251
|
Feldman RI, Wu JM, Polokoff MA, Kochanny MJ, Dinter H, Zhu D, Biroc SL, Alicke B, Bryant J, Yuan S, Buckman BO, Lentz D, Ferrer M, Whitlow M, Adler M, Finster S, Chang Z, Arnaiz DO. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem 2005; 280:19867-74. [PMID: 15772071 DOI: 10.1074/jbc.m501367200] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphoinositide 3-kinase/3-phosphoinositide-dependent kinase 1 (PDK1)/Akt signaling pathway plays a key role in cancer cell growth, survival, and tumor angiogenesis and represents a promising target for anticancer drugs. Here, we describe three potent PDK1 inhibitors, BX-795, BX-912, and BX-320 (IC(50) = 11-30 nm) and their initial biological characterization. The inhibitors blocked PDK1/Akt signaling in tumor cells and inhibited the anchorage-dependent growth of a variety of tumor cell lines in culture or induced apoptosis. A number of cancer cell lines with elevated Akt activity were >30-fold more sensitive to growth inhibition by PDK1 inhibitors in soft agar than on tissue culture plastic, consistent with the cell survival function of the PDK1/Akt signaling pathway, which is particularly important for unattached cells. BX-320 inhibited the growth of LOX melanoma tumors in the lungs of nude mice after injection of tumor cells into the tail vein. The effect of BX-320 on cancer cell growth in vitro and in vivo indicates that PDK1 inhibitors may have clinical utility as anticancer agents.
Collapse
Affiliation(s)
- Richard I Feldman
- Departments of Cancer Research, Berlex Biosciences, Richmond, California 94804, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
252
|
Perisic O, Wilson MI, Karathanassis D, Bravo J, Pacold ME, Ellson CD, Hawkins PT, Stephens L, Williams RL. The role of phosphoinositides and phosphorylation in regulation of NADPH oxidase. ACTA ACUST UNITED AC 2005; 44:279-98. [PMID: 15581496 DOI: 10.1016/j.advenzreg.2003.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Olga Perisic
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
253
|
von Stein W, Ramrath A, Grimm A, Müller-Borg M, Wodarz A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 2005; 132:1675-86. [PMID: 15743877 DOI: 10.1242/dev.01720] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell polarity in Drosophila epithelia, oocytes and neuroblasts is controlled by the evolutionarily conserved PAR/aPKC complex, which consists of the serine-threonine protein kinase aPKC and the PDZ-domain proteins Bazooka (Baz) and PAR-6. The PAR/aPKC complex is required for the separation of apical and basolateral plasma membrane domains, for the asymmetric localization of cell fate determinants and for the proper orientation of the mitotic spindle. How the complex exerts these different functions is not known. We show that the lipid phosphatase PTEN directly binds to Baz in vitro and in vivo, and colocalizes with Baz in the apical cortex of epithelia and neuroblasts. PTEN is an important regulator of phosphoinositide turnover that antagonizes the activity of PI3-kinase. We show that Pten mutant ovaries and embryos lacking maternal and zygotic Pten function display phenotypes consistent with a function for PTEN in the organization of the actin cytoskeleton. In freshly laid eggs, the germ plasm determinants oskar mRNA and Vasa are not localized properly to the posterior cytocortex and pole cells do not form. In addition, the actin-dependent posterior movement of nuclei during early cleavage divisions does not occur and the synchrony of nuclear divisions at syncytial blastoderm stages is lost. Pten mutant embryos also show severe defects during cellularization. Our data provide evidence for a link between the PAR/aPKC complex, the actin cytoskeleton and PI3-kinase signaling mediated by PTEN.
Collapse
Affiliation(s)
- Walter von Stein
- Abteilung Stammzellbiologie, CMPB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
254
|
Petit I, Goichberg P, Spiegel A, Peled A, Brodie C, Seger R, Nagler A, Alon R, Lapidot T. Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest 2005; 115:168-76. [PMID: 15630457 PMCID: PMC539190 DOI: 10.1172/jci21773] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 11/11/2004] [Indexed: 11/17/2022] Open
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, play a major role in migration, retention, and development of hematopoietic progenitors in the bone marrow. We report the direct involvement of atypical PKC-zeta in SDF-1 signaling in immature human CD34(+)-enriched cells and in leukemic pre-B acute lymphocytic leukemia (ALL) G2 cells. Chemotaxis, cell polarization, and adhesion of CD34(+) cells to bone marrow stromal cells were found to be PKC-zeta dependent. Overexpression of PKC-zeta in G2 and U937 cells led to increased directional motility to SDF-1. Interestingly, impaired SDF-1-induced migration of the pre-B ALL cell line B1 correlated with reduced PKC-zeta expression. SDF-1 triggered PKC-zeta phosphorylation, translocation to the plasma membrane, and kinase activity. Furthermore we identified PI3K as an activator of PKC-zeta, and Pyk-2 and ERK1/2 as downstream targets of PKC-zeta. SDF-1-induced proliferation and MMP-9 secretion also required PKC-zeta activation. Finally, we showed that in vivo engraftment, but not homing, of human CD34(+)-enriched cells to the bone marrow of NOD/SCID mice was PKC-zeta dependent and that injection of mice with inhibitory PKC-zeta pseudosubstrate peptides resulted in mobilization of murine progenitors. Our results demonstrate a central role for PKC-zeta in SDF-1-dependent regulation of hematopoietic stem and progenitor cell motility and development.
Collapse
Affiliation(s)
- Isabelle Petit
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
255
|
Petit I, Goichberg P, Spiegel A, Peled A, Brodie C, Seger R, Nagler A, Alon R, Lapidot T. Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells. J Clin Invest 2005. [DOI: 10.1172/jci200521773] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
256
|
Méndez JA, López-Bayghen E, Ortega A. Glutamate activation of Oct-2 in cultured chick Bergmann glia cells: Involvement of NFκB. J Neurosci Res 2005; 81:21-30. [PMID: 15929072 DOI: 10.1002/jnr.20519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamate, the major excitatory neurotransmitter in the central nervous system, is critically involved in gene expression regulation at the transcriptional and translational levels. Its activity through ionotropic as well as metabotropic receptors modifies the protein repertoire in neurons and glial cells. In avian cerebellar Bergmann glia cells, glutamate receptors trigger a diverse array of signaling cascades that include activity-dependent transcription factors such as the activator protein-1, the cAMP response-element binding protein, and Oct-2. We analyze the upstream regulatory elements involved in Oct-2 activation. Our results demonstrate that Ca2+ influx, protein kinase C, phosphatidylinositol-3 kinase, Src, and nuclear factor (NF)kappaB are involved in this signaling pathway. Our findings link alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor activation to a negative phase of chkbp gene regulation, controlled by NFkappaB.
Collapse
Affiliation(s)
- J Alfredo Méndez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios, Avanzados del Instituto Politécnico Nacional, México
| | | | | |
Collapse
|
257
|
Hayashi T, Hideshima T, Akiyama M, Podar K, Yasui H, Raje N, Kumar S, Chauhan D, Treon SP, Richardson P, Anderson KC. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 2005; 128:192-203. [PMID: 15638853 DOI: 10.1111/j.1365-2141.2004.05286.x] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thalidomide and immunomodulatory drugs (IMiDs), which target multiple myeloma (MM) cells and the bone marrow microenvironment, can overcome drug resistance. These agents also have immunomodulatory effects. Specifically, we have reported that thalidomide increased serum interleukin-2 (IL-2) levels and natural killer (NK) cell numbers in the peripheral blood of responding MM patients. In this study, we investigated the mechanisms whereby IMiDs augment NK cell cytotoxicity. NK cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) of peripheral blood mononuclear cells cultured with IMiDs were examined in the presence or absence of anti-IL-2 antibody, ciclosporin A or depletion of CD56-positive cells. IMiDs-induced signalling pathways, triggering IL-2 transcription in T cells, were also delineated. IMiDs facilitated the nuclear translocation of nuclear factor of activated T cells-2 and activator protein-1 via activation of phosphoinositide-3 kinase signalling, with resultant IL-2 secretion. IMiDs enhanced both NK cell cytotoxicity and ADCC induced by triggering IL-2 production from T cells. These studies defined the mechanisms whereby IMiDs trigger NK cell-mediated tumour-cell lysis, further supporting their therapeutic use in MM.
Collapse
Affiliation(s)
- Toshiaki Hayashi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
258
|
Nguyen BT, Dessauer CW. Relaxin stimulates protein kinase C zeta translocation: requirement for cyclic adenosine 3',5'-monophosphate production. Mol Endocrinol 2004; 19:1012-23. [PMID: 15604116 DOI: 10.1210/me.2004-0279] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Relaxin is a polypeptide hormone that activates the leucine-rich repeat containing G protein-coupled receptors, LGR7 and LGR8. In an earlier study, we reported that relaxin produces a biphasic time course and the second wave of cAMP is highly sensitive to phosphoinositide-3 kinase inhibitors (LY294002 and wortmannin). LY294002 inhibits relaxin-mediated increases in cAMP production by 40-50% across a large range of relaxin concentrations. Here we show that protein kinase C zeta (PKCzeta) is a component of relaxin signaling in THP-1 cells. Sphingomyelinase increases cAMP production due to the release of ceramide, a direct activator of PKCzeta. Chelerythrine chloride (a general PKC inhibitor) inhibits relaxin induced cAMP production to the same degree (approximately 40%) as LY294002. Relaxin stimulates PKCzeta translocation to the plasma membrane in THP-1, MCF-7, pregnant human myometrial 1-31, and mouse mesangial cells, as shown by immunocytochemistry. PKCzeta translocation is phosphoinositide-3 kinase dependent and independent of cAMP production. Antisense PKCzeta oligodeoxynucleotides (PKCzeta-ODNs) deplete both PKCzeta transcript and protein levels in THP-1 cells. PKCzeta-ODNs abolish relaxin-mediated PKCzeta translocation and inhibit relaxin stimulation of cAMP by 40%, as compared with mock and random ODN controls. Treatment with LY294002 in the presence of PKCzeta-ODNs results in little further inhibition. In summary, we present a novel role for PKCzeta in relaxin-mediated stimulation of cAMP.
