeloid leukemia: results from the PETHEMA-FLUGAZA phase 3 clinical trial. Blood Adv 2021; 5:760-770. [PMID: 33560390 DOI: 10.1182/bloodadvances.2020003195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
The value of measurable residual disease (MRD) in elderly patients with acute myeloid leukemia (AML) is inconsistent between those treated with intensive vs hypomethylating drugs, and unknown after semi-intensive therapy. We investigated the role of MRD in refining complete remission (CR) and treatment duration in the phase 3 FLUGAZA clinical trial, which randomized 283 elderly AML patients to induction and consolidation with fludarabine plus cytarabine (FLUGA) vs 5-azacitidine. After consolidation, patients continued treatment if MRD was ≥0.01% or stopped if MRD was <0.01%, as assessed by multidimensional flow cytometry (MFC). On multivariate analysis including genetic risk and treatment arm, MRD status in patients achieving CR (N = 72) was the only independent prognostic factor for relapse-free survival (RFS) (HR, 3.45; P = .002). Achieving undetectable MRD significantly improved RFS of patients with adverse genetics (HR, 0.32; P = .013). Longer overall survival was observed in patients with undetectable MRD after induction though not after consolidation. Although leukemic cells from most patients displayed phenotypic aberrancies vs their normal counterpart (N = 259 of 265), CD34 progenitors from cases with undetectable MRD by MFC carried extensive genetic abnormalities identified by whole-exome sequencing. Interestingly, the number of genetic alterations significantly increased from diagnosis to MRD stages in patients treated with FLUGA vs 5-azacitidine (2.2-fold vs 1.1-fold; P = .001). This study supports MRD assessment to refine CR after semi-intensive therapy or hypomethylating agents, but unveils that improved sensitivity is warranted to individualize treatment and prolong survival of elderly AML patients achieving undetectable MRD.
Collapse
|
267
|
Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J 2021; 11:104. [PMID: 34045454 PMCID: PMC8159924 DOI: 10.1038/s41408-021-00495-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Approximately 30% of patients with newly diagnosed acute myeloid leukemia (AML) harbor mutations in the fms-like tyrosine kinase 3 (FLT3) gene. While the adverse prognostic impact of FLT3-ITDmut in AML has been clearly proven, the prognostic significance of FLT3-TKDmut remains speculative. Current guidelines recommend rapid molecular testing for FLT3mut at diagnosis and earlier incorporation of targeted agents to achieve deeper remissions and early consideration for allogeneic stem cell transplant (ASCT). Mounting evidence suggests that FLT3mut can emerge at any timepoint in the disease spectrum emphasizing the need for repetitive mutational testing not only at diagnosis but also at each relapse. The approval of multi-kinase FLT3 inhibitor (FLT3i) midostaurin with induction therapy for newly diagnosed FLT3mut AML, and a more specific, potent FLT3i, gilteritinib as monotherapy for relapsed/refractory (R/R) FLT3mut AML have improved outcomes in patients with FLT3mut AML. Nevertheless, the short duration of remission with single-agent FLT3i's in R/R FLT3mut AML in the absence of ASCT, limited options in patients refractory to gilteritinib therapy, and diverse primary and secondary mechanisms of resistance to different FLT3i's remain ongoing challenges that compel the development and rapid implementation of multi-agent combinatorial or sequential therapies for FLT3mut AML.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA.
| | - Sangeetha Venugopal
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
268
|
Park E, Evans MA, Doviak H, Horitani K, Ogawa H, Yura Y, Wang Y, Sano S, Walsh K. Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis. J Vis Exp 2021:10.3791/61875. [PMID: 34125083 PMCID: PMC8439117 DOI: 10.3791/61875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Clonal hematopoiesis is a prevalent age-associated condition that results from the accumulation of somatic mutations in hematopoietic stem and progenitor cells (HSPCs). Mutations in driver genes, that confer cellular fitness, can lead to the development of expanding HSPC clones that increasingly give rise to progeny leukocytes harboring the somatic mutation. Because clonal hematopoiesis has been associated with heart disease, stroke, and mortality, the development of experimental systems that model these processes is key to understanding the mechanisms that underly this new risk factor. Bone marrow transplantation procedures involving myeloablative conditioning in mice, such as total-body irradiation (TBI), are commonly employed to study the role of immune cells in cardiovascular diseases. However, simultaneous damage to the bone marrow niche and other sites of interest, such as the heart and brain, is unavoidable with these procedures. Thus, our lab has developed two alternative methods to minimize or avoid possible side effects caused by TBI: 1) bone marrow transplantation with irradiation shielding and 2) adoptive BMT to non-conditioned mice. In shielded organs, the local environment is preserved allowing for the analysis of clonal hematopoiesis while the function of resident immune cells is unperturbed. In contrast, the adoptive BMT to non-conditioned mice has the additional advantage that both the local environments of the organs and the hematopoietic niche are preserved. Here, we compare three different hematopoietic cell reconstitution approaches and discuss their strengths and limitations for studies of clonal hematopoiesis in cardiovascular disease.
Collapse
Affiliation(s)
- Eunbee Park
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine
| | - Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Ying Wang
- Department of Cardiology, Xinqiao Hospital, Army Medical University
| | - Soichi Sano
- Department of Cardiology, Osaka City University Graduate School of Medicine; Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine
| | - Kenneth Walsh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine; Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine;
| |
Collapse
|
269
|
El Tekle G, Bernasocchi T, Unni AM, Bertoni F, Rossi D, Rubin MA, Theurillat JP. Co-occurrence and mutual exclusivity: what cross-cancer mutation patterns can tell us. Trends Cancer 2021; 7:823-836. [PMID: 34031014 DOI: 10.1016/j.trecan.2021.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Cancer is the dysregulated proliferation of cells caused by acquired mutations in key driver genes. The most frequently mutated driver genes promote tumorigenesis in various organisms, cell types, and genetic backgrounds. However, recent cancer genomics studies also point to the existence of context-dependent driver gene functions, where specific mutations occur predominately or even exclusively in certain tumor types or genetic backgrounds. Here, we review examples of co-occurring and mutually exclusive driver gene mutation patterns across cancer genomes and discuss their underlying biology. While co-occurring driver genes typically activate collaborating oncogenic pathways, we identify two distinct biological categories of incompatibilities among the mutually exclusive driver genes depending on whether the mutated drivers trigger the same or divergent tumorigenic pathways. Finally, we discuss possible therapeutic avenues emerging from the study of incompatible driver gene mutations.
