251
|
Is γ-secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99? J Biol Chem 2021; 296:100489. [PMID: 33662398 PMCID: PMC8027268 DOI: 10.1016/j.jbc.2021.100489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Genetic, biochemical, and anatomical grounds led to the proposal of the amyloid cascade hypothesis centered on the accumulation of amyloid beta peptides (Aβ) to explain Alzheimer's disease (AD) etiology. In this context, a bulk of efforts have aimed at developing therapeutic strategies seeking to reduce Aβ levels, either by blocking its production (γ- and β-secretase inhibitors) or by neutralizing it once formed (Aβ-directed immunotherapies). However, so far the vast majority of, if not all, clinical trials based on these strategies have failed, since they have not been able to restore cognitive function in AD patients, and even in many cases, they have worsened the clinical picture. We here propose that AD could be more complex than a simple Aβ-linked pathology and discuss the possibility that a way to reconcile undoubted genetic evidences linking processing of APP to AD and a consistent failure of Aβ-based clinical trials could be to envision the pathological contribution of the direct precursor of Aβ, the β-secretase-derived C-terminal fragment of APP, βCTF, also referred to as C99. In this review, we summarize scientific evidences pointing to C99 as an early contributor to AD and postulate that γ-secretase should be considered as not only an Aβ-generating protease, but also a beneficial C99-inactivating enzyme. In that sense, we discuss the limitations of molecules targeting γ-secretase and propose alternative strategies seeking to reduce C99 levels by other means and notably by enhancing its lysosomal degradation.
Collapse
|
252
|
He L, Loika Y, Park Y, Bennett DA, Kellis M, Kulminski AM. Exome-wide age-of-onset analysis reveals exonic variants in ERN1 and SPPL2C associated with Alzheimer's disease. Transl Psychiatry 2021; 11:146. [PMID: 33637690 PMCID: PMC7910483 DOI: 10.1038/s41398-021-01263-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Despite recent discoveries in genome-wide association studies (GWAS) of genomic variants associated with Alzheimer's disease (AD), its underlying biological mechanisms are still elusive. The discovery of novel AD-associated genetic variants, particularly in coding regions and from APOE ε4 non-carriers, is critical for understanding the pathology of AD. In this study, we carried out an exome-wide association analysis of age-of-onset of AD with ~20,000 subjects and placed more emphasis on APOE ε4 non-carriers. Using Cox mixed-effects models, we find that age-of-onset shows a stronger genetic signal than AD case-control status, capturing many known variants with stronger significance, and also revealing new variants. We identified two novel variants, rs56201815, a rare synonymous variant in ERN1, and rs12373123, a common missense variant in SPPL2C in the MAPT region in APOE ε4 non-carriers. Besides, a rare missense variant rs144292455 in TACR3 showed the consistent direction of effect sizes across all studies with a suggestive significant level. In an attempt to unravel their regulatory and biological functions, we found that the minor allele of rs56201815 was associated with lower average FDG uptake across five brain regions in ADNI. Our eQTL analyses based on 6198 gene expression samples from ROSMAP and GTEx revealed that the minor allele of rs56201815 was potentially associated with elevated expression of ERN1, a key gene triggering unfolded protein response (UPR), in multiple brain regions, including the posterior cingulate cortex and nucleus accumbens. Our cell-type-specific eQTL analysis using ~80,000 single nuclei in the prefrontal cortex revealed that the protective minor allele of rs12373123 significantly increased the expression of GRN in microglia, and was associated with MAPT expression in astrocytes. These findings provide novel evidence supporting the hypothesis of the potential involvement of the UPR to ER stress in the pathological pathway of AD, and also give more insights into underlying regulatory mechanisms behind the pleiotropic effects of rs12373123 in multiple degenerative diseases including AD and Parkinson's disease.