Collapse
Affiliation(s)
- Bao T Nguyen
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030, USA
| | | |
Collapse
|
259
|
Matthews JA, Acevedo-Duncan M, Potter RL. Selective decrease of membrane-associated PKC-alpha and PKC-epsilon in response to elevated intracellular O-GlcNAc levels in transformed human glial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1743:305-15. [PMID: 15843043 DOI: 10.1016/j.bbamcr.2004.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 10/19/2004] [Accepted: 11/03/2004] [Indexed: 11/19/2022]
Abstract
Increased flux through the hexosamine biosynthetic pathway (HBP) has been shown to affect the activity and translocation of certain protein kinase C (PKC) isoforms. It has been suggested that this effect is due to increases in the beta-O-linked N-acetylglucosamine (O-GlcNAc) modification. Herein, we demonstrate the effect of increasing the O-GlcNAc modification on the translocation of select PKC isozymes in a human astroglial cell line. Treating cells with either 8 mM d-glucosamine (GlcN), 5 mM streptozotocin (STZ), or 80 muM O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) produced a significant increase in the O-GlcNAc modification on both cytosolic and membrane proteins; however, both the level and rate of O-GlcNAc increase varied with the compound. GlcN treatment resulted in a rapid, transient translocation of PKC-betaII that was maximal after 3 h (73+/-8%) and also produced a 48+/-15% decrease in membrane-associated PKC-epsilon after 9 h of treatment. Similar to GlcN treatment, STZ and PUGNAc treatment also resulted in decreased levels of PKC-epsilon in the membrane fraction. Significant decreases were seen as early as 5 h and, by 9 h of treatment, had decreased by 87+/-6% with STZ and 73+/-7% with PUGNAc. Unlike GlcN, both STZ and PUGNAc produced a decrease in PKC-alpha membrane levels by 9 h posttreatment (78+/-10% with STZ and 66+/-8% with PUGNAc) while neither compound produced any changes in PKC-betaII translocation. In addition, none of the three compounds affected membrane levels of PKC-iota. Altogether, these results demonstrate a novel link between increased levels of the O-GlcNAc modification and the regulation of specific PKC isoforms.
Collapse
Affiliation(s)
- Jason A Matthews
- Department of Chemistry, University of South Florida, 4202 East Fowler Ave, SCA 400, Tampa, FL, 33620, USA
| | | | | |
Collapse
|
260
|
Humphries KM, Deal MS, Taylor SS. Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification. J Biol Chem 2004; 280:2750-8. [PMID: 15533936 DOI: 10.1074/jbc.m410242200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The catalytic subunit of cAMP-dependent protein kinase (PKA) is phosphorylated at threonine 197 and serine 338. Phosphorylation of threonine 197, located in the activation loop, is required for coordinating the active site conformation and optimal enzymatic activity. However, this phosphorylation has not been widely appreciated as a regulatory site because of the apparent constitutive nature of the phosphorylation and the general resistance of the kinase to phosphatase treatment. We demonstrate here that the observed resistance of the catalytic subunit to dephosphorylation is due, in part, to the presence of the highly nucleophilic cysteine 199 located proximal to the phosphate on threonine 197. Experiments performed in vitro demonstrated that mutation (cysteine 199 to alanine), oxidation, such as by glutathionylation or internal disulfide bond formation, or alkylation of the C-subunit enhanced its ability to be dephosphorylated. Furthermore, rephosphorylation of reduced C-subunit by PDK1 created a cycle whereby the inactive kinase could be reactivated. To demonstrate that thiol modification of PKA can lead to enhanced dephosphorylation in vivo, PC12 cells were treated with N-ethylmaleimide (NEM). Such treatment resulted in complete PKA inactivation and dephosphorylation of threonine 197. This effect of NEM was contingent upon prior treatment of the cells with PKA activators, demonstrating the resistance of the holoenzyme to thiol alkylation-mediated dephosphorylation. Our results also demonstrated that NEM treatment of PC12 cells enhanced the dephosphorylation of the protein kinase Calpha activation loop, suggesting a common mechanism of regulation among members of the AGC family of kinases.
Collapse
Affiliation(s)
- Kenneth M Humphries
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry and Department of Pharmacology, The University of California, San Diego, La Jolla, California 92093-0654, USA
| | | | | |
Collapse
|
261
|
Ugi S, Imamura T, Maegawa H, Egawa K, Yoshizaki T, Shi K, Obata T, Ebina Y, Kashiwagi A, Olefsky JM. Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol 2004; 24:8778-89. [PMID: 15367694 PMCID: PMC516764 DOI: 10.1128/mcb.24.19.8778-8789.2004] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase which has multiple functions, including inhibition of the mitogen-activated protein (MAP) kinase pathway. Simian virus 40 small t antigen specifically inhibits PP2A function by binding to the PP2A regulatory subunit, interfering with the ability of PP2A to associate with its cellular substrates. We have reported that the expression of small t antigen inhibits PP2A association with Shc, leading to augmentation of insulin and epidermal growth factor-induced Shc phosphorylation with enhanced activation of the Ras/MAP kinase pathway. However, the potential involvement of PP2A in insulin's metabolic signaling pathway is presently unknown. To assess this, we overexpressed small t antigen in 3T3-L1 adipocytes by adenovirus-mediated gene transfer and found that the phosphorylation of Akt and its downstream target, glycogen synthase kinase 3beta, were enhanced both in the absence and in the presence of insulin. Furthermore, protein kinase C lambda (PKC lambda) activity was also augmented in small-t-antigen-expressing 3T3-L1 adipocytes. Consistent with this result, both basal and insulin-stimulated glucose uptake were enhanced in these cells. In support of this result, when inhibitory anti-PP2A antibody was microinjected into 3T3-L1 adipocytes, we found a twofold increase in GLUT4 translocation in the absence of insulin. The small-t-antigen-induced increase in Akt and PKC lambda activities was not inhibited by wortmannin, while the ability of small t antigen to enhance glucose transport was inhibited by dominant negative Akt (DN-Akt) expression and Akt small interfering RNA (siRNA) but not by DN-PKC lambda expression or PKC lambda siRNA. We conclude that PP2A is a negative regulator of insulin's metabolic signaling pathway by promoting dephosphorylation and inactivation of Akt and PKC lambda and that most of the effects of PP2A to inhibit glucose transport are mediated through Akt.
Collapse
Affiliation(s)
- Satoshi Ugi
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Li X, Hahn CN, Parsons M, Drew J, Vadas MA, Gamble JR. Role of protein kinase Cζ in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood 2004; 104:1716-24. [PMID: 15172966 DOI: 10.1182/blood-2003-11-3744] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractEndothelial cell leakiness is regulated by mediators such as thrombin, which promotes endothelial permeability, and anti-inflammatory agents, such as angiopoietin-1. Here we define a new pathway involved in thrombin-induced permeability that involves the atypical protein kinase C isoform, PKCζ. Chemical inhibitor studies implicated the involvement of an atypical PKC isoform in thrombin-induced permeability changes in human umbilical vein endothelial cells. Thrombin stimulation resulted in PKCζ, but not the other atypical PKC isoform, PKCλ, translocating to the membrane, an event known to be critical to enzyme activation. The involvement of PKCζ was confirmed by overexpression of constitutively active PKCζ, resulting in enhanced basal permeability. Dominant-negative PKCζ prevented the thrombin-mediated effects on endothelial cell permeability and inhibited thrombin-induced activation of PKCζ. Rho activation does not appear to play a role, either upstream or downstream of PKCζ, as C3 transferase does not block thrombin-induced PKCζ activation and dominant-negative PKCζ does not block thrombin-induced Rho activation. Finally, we show that angiopoietin-1 inhibits thrombin-induced PKCζ activation, Rho activation, and Ca++ flux, thus demonstrating that the powerful antipermeability action of angiopoietin-1 is mediated by its action on a number of signaling pathways induced by thrombin and implicated in permeability changes. (Blood. 2004; 104:1716-1724)
Collapse
Affiliation(s)
- Xiaochun Li
- Vascular Biology Laboratory, Division of Human Immunology, Hanson Institute, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000
| | | | | | | | | | | |
Collapse
|
263
|
Kanzaki M, Mora S, Hwang JB, Saltiel AR, Pessin JE. Atypical protein kinase C (PKCzeta/lambda) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. ACTA ACUST UNITED AC 2004; 164:279-90. [PMID: 14734537 PMCID: PMC2172328 DOI: 10.1083/jcb.200306152] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin stimulation of adipocytes resulted in the recruitment of atypical PKC (PKCzeta/lambda) to plasma membrane lipid raft microdomains. This redistribution of PKCzeta/lambda was prevented by Clostridium difficile toxin B and by cholesterol depletion, but was unaffected by inhibition of phosphatidylinositol (PI) 3-kinase activity. Expression of the constitutively active GTP-bound form of TC10 (TC10Q/75L), but not the inactive GDP-bound mutant (TC10/T31N), targeted PKCzeta/lambda to the plasma membrane through an indirect association with the Par6-Par3 protein complex. In parallel, insulin stimulation as well as TC10/Q75L resulted in the activation loop phosphorylation of PKCzeta. Although PI 3-kinase activation also resulted in PKCzeta/lambda phosphorylation, it was not recruited to the plasma membrane. Furthermore, insulin-induced GSK-3beta phosphorylation was mediated by both PI 3-kinase-PKB and the TC10-Par6-atypical PKC signaling pathways. Together, these data demonstrate that PKCzeta/lambda can serve as a convergent downstream target for both the PI 3-kinase and TC10 signaling pathways, but only the TC10 pathway induces a spatially restricted targeting to the plasma membrane.
Collapse
Affiliation(s)
- Makoto Kanzaki
- Dept. of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | | | | | |
Collapse
|
264
|
Oster H, Eichele G, Leitges M. Differential expression of atypical PKCs in the adult mouse brain. ACTA ACUST UNITED AC 2004; 127:79-88. [PMID: 15306123 DOI: 10.1016/j.molbrainres.2004.05.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2004] [Indexed: 11/21/2022]
Abstract
The protein kinase C (PKC) family of serine/threonine kinases plays a role in a variety of physiological and pathophysiological processes in the brain including development, synaptic plasticity, epilepsy, ischemia, and neuronal cell death. The subgroup of atypical PKCs (aPKCs) comprises of three members, PKCiota/lambda, PKCzeta, and PKMzeta, with high amino acid homology. We used specific RNA probes and in situ hybridization to determine the expression patterns of all the three isoforms in the adult mouse brain. PKCiota and PKMzeta were found to be broadly expressed in most of the cortex, the limbic system, and the thalamus. In contrast, PKCzeta transcription was restricted to distinct forebrain areas and the cerebellum. Here we present a first comprehensive overview of isotype-specific aPKC distribution in the central nervous system, thereby providing a solid ground for further studies on the functional implications of the different aPKCs in the neuronal system.