Collapse
Affiliation(s)
- Geniver El Tekle
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland
| | - Tiziano Bernasocchi
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland
| | - Arun M Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland; Oncology Institute of Southern Switzerland, Bellinzona, TI 6500, Switzerland
| | - Mark A Rubin
- Department for BioMedical Research, Precision Oncology Laboratory, University of Bern, Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, TI 6500, Switzerland.
| |
Collapse
|
270
|
Genomic analysis of cellular hierarchy in acute myeloid leukemia using ultrasensitive LC-FACSeq. Leukemia 2021; 35:3406-3420. [PMID: 34021247 PMCID: PMC8606012 DOI: 10.1038/s41375-021-01295-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Hematopoiesis is hierarchical, and it has been postulated that acute myeloid leukemia (AML) is organized similarly with leukemia stem cells (LSCs) residing at the apex. Limited cells acquired by fluorescence activated cell sorting in tandem with targeted amplicon-based sequencing (LC-FACSeq) enables identification of mutations in small subpopulations of cells, such as LSCs. Leveraging this, we studied clonal compositions of immunophenotypically-defined compartments in AML through genomic and functional analyses at diagnosis, remission and relapse in 88 AML patients. Mutations involving DNA methylation pathways, transcription factors and spliceosomal machinery did not differ across compartments, while signaling pathway mutations were less frequent in putative LSCs. We also provide insights into TP53-mutated AML by demonstrating stepwise acquisition of mutations beginning from the preleukemic hematopoietic stem cell stage. In 10 analyzed cases, acquisition of additional mutations and del(17p) led to genetic and functional heterogeneity within the LSC pool with subclones harboring varying degrees of clonogenic potential. Finally, we use LC-FACSeq to track clonal evolution in serial samples, which can also be a powerful tool to direct targeted therapy against measurable residual disease. Therefore, studying clinically significant small subpopulations of cells can improve our understanding of AML biology and offers advantages over bulk sequencing to monitor the evolution of disease.
Collapse
|
271
|
La Manna S, Florio D, Di Natale C, Napolitano F, Malfitano AM, Netti PA, De Benedictis I, Marasco D. Conformational consequences of NPM1 rare mutations: An aggregation perspective in Acute Myeloid Leukemia. Bioorg Chem 2021; 113:104997. [PMID: 34044346 DOI: 10.1016/j.bioorg.2021.104997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Often proteins association is a physiological process used by cells to regulate their growth and to adapt to different stress conditions, including mutations. In the case of a subtype of Acute Myeloid Leukemia (AML), mutations of nucleophosmin 1 (NPM1) protein cause its aberrant cytoplasmatic mislocalization (NPMc+). We recently pointed out an amyloidogenic propensity of protein regions including the most common mutations of NPMc+ located in the C-terminal domain (CTD): they were able to form, in vitro, amyloid cytotoxic aggregates with fibrillar morphology. Herein, we analyzed the conformational characteristics of several peptides including rare AML mutations of NPMc+. By means of different spectroscopic, microscopic and cellular assays we evaluated the importance of amino acid composition, among rare AML mutations, to determine amyloidogenic propensity. This study could add a piece of knowledge to the structural consequences of mutations in cytoplasmatic NPM1c+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 8012 Naples, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 8012 Naples, Italy
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
272
|
Ex vivo drug screening defines novel drug sensitivity patterns for informing personalized therapy in myeloid neoplasms. Blood Adv 2021; 4:2768-2778. [PMID: 32569379 DOI: 10.1182/bloodadvances.2020001934] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Precision medicine approaches such as ex vivo drug sensitivity screening (DSS) are appealing to inform rational drug selection in myelodysplastic syndromes (MDSs) and acute myeloid leukemia, given their marked biologic heterogeneity. We evaluated a novel, fully automated ex vivo DSS platform that uses high-throughput flow cytometry in 54 patients with newly diagnosed or treatment-refractory myeloid neoplasms to evaluate sensitivity (blast cytotoxicity and differentiation) to 74 US Food and Drug Administration-approved or investigational drugs and 36 drug combinations. After piloting the platform in 33 patients, we conducted a prospective feasibility study enrolling 21 patients refractory to hypomethylating agents (HMAs) to determine whether this assay could be performed within a clinically actionable time frame and could accurately predict clinical responses in vivo. When assayed for cytotoxicity, ex vivo drug sensitivity patterns were heterogeneous, but they defined distinct patient clusters with differential sensitivity to HMAs, anthracyclines, histone deacetylase inhibitors, and kinase inhibitors (P < .001 among clusters) and demonstrated synergy between HMAs and venetoclax (P < .01 for combinations vs single agents). In our feasibility study, ex vivo DSS results were available at a median of 15 days after bone marrow biopsy, and they informed personalized therapy, which frequently included venetoclax combinations, kinase inhibitors, differentiative agents, and androgens. In 21 patients with available ex vivo and in vivo clinical response data, the DSS platform had a positive predictive value of 0.92, negative predictive value of 0.82, and overall accuracy of 0.85. These data demonstrate the utility of this approach for identifying potentially useful and often novel therapeutic drugs for patients with myeloid neoplasms refractory to standard therapies.
Collapse
|
273
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
274
|
Engen C, Hellesøy M, Grob T, Al Hinai A, Brendehaug A, Wergeland L, Bedringaas SL, Hovland R, Valk PJM, Gjertsen BT. FLT3-ITD mutations in acute myeloid leukaemia - molecular characteristics, distribution and numerical variation. Mol Oncol 2021; 15:2300-2317. [PMID: 33817952 PMCID: PMC8410560 DOI: 10.1002/1878-0261.12961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Accepted: 04/01/2021] [Indexed: 11/07/2022] Open
Abstract
Recurrent somatic internal tandem duplications (ITD) in the FMS-like tyrosine kinase 3 (FLT3) gene characterise approximately one third of patients with acute myeloid leukaemia (AML), and FLT3-ITD mutation status guides risk-adapted treatment strategies. The aim of this work was to characterise FLT3-ITD variant distribution in relation to molecular and clinical features, and overall survival in adult AML patients. We performed two parallel retrospective cohort studies investigating FLT3-ITD length and expression by cDNA fragment analysis, followed by Sanger sequencing in a subset of samples. In the two cohorts, a total of 139 and 172 mutant alleles were identified in 111 and 123 patients, respectively, with 22% and 28% of patients presenting with more than one mutated allele. Further, 15% and 32% of samples had a FLT3-ITD total variant allele frequency (VAF) < 0.3, while 24% and 16% had a total VAF ≥ 0.7. Most of the assessed clinical features did not significantly correlate to FLT3-ITD numerical variation nor VAF. Low VAF was, however, associated with lower white blood cell count, while increasing VAF correlated with inferior overall survival in one of the cohorts. In the other cohort, ITD length above 50 bp was identified to correlate with inferior overall survival. Our report corroborates the poor prognostic association with high FLT3-ITD disease burden, as well as extensive inter- and intrapatient heterogeneity in the molecular features of FLT3-ITD. We suggest that future use of FLT3-targeted therapy could be accompanied with thorough molecular diagnostics and follow-up to better predict optimal therapy responders.
Collapse
Affiliation(s)
- Caroline Engen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Monica Hellesøy
- Haematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Norway
| | - Tim Grob
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Adil Al Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Atle Brendehaug
- Department of Medical Genetics, Haukeland University Hospital, Helse Bergen HF, Norway
| | - Line Wergeland
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Siv Lise Bedringaas
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Randi Hovland
- Department of Medical Genetics, Haukeland University Hospital, Helse Bergen HF, Norway.,Department of Biosciences, University of Bergen, Norway
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Bjørn T Gjertsen
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway.,Haematology Section, Department of Medicine, Haukeland University Hospital, Helse Bergen HF, Norway
| |
Collapse
|
275
|
Abstract
Haematopoietic stem and progenitor cells (HSPCs) are defined as unspecialized cells that give rise to more differentiated cells. In a similar way, leukaemic stem and progenitor cells (LSPCs) are defined as unspecialized leukaemic cells, which can give rise to more differentiated cells. Leukaemic cells carry leukaemic mutations/variants and have clear differentiation abnormalities. Pre-leukaemic HSPCs (PreL-HSPCs) carry pre-leukaemic mutations/variants (pLMs) and are capable of producing mature functional cells, which will carry the same variants. Under the roof of LSPCs, one can find a broad range of cell types genetic and disease phenotypes. Present-day knowledge suggests that this phenotypic heterogeneity is the result of interactions between the cell of origin, the genetic background and the microenvironment background. The combination of these attributes will define the LSPC phenotype, frequency, differentiation capacity and evolutionary trajectory. Importantly, as LSPCs are leukaemia-initiating cells that sustain clinical remission and are the source of relapse, an improved understanding of LSPCs phenotype would offer better clinical opportunities for the treatment and hopefully prevention of human leukaemia. The current review will focus on LSPCs attributes in the context of human haematologic malignancies.