Collapse
Affiliation(s)
- Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Yongjin Park
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
253
|
Moreno-Grau S, Fernández MV, de Rojas I, Garcia-González P, Hernández I, Farias F, Budde JP, Quintela I, Madrid L, González-Pérez A, Montrreal L, Alarcón-Martín E, Alegret M, Maroñas O, Pineda JA, Macías J, Marquié M, Valero S, Benaque A, Clarimón J, Bullido MJ, García-Ribas G, Pástor P, Sánchez-Juan P, Álvarez V, Piñol-Ripoll G, García-Alberca JM, Royo JL, Franco-Macías E, Mir P, Calero M, Medina M, Rábano A, Ávila J, Antúnez C, Real LM, Orellana A, Carracedo Á, Sáez ME, Tárraga L, Boada M, Cruchaga C, Ruiz A. Long runs of homozygosity are associated with Alzheimer's disease. Transl Psychiatry 2021; 11:142. [PMID: 33627629 PMCID: PMC7904832 DOI: 10.1038/s41398-020-01145-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/12/2022] Open
Abstract
Long runs of homozygosity (ROH) are contiguous stretches of homozygous genotypes, which are a footprint of inbreeding and recessive inheritance. The presence of recessive loci is suggested for Alzheimer's disease (AD); however, their search has been poorly assessed to date. To investigate homozygosity in AD, here we performed a fine-scale ROH analysis using 10 independent cohorts of European ancestry (11,919 AD cases and 9181 controls.) We detected an increase of homozygosity in AD cases compared to controls [βAVROH (CI 95%) = 0.070 (0.037-0.104); P = 3.91 × 10-5; βFROH (CI95%) = 0.043 (0.009-0.076); P = 0.013]. ROHs increasing the risk of AD (OR > 1) were significantly overrepresented compared to ROHs increasing protection (p < 2.20 × 10-16). A significant ROH association with AD risk was detected upstream the HS3ST1 locus (chr4:11,189,482‒11,305,456), (β (CI 95%) = 1.09 (0.48 ‒ 1.48), p value = 9.03 × 10-4), previously related to AD. Next, to search for recessive candidate variants in ROHs, we constructed a homozygosity map of inbred AD cases extracted from an outbred population and explored ROH regions in whole-exome sequencing data (N = 1449). We detected a candidate marker, rs117458494, mapped in the SPON1 locus, which has been previously associated with amyloid metabolism. Here, we provide a research framework to look for recessive variants in AD using outbred populations. Our results showed that AD cases have enriched homozygosity, suggesting that recessive effects may explain a proportion of AD heritability.
Collapse
Affiliation(s)
- Sonia Moreno-Grau
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Maria Victoria Fernández
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Itziar de Rojas
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Pablo Garcia-González
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Isabel Hernández
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Fabiana Farias
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Laura Madrid
- CAEBI. Centro Andaluz de Estudios Bioinformáticos, Sevilla, Spain
| | | | - Laura Montrreal
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Olalla Maroñas
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan Antonio Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología. Hospital Universitario de Valme, Sevilla, Spain
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas y Microbiología. Hospital Universitario de Valme, Sevilla, Spain
| | - Marta Marquié
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Sergi Valero
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Alba Benaque
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jordi Clarimón
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Jesus Bullido
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria "Hospital la Paz" (IdIPaz), Madrid, Spain
| | | | - Pau Pástor
- Fundació per la Recerca Biomèdica i Social Mútua Terrassa, and Memory Disorders Unit, Department of Neurology, Hospital Universitari Mútua de Terrassa, University of Barcelona School of Medicine, Terrassa, Barcelona, Spain
| | - Pascual Sánchez-Juan
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Neurology Service "Marqués de Valdecilla" University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Victoria Álvarez
- Laboratorio de Genética Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gerard Piñol-Ripoll
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Institut de Recerca Biomédica de Lleida (IRBLLeida), Lleida, Spain
| | | | - José Luis Royo
- Dep. of Surgery, Biochemistry and Molecular Biology, School of Medicine, University of Málaga, Málaga, Spain
| | - Emilio Franco-Macías
- Unidad de Demencias, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Calero
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Miguel Medina
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alberto Rábano
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- BT-CIEN, Madrid, Spain
| | - Jesús Ávila
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa" (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Carmen Antúnez
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Madrid, Spain
| | - Luis Miguel Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología. Hospital Universitario de Valme, Sevilla, Spain
- Dep. of Surgery, Biochemistry and Molecular Biology, School of Medicine, University of Málaga, Málaga, Spain
| | - Adelina Orellana
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica- CIBERER-IDIS, Santiago de Compostela, Spain
| | | | - Lluís Tárraga
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Mercè Boada
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Agustín Ruiz
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.