Collapse
Affiliation(s)
- Henrik Oster
- Laboratories for Chronobiology and Signal Transduction, Max Planck Institute of Experimental Endocrinology, Feodor Lynen Str. 7, 30625 Hannover, Germany.
| | | | | |
Collapse
|
265
|
Stahelin RV, Digman MA, Medkova M, Ananthanarayanan B, Rafter JD, Melowic HR, Cho W. Mechanism of Diacylglycerol-induced Membrane Targeting and Activation of Protein Kinase Cδ. J Biol Chem 2004; 279:29501-12. [PMID: 15105418 DOI: 10.1074/jbc.m403191200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The regulatory domains of novel protein kinases C (PKC) contain two C1 domains (C1A and C1B), which have been identified as the interaction site for sn-1,2-diacylglycerol (DAG) and phorbol ester, and a C2 domain that may be involved in interaction with lipids and/or proteins. Although recent reports have indicated that C1A and C1B domains of conventional PKCs play different roles in their DAG-mediated membrane binding and activation, the individual roles of C1A and C1B domains in the DAG-mediated activation of novel PKCs have not been fully understood. In this study, we determined the roles of C1A and C1B domains of PKCdelta by means of in vitro lipid binding analyses and cellular protein translocation measurements. Isothermal titration calorimetry and surface plasmon resonance measurements showed that isolated C1A and C1B domains of PKCdelta have opposite affinities for DAG and phorbol ester; i.e. the C1A domain with high affinity for DAG and the C1B domain with high affinity for phorbol ester. Furthermore, in vitro activity and membrane binding analyses of PKCdelta mutants showed that the C1A domain is critical for the DAG-induced membrane binding and activation of PKCdelta. The studies also indicated that an anionic residue, Glu(177), in the C1A domain plays a key role in controlling the DAG accessibility of the conformationally restricted C1A domain in a phosphatidylserine-dependent manner. Cell studies with enhanced green fluorescent protein-tagged PKCdelta and mutants showed that because of its phosphatidylserine specificity PKCdelta preferentially translocated to the plasma membrane under the conditions in which DAG is randomly distributed among intracellular membranes of HEK293 cells. Collectively, these results provide new insight into the differential roles of C1 domains in the DAG-induced membrane activation of PKCdelta and the origin of its specific subcellular localization in response to DAG.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Lindenboim L, Schlipf S, Kaufmann T, Borner C, Stein R. Bcl-xS induces an NGF-inhibitable cytochrome c release. Exp Cell Res 2004; 297:392-403. [PMID: 15212942 DOI: 10.1016/j.yexcr.2004.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 01/13/2004] [Indexed: 10/26/2022]
Abstract
Bcl-x(S), a pro-apoptotic member of the Bcl-2 protein family, is localized in the mitochondrial outer membrane and induces caspase-dependent and nerve growth factor (NGF)-inhibitable apoptosis in PC12 cells. The mechanism of action of Bcl-x(S) and how NGF inhibits this death are not fully understood. It is still unknown whether Bcl-x(S) induces mitochondrial cytochrome c release, and which apoptotic step NGF inhibits. We show that Bcl-x(S) induces cytochrome c release and caspase-3 activation in several cell types, and that in PC12 cells, these events are inhibited by NGF treatment. The survival effect of NGF was inhibited by inhibitors of protein kinase C (PKC), phosphatidylinositol-3-kinase (PI 3-kinase), and the mitogen-activated protein kinase kinase (MEK) inhibitors GF109203X, LY294002, and U0126. These findings show that cytochrome c release and caspase-3 activation participate in Bcl-x(S)-induced apoptosis, and that NGF inhibits Bcl-x(S)-induced apoptosis at the mitochondrial level via the PKC, PI 3-kinase, and MEK signaling pathways.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
267
|
Foey AD, Brennan FM. Conventional protein kinase C and atypical protein kinase Czeta differentially regulate macrophage production of tumour necrosis factor-alpha and interleukin-10. Immunology 2004; 112:44-53. [PMID: 15096183 PMCID: PMC1782472 DOI: 10.1111/j.1365-2567.2004.01852.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In chronic inflammatory diseases such as rheumatoid arthritis, joint macrophages/monocytes are the major source of pro- and anti-inflammatory cytokines. Little is understood regarding the signalling pathways which determine the production of the pro-inflammatory cytokine, tumour necrosis factor-alpha (TNF-alpha) and the anti-inflammatory cytokine, interleukin-10 (IL-10). Two pathways integral to macrophage function are the protein kinase C (PKC)- and the cAMP-dependent pathways. In this report, we have investigated the involvement of PKC and cAMP in the production of TNF-alpha and IL-10 by peripheral blood monocyte-derived macrophages. The utilization of the PKC inhibitors Go6983, Go6976 and RO-32-0432 demonstrated a role for conventional PKCs (alpha and beta) in the production of TNF-alpha in response to stimulation by lipopolysaccharide and phorbol 12-myristate 13-acetate (PMA)/ionomycin. PKC stimulation resulted in the downstream activation of the p42/44 mitogen-activated protein kinase (MAPK) pathway which differentially regulates TNF-alpha and IL-10. The addition of cAMP however, suppressed activation of this MAPK and TNF-alpha production. Cyclic-AMP augmented IL-10 production and cAMP response element binding protein activation upon stimulation by PMA/ionomycin. In addition, cAMP activated PKCzeta; inhibition of which, by a dominant negative adenovirus construct, selectively suppressed IL-10 production. These observations suggest that pro-inflammatory and anti-inflammatory cytokines are differentially regulated by PKC isoforms; TNF-alpha being dependent on conventional PKCs (alpha and beta) whereas IL-10 is regulated by the cAMP-regulated atypical PKCzeta.
Collapse
Affiliation(s)
- Andrew D Foey
- Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, London, UK.
| | | |
Collapse
|
268
|
King CC, Newton AC. The adaptor protein Grb14 regulates the localization of 3-phosphoinositide-dependent kinase-1. J Biol Chem 2004; 279:37518-27. [PMID: 15210700 DOI: 10.1074/jbc.m405340200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The metabolic actions of insulin are transduced through the phosphatidylinositol 3-kinase pathway. A critical component of this pathway is 3-phosphoinositide-dependent kinase-1 (PDK-1), a PH domain-containing enzyme that catalyzes the activating phosphorylation for many AGC kinases, including Akt and protein kinase C isozymes. We used a directed proteomics-based approach to identify the adaptor protein Grb14, which binds the insulin receptor through an SH2 domain, as a novel PDK-1 binding partner. Interaction of these two proteins is constitutive and mediated by a PDK-1 binding motif on Grb14. Disruption of this motif by point mutation or deletion of the Grb14 SH2 domain prevents the insulin-triggered membrane translocation of PDK-1. The interaction of PDK-1 with Grb14 facilitates Akt function: disruption of the interaction by overexpression of a construct of Grb14 mutated in the PDK-1 binding motif significantly decreases insulin-dependent activation of Akt. Thus, Grb14 serves as an adaptor protein to recruit PDK-1 to activated insulin receptor, thus promoting Akt phosphorylation and transduction of the insulin signal.
Collapse
Affiliation(s)
- Charles C King
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093-0721, USA
| | | |
Collapse
|
269
|
Noubir S, Hmama Z, Reiner NE. Dual Receptors and Distinct Pathways Mediate Interleukin-1 Receptor-associated Kinase Degradation in Response to Lipopolysaccharide. J Biol Chem 2004; 279:25189-95. [PMID: 15069085 DOI: 10.1074/jbc.m312431200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide (LPS) signaling leading to nuclear factor-kappaB activation in mononuclear phagocytes involves interleukin-1 receptor-associated kinase (IRAK), which is rapidly activated after exposure to agonist. Although it is known that IRAK also undergoes rapid inactivation/degradation in response to LPS, providing negative feedback leading to LPS tolerance, mechanisms governing IRAK degradation are not fully understood. In the present study, examination of LPS signaling showed that IRAK degradation was bimodal and involved dual receptors and distinct pathways. Rapid degradation of IRAK, occurring within 30 min of exposure to agonist, was shown to signal through CD14/TLR4 and was regulated by phosphatidylinositol 3-kinase. A second delayed wave of IRAK degradation occurred 2 h after exposure to LPS and was mediated by CR3 independently of phosphatidylinositol 3-kinase. Thus, multiple independent mechanisms have evolved to regulate IRAK degradation, likely reflecting the importance of limiting cellular responses to LPS. Recognition of a CR3-dependent, CD14/TLR4-independent pathway leading to IRAK degradation has implications for understanding modulation of LPS responses by cells with important immunoregulatory function such as dendritic cells that are CD14(-).
Collapse
Affiliation(s)
- Sanaâ Noubir
- Department of Medicine, Division of Infectious Diseases, University of British Columbia Faculties of Medicine and Science, British Columbia, Canada
| | | | | |
Collapse
|
270
|
Abstract
This year marks the 25-year anniversary of the discovery by Nishizuka and co-workers that diacylglycerol activates the ubiquitous signal transducer protein kinase C. This discovery placed the lipid second messenger-protein kinase C signaling pathway center stage alongside the cAMP-protein kinase A pathway, which was already established as a fundamental mechanism for transducing extracellular signals.
Collapse
Affiliation(s)
- Alexandra C Newton
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093-0640, USA.
| |
Collapse
|
271
|
Storz P, Döppler H, Toker A. Protein kinase Cdelta selectively regulates protein kinase D-dependent activation of NF-kappaB in oxidative stress signaling. Mol Cell Biol 2004; 24:2614-26. [PMID: 15024053 PMCID: PMC371115 DOI: 10.1128/mcb.24.7.2614-2626.2004] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase D (PKD) participates in activation of the transcription factor NF-kappaB (nuclear factor kappaB) in cells exposed to oxidative stress, leading to increased cellular survival. We previously demonstrated that phosphorylation of PKD at Tyr463 in the PH (pleckstrin homology) domain is mediated by the Src-Abl pathway and that it is necessary for PKD activation and subsequent NF-kappaB induction. Here we show that activation of PKD in response to oxidative stress requires two sequential signaling events, i.e., phosphorylation of Tyr463 by Abl, which in turn promotes a second step, phosphorylation of the PKD activation loop (Ser738/Ser742). We show that this is mediated by PKCdelta (protein kinase Cdelta), a kinase that is activated by Src in response to oxidative stress. We also show that other PKCs, including PKCepsilon and PKCzeta, do not participate in PKD activation or NF-kappaB induction. We propose a model in which two coordinated signaling events are required for PKD activation. Tyrosine phosphorylation in the PH domain at Tyr463, mediated by the Src-Abl pathway, which in turn facilitates the phosphorylation of Ser738/Ser742 in the activation loop, mediated by the Src-PKCdelta pathway. Once active, the signal is relayed to the activation of NF-kappaB in oxidative stress responses.