Collapse
Affiliation(s)
- L I Shlush
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - T Feldman
- From the, Liran Shlush's Lab - Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
276
|
Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV, Ellis P, Russell AJC, Alcantara RE, Baez-Ortega A, Wang Y, Kwa EJ, Lee-Six H, Cagan A, Coorens THH, Chapman MS, Olafsson S, Leonard S, Jones D, Machado HE, Davies M, Øbro NF, Mahubani KT, Allinson K, Gerstung M, Saeb-Parsy K, Kent DG, Laurenti E, Stratton MR, Rahbari R, Campbell PJ, Osborne RJ, Martincorena I. Somatic mutation landscapes at single-molecule resolution. Nature 2021; 593:405-410. [PMID: 33911282 DOI: 10.1038/s41586-021-03477-4] [Citation(s) in RCA: 268] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/22/2021] [Indexed: 02/02/2023]
Abstract
Somatic mutations drive the development of cancer and may contribute to ageing and other diseases1,2. Despite their importance, the difficulty of detecting mutations that are only present in single cells or small clones has limited our knowledge of somatic mutagenesis to a minority of tissues. Here, to overcome these limitations, we developed nanorate sequencing (NanoSeq), a duplex sequencing protocol with error rates of less than five errors per billion base pairs in single DNA molecules from cell populations. This rate is two orders of magnitude lower than typical somatic mutation loads, enabling the study of somatic mutations in any tissue independently of clonality. We used this single-molecule sensitivity to study somatic mutations in non-dividing cells across several tissues, comparing stem cells to differentiated cells and studying mutagenesis in the absence of cell division. Differentiated cells in blood and colon displayed remarkably similar mutation loads and signatures to their corresponding stem cells, despite mature blood cells having undergone considerably more divisions. We then characterized the mutational landscape of post-mitotic neurons and polyclonal smooth muscle, confirming that neurons accumulate somatic mutations at a constant rate throughout life without cell division, with similar rates to mitotically active tissues. Together, our results suggest that mutational processes that are independent of cell division are important contributors to somatic mutagenesis. We anticipate that the ability to reliably detect mutations in single DNA molecules could transform our understanding of somatic mutagenesis and enable non-invasive studies on large-scale cohorts.
Collapse
Affiliation(s)
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | | | | | - Peter Ellis
- Wellcome Sanger Institute, Hinxton, UK
- Inivata, Babraham Research Campus, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Megan Davies
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
| | - Nina F Øbro
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Krishnaa T Mahubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kieren Allinson
- Cambridge Brain Bank, Division of the Human Research Tissue Bank, Addenbrooke's Hospital, Cambridge, UK
| | - Moritz Gerstung
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - David G Kent
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Elisa Laurenti
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK.
- Biofidelity, Cambridge Science Park, Cambridge, UK.
| | | |
Collapse
|
277
|
Mou T, Pawitan Y, Stahl M, Vesterlund M, Deng W, Jafari R, Bohlin A, Österroos A, Siavelis L, Bäckvall H, Erkers T, Kiviluoto S, Seashore‐Ludlow B, Östling P, Orre LM, Kallioniemi O, Lehmann S, Lehtiö J, Vu TN. The transcriptome-wide landscape of molecular subtype-specific mRNA expression profiles in acute myeloid leukemia. Am J Hematol 2021; 96:580-588. [PMID: 33625756 DOI: 10.1002/ajh.26141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Molecular classification of acute myeloid leukemia (AML) aids prognostic stratification and clinical management. Our aim in this study is to identify transcriptome-wide mRNAs that are specific to each of the molecular subtypes of AML. We analyzed RNA-sequencing data of 955 AML samples from three cohorts, including the BeatAML project, the Cancer Genome Atlas, and a cohort of Swedish patients to provide a comprehensive transcriptome-wide view of subtype-specific mRNA expression. We identified 729 subtype-specific mRNAs, discovered in the BeatAML project and validated in the other two cohorts. Using unique proteomics data, we also validated the presence of subtype-specific mRNAs at the protein level, yielding a rich collection of potential protein-based biomarkers for the AML community. To enable the exploration of subtype-specific mRNA expression by the broader scientific community, we provide an interactive resource to the public.
Collapse
Affiliation(s)
- Tian Mou
- Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
- School of Biomedical Engineering Shenzhen University Shenzhen China
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
| | - Matthias Stahl
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Mattias Vesterlund
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Wenjiang Deng
- Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
| | - Rozbeh Jafari
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Anna Bohlin
- Department of Medicine Huddinge Karolinska Institutet, Unit for Hematology, Karolinska University Hospital Huddinge Stockholm Sweden
| | - Albin Österroos
- Department of Medical Sciences, Section of Hematology Uppsala University Hospital Uppsala Sweden
| | - Loannis Siavelis
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Helena Bäckvall
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Tom Erkers
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Santeri Kiviluoto
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Brinton Seashore‐Ludlow
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Päivi Östling
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
- Institute for Molecular Medicine Finland, University of Helsinki Helsinki Finland
| | - Lukas M. Orre
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Olli Kallioniemi
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
- Institute for Molecular Medicine Finland, University of Helsinki Helsinki Finland
| | - Sören Lehmann
- Department of Medicine Huddinge Karolinska Institutet, Unit for Hematology, Karolinska University Hospital Huddinge Stockholm Sweden
- Department of Medical Sciences, Section of Hematology Uppsala University Hospital Uppsala Sweden
| | - Janne Lehtiö
- Department of Oncology Pathology Karolinska Institutet, Science for Life Laboratory Stockholm Sweden
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
| |
Collapse
|
278
|
Tiemann‐Boege I, Mair T, Yasari A, Zurovec M. Pathogenic postzygotic mosaicism in the tyrosine receptor kinase pathway: potential unidentified human disease hidden away in a few cells. FEBS J 2021; 288:3108-3119. [PMID: 32810928 PMCID: PMC8247027 DOI: 10.1111/febs.15528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
Abstract
Mutations occurring during embryonic development affect only a subset of cells resulting in two or more distinct cell populations that are present at different levels, also known as postzygotic mosaicism (PZM). Although PZM is a common biological phenomenon, it is often overlooked as a source of disease due to the challenges associated with its detection and characterization, especially for very low-frequency variants. Moreover, PZM can cause a different phenotype compared to constitutional mutations. Especially, lethal mutations in receptor tyrosine kinase (RTK) pathway genes, which exist only in a mosaic state, can have completely new clinical manifestations and can look very different from the associated monogenic disorder. However, some key questions are still not addressed, such as the level of mosaicism resulting in a pathogenic phenotype and how the clinical outcome changes with the development and age. Addressing these questions is not trivial as we require methods with the sensitivity to capture some of these variants hidden away in very few cells. Recent ultra-accurate deep-sequencing approaches can now identify these low-level mosaics and will be central to understand systemic and local effects of mosaicism in the RTK pathway. The main focus of this review is to highlight the importance of low-level mosaics and the need to include their detection in studies of genomic variation associated with disease.