- CIBERNED, Center for Networked Biomedical Research on Neurodegenerative Diseases, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
254
|
Abstract
Alzheimer’s disease (AD) is the leading cause of neurodegeneration in the elderly and is clinically characterized by slowly progressing cognitive decline, which most commonly affects episodic memory function. This eventually leads to difficulties in activities of daily living. Biomarker studies show that the underlying pathology of AD begins 20 years before clinical symptoms. This results in the need to define specific targets and preclinical stages in order to address the problems of this disease at an earlier point in time. Genetic studies are indispensable for gaining insight into the etiology of neurodegenerative diseases and can play a major role in the early definition of the individual disease risk. This review provides an overview of the currently known genetic features of AD.
Collapse
Affiliation(s)
- Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
255
|
Crosstalk between Different DNA Repair Pathways Contributes to Neurodegenerative Diseases. BIOLOGY 2021; 10:biology10020163. [PMID: 33669593 PMCID: PMC7922961 DOI: 10.3390/biology10020163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary Constant exposure to endogenous and environmental factors induces oxidative stress and DNA damage. Rare brain disorders caused by defects in DNA repair and DNA damage response (DDR) signaling establish that failure to process DNA damage may lead to neurodegeneration. In this review, we present mechanisms that link DDR with neurodegeneration in these disorders and discuss their relevance for common age-related neurodegenerative diseases (NDDs). Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. Abstract Genomic integrity is maintained by DNA repair and the DNA damage response (DDR). Defects in certain DNA repair genes give rise to many rare progressive neurodegenerative diseases (NDDs), such as ocular motor ataxia, Huntington disease (HD), and spinocerebellar ataxias (SCA). Dysregulation or dysfunction of DDR is also proposed to contribute to more common NDDs, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Here, we present mechanisms that link DDR with neurodegeneration in rare NDDs caused by defects in the DDR and discuss the relevance for more common age-related neurodegenerative diseases. Moreover, we highlight recent insight into the crosstalk between the DDR and other cellular processes known to be disturbed during NDDs. We compare the strengths and limitations of established model systems to model human NDDs, ranging from C. elegans and mouse models towards advanced stem cell-based 3D models.
Collapse
|
256
|
Hole KL, Williams RJ. Flavonoids as an Intervention for Alzheimer's Disease: Progress and Hurdles Towards Defining a Mechanism of Action. Brain Plast 2021; 6:167-192. [PMID: 33782649 PMCID: PMC7990465 DOI: 10.3233/bpl-200098] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Attempts to develop a disease modifying intervention for Alzheimer's disease (AD) through targeting amyloid β (Aβ) have so far been unsuccessful. There is, therefore, a need for novel therapeutics against alternative targets coupled with approaches which may be suitable for early and sustained use likely required for AD prevention. Numerous in vitro and in vivo studies have shown that flavonoids can act within processes and pathways relevant to AD, such as Aβ and tau pathology, increases in BDNF, inflammation, oxidative stress and neurogenesis. However, the therapeutic development of flavonoids has been hindered by an ongoing lack of clear mechanistic data that fully takes into consideration metabolism and bioavailability of flavonoids in vivo. With a focus on studies that incorporate these considerations into their experimental design, this review will evaluate the evidence for developing specific flavonoids as therapeutics for AD. Given the current lack of success of anti-Aβ targeting therapeutics, particular attention will be given to flavonoid-mediated regulation of tau phosphorylation and aggregation, where there is a comparable lack of study. Reflecting on this evidence, the obstacles that prevent therapeutic development of flavonoids will be examined. Finally, the significance of recent advances in flavonoid metabolomics, modifications and influence of the microbiome on the therapeutic capacity of flavonoids in AD are explored. By highlighting the potential of flavonoids to target multiple aspects of AD pathology, as well as considering the hurdles, this review aims to promote the efficient and effective identification of flavonoid-based approaches that have potential as therapeutic interventions for AD.