Collapse
Affiliation(s)
- Peter Storz
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
272
|
Pierchala BA, Ahrens RC, Paden AJ, Johnson EM. Nerve growth factor promotes the survival of sympathetic neurons through the cooperative function of the protein kinase C and phosphatidylinositol 3-kinase pathways. J Biol Chem 2004; 279:27986-93. [PMID: 15117960 DOI: 10.1074/jbc.m312237200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The signaling pathways activated by nerve growth factor (NGF) that account for its ability to promote the survival of neurons are not completely understood. Phosphatidylinositol 3-kinase (PI3K) is critical for the survival of several cell types, including neurons. To determine whether additional signaling pathways cooperate with PI3K to promote survival, we examined other pathways known to be activated by NGF. NGF activated protein kinases C (PKCs) in sympathetic neurons, and pharmacologic PKC activation rescued neurons from apoptosis induced by the withdrawal of NGF. Inhibition of PKCs did not inhibit the survival of NGF-maintained neurons. Similarly, inhibition of PI3K caused only a modest attrition of neurons in the presence of NGF. In contrast, the simultaneous inhibition of both PKCs and PI3K induced the apoptotic death of NGF-maintained sympathetic neurons. Inhibition of both PI3K and PKCs promoted the expression and phosphorylation of the proapoptotic transcription factor c-Jun, indicating that these pathways inhibit programmed cell death at the stage of proapoptotic gene expression. In culture conditions under which PI3K inhibition alone kills NGF-maintained neurons, PKC inhibition also led to a significant loss of viability, indicating that both pathways are required. Therefore, PKC and PI3K, regardless of the culture conditions, cooperate to promote the NGF-dependent survival of sympathetic neurons.
Collapse
Affiliation(s)
- Brian A Pierchala
- Department of Neurology, Washington University School of Medicine, 4566 Scott Avenue, Saint Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
273
|
Le Good JA, Brindley DN. Molecular mechanisms regulating protein kinase Czeta turnover and cellular transformation. Biochem J 2004; 378:83-92. [PMID: 14580237 PMCID: PMC1223926 DOI: 10.1042/bj20031194] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 10/23/2003] [Accepted: 10/27/2003] [Indexed: 01/05/2023]
Abstract
The regulation of protein kinase C (PKC)zeta in relation to its turnover, cell growth and transformation was investigated in Rat2 fibroblasts by over-expressing wild-type or mutant forms of PKCzeta. Deletion of the pseudosubstrate site (PSS) produced the most active mutant (PKCzeta Delta PSS), but mutants designed to mimic phosphorylated PKCzeta had lower specific activities in an in vitro assay. The mutant lacking phosphorylation at the Thr-560 site (T560A) had similar specific activity to wild-type PKCzeta. The T560A mutant also protected PKCzeta against proteolysis, whereas phosphorylation at Thr-410 targeted it towards proteosomal degradation. Blocking proteosomal degradation with lactacystin caused the accumulation of full-length PKCzeta Delta PSS, T410E, PKCzeta Delta PSS T410/560E, PKCzeta and T560A. Expressed PKCzeta activity was paralleled by extracellular-regulated protein kinase activation, increased cell division, serum-independent growth and focus formation. These foci were seen for cells expressing higher PKCzeta activity (PKCzeta Delta PSS, PKCzeta Delta PSS T410/560E and T560A mutants), but these fibroblasts did not show significant anchorage-independent growth. This work provides novel information concerning the role of the PSS and phosphorylation sites in regulating the activity and turnover of an atypical PKC and shows how this activity can induce cell transformation with respect to focus formation.
Collapse
Affiliation(s)
- J Ann Le Good
- Signal Transduction Research Group and Department of Biochemistry, University of Alberta, 357 Heritage Medical Research Centre, Edmonton, Alberta T6G 2S2, Canada
| | | |
Collapse
|
274
|
Robin P, Boulven I, Bôle-Feysot C, Tanfin Z, Leiber D. Contribution of PKC-dependent and -independent processes in temporal ERK regulation by ET-1, PDGF, and EGF in rat myometrial cells. Am J Physiol Cell Physiol 2004; 286:C798-806. [PMID: 14644778 DOI: 10.1152/ajpcell.00465.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelin-1 (ET-1), platelet-derived growth factor (PDGF), and epidermal growth factor (EGF) stimulated thymidine incorporation with different efficiency (PDGF ≫ EGF = ET-1) in rat myometrial cells. They also stimulated ERK activation, which culminated at 5 min and then declined to reach a plateau (at 45 min: EGF > 90%, PDGF = 50%, and ET-1 < 10% of maximum). Inhibition and downregulation of PKC demonstrated that ERK activation at 5 min involved PKCδ and -ζ for ET-1 and PKCα plus another PKC isoform for PDGF. By contrast, the EGF response did not involve PKC. Stimulation of Ras was more important with EGF than with PDGF, with ET-1 being the weakest activator. The simultaneous incubation of the cells with EGF and ET-1 potentiated the ERK activation at 5 min and mimicked the plateau phase obtained with PDGF. Under these conditions thymidine incorporation was comparable to that induced by PDGF. Taken together, our results indicated that the kinetic profile of ERK activation and its impact on cell proliferation can be modulated by the differential involvement of PKC isoforms and the amplitude of Ras activation.
Collapse
Affiliation(s)
- Philippe Robin
- Laboratoire de Signalisation et Régulations Cellulaires, CNRS UMR 8619, Bâtiment 430, Université de Paris-Sud, 91405 Orsay Cedex, France.
| | | | | | | | | |
Collapse
|
275
|
Arbiser JL. Molecular regulation of angiogenesis and tumorigenesis by signal transduction pathways: evidence of predictable and reproducible patterns of synergy in diverse neoplasms. Semin Cancer Biol 2004; 14:81-91. [PMID: 15018892 DOI: 10.1016/j.semcancer.2003.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A large number of oncogenes, tumor suppressor genes, and signal transduction pathways have been described. Currently, a framework that allows prediction of tumor behavior based upon oncogenes, tumor suppressors, and signal transduction pathways is lacking. In 1869, Mendeleev published a periodic table of elements which allowed prediction of properties of elements based upon atomic weights that allowed prediction of chemical and physical properties of elements yet to be discovered. In this paper, I will discuss recurrent patterns of synergy found in the literature and our laboratory between tumor suppressor genes, oncogenes, and signaling pathways that allows one to predict the signaling pathway in a given tumor based upon the inactivation of a tumor suppressor gene. These patterns can be found in multiple different human neoplasms. Conversely, one can predict the inactivation of a tumor suppressor based upon the activation status of a signaling pathway. This knowledge can be used by a clinician or pathologist with access to immunohistochemistry to make predictions based upon simple technologies and determine the signaling pathways involved in a patient's tumor. These strategies may be useful in the design of prevention and treatment strategies for cancer.
Collapse
Affiliation(s)
- Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, WMB 5309, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| |
Collapse
|
276
|
Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 2004; 25:177-204. [PMID: 15082519 DOI: 10.1210/er.2003-0011] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since the discovery of insulin roughly 80 yr ago, much has been learned about how target cells receive, interpret, and respond to this peptide hormone. For example, we now know that insulin activates the tyrosine kinase activity of its cell surface receptor, thereby triggering intracellular signaling cascades that regulate many cellular processes. With respect to glucose homeostasis, these include the function of insulin to suppress hepatic glucose production and to increase glucose uptake in muscle and adipose tissues, the latter resulting from the translocation of the glucose transporter 4 (GLUT4) to the cell surface membrane. Although simple in broad outline, elucidating the molecular intricacies of these receptor-signaling pathways and membrane-trafficking processes continues to challenge the creative ingenuity of scientists, and many questions remain unresolved, or even perhaps unasked. The identification and functional characterization of specific molecules required for both insulin signaling and GLUT4 vesicle trafficking remain key issues in our pursuit of developing specific therapeutic agents to treat and/or prevent this debilitating disease process. To this end, the combined efforts of numerous research groups employing a range of experimental approaches has led to a clearer molecular picture of how insulin regulates the membrane trafficking of GLUT4.
Collapse
Affiliation(s)
- Robert T Watson
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
277
|
Callaghan B, Koh SD, Keef KD. Muscarinic M2 Receptor Stimulation of Cav1.2b Requires Phosphatidylinositol 3-Kinase, Protein Kinase C, and c-Src. Circ Res 2004; 94:626-33. [PMID: 14739158 DOI: 10.1161/01.res.0000118248.17466.b7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated regulation of L-type calcium channels (Cav1.2b) by acetylcholine (ACh) in rabbit portal vein myocytes. Whole-cell currents were recorded using 5 mmol/L barium as charge carrier. ACh (10 μmol/L) increased peak currents by 40%. This effect was not reversed by the selective muscarinic M3 receptor antagonist 4-DAMP (100 nmol/L) but was blocked by the M2 receptor antagonist methoctramine (5 μmol/L). The classical and novel protein kinase C (PKC) antagonist calphostin C (50 nmol/L) abolished ACh responses, whereas the classical PKC antagonist Gö6976 (200 nmol/L) had no effect. ACh responses were also abolished by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (20 μmol/L), by the c-Src inhibitor PP2 (10 μmol/L) (but not the inactive analogue PP3), and by dialyzing cells with an antibody to the G-protein subunit Gβγ. Cells dialyzed with c-Src had significantly greater currents than control cells. Current enhancement persisted in the presence of LY294002, suggesting that c-Src is downstream of PI3K. Phorbol 12,13-dibutyrate (PDBu, 0.1 μmol/L) increased currents by 74%. This effect was abolished by calphostin C and reduced by Gö6976. The PDBu response was also reduced by PP2, and the PP2-insensitive component was blocked by Gö6976. In summary, these data suggest that ACh enhances Cav1.2b currents via M2 receptors that couple sequentially to Gβγ, PI3K, a novel PKC, and c-Src. PDBu stimulates the novel PKC/c-Src pathway along with a second pathway that is independent of c-Src and involves a classical PKC.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Barium/metabolism
- Calcium Channels, L-Type/physiology
- Carbazoles/pharmacology
- Cells, Cultured/drug effects
- Cells, Cultured/physiology
- Chromones/pharmacology
- Class Ib Phosphatidylinositol 3-Kinase
- Diamines/pharmacology
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein beta Subunits/antagonists & inhibitors
- GTP-Binding Protein beta Subunits/physiology
- GTP-Binding Protein gamma Subunits/antagonists & inhibitors
- GTP-Binding Protein gamma Subunits/physiology
- Indoles/pharmacology
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Ion Transport/drug effects
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/physiology
- Male
- Morpholines/pharmacology
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Naphthalenes/pharmacology
- Patch-Clamp Techniques
- Phorbol 12,13-Dibutyrate/pharmacology
- Phosphatidylinositol 3-Kinases/physiology
- Phosphoinositide-3 Kinase Inhibitors
- Piperidines/pharmacology
- Portal Vein/cytology
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/physiology
- Proto-Oncogene Proteins pp60(c-src)/antagonists & inhibitors
- Proto-Oncogene Proteins pp60(c-src)/physiology
- Pyrimidines/pharmacology
- Rabbits
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/physiology
- Receptor, Muscarinic M3/drug effects
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- B Callaghan
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557, USA
| | | | | |
Collapse
|
278
|
Kalesnikoff J, Sly LM, Hughes MR, Büchse T, Rauh MJ, Cao LP, Lam V, Mui A, Huber M, Krystal G. The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem Pharmacol 2004; 149:87-103. [PMID: 12692707 DOI: 10.1007/s10254-003-0016-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol (PI)-3 kinase (PI3K) pathway plays a central role in regulating many biological processes via the generation of the key second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P3). This membrane-associated phospholipid, which is rapidly, albeit transiently, synthesized from PI-4,5-P2 by PI3K in response to a diverse array of extracellular stimuli, attracts pleckstrin homology (PH) domain-containing proteins to membranes to mediate its many effects. To ensure that the activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed tumor suppressor PTEN hydrolyzes PI-3,4,5-P3 back to PI-4,5-P2 while the 145-kDa hemopoietic-restricted SH2-containing inositol 5'- phosphatase, SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP (sSHIP) and the more widely expressed 150-kDa SHIP2 hydrolyze PI-3,4,5-P3 to PI-3,4-P2. In this review we will concentrate on the properties of the three SHIPs, with special emphasis being placed on the role that SHIP plays in cytokine-induced signaling.