Collapse
Affiliation(s)
| | - Theresa Mair
- Institute of BiophysicsJohannes Kepler UniversityLinzAustria
| | - Atena Yasari
- Institute of BiophysicsJohannes Kepler UniversityLinzAustria
| | - Michal Zurovec
- Biology Centre of the Czech Academy of SciencesInstitute of EntomologyCeske BudejoviceCzech Republic
| |
Collapse
|
279
|
Enhancer rewiring in tumors: an opportunity for therapeutic intervention. Oncogene 2021; 40:3475-3491. [PMID: 33934105 DOI: 10.1038/s41388-021-01793-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Enhancers are cis-regulatory sequences that fine-tune expression of their target genes in a spatiotemporal manner. They are recognized by sequence-specific transcription factors, which in turn recruit transcriptional coactivators that facilitate transcription by promoting assembly and activation of the basal transcriptional machinery. Their functional importance is underscored by the fact that they are often the target of genetic and nongenetic events in human disease that disrupt their sequence, interactome, activation potential, and/or chromatin environment. Dysregulation of transcription and addiction to transcriptional effectors that interact with and modulate enhancer activity are common features of cancer cells and are amenable to therapeutic intervention. Here, we discuss the current knowledge on enhancer biology, the broad spectrum of mechanisms that lead to their malfunction in tumor cells, and recent progress in developing drugs that efficaciously target their dependencies.
Collapse
|
280
|
Gupta RG, Li F, Roszik J, Lizée G. Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discov 2021; 11:1024-1039. [PMID: 33722796 PMCID: PMC8102318 DOI: 10.1158/2159-8290.cd-20-1575] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Immunotherapeutic manipulation of the antitumor immune response offers an attractive strategy to target genomic instability in cancer. A subset of tumor-specific somatic mutations can be translated into immunogenic and HLA-bound epitopes called neoantigens, which can induce the activation of helper and cytotoxic T lymphocytes. However, cancer immunoediting and immunosuppressive mechanisms often allow tumors to evade immune recognition. Recent evidence also suggests that the tumor neoantigen landscape extends beyond epitopes originating from nonsynonymous single-nucleotide variants in the coding exome. Here we review emerging approaches for identifying, prioritizing, and immunologically targeting personalized neoantigens using polyvalent cancer vaccines and T-cell receptor gene therapy. SIGNIFICANCE: Several major challenges currently impede the clinical efficacy of neoantigen-directed immunotherapy, such as the relative infrequency of immunogenic neoantigens, suboptimal potency and priming of de novo tumor-specific T cells, and tumor cell-intrinsic and -extrinsic mechanisms of immune evasion. A deeper understanding of these biological barriers could help facilitate the development of effective and durable immunotherapy for any type of cancer, including immunologically "cold" tumors that are otherwise therapeutically resistant.
Collapse
Affiliation(s)
- Ravi G Gupta
- Department of Hematology/Oncology, MD Anderson Cancer Center at Cooper, Camden, New Jersey.
| | - Fenge Li
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
281
|
Wang M, Wang R, Wang H, Chen C, Qin J, Gao X, Yu L. Difference in gene mutation profile in patients with refractory/relapsed versus newly diagnosed acute myeloid leukemia based on targeted next-generation sequencing. Leuk Lymphoma 2021; 62:2416-2427. [PMID: 33913388 DOI: 10.1080/10428194.2021.1919661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have reported the genetic mutation profile in previously untreated acute myeloid leukemia (AML) patients using a targeted NGS screening method. In this study, we evaluated the characteristics and prognostic significance of gene mutations in refractory/relapsed (R/R) AML patients by comparing their gene mutation spectrum to those newly diagnosed. The frequencies of tumor suppressor mutations were increased, while the mutation frequencies of nucleophosmin and spliceosome complex were decreased in relapsed AML. The frequency of FLT3-ITD mutation was increased, while that of CEBPA biallelic mutation decreased in refractory AML. Activated signaling mutations predicted a lower complete remission rate. FLT3-ITD mutation predicted an inferior overall survival after relapse. DNMT3A mutation predicted an inferior relapse-free survival in R/R AML. These findings may shed light on the molecular mechanism study of leukemia refractory or relapse and provide new guidance for the dynamic risk assessment of AML.
Collapse
Affiliation(s)
- Mengzhen Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Chongjian Chen
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Jiayue Qin
- Annoroad Gene Technology Co, Beijing Economic-Technological Development Area, Beijing, China
| | - Xiaoning Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
282
|
Westermann J, Bullinger L. Precision medicine in myeloid malignancies. Semin Cancer Biol 2021; 84:153-169. [PMID: 33895273 DOI: 10.1016/j.semcancer.2021.03.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Myeloid malignancies have always been at the forefront of an improved understanding of the molecular pathogenesis of cancer. In accordance, over the last years, basic research focusing on the aberrations underlying malignant transformation of myeloid cells has provided the basis for precision medicine approaches and subsequently has led to the development of powerful therapeutic strategies. In this review article, we will recapitulate what has happened since in the 1980s the use of all-trans retinoic acid (ATRA), as a first targeted cancer therapy, has changed one of the deadliest leukemia subtypes, acute promyelocytic leukemia (APL), into one that can be cured without classical chemotherapy today. Similarly, imatinib, the first molecularly designed cancer therapy, has revolutionized the management of chronic myeloid leukemia (CML). Thus, targeted treatment approaches have become the paradigm for myeloid malignancy, but many questions still remain unanswered, especially how identical mutations can be associated with different phenotypes. This might be linked to the impact of the cell of origin, gene-gene interactions, or the tumor microenvironment including the immune system. Continuous research in the field of myeloid neoplasia has started to unravel the molecular pathways that are not only crucial for initial treatment response, but also resistance of leukemia cells under therapy. Ongoing studies focusing on leukemia cell vulnerabilities do already point to novel (targetable) "Achilles heels" that can further improve myeloid cancer therapy.
Collapse
Affiliation(s)
- Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumor Immunology, Charité University Medicine Berlin, Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
283
|
Potluri S, Assi SA, Chin PS, Coleman DJL, Pickin A, Moriya S, Seki N, Heidenreich O, Cockerill PN, Bonifer C. Isoform-specific and signaling-dependent propagation of acute myeloid leukemia by Wilms tumor 1. Cell Rep 2021; 35:109010. [PMID: 33882316 DOI: 10.1016/j.celrep.2021.109010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/04/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is caused by recurrent mutations in members of the gene regulatory and signaling machinery that control hematopoietic progenitor cell growth and differentiation. Here, we show that the transcription factor WT1 forms a major node in the rewired mutation-specific gene regulatory networks of multiple AML subtypes. WT1 is frequently either mutated or upregulated in AML, and its expression is predictive for relapse. The WT1 protein exists as multiple isoforms. For two main AML subtypes, we demonstrate that these isoforms exhibit differential patterns of binding and support contrasting biological activities, including enhanced proliferation. We also show that WT1 responds to oncogenic signaling and is part of a signaling-responsive transcription factor hub that controls AML growth. WT1 therefore plays a central and widespread role in AML biology.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatin/chemistry
- Chromatin/metabolism
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/classification
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Signal Transduction
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Translocation, Genetic
- WT1 Proteins/antagonists & inhibitors
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Sandeep Potluri
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK.