Collapse
Affiliation(s)
- J Kalesnikoff
- The Terry Fox Laboratory, BC Cancer Agency, Vancouver, V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
279
|
Cantó C, Suárez E, Lizcano JM, Griñó E, Shepherd PR, Fryer LGD, Carling D, Bertran J, Palacín M, Zorzano A, Gumà A. Neuregulin Signaling on Glucose Transport in Muscle Cells. J Biol Chem 2004; 279:12260-8. [PMID: 14711829 DOI: 10.1074/jbc.m308554200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuregulin-1, a growth factor that potentiates myogenesis induces glucose transport through translocation of glucose transporters, in an additive manner to insulin, in muscle cells. In this study, we examined the signaling pathway required for a recombinant active neuregulin-1 isoform (rhHeregulin-beta(1), 177-244, HRG) to stimulate glucose uptake in L6E9 myotubes. The stimulatory effect of HRG required binding to ErbB3 in L6E9 myotubes. PI3K activity is required for HRG action in both muscle cells and tissue. In L6E9 myotubes, HRG stimulated PKBalpha, PKBgamma, and PKCzeta activities. TPCK, an inhibitor of PDK1, abolished both HRG- and insulin-induced glucose transport. To assess whether PKB was necessary for the effects of HRG on glucose uptake, cells were infected with adenoviruses encoding dominant negative mutants of PKBalpha. Dominant negative PKB reduced PKB activity and insulin-stimulated glucose transport but not HRG-induced glucose transport. In contrast, transduction of L6E9 myotubes with adenoviruses encoding a dominant negative kinase-inactive PKCzeta abolished both HRG- and insulin-stimulated glucose uptake. In soleus muscle, HRG induced PKCzeta, but not PKB phosphorylation. HRG also stimulated the activity of p70S6K, p38MAPK, and p42/p44MAPK and inhibition of p42/p44MAPK partially repressed HRG action on glucose uptake. HRG did not affect AMPKalpha(1) or AMPKalpha(2) activities. In all, HRG stimulated glucose transport in muscle cells by activation of a pathway that requires PI3K, PDK1, and PKCzeta, but not PKB, and that shows cross-talk with the MAPK pathway. The PI3K, PDK1, and PKCzeta pathway can be considered as an alternative mechanism, independent of insulin, to induce glucose uptake.
Collapse
Affiliation(s)
- Carles Cantó
- Departament de Bioquímica i Biologia Molecular and Parc Científic de Barcelona, Universitat de Barcelona, Avda. Diagonal 645, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
280
|
Nebl G, Fischer S, Penzel R, Samstag Y. Dephosphorylation of cofilin is regulated through Ras and requires the combined activities of the Ras-effectors MEK and PI3K. Cell Signal 2004; 16:235-43. [PMID: 14636893 DOI: 10.1016/s0898-6568(03)00133-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Remodeling of the actin cytoskeleton is crucial for a multitude of cellular functions including cell movement, intracellular transport as well as signal transduction and gene expression processes. Cofilin has been identified as a key mediator of actin reorganization. Its activity is regulated via reversible phosphorylation of ser-3. In a variety of cell types stimulation through particular surface receptors fastly induces the dephosphorylation/activation of cofilin. Yet, the signal transduction cascades linking receptor stimulation with cofilin activation have not been identified so far. Here we show that the GTPase Ras acts as a central regulator of the cofilin dephosphorylation pathway. Thus, stimulation of Ras through platelet-derived growth factor (PDGF) or transient expression of activated Ras-proteins induces the dephosphorylation of cofilin. Importantly, the cooperation of two Ras-initiated signaling pathways is required to induce cofilin dephosphorylation: a Ras-Raf-MAPkinase/Erk-kinase (MEK)- and a Ras-phosphatidylinositol-3-kinase (PI3K)-effector cascade.
Collapse
Affiliation(s)
- Gabriele Nebl
- Institute for Immunology, Ruprecht-Karls-University Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
281
|
Parmentier JH, Gandhi GK, Wiggins MT, Saeed AE, Bourgoin SG, Malik KU. Protein kinase Czeta regulates phospholipase D activity in rat-1 fibroblasts expressing the alpha1A adrenergic receptor. BMC Cell Biol 2004; 5:4. [PMID: 14736339 PMCID: PMC324395 DOI: 10.1186/1471-2121-5-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 01/21/2004] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Phenylephrine (PHE), an alpha1 adrenergic receptor agonist, increases phospholipase D (PLD) activity, independent of classical and novel protein kinase C (PKC) isoforms, in rat-1 fibroblasts expressing alpha1A adrenergic receptors. The aim of this study was to determine the contribution of atypical PKCzeta to PLD activation in response to PHE in these cells. RESULTS PHE stimulated a PLD activity as demonstrated by phosphatidylethanol production. PHE increased PKCzeta translocation to the particulate cell fraction in parallel with a time-dependent decrease in its activity. PKCzeta activity was reduced at 2 and 5 min and returned to a sub-basal level within 10-15 min. Ectopic expression of kinase-dead PKCzeta, but not constitutively active PKCzeta, potentiated PLD activation elicited by PHE. A cell-permeable pseudosubstrate inhibitor of PKCzeta reduced basal PKCzeta activity and abolished PHE-induced PLD activation. CONCLUSION alpha1A adrenergic receptor stimulation promotes the activation of a PLD activity by a mechanism dependent on PKCzeta; Our data also suggest that catalytic activation of PKCzeta is not required for PLD stimulation.
Collapse
Affiliation(s)
- Jean-Hugues Parmentier
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Gautam K Gandhi
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Monique T Wiggins
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Abdelwahab E Saeed
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| | - Sylvain G Bourgoin
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUQ, Universite Laval, Sainte-Foy, QC, Canada
| | - Kafait U Malik
- Department of Pharmacology and Center for Connective Tissue Diseases and Vascular Biology, College of Medicine, The University of Tennessee Health Science Center, 874 Union Avenue, Memphis, TN 38163, USA
| |
Collapse
|
282
|
Myou S, Leff AR, Myo S, Boetticher E, Tong J, Meliton AY, Liu J, Munoz NM, Zhu X. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. ACTA ACUST UNITED AC 2004; 198:1573-82. [PMID: 14623911 PMCID: PMC2194122 DOI: 10.1084/jem.20030298] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Phosphoinositide 3-kinase (PI3K) is thought to contribute to the pathogenesis of asthma by effecting the recruitment, activation, and apoptosis of inflammatory cells. We examined the role of class IA PI3K in antigen-induced airway inflammation and hyperresponsiveness by i.p. administration into mice of Δp85 protein, a dominant negative form of the class IA PI3K regulatory subunit, p85α, which was fused to HIV-TAT (TAT-Δp85). Intraperitoneal administration of TAT-Δp85 caused time-dependent transduction into blood leukocytes, and inhibited activated phosphorylation of protein kinase B (PKB), a downstream target of PI3K, in lung tissues in mice receiving intranasal FMLP. Antigen challenge elicited pulmonary infiltration of lymphocytes, eosinophils and neutrophils, increase in mucus-containing epithelial cells, and airway hyperresponsiveness to methacholine. Except for modest airway neutrophilia, these effects all were blocked by treatment with 3–10 mg/kg of TAT-Δp85. There was also significant reduction in IL-5 and IL-4 secretion into the BAL. Intranasal administration of IL-5 caused eosinophil migration into the airway lumen, which was attenuated by systemic pretreatment with TAT-Δp85. We conclude that PI3K has a regulatory role in Th2-cell cytokine secretion, airway inflammation, and airway hyperresponsiveness in mice.
Collapse
Affiliation(s)
- Shigeharu Myou
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Miloso M, Villa D, Crimi M, Galbiati S, Donzelli E, Nicolini G, Tredici G. Retinoic acid-induced neuritogenesis of human neuroblastoma SH-SY5Y cells is ERK independent and PKC dependent. J Neurosci Res 2004; 75:241-252. [PMID: 14705145 DOI: 10.1002/jnr.10848] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Retinoic acid (RA), an active metabolite of vitamin A, is a natural morphogen involved in development and differentiation of the nervous system. To elucidate signaling mechanisms involved in RA-induced neuritogenesis, we used human neuroblastoma SH-SY5Y cells, an established in vitro model for studying RA action, to examine the role of extracellular signal-regulated kinase (ERK) 1 and 2 in RA-induced neuritogenesis and cell survival. From immunoblotting experiments, we observed that RA induced delayed but persistent ERK1 and ERK2 phosphorylation (until 96 hr) that was reduced significantly by the specific mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor U0126. For the subsequent studies we chose 24 hr as the reference time. Inhibition of ERK activation did not affect RA-induced neuritogenesis (percentage of neurite-bearing cells and neurite length) but significantly reduced cell survival. In addition, we analyzed the signaling pathway that mediates ERK activation. Our results suggest that RA-induced ERK phosphorylation does not follow the classic Raf kinase-dependent pathway. Protein kinase C (PKC) and phosphatidylinositol 3-kinase (PI 3-K) are possible alternative kinases involved in the ERK signaling pathway. In fact, in the presence of the specific PKC inhibitor GF 109203X, or the specific PI 3-K inhibitor wortmannin, we observed a significant dose-dependent reduction in ERK phosphorylation. RA-induced neuritogenesis and cell survival were reduced by GF 109203X in a concentration-dependent manner. These results suggest that rather than ERK1 and ERK2, it is PKC that plays an important role during early phases of RA-induced neuritogenesis.
Collapse
Affiliation(s)
- Mariarosaria Miloso
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Daniela Villa
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Marco Crimi
- Centro Dino Ferrari, Dipartimento di Scienze Neurologiche, Universita' di Milano, IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - Stefania Galbiati
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Elisabetta Donzelli
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Gabriella Nicolini
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Giovanni Tredici
- Dipartimento di Neuroscienze e Tecnologie Biomediche, Università degli Studi di Milano-Bicocca, Monza, Italy
| |
Collapse
|
284
|
Myou S, Leff AR, Myo S, Boetticher E, Meliton AY, Lambertino AT, Liu J, Xu C, Munoz NM, Zhu X. Activation of group IV cytosolic phospholipase A2 in human eosinophils by phosphoinositide 3-kinase through a mitogen-activated protein kinase-independent pathway. THE JOURNAL OF IMMUNOLOGY 2004; 171:4399-405. [PMID: 14530366 DOI: 10.4049/jimmunol.171.8.4399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK.