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Paulynn S Chin
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Dan J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Anna Pickin
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK; Prinses Máxima Centrum for Pediatric Oncology, Postbus 113, 3720 AC Bilthoven, Heidelberglaan 25, 3584CS Utrecht, the Netherlands
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B152TT, UK.
| |
Collapse
|
284
|
Lee DH, Kang SH, Choi DS, Ko M, Choi E, Ahn H, Min H, Oh SJ, Lee MS, Park Y, Jin HS. Genome wide CRISPR screening reveals a role for sialylation in the tumorigenesis and chemoresistance of acute myeloid leukemia cells. Cancer Lett 2021; 510:37-47. [PMID: 33872695 DOI: 10.1016/j.canlet.2021.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Aberrant activation of cytokine and growth factor signal transduction pathways confers enhanced survival and proliferation properties to acute myeloid leukemia (AML) cells. However, the mechanisms underlying the deregulation of signaling pathways in leukemia cells are unclear. To identify genes capable of independently supporting cytokine-independent growth, we employed a genome-wide CRISPR/Cas9-mediated loss-of-function screen in GM-CSF-dependent human AML TF-1 cells. More than 182 genes (p < 0.01) were found to suppress the cytokine-independent growth of TF-1 cells. Among the top hits, genes encoding key factors involved in sialylation biosynthesis were identified; these included CMAS, SLC35A1, NANS, and GNE. Knockout of either CMAS or SLC35A1 enabled cytokine-independent proliferation and survival of AML cells. Furthermore, NSG (NOD/SCID/IL2Rγ-/-) mice injected with CMAS or SLC35A1-knockout TF-1 cells exhibited a shorter survival than mice injected with wild-type cells. Mechanistically, abrogation of sialylation biosynthesis in TF-1 cells induced a strong activation of ERK signaling, which sensitized cells to MEK inhibitors but conferred resistance to JAK inhibitors. Further, the surface level of α2,3-linked sialic acids was negatively correlated with the sensitivity of AML cell lines to MEK/ERK inhibitors. We also found that sialylation modulated the expression and stability of the CSF2 receptor. Together, these results demonstrate a novel role of sialylation in regulating oncogenic transformation and drug resistance development in leukemia. We propose that altered sialylation could serve as a biomarker for targeted anti-leukemic therapy.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong-Ho Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Da-Som Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Minkyung Ko
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Eunji Choi
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyejin Ahn
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Soo Jin Oh
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Myeong Sup Lee
- Laboratory of Molecular Immunology and Medicine, Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
285
|
Han C, Gao X, Li Y, Zhang J, Yang E, Zhang L, Yu L. Characteristics of Cohesin Mutation in Acute Myeloid Leukemia and Its Clinical Significance. Front Oncol 2021; 11:579881. [PMID: 33928020 PMCID: PMC8076553 DOI: 10.3389/fonc.2021.579881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The occurrence of gene mutation is a major contributor to the initiation and propagation of acute myeloid leukemia (AML). Accumulating evidence suggests that genes encoding cohesin subunits have a high prevalence of mutations in AML, especially in the t(8;21) subtype. Therefore, it is important to understand how cohesin mutations contribute to leukemogenesis. However, the fundamental understanding of cohesin mutation in clonal expansion and myeloid transformation in hematopoietic cells remains ambiguous. Previous studies briefly introduced the cohesin mutation in AML; however, an in-depth summary of mutations in AML was not provided, and the correlation between cohesin and AML1-ETO in t (8;21) AML was also not analyzed. By summarizing the major findings regarding the cohesin mutation in AML, this review aims to define the characteristics of the cohesin complex mutation, identify its relationships with co-occurring gene mutations, assess its roles in clonal evolution, and discuss its potential for the prognosis of AML. In particular, we focus on the function of cohesin mutations in RUNX1-RUNX1T1 fusion.
Collapse
Affiliation(s)
- Caixia Han
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yonghui Li
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Juan Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Erna Yang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Zhang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
286
|
Guan W, Zhou L, Li Y, Yang E, Liu Y, Lv N, Fu L, Ding Y, Wang N, Fang N, Liu Q, Wang B, Li F, Zhang J, Wang M, Wang L, Jing Y, Li Y, Yu L. Profiling of somatic mutations and fusion genes in acute myeloid leukemia patients with FLT3-ITD or FLT3-TKD mutation at diagnosis reveals distinct evolutionary patterns. Exp Hematol Oncol 2021; 10:27. [PMID: 33836835 PMCID: PMC8033687 DOI: 10.1186/s40164-021-00207-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Background The receptor tyrosine kinase FLT3 with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) is a poor prognostic factor; however, the prognostic significance of missense mutation in the tyrosine kinase domain (FLT3-TKD) is controversial. Furthermore, the accompanying mutations and fusion genes with FLT3 mutations are unclear in acute myeloid leukemia (AML). Methods We investigated FLT3 mutations and their correlation with other gene mutations and gene fusions through two RNA-seq based next-generation sequencing (NGS) method and prognostic impact in 207 de novo AML patients. Results FLT3-ITD mutations were positive in 58 patients (28%), and FLT3-TKD mutations were positive in 20 patients (9.7%). FLT3-ITD was associated with a higher white blood cell count (WBC, mean 72.9 × 109/L vs. 24.2 × 109/L, P = 0.000), higher bone marrow blasts (mean 65.9% vs. 56.0%, P = 0.024), and NK-AML (normal karyotype) (64.8% vs. 48.4%, P = 0.043). NPM1 and DNMT3A mutations were enriched in FLT3-ITD (53.5% vs. 15.3%, P = 0.000; 34.6% vs. 13%, P = 0.003). However, the mutations of CEBPA were excluded in FLT3-AML (3.8% vs. 0% vs. 19.8%, P = 0.005). Mutations of Ras and TP53 were unlikely associated with FLT3-ITD (1.9% vs. 20.6%, P = 0.006; 0% vs. 6.1%, P = 0.04). The common fusion genes (> 10%) in FLT3-ITD had MLL-rearrangement and NUP98-rearrangement, while the common fusion genes in FLT3-TKD had AML1-ETO and MLL-rearrangement. Two novel fusion genes PRDM16-SKI and EFAN2-ZNF238 were identified in FLT3-ITD patients. Gene fusions and NPM1 mutation were mutually excluded in FLT3-ITD and FLT3-TKD patients. Their patterns of mutual exclusivity and cooperation among mutated genes suggest that additional driver genetic alterations are required and reveal two evolutionary patterns of FLT3 pathogenesis. Patients with FLT3-ITD had a lower CR (complete remission) rate, lower 3-year OS (overall survival), DFS (disease-free survival), and EFS (event-free survival) compared to FLT3wtAML. NK-AML with FLT3-ITD had a lower 3-year OS, DFS, and EFS than those without, while FLT3-TKD did not influence the survival in whole cohort and NK-AML. Besides, we found that FLT3-ITD/TET2 bimutation defined a poor prognostic subgroup. Conclusions Our study offers deep insights into the molecular pathogenesis and biology of AML with FLT3-ITD and FLT3-TKD by providing the profiles of concurrent molecular alterations and the clinical impact of FLT3-ITD and FLT3-TKD on AML patients.
Collapse
Affiliation(s)
- Wei Guan
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Department of Hematology, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Erna Yang
- Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan AVE, Shenzhen, 518060, China
| | - Yangyang Liu
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Na Lv
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan AVE, Shenzhen, 518060, China
| | - Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yi Ding
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Nan Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Nan Fang
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Qian Liu
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Binan Wang
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Fuwei Li
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Juan Zhang
- Beijing USCI Medical Laboratory Co., Ltd, Beijing, China
| | - Maoquan Wang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Yonghui Li
- Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan AVE, Shenzhen, 518060, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. .,Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Carlson International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, 1098 Xueyuan AVE, Shenzhen, 518060, China.
| |
Collapse
|
287
|
Epigenetics in a Spectrum of Myeloid Diseases and Its Exploitation for Therapy. Cancers (Basel) 2021; 13:cancers13071746. [PMID: 33917538 PMCID: PMC8038780 DOI: 10.3390/cancers13071746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The genome is stored in the limited space of the nucleus in a highly condensed form. The regulation of this packaging contributes to determining the accessibility of genes and is important for cell function. Genes affecting the genome’s packaging are frequently mutated in bone marrow cells that give rise to the different types of blood cells. Here, we first discuss the molecular functions of these genes and their role in blood generation under healthy conditions. Then, we describe how their mutations relate to a subset of diseases including blood cancers. Finally, we provide an overview of the current efforts of using and developing drugs targeting these and related genes. Abstract Mutations in genes encoding chromatin regulators are early events contributing to developing asymptomatic clonal hematopoiesis of indeterminate potential and its frequent progression to myeloid diseases with increasing severity. We focus on the subset of myeloid diseases encompassing myelodysplastic syndromes and their transformation to secondary acute myeloid leukemia. We introduce the major concepts of chromatin regulation that provide the basis of epigenetic regulation. In greater detail, we discuss those chromatin regulators that are frequently mutated in myelodysplastic syndromes. We discuss their role in the epigenetic regulation of normal hematopoiesis and the consequence of their mutation. Finally, we provide an update on the drugs interfering with chromatin regulation approved or in development for myelodysplastic syndromes and acute myeloid leukemia.
Collapse
|
288
|
Kishtagari A, Levine RL. The Role of Somatic Mutations in Acute Myeloid Leukemia Pathogenesis. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a034975. [PMID: 32398288 DOI: 10.1101/cshperspect.a034975] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by attenuation of lineage differentiation trajectories that results in impaired hematopoiesis and enhanced self-renewal. To date, sequencing studies have provided a rich landscape of information on the somatic mutations that contribute to AML pathogenesis. These studies show that most AML genomes harbor relatively fewer mutations, which are acquired in a stepwise manner. Our understanding of the genetic basis of leukemogenesis informs a broader understanding of what initiates and maintains the AML clone and informs the development of prognostic models and mechanism-based therapeutic strategies. Here, we explore the current knowledge of genetic and epigenetic aberrations in AML pathogenesis and how recent studies are expanding our knowledge of leukemogenesis and using this to accelerate therapeutic development for AML patients.
Collapse
Affiliation(s)
- Ashwin Kishtagari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.,Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Molecular Cancer Medicine Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
289
|
Greigert H, Mounier M, Arnould L, Creuzot-Garcher C, Ramon A, Martin L, Tarris G, Ponnelle T, Audia S, Bonnotte B, Maynadie M, Samson M. Hematological Malignancies in Giant Cell Arteritis: a French population-based study. Rheumatology (Oxford) 2021; 60:5408-5412. [PMID: 33792672 DOI: 10.1093/rheumatology/keab328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/28/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES An increased risk of hematological malignancies (HM) has been reported in giant cell arteritis (GCA) patients. Our study aimed to investigate the incidence and the type of HM occurring in GCA. METHODS All patients with GCA and HM living in Côte D'Or (France) were identified by crossing data from the RHEMCO (Registre des Hémopathies Malignes de Côte d'Or) and those having a positive temporal artery biopsy between 1st January 2001 and 31 December 2018. RESULTS Among 276 biopsy-proven GCA patients, 14 HM were identified in 12 patients (4.3%). In comparison with the general population aged over 50 years, the incidence of myeloid HM and myeloproliferative syndromes were increased in GCA patients (standardized incidence ratios = 2.71 and 5.16, respectively), with a specific increase in men with GCA (SIR = 4.82 and 9.04, respectively) but not in women. In addition, the study of standardized incidence ratios depending on the chronology between GCA and HM diagnoses suggests that there was an increased risk of developing GCA in men but not in women, after a diagnosis of myeloid HM (SIR = 9.56), especially if it was a MPS (SIR = 17.56). CONCLUSIONS Our study shows a particular epidemiology of HM in GCA patients, which is characterized by an increased incidence of myeloid HM, especially MPS, in male GCA patients. The chronology of the diagnoses of GCA and HM raises the hypothesis that clonal hematopoiesis may be implicated in some cases of GCA.
Collapse
Affiliation(s)
- Hélène Greigert
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France.,Department of Vascular Medicine, Dijon University Hospital, Dijon, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000 Dijon, France
| | - Morgane Mounier
- Dijon-Bourgogne University Hospital, Registre des Hémopathies Malignes de Côte d'Or, Dijon F-21000, France.,Univ Bourgogne-Franche-Comté, INSERM, UMR 1231, Dijon F-21000, France.,LabEX LipSTIC, ANR-11-LABX-0021, Dijon F-21000, France
| | - Louis Arnould
- Department of Ophthalmology, Dijon University Hospital, Dijon, France
| | | | - André Ramon
- Department of Rheumatology, Dijon University Hospital, Dijon, France
| | - Laurent Martin
- Department of Pathology, Dijon University Hospital, Dijon, France
| | - Georges Tarris
- Department of Pathology, Dijon University Hospital, Dijon, France
| | | | - Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000 Dijon, France
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000 Dijon, France
| | - Marc Maynadie
- Dijon-Bourgogne University Hospital, Registre des Hémopathies Malignes de Côte d'Or, Dijon F-21000, France.,Univ Bourgogne-Franche-Comté, INSERM, UMR 1231, Dijon F-21000, France.,LabEX LipSTIC, ANR-11-LABX-0021, Dijon F-21000, France.,Department of Biological Hematology, Dijon University Hospital, Dijon, France
| | - Maxime Samson
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France.,Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000 Dijon, France
| |
Collapse
|
290
|
Abstract
Cancer is a clonal disorder derived from a single ancestor cell and its progenies that are positively selected by acquisition of 'driver mutations'. However, the evolution of positively selected clones does not necessarily imply the presence of cancer. On the contrary, it has become clear that expansion of these clones in phenotypically normal or non-cancer tissues is commonly seen in association with ageing and/or in response to environmental insults and chronic inflammation. Recent studies have reported expansion of clones harbouring mutations in cancer driver genes in the blood, skin, oesophagus, bronchus, liver, endometrium and bladder, where the expansion could be so extensive that tissues undergo remodelling of an almost entire tissue. The presence of common cancer driver mutations in normal tissues suggests a strong link to cancer development, providing an opportunity to understand early carcinogenic processes. Nevertheless, some driver mutations are unique to normal tissues or have a mutation frequency that is much higher in normal tissue than in cancer, indicating that the respective clones may not necessarily be destined for evolution to cancer but even negatively selected for carcinogenesis depending on the mutated gene. Moreover, tissues that are remodelled by genetically altered clones might define functionalities of aged tissues or modified inflammatory processes. In this Review, we provide an overview of major findings on clonal expansion in phenotypically normal or non-cancer tissues and discuss their biological significance not only in cancer development but also in ageing and inflammatory diseases.