Collapse
Affiliation(s)
- Shigeharu Myou
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
van Ginneken MME, Keizer HA, Wijnberg ID, van Dam KG, Schaart G, de Graaf-Roelfsema E, van der Kolk JH, van Breda E. Immunohistochemical identification and fiber type specific localization of protein kinase C isoforms in equine skeletal muscle. Am J Vet Res 2004; 65:69-73. [PMID: 14719705 DOI: 10.2460/ajvr.2004.65.69] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate whether protein kinase C (PKC) isoforms are expressed in equine skeletal muscle and determine their distribution in various types of fibers by use of immunofluorescence microscopy. ANIMALS 5 healthy adult Dutch Warmblood horses. PROCEDURE In each horse, 2 biopsy specimens were obtained from the vastus lateralis muscle. Cryosections of equine muscle were stained with PKC isoform (alpha, beta1, beta2, delta, epsilon, or zeta)-specific polyclonal antibodies and examined by use of a fluorescence microscope. Homogenized muscle samples were evaluated via western blot analysis. RESULTS The PKC alpha, beta1, beta2, delta, epsilon, and zeta isoforms were localized within the fibers of equine skeletal muscle. In addition, PKC alpha and beta2 were detected near or in the plasma membrane of muscle cells. For some PKC isoforms, distribution was specific for fiber type. Staining of cell membranes for PKC alpha was observed predominantly in fibers that reacted positively with myosin heavy chain (MHC)-IIa; PKC delta and epsilon staining were more pronounced in MHC-I-positive fibers. In contrast, MHC-I negative fibers contained more PKC zeta than MHC-I-positive fibers. Distribution of PKC beta1 was equal among the different fiber types. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that PKC isoforms are expressed in equine skeletal muscle in a fiber type-specific manner. Therefore, the involvement of PKC isoforms in signal transduction in equine skeletal muscle might be dependent on fiber type.
Collapse
Affiliation(s)
- Mireille M E van Ginneken
- Department of Equine Sciences, Discipline of Internal Medicine, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
286
|
Ghosh PM, Bedolla R, Thomas CA, Kreisberg JI. Role of protein kinase C in arginine vasopressin-stimulated ERK and p70S6 kinase phosphorylation. J Cell Biochem 2004; 91:1109-29. [PMID: 15048868 DOI: 10.1002/jcb.10789] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We previously showed in rat renal glomerular mesangial cells, that arginine vasopressin (AVP)-stimulated cell proliferation was mediated by epidermal growth factor receptor (EGF-R) transactivation, and activation (phosphorylation) of ERK1/2 and p70S6 kinase (Ghosh et al. [2001]: Am J Physiol Renal Physiol 280:F972-F979]. In this paper, we extend these observations and show that different protein kinase C (PKC) isoforms play different roles in mediating AVP-stimulated ERK1/2 and p70S6 kinase phosphorylation and cell proliferation. AVP treatment for 0-60 min stimulated the serine/threonine phosphorylation of PKC isoforms alpha, delta, epsilon, and zeta. The activation of PKC was dependent on EGF-R and phosphatidylinositol 3-kinase (PI3K) activation. In addition, inhibition of conventional and novel PKC isoforms by chronic (24 h) exposure to phorbol 12-myristate 13-acetate (PMA) inhibited AVP-induced activation of ERK and p70S6 kinase as well as EGF-R phosphorylation. Rottlerin, a specific inhibitor of PKCdelta, inhibited both ERK and p70S6 kinase phosphorylation and cell proliferation. In contrast, a PKCepsilon translocation inhibitor decreased ERK1/2 activation without affecting p70S6 kinase or cell proliferation, while a dominant negative PKCzeta (K281W) cDNA delayed p70S6 kinase activation without affecting ERK1/2. On the other hand, Gö6976, an inhibitor of conventional PKC isoforms, did not affect p70S6 kinase, but stimulated ERK1/2 phosphorylation without affecting cell proliferation. Our results indicate that PKCdelta plays an important role in AVP-stimulated ERK and p70S6 kinase activation and cell proliferation.
Collapse
Affiliation(s)
- Paramita M Ghosh
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
287
|
Steiler TL, Galuska D, Leng Y, Chibalin AV, Gilbert M, Zierath JR. Effect of hyperglycemia on signal transduction in skeletal muscle from diabetic Goto-Kakizaki rats. Endocrinology 2003; 144:5259-67. [PMID: 12960081 DOI: 10.1210/en.2003-0447] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We determined basal and insulin-stimulated responses on signaling intermediates in soleus skeletal muscle from male Wistar and diabetic Goto-Kakizaki (GK) rats. Rats were infused with glucose (5 or 20 mm) for 3 h, followed by a continuous infusion of saline or insulin (3 U/kg.h) for 20 min. Under euglycemic and hyperglycemic conditions, basal and insulin-stimulated action on phosphatidylinositol (PI) 3-kinase, protein kinase B/Akt, and ERK were reduced in GK rats, whereas insulin-stimulated protein kinase C (PKC)zeta activity was not altered. Interestingly, basal PKCzeta activity was increased under hyperglycemic conditions in GK and Wistar rats. This finding of increased PKCzeta activity was confirmed in vitro in isolated soleus muscle exposed to high extracellular glucose, and occurred concomitant with an increase in PI-dependent kinase 1 (PDK-1) activity. The glucose effects were not specific to PKCzeta, because an increase in phosphorylation of PKCalpha/beta and PKCdelta, but not PKCtheta, in isolated soleus muscle exposed to 25 mm glucose was observed. In conclusion, insulin signaling defects in diabetic GK rats are not corrected by an acute normalization of glycemia. Interestingly, acute hyperglycemia leads to a parallel increase in PDK-1, PKCalpha/beta, PKCdelta, and PKCzeta phosphorylation/activity via a PI 3-kinase-protein kinase B/Akt-independent mechanism. The long-term consequence of elevated PDK-1 and PKC phosphorylation/activity should be considered in the context of diabetes mellitus, as hyperglycemia is a clinical feature of this disease.
Collapse
Affiliation(s)
- Tatiana L Steiler
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
288
|
Kammanadiminti SJ, Mann BJ, Dutil L, Chadee K. Regulation of Toll-like receptor-2 expression by the Gal-lectin of Entamoeba histolytica. FASEB J 2003; 18:155-7. [PMID: 14630697 DOI: 10.1096/fj.03-0578fje] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Gal/GalNAc lectin (Gal-lectin) of Entamoeba histolytica is a surface molecule involved in parasite adherence to host cells and is the most promising subunit vaccine candidate against amoebiasis. As macrophages are the major effector cells in host defense against amoebas, we studied the molecular mechanisms by which Gal-lectin activates macrophage. Microarray analysis showed that Gal-lectin up-regulated mRNAs of several cytokines and receptor genes involved in proinflammatory responses. The mechanism whereby the Gal-lectin regulates Toll-like receptor 2 (TLR-2) expression in macrophages was studied. Native Gal-lectin increased TLR-2 mRNA expression in a dose- and time-dependent fashion; peak response occurred with 1 microg/ml after 2 h stimulation. By immunoflourescence, enhanced surface expression of TLR-2 was observed after 12 h. With the use of nonoverlapping anti-Gal-lectin monoclonal antibodies that map to the carbohydrate recognition domain, amino acid 596-1082 was identified as the TLR-2 stimulating region. The Gal-lectin increased TLR-2 gene transcription, and the half-life of the mRNA transcripts was 1.4 h. Inhibition of nuclear factor (NF)-kappaB suppressed TLR-2 mRNA induction by the Gal-lectin. Moreover, cells pretreated with an inhibitor of p38 kinase (SB 208530) inhibited Gal-lectin induced TLR-2 mRNA expression by 40%. We conclude that the Gal-lectin activates NF-kappaB and MAP kinase-signaling pathways in macrophages culminating in the induction of several genes including TLR-2 and hypothesize that this could have a significant impact on macrophage activation and contribute to amoebic pathogenesis.
Collapse
Affiliation(s)
- Srinivas J Kammanadiminti
- Institute of Parasitology of McGill University Macdonald Campus,Ste. Anne de Bellevue, Quebec, Canada
| | | | | | | |
Collapse
|
289
|
Neid M, Datta K, Stephan S, Khanna I, Pal S, Shaw L, White M, Mukhopadhyay D. Role of insulin receptor substrates and protein kinase C-zeta in vascular permeability factor/vascular endothelial growth factor expression in pancreatic cancer cells. J Biol Chem 2003; 279:3941-8. [PMID: 14604996 DOI: 10.1074/jbc.m303975200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF), the critical molecule in tumor angiogenesis, is regulated by different stimuli, such as hypoxia and oncogenes, and also by growth factors. Previously we have shown that in AsPC-1 pancreatic adenocarcinoma cells, insulin-like growth factor receptor (IGF-IR) regulates VPF/VEGF expression. Insulin receptor substrate-1 and -2 (IRS-1 and IRS-2), two major downstream molecules of IGF-1R, are known to be important in the genesis of diabetes. In this study, we have defined a new role of IRS in angiogenesis. Both of the IRS proteins modulate VPF/VEGF expression in pancreatic cancer cells by different mechanistic pathways. The Sp1-dependent VPF/VEGF transcription is regulated mainly by IRS-2. Protein kinase C-zeta (PKC-zeta) plays a central role in VPF/VEGF expression and acts as a switching element. Furthermore, we have also demonstrated that the phosphatidylinositol 3-kinase pathway, but not the Ras pathway, is a downstream event of IRS proteins for VPF/VEGF expression in AsPC-1 cells. Interestingly, like renal cancer cells, in AsPC-1 cells PKC-zeta leads to direct Sp1-dependent VPF/VEGF transcription; in addition, it also promotes a negative feedback loop to IRS-2 that decreases the association of IRS-2/IGF-1R and IRS-2/p85. Taken together, our results show that in AsPC-1 pancreatic carcinoma cells, Sp1-dependent VPF/VEGF transcription is controlled by IGF-1R signaling through IRS-2 proteins and modulated by a negative feedback loop of PKC-zeta to IRS-2. Our data also suggest that IRS proteins, which are known to play crucial roles in IGF-1R signaling, are also important mediators for tumor angiogenesis.