Collapse
Affiliation(s)
- Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, Japan.
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
291
|
Saikia TK. How I Treat Adult Acute Myeloid Leukemia. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1732825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Tapan K. Saikia
- Department of Medical Oncology, Prince Aly Khan Hospital, Mumbai, Maharashtra, India Medical ,Oncology Prince Aly Khan Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
292
|
Heimbruch KE, Fisher JB, Stelloh CT, Phillips E, Reimer MH, Wargolet AJ, Meyer AE, Pulakanti K, Viny AD, Loppnow JJ, Levine RL, Pulikkan JA, Zhu N, Rao S. DOT1L inhibitors block abnormal self-renewal induced by cohesin loss. Sci Rep 2021; 11:7288. [PMID: 33790356 PMCID: PMC8012605 DOI: 10.1038/s41598-021-86646-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Acute myeloid leukemia (AML) is a high-risk malignancy characterized by a diverse spectrum of somatic genetic alterations. The mechanisms by which these mutations contribute to leukemia development and how this informs the use of targeted therapies is critical to improving outcomes for patients. Importantly, how to target loss-of-function mutations has been a critical challenge in precision medicine. Heterozygous inactivating mutations in cohesin complex genes contribute to AML in adults by increasing the self-renewal capacity of hematopoietic stem and progenitor cells (HSPCs) by altering PRC2 targeting to induce HOXA9 expression, a key self-renewal transcription factor. Here we sought to delineate the epigenetic mechanism underpinning the enhanced self-renewal conferred by cohesin-haploinsufficiency. First, given the substantial difference in the mutational spectrum between pediatric and adult AML patients, we first sought to identify if HOXA9 was also elevated in children. Next, using primary HSPCs as a model we demonstrate that abnormal self-renewal due to cohesin loss is blocked by DOT1L inhibition. In cohesin-depleted cells, DOT1L inhibition is associated with H3K79me2 depletion and a concomitant increase in H3K27me3. Importantly, we find that there are cohesin-dependent gene expression changes that promote a leukemic profile, including HoxA overexpression, that are preferentially reversed by DOT1L inhibition. Our data further characterize how cohesin mutations contribute to AML development, identifying DOT1L as a potential therapeutic target for adult and pediatric AML patients harboring cohesin mutations.
Collapse
Affiliation(s)
- Katelyn E Heimbruch
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph B Fisher
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Cary T Stelloh
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Emily Phillips
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael H Reimer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adam J Wargolet
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Alison E Meyer
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kirthi Pulakanti
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Aaron D Viny
- Department of Medicine, Division of Hematology and Oncology, and Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica J Loppnow
- Department of Natural Sciences, Concordia University Wisconsin, Mequon, WI, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Anto Pulikkan
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Blood Research Institute, Versiti, 8727 West Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Division of Hematology, Oncology, and Bone Marrow Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
293
|
Talukdar S, Das SK, Emdad L, Fisher PB. Autophagy and senescence: Insights from normal and cancer stem cells. Adv Cancer Res 2021; 150:147-208. [PMID: 33858596 DOI: 10.1016/bs.acr.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
294
|
Sletta KY, Castells O, Gjertsen BT. Colony Stimulating Factor 1 Receptor in Acute Myeloid Leukemia. Front Oncol 2021; 11:654817. [PMID: 33842370 PMCID: PMC8027480 DOI: 10.3389/fonc.2021.654817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive heterogeneous blood cancer derived from hematopoietic stem cells. Tumor-stromal interactions in AML are of importance for disease development and therapy resistance, and bone marrow stroma seem like an attractive therapeutic target. Of particular interest is colony stimulating factor 1 receptor (CSF1R, M-CSFR, c-FMS, CD115) and its role in regulating plasticity of tumor-associated macrophages. We discuss first the potential of CSF1R-targeted therapy as an attractive concept with regards to the tumor microenvironment in the bone marrow niche. A second therapy approach, supported by preclinical research, also suggests that CSF1R-targeted therapy may increase the beneficial effect of conventional and novel therapeutics. Experimental evidence positioning inhibitors of CSF1R as treatment should, together with data from preclinical and early phase clinical trials, facilitate translation and clinical development of CSF1R-targeted therapy for AML.
Collapse
Affiliation(s)
- Kristine Yttersian Sletta
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Oriol Castells
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Tore Gjertsen
- CCBIO, Centre for Cancer Biomarkers, Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
295
|
Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood 2021; 136:1590-1598. [PMID: 32746453 DOI: 10.1182/blood.2020006510] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The discovery of clonal hematopoiesis (CH) in older individuals has changed the way hematologists and stem cell biologists view aging. Somatic mutations accumulate in stem cells over time. While most mutations have no impact, some result in subtle functional differences that ultimately manifest in distinct stem cell behaviors. With a large pool of stem cells and many decades to compete, some of these differences confer advantages under specific contexts. Approximately 20 genes are recurrently found as mutated in CH, indicating they confer some advantage. The impact of these mutations has begun to be analyzed at a molecular level by modeling in cell lines and in mice. Mutations in epigenetic regulators such as DNMT3A and TET2 confer an advantage by enhancing self-renewal of stem and progenitor cells and inhibiting their differentiation. Mutations in other genes involved in the DNA damage response may simply enhance cell survival. Here, we review proposed mechanisms that lead to CH, specifically in the context of stem cell biology, based on our current understanding of the function of some of the CH-associated genes.
Collapse
|
296
|
Clonal hematopoiesis and risk for hematologic malignancy. Blood 2021; 136:1599-1605. [PMID: 32736382 DOI: 10.1182/blood.2019000991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Clonal hematopoiesis (CH) is common in older persons and is associated with an increased risk of hematologic cancer. Here, we review studies establishing an association between CH and hematopoietic malignancy, discuss features of CH that are predictive of leukemic progression, and explore the role of hematopoietic stressors in the evolution of CH to acute myeloid leukemia or myelodysplastic syndrome. CH due to point mutations or structural variants such as copy-number alterations is associated with an ∼10-fold increased risk of hematopoietic malignancy. Although the absolute risk of hematopoietic malignancy is low, certain features of CH may confer a higher risk of transformation, including the presence of TP53 or spliceosome gene mutations, a variant allele fraction >10%, the presence of multiple mutations, and altered red blood indices. CH in the setting of peripheral blood cytopenias carries a very high risk of progression to a myeloid malignancy and merits close observation. There is emerging evidence suggesting that hematopoietic stressors contribute to both the development of CH and progression to hematopoietic malignancy. Specifically, there is evidence that genotoxic stress from chemotherapy or radiation therapy, ribosome biogenesis stress, and possibly inflammation may increase the risk of transformation from CH to a myeloid malignancy. Models that incorporate features of CH along with an assessment of hematopoietic stressors may eventually help predict and prevent the development of hematopoietic malignancies.
Collapse
|
297
|
Duncavage EJ, Schroeder MC, O'Laughlin M, Wilson R, MacMillan S, Bohannon A, Kruchowski S, Garza J, Du F, Hughes AEO, Robinson J, Hughes E, Heath SE, Baty JD, Neidich J, Christopher MJ, Jacoby MA, Uy GL, Fulton RS, Miller CA, Payton JE, Link DC, Walter MJ, Westervelt P, DiPersio JF, Ley TJ, Spencer DH. Genome Sequencing as an Alternative to Cytogenetic Analysis in Myeloid Cancers. N Engl J Med 2021; 384:924-935. [PMID: 33704937 PMCID: PMC8130455 DOI: 10.1056/nejmoa2024534] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Genomic analysis is essential for risk stratification in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). Whole-genome sequencing is a potential replacement for conventional cytogenetic and sequencing approaches, but its accuracy, feasibility, and clinical utility have not been demonstrated. METHODS We used a streamlined whole-genome sequencing approach to obtain genomic profiles for 263 patients with myeloid cancers, including 235 patients who had undergone successful cytogenetic analysis. We adapted sample preparation, sequencing, and analysis to detect mutations for risk stratification using existing European Leukemia Network (ELN) guidelines and to minimize turnaround time. We analyzed the performance of whole-genome sequencing by comparing our results with findings from cytogenetic analysis and targeted sequencing. RESULTS Whole-genome sequencing detected all 40 recurrent translocations and 91 copy-number alterations that had been identified by cytogenetic analysis. In addition, we identified new clinically reportable genomic events in 40 of 235 patients (17.0%). Prospective sequencing of samples obtained from 117 consecutive patients was performed in a median of 5 days and provided new genetic information in 29 patients (24.8%), which changed the risk category for 19 patients (16.2%). Standard AML risk groups, as defined by sequencing results instead of cytogenetic analysis, correlated with clinical outcomes. Whole-genome sequencing was also used to stratify patients who had inconclusive results by cytogenetic analysis into risk groups in which clinical outcomes were measurably different. CONCLUSIONS In our study, we found that whole-genome sequencing provided rapid and accurate genomic profiling in patients with AML or MDS. Such sequencing also provided a greater diagnostic yield than conventional cytogenetic analysis and more efficient risk stratification on the basis of standard risk categories. (Funded by the Siteman Cancer Research Fund and others.).
Collapse
Affiliation(s)
- Eric J Duncavage
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Molly C Schroeder
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Michele O'Laughlin
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Roxanne Wilson
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Sandra MacMillan
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Andrew Bohannon
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Scott Kruchowski
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - John Garza
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Feiyu Du
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Andrew E O Hughes
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Josh Robinson
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Emma Hughes
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Sharon E Heath
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Jack D Baty
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Julie Neidich
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Matthew J Christopher
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Meagan A Jacoby
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Geoffrey L Uy
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Robert S Fulton
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Christopher A Miller
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Jacqueline E Payton
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Daniel C Link
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Matthew J Walter
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Peter Westervelt
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - John F DiPersio
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - Timothy J Ley
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| | - David H Spencer
- From the Department of Pathology and Immunology (E.J.D., M.C.S., A.E.O.H., J.N., J.E.P., D.H.S.), McDonnell Genome Institute (M.O., R.W., S.M., A.B., S.K., J.G., F.D., R.S.F., D.H.S.), and the Divisions of Oncology (J.R., E.H., S.E.H., M.J.C., M.A.J., G.L.U., C.A.M., D.C.L., M.J.W., P.W., J.F.D., T.J.L., D.H.S.) and Biostatistics (J.D.B.), Department of Medicine, Washington University School of Medicine, St. Louis
| |
Collapse
|
298
|
Hammond D, Loghavi S. Clonal haematopoiesis of emerging significance. Pathology 2021; 53:300-311. [PMID: 33685721 DOI: 10.1016/j.pathol.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Clonal haematopoiesis (CH) is a ubiquitous feature of aging and provides mechanistic insight into the inextricable relationship between chronic inflammation and age-related diseases. Although CH confers a cumulative risk of subsequent haematological malignancy, particularly myeloid neoplasms, that risk is heavily mutation- and context-specific. Individuals with mutations in DNA damage response pathway genes receiving select cytotoxic therapies for solid tumours are among the highest risk groups for subsequent development of myeloid neoplasms. Multiple lines of evidence suggest that TET2-mutated macrophages causally contribute to cardiometabolic disease through the generation of proinflammatory cytokines. It is speculated that such CH-related inflammation is a shared driver of several other chronic diseases. Whether we can intervene in individuals with CH to diminish the risk of subsequent haematological malignancy or non-haematological disease remains to be seen. However, precision anti-cytokine therapies are a rational starting point to break the feedforward loop between clonal myeloid expansion, inflammation, and end-organ damage.
Collapse
Affiliation(s)
- Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
299
|
OTS167 blocks FLT3 translation and synergizes with FLT3 inhibitors in FLT3 mutant acute myeloid leukemia. Blood Cancer J 2021; 11:48. [PMID: 33658483 PMCID: PMC7930094 DOI: 10.1038/s41408-021-00433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Internal tandem duplication (-ITD) mutations of Fms-like tyrosine kinase 3 (FLT3) provide growth and pro-survival signals in the context of established driver mutations in FLT3 mutant acute myeloid leukemia (AML). Maternal embryonic leucine zipper kinase (MELK) is an aberrantly expressed gene identified as a target in AML. The MELK inhibitor OTS167 induces cell death in AML including cells with FLT3 mutations, yet the role of MELK and mechanisms of OTS167 function are not understood. OTS167 alone or in combination with tyrosine kinase inhibitors (TKIs) were used to investigate the effect of OTS167 on FLT3 signaling and expression in human FLT3 mutant AML cell lines and primary cells. We describe a mechanism whereby OTS167 blocks FLT3 expression by blocking FLT3 translation and inhibiting phosphorylation of eukaryotic initiation factor 4E–binding protein 1 (4E-BP1) and eukaryotic translation initiation factor 4B (eIF4B). OTS167 in combination with TKIs results in synergistic induction of FLT3 mutant cell death in FLT3 mutant cell lines and prolonged survival in a FLT3 mutant AML xenograft mouse model. Our findings suggest signaling through MELK is necessary for the translation and expression of FLT3-ITD, and blocking MELK with OTS167 represents a viable therapeutic strategy for patients with FLT3 mutant AML.
Collapse
|
300
|
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is an aggressive blood cancer that proves fatal for the majority of affected individuals. Older patients are particularly vulnerable due to more unfavorable disease biology and diminished ability to tolerate intensive induction chemotherapy (ICT). Safer, more efficacious therapies are desperately needed. AREAS COVERED We briefly summarize the challenges facing AML treatment and introduce the rapidly expanding therapeutic landscape. Our focus is on the Hedgehog (Hh) pathway and how preclinical evidence has spurred the clinical development of selective inhibitors for oncology indications. Glasdegib is the first Hh pathway inhibitor approved for the treatment of a hematologic malignancy, and we review its pharmacology, safety, efficacy, and potential clinical impact in AML patients. EXPERT OPINION Advances in the mechanistic understanding of AML have started to translate into improved therapeutic options for patients with contraindications to ICT. Glasdegib improved overall survival in this population when combined with low-dose cytarabine. While an encouraging development for these difficult to treat patients, alternative combination therapy approaches such as venetoclax plus azacitidine have gained greater clinical traction. Further investigation of glasdegib combination strategies and predictive biomarkers, particularly in regard to overcoming chemoresistance and preventing relapse, is needed to better define its clinical utility.
Collapse
Affiliation(s)
- Shawn M Sarkaria
- Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, NY, USA
| | - Mark L Heaney
- Division of Hematology and Medical Oncology, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|