Collapse
Affiliation(s)
- Matthias Neid
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Smith L, Wang Z, Smith JB. Caspase processing activates atypical protein kinase C zeta by relieving autoinhibition and destabilizes the protein. Biochem J 2003; 375:663-71. [PMID: 12887331 PMCID: PMC1223714 DOI: 10.1042/bj20030926] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 07/29/2003] [Accepted: 07/30/2003] [Indexed: 01/02/2023]
Abstract
Treatment of HeLa cells with tumour necrosis factor alpha (TNFalpha) induced caspase processing of ectopic PKC (protein kinase C) zeta, which converted most of the holoenzyme into the freed kinase domain and increased immune-complex kinase activity. The goal of the present study was to determine the basis for the increased kinase activity that is associated with caspase processing of PKC zeta. Atypical PKC iota is largely identical with PKC zeta, except for a 60-amino-acid segment that lacks the caspase-processing sites of the zeta isoform. Replacement of this segment of PKC zeta with the corresponding segment of PKC iota prevented caspase processing and activation of the kinase function. Processing of purified recombinant PKC zeta by caspase 3 in vitro markedly increased its kinase activity. Caspase processing activated PKC zeta in vitro or intracellularly without increasing the phosphorylation of Thr410 of PKC zeta, which is required for catalytic competency. The freed kinase domain of PKC zeta had a much shorter half-life than the holoenzyme in transfected HeLa cells and in non-transfected kidney epithelial cells. Treatment with TNF-alpha shortened the half-life of the kinase domain protein, and proteasome blockade stabilized the protein. Studies of kinase-domain mutants indicate that a lack of negative charge at Thr410 can shorten the half-life of the freed kinase domain. The present findings indicate that the freed kinase domain has substantially higher kinase activity and a much shorter half-life than the holoenzyme because of accelerated degradation by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Lucinda Smith
- Department of Pharmacology and Toxicology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
291
|
Kaplan-Albuquerque N, Garat C, Desseva C, Jones PL, Nemenoff RA. Platelet-derived growth factor-BB-mediated activation of Akt suppresses smooth muscle-specific gene expression through inhibition of mitogen-activated protein kinase and redistribution of serum response factor. J Biol Chem 2003; 278:39830-8. [PMID: 12882977 DOI: 10.1074/jbc.m305991200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Platelet-derived growth factor (PDGF) inhibits expression of smooth muscle (SM) genes in vascular smooth muscle cells and blocks induction by arginine vasopressin (AVP). We have previously demonstrated that suppression of SM-alpha-actin by PDGF-BB is mediated in part through a Ras-dependent pathway. This study examined the role of phosphatidylinositol 3-kinase (PI3K)y and its downstream effector, Akt, in regulating SM gene expression. PDGF caused a rapid sustained activation of Akt, whereas AVP caused only a small transient increase. PDGF selectively caused a sustained stimulation of p85/p110 alpha PI3K. In contrast, p85/110 beta PI3K activity was not altered by either PDGF or AVP, whereas both agents caused a delayed activation of Class IB p101/110 gamma PI3K. Expression of a gain-of-function PI3K or myristoylated Akt (myr-Akt) mimicked the inhibitory effect of PDGF on SM-alpha-actin and SM22 alpha expression. Pretreatment with LY 294002 reversed the inhibitory effect of PDGF. Expression of myr-Akt selectively inhibited AVP-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinases, which we have shown are critical for induction of these genes. Nuclear extracts from PDGF-stimulated or myr-Akt expressing cells showed reduced serum response factor binding to SM-specific CArG elements. This was associated with appearance of serum response factor in the cytoplasm. These data indicate that activation of p85/p110 alpha/Akt mediates suppression of SM gene expression by PDGF.
Collapse
Affiliation(s)
- Nihal Kaplan-Albuquerque
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
292
|
Yaney GC, Corkey BE. Fatty acid metabolism and insulin secretion in pancreatic beta cells. Diabetologia 2003; 46:1297-312. [PMID: 13680127 DOI: 10.1007/s00125-003-1207-4] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Revised: 07/14/2003] [Indexed: 01/16/2023]
Abstract
Increases in glucose or fatty acids affect metabolism via changes in long-chain acyl-CoA formation and chronically elevated fatty acids increase total cellular CoA. Understanding the response of pancreatic beta cells to increased amounts of fuel and the role that altered insulin secretion plays in the development and maintenance of obesity and Type 2 diabetes is important. Data indicate that the activated form of fatty acids acts as an effector molecule in stimulus-secretion coupling. Glucose increases cytosolic long-chain acyl-CoA because it increases the "switch" compound malonyl-CoA that blocks mitochondrial beta-oxidation, thus implementing a shift from fatty acid to glucose oxidation. We present arguments in support of the following: (i) A source of fatty acid either exogenous or endogenous (derived by lipolysis of triglyceride) is necessary to support normal insulin secretion; (ii) a rapid increase of fatty acids potentiates glucose-stimulated secretion by increasing fatty acyl-CoA or complex lipid concentrations that act distally by modulating key enzymes such as protein kinase C or the exocytotic machinery; (iii) a chronic increase of fatty acids enhances basal secretion by the same mechanism, but promotes obesity and a diminished response to stimulatory glucose; (iv) agents which raise cAMP act as incretins, at least in part, by stimulating lipolysis via beta-cell hormone-sensitive lipase activation. Furthermore, increased triglyceride stores can give higher rates of lipolysis and thus influence both basal and stimulated insulin secretion. These points highlight the important roles of NEFA, LC-CoA, and their esterified derivatives in affecting insulin secretion in both normal and pathological states.
Collapse
Affiliation(s)
- G C Yaney
- Boston University School of Medicine, Obesity Research Center, 650 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
293
|
Shenoy NG, Gleich GJ, Thomas LL. Eosinophil Major Basic Protein Stimulates Neutrophil Superoxide Production by a Class IAPhosphoinositide 3-Kinase and Protein Kinase C-ζ-Dependent Pathway. THE JOURNAL OF IMMUNOLOGY 2003; 171:3734-41. [PMID: 14500673 DOI: 10.4049/jimmunol.171.7.3734] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eosinophil major basic protein (MBP) is an effective stimulus for neutrophil superoxide (O(2)(-)) production, degranulation, and IL-8 production. In this study we evaluated the participation of phosphoinositide 3-kinase (PI3K) and PI3K-associated signaling events in neutrophil activation by MBP. Inhibition of PI3K activity blocked MBP-stimulated O(2)(-) production, but not degranulation or IL-8 production. Measurement of Akt phosphorylation at Ser(473) and Thr(308) confirmed that MBP stimulated PI3K activity and also demonstrated indirectly activation of phosphoinositide-dependent kinase-1 by MBP. Genistein and the Src kinase family inhibitor, 4-amino-5-(4-methyphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, inhibited MBP-stimulated phosphorylation of Akt. 4-Amino-5-(4-methyphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine also inhibited MBP-stimulated O(2)(-) production. MBP stimulated phosphorylation and translocation of the p85 subunit of class I(A) PI3K, but not translocation of the p110gamma subunit of class I(B) PI3K, to the neutrophil membrane. Inhibition of protein kinase Czeta (PKCzeta) inhibited MBP-stimulated O(2)(-) production. Measurement of phosphorylated PKCzeta (Thr(410)) and PKCdelta (Thr(505)) confirmed that PKCzeta, but not PKCdelta, is activated in MBP-stimulated neutrophils. The time courses for phosphorylation and translocation of the p85 subunit of class I(A) PI3K, activation of Akt, and activation of PKCzeta were similar. Moreover, inhibition of PI3K activity inhibited MBP-induced activation of PKCzeta. We conclude that MBP stimulates a Src kinase-dependent activation of class I(A) PI3K and, in turn, activation of PKCzeta in neutrophils, which contributes to the activation of NADPH oxidase and the resultant O(2)(-) production in response to MBP stimulation.
Collapse
Affiliation(s)
- Neeta G Shenoy
- Department of Immunology/Microbiology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
294
|
Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM, Manzoli L, Ruggeri A, Conte R, Cocco L. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 2003; 17:1794-805. [PMID: 12970779 DOI: 10.1038/sj.leu.2403044] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is now well established that the reduced capacity of tumor cells of undergoing cell death through apoptosis plays a key role both in the pathogenesis of cancer and in therapeutic treatment failure. Indeed, tumor cells frequently display multiple alterations in signal transduction pathways leading to either cell survival or apoptosis. In mammals, the pathway based on phosphoinositide 3-kinase (PI3K)/Akt conveys survival signals of extreme importance and its downregulation, by means of pharmacological inhibitors of PI3K, considerably lowers resistance to various types of therapy in solid tumors. We recently described an HL60 leukemia cell clone (HL60AR cells) with a constitutively active PI3K/Akt pathway. These cells were resistant to multiple chemotherapeutic drugs, all-trans-retinoic acid (ATRA), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Treatment with two pharmacological inhibitors of PI3K, wortmannin and Ly294002, restored sensitivity of HL60AR cells to the aforementioned treatments. However, these inhibitors have some drawbacks that may severely limit or impede their clinical use. Here, we have tested whether or not a new selective Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (Akt inhibitor), was as effective as Ly294002 in lowering the sensitivity threshold of HL60 cells to chemotherapeutic drugs, TRAIL, ATRA, and ionizing radiation. Our findings demonstrate that, at a concentration which does not affect PI3K activity, the Akt inhibitor markedly reduced resistance of HL60AR cells to etoposide, cytarabine, TRAIL, ATRA, and ionizing radiation. This effect was likely achieved through downregulation of expression of antiapoptotic proteins such as c-IAP1, c-IAP2, cFLIP(L), and of Bad phosphorylation on Ser 136. The Akt inhibitor did not influence PTEN activity. At variance with Ly294002, the Akt inhibitor did not negatively affect phosphorylation of protein kinase C-zeta and it was less effective in downregulating p70S6 kinase (p70S6K) activity. The Akt inhibitor increased sensitivity to apoptotic inducers of K562 and U937, but not of MOLT-4, leukemia cells. Overall, our results indicate that selective Akt pharmacological inhibitors might be used in the future for enhancing the sensitivity of leukemia cells to therapeutic treatments that induce apoptosis or for overcoming resistance to these treatments.
Collapse
Affiliation(s)
- A M Martelli
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia, Cell Signalling Laboratory, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Helliwell PA, Rumsby MG, Kellett GL. Intestinal sugar absorption is regulated by phosphorylation and turnover of protein kinase C betaII mediated by phosphatidylinositol 3-kinase- and mammalian target of rapamycin-dependent pathways. J Biol Chem 2003; 278:28644-50. [PMID: 12766174 DOI: 10.1074/jbc.m301479200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of intestinal fructose absorption by phorbol 12-myristate 13-acetate (PMA) results from rapid insertion of GLUT2 into the brush-border membrane and correlates with protein kinase C (PKC) betaII activation. We have therefore investigated the role of phosphatidylinositol 3 (PI3)-kinase and mammalian target of rapamycin in the regulation of fructose absorption by PKC betaII phosphorylation. In isolated jejunal loops, stimulation of fructose absorption by PMA was inhibited by preperfusion with wortmannin or rapamycin, which blocked GLUT2 activation and insertion into the brush-border membrane. Antibodies to the last 18 and last 10 residues of the C-terminal region of PKC betaII recognized several species differentially in Western blots. Extensive cleavage of native enzyme (80/78 kDa) to a catalytic domain product of 49 kDa occurred. PMA and sugars provoked turnover and degradation of PKC betaII by dephosphorylation to a 42-kDa species, which was converted to polyubiquitylated species detected at 180 and 250+ kDa. PMA increased the level of the PKC betaII 49-kDa species, which correlates with the GLUT2 level; wortmannin and rapamycin blocked these effects of PMA. Rapamycin and wortmannin inhibited PKC betaII turnover. PI3-kinase, PDK-1, and protein kinase B were present in the brush-border membrane, where their levels were increased by PMA and blocked by the inhibitors. We conclude that GLUT2-mediated fructose absorption is regulated through PI3-kinase and mammalian target of rapamycin-dependent pathways, which control phosphorylation of PKC betaII and its substrate-induced turnover and ubiquitin-dependent degradation. These findings suggest possible mechanisms for short term control of intestinal sugar absorption by insulin and amino acids.
Collapse
Affiliation(s)
- Philip A Helliwell
- Department of Biology (Area 3), University of York, York YO10 5YW, United Kingdom
| | | | | |
Collapse
|
296
|
Carter CA. Retinoic acid signaling through PI 3-kinase induces differentiation of human endometrial adenocarcinoma cells. Exp Mol Pathol 2003; 75:34-44. [PMID: 12834623 DOI: 10.1016/s0014-4800(03)00033-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The specific signals required for actin polymerization in response to extracellular factors remain unknown. However, in many cell types, there is a correlation between actin polymerization, activation of phosphatidylinositol 3-kinase (PI 3-kinase), and the production of the second messenger phosphatidylinositol-3,4,5-triphosphate. Increased levels of PI 3-kinase have been detected during cell growth and transformation. However, PI 3-kinase is also activated during differentiation, suggesting that PI 3-kinase and its lipid products also play a role in the regulation of cellular differentiation. The newly characterized CAC-1 cell line established from a poorly differentiated human endometrial adenocarcinoma (Exp. Mol. Pathol. 69 (2000), 175) was used as a model to investigate the role of PI 3-kinase in differentiation induction. CAC-1 cells differentiated upon treatment with pharmacological doses of retinoids (1 micro M of 13-cis or all-trans), evidenced by actin filament reorganization, and cell enlargement. PI 3-kinase staining is primarily localized to perinuclear regions in untreated cells. However, retinoic acid treatment induced PI 3-kinase to relocalize throughout the cytoplasm. Subcellular fractionation and Western blotting confirmed that PI 3-kinase decreased in the particulate fraction, concurrent with retinoid-induced differentiation. Interestingly, pretreatment with the PI 3-kinase inhibitor wortmannin (100 nM) prior to retinoic acid treatment prevented retinoic acid-induced actin reorganization and cell enlargement. To distinuish whether retinoid regulation of PI 3-kinase is mediated through traditional nuclear retinoic acid receptors, the levels of retinoic acid receptor-beta (RAR-beta) protein were evaluated. Retinoid treatment did not alter RAR-beta protein levels compared to controls. These data suggest that PI 3-kinase activity and cytoplasmic relocalization are required for retinoid-induced differentiation of poorly differentiated human endometrial adenocarcinoma cells.
Collapse
Affiliation(s)
- Charleata A Carter
- Research Division, BeluMedX, 11524 North Rodney Parham Road, Little Rock, AR 72212, USA.
| |
Collapse
|
297
|
Kim YB, Kotani K, Ciaraldi TP, Henry RR, Kahn BB. Insulin-stimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes 2003; 52:1935-42. [PMID: 12882908 DOI: 10.2337/diabetes.52.8.1935] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans with obesity or type 2 diabetes, insulin target tissues are resistant to many actions of insulin. The atypical protein kinase C (PKC) isoforms lambda and zeta are downstream of phosphatidylinositol-3 kinase (PI3K) and are required for maximal insulin stimulation of glucose uptake. Phosphoinositide-dependent protein kinase-1 (PDK-1), also downstream of PI3K, mediates activation of atypical PKC isoforms and Akt. To determine whether impaired PKClambda/zeta or PDK-1 activation plays a role in the pathogenesis of insulin resistance, we measured the activities of PKClambda/zeta and PDK-1 in vastus lateralis muscle of lean, obese, and obese/type 2 diabetic humans. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic-euglycemic clamp. Obese subjects were also studied after weight loss on a very-low-calorie diet. Insulin-stimulated glucose disposal rate is reduced 26% in obese subjects and 62% in diabetic subjects (both comparisons P < 0.001). Insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation and PI3K activity are impaired 40-50% in diabetic subjects compared with lean or obese subjects. Insulin stimulates PKClambda/zeta activity approximately 2.3-fold in lean subjects; the increment above basal is reduced 57% in obese and 65% in diabetic subjects. PKClambda/zeta protein amount is decreased 46% in diabetic subjects but is normal in obese nondiabetic subjects, indicating impaired insulin action on PKClambda/zeta. Importantly, weight loss in obese subjects normalizes PKClambda/zeta activation and increases IRS-1 phosphorylation and PI3K activity. Insulin also stimulates PDK-1 activity approximately twofold with no impairment in obese or diabetic subjects. In contrast to our previous data on Akt, reduced insulin-stimulated PKClambda/zeta activity could play a role in the pathogenesis of insulin resistance in muscle of obese and type 2 diabetic subjects.
Collapse
Affiliation(s)
- Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
298
|
Haq S, Kilter H, Michael A, Tao J, O'Leary E, Sun XM, Walters B, Bhattacharya K, Chen X, Cui L, Andreucci M, Rosenzweig A, Guerrero JL, Patten R, Liao R, Molkentin J, Picard M, Bonventre JV, Force T. Deletion of cytosolic phospholipase A2 promotes striated muscle growth. Nat Med 2003; 9:944-51. [PMID: 12808451 DOI: 10.1038/nm891] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 05/30/2003] [Indexed: 11/09/2022]
Abstract
Generation of arachidonic acid by the ubiquitously expressed cytosolic phospholipase A2 (PLA2) has a fundamental role in the regulation of cellular homeostasis, inflammation and tumorigenesis. Here we report that cytosolic PLA2 is a negative regulator of growth, specifically of striated muscle. We find that normal growth of skeletal muscle, as well as normal and pathologic stress-induced hypertrophic growth of the heart, are exaggerated in Pla2g4a-/- mice, which lack the gene encoding cytosolic PLA2. The mechanism underlying this phenotype is that cytosolic PLA2 negatively regulates insulin-like growth factor (IGF)-1 signaling. Absence of cytosolic PLA2 leads to sustained activation of the IGF-1 pathway, which results from the failure of 3-phosphoinositide-dependent protein kinase (PDK)-1 to recruit and phosphorylate protein kinase C (PKC)-zeta, a negative regulator of IGF-1 signaling. Arachidonic acid restores activation of PKC-zeta, correcting the exaggerated IGF-1 signaling. These results indicate that cytosolic PLA2 and arachidonic acid regulate striated muscle growth by modulating multiple growth-regulatory pathways.
Collapse
Affiliation(s)
- Syed Haq
- Molecular Cardiology Research Institute, Tufts-New England Medical Center and Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
299
|
Phosphatidylinositol 3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 2003. [PMID: 12736339 DOI: 10.1523/jneurosci.23-09-03679.2003] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitors of both phosphatidylinositol-3-kinase (PI3-kinase) and MAPK/ERK (mitogen-activate protein kinase/extracellular signal-related kinase) activation inhibit NMDA receptor-dependent long-term potentiation (LTP). PI3-kinase inhibitors also block activation of ERK by NMDA receptor stimulation, suggesting that PI3-kinase inhibitors block LTP because PI3-kinase is an essential upstream regulator of ERK activation. To examine this hypothesis, we investigated the effects of PI3-kinase inhibitors on ERK activation and LTP induction in the CA1 region of mouse hippocampal slices. Consistent with the notion that ERK activation by NMDA receptor stimulation is PI3-kinase dependent, the PI3-kinase inhibitor wortmannin partially inhibited ERK2 activation induced by bath application of NMDA and strongly suppressed ERK2 activation by high-frequency synaptic stimulation. PI3-kinase and MEK (MAP kinase kinase) inhibitors had very different effects on LTP, however. Both types of inhibitors suppressed LTP induced by theta-frequency trains of synaptic stimulation, but only PI3-kinase inhibitors suppressed the induction of LTP by high-frequency stimulation or low-frequency stimulation paired with postsynaptic depolarization. Concentrations of PI3-kinase inhibitors that inhibited LTP when present during high-frequency stimulation had no effect on potentiated synapses when applied after high-frequency stimulation, suggesting that PI3-kinase is specifically involved in the induction of LTP. Finally, we found that LTP induced by theta-frequency stimulation was MEK inhibitor insensitive but still PI3-kinase dependent in hippocampal slices from PSD-95 (postsynaptic density-95) mutant mice. Together, our results indicate that the role of PI3-kinase in LTP is not limited to its role as an upstream regulator of MAPK signaling but also includes signaling through ERK-independent pathways that regulate LTP induction.
Collapse
|
300
|
Yamamoto D, Sonoda Y, Hasegawa M, Funakoshi-Tago M, Aizu-Yokota E, Kasahara T. FAK overexpression upregulates cyclin D3 and enhances cell proliferation via the PKC and PI3-kinase-Akt pathways. Cell Signal 2003; 15:575-83. [PMID: 12681445 DOI: 10.1016/s0898-6568(02)00142-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We previously demonstrated that FAK-transfected HL-60 (HL-60/FAK) cells exhibit anti-apoptotic capacity. Here, we report that HL-60/FAK cells proliferate much faster than vector-transfected control (HL-60/Vect) cells with a 1.5-fold faster doubling time. This observation prompted us to investigate the mechanism of how HL-60/FAK cells augment cell proliferation. Since a protein kinase C (PKC) inhibitor, chelerythrine, or a PI3-kinase inhibitor, LY294002, suppressed cell proliferation effectively, both PKC and PI-3-kinase pathways are presumed to be involved in the cell proliferation. Among cyclins and CDKs, cyclin D3 expression was particularly prominent in the HL-60/FAK cells. Among PKC family, particularly PKCalpha, beta and eta isoforms were activated and directly associated with FAK in HL-60/FAK cells. We assumed that FAK activates PKC and PI3-kinase-Akt pathway, which resulted in marked induction of cyclin D3 expression and CDK activity.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Biochemistry, Kyoritsu College of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | | | |
Collapse
|