Collapse
Affiliation(s)
- Katriona L. Hole
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| | - Robert J. Williams
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
257
|
Uddin MS, Hasana S, Hossain MF, Islam MS, Behl T, Perveen A, Hafeez A, Ashraf GM. Molecular Genetics of Early- and Late-Onset Alzheimer's Disease. Curr Gene Ther 2021; 21:43-52. [PMID: 33231156 DOI: 10.2174/1566523220666201123112822] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and this complex disorder is associated with environmental as well as genetic factors. Early-onset AD (EOAD) and late-onset AD (LOAD, more common) are major identified types of AD. The genetics of EOAD is extensively understood, with three gene variants such as APP, PSEN1, and PSEN2 leading to the disease. Some common alleles, including APOE, are effectively associated with LOAD identified, but the genetics of LOAD is not clear to date. It has been accounted that about 5-10% of EOAD patients can be explained through mutations in the three familiar genes of EOAD. The APOE ε4 allele augmented the severity of EOAD risk in carriers, and the APOE ε4 allele was considered as a hallmark of EOAD. A great number of EOAD patients, who are not genetically explained, indicate that it is not possible to identify disease-triggering genes yet. Although several genes have been identified by using the technology of next-generation sequencing in EOAD families, including SORL1, TYROBP, and NOTCH3. A number of TYROBP variants are identified through exome sequencing in EOAD patients and these TYROBP variants may increase the pathogenesis of EOAD. The existence of the ε4 allele is responsible for increasing the severity of EOAD. However, several ε4 allele carriers propose the presence of other LOAD genetic as well as environmental risk factors that are not identified yet. It is urgent to find out missing genetics of EOAD and LOAD etiology to discover new potential genetic facets which will assist in understanding the pathological mechanism of AD. These investigations should contribute to developing a new therapeutic candidate for alleviating, reversing and preventing AD. This article, based on current knowledge, represents the overview of the susceptible genes of EOAD, and LOAD. Next, we represent the probable molecular mechanism that might elucidate the genetic etiology of AD and highlight the role of massively parallel sequencing technologies for novel gene discoveries.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, India
| | - Asma Perveen
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Abdul Hafeez
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
258
|
Macedo A, Gómez C, Rebelo MÂ, Poza J, Gomes I, Martins S, Maturana-Candelas A, Pablo VGD, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Lopes AM, Pinto N. Risk Variants in Three Alzheimer's Disease Genes Show Association with EEG Endophenotypes. J Alzheimers Dis 2021; 80:209-223. [PMID: 33522999 PMCID: PMC8075394 DOI: 10.3233/jad-200963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Dementia due to Alzheimer’s disease (AD) is a complex neurodegenerative disorder, which much of heritability remains unexplained. At the clinical level, one of the most common physiological alterations is the slowing of oscillatory brain activity, measurable by electroencephalography (EEG). Relative power (RP) at the conventional frequency bands (i.e., delta, theta, alpha, beta-1, and beta-2) can be considered as AD endophenotypes. Objective: The aim of this work is to analyze the association between sixteen genes previously related with AD: APOE, PICALM, CLU, BCHE, CETP, CR1, SLC6A3, GRIN2
β, SORL1, TOMM40, GSK3
β, UNC5C, OPRD1, NAV2, HOMER2, and IL1RAP, and the slowing of the brain activity, assessed by means of RP at the aforementioned frequency bands. Methods: An Iberian cohort of 45 elderly controls, 45 individuals with mild cognitive impairment, and 109 AD patients in the three stages of the disease was considered. Genomic information and brain activity of each subject were analyzed. Results: The slowing of brain activity was observed in carriers of risk alleles in IL1RAP (rs10212109, rs9823517, rs4687150), UNC5C (rs17024131), and NAV2 (rs1425227, rs862785) genes, regardless of the disease status and situation towards the strongest risk factors: age, sex, and APOE ɛ4 presence. Conclusion: Endophenotypes reduce the complexity of the general phenotype and genetic variants with a major effect on those specific traits may be then identified. The found associations in this work are novel and may contribute to the comprehension of AD pathogenesis, each with a different biological role, and influencing multiple factors involved in brain physiology.
Collapse
Affiliation(s)
- Ana Macedo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,JTA: The Data Scientists, Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Miguel Ângelo Rebelo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Iva Gomes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Miguel Arenas
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CINBIO (Biomedical Research Center), University of Vigo, Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Luis Álvarez
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Adeneas, Valencia, Spain
| | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Alexandra M Lopes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nádia Pinto
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Centro de Matemática da Universidade do Porto, Porto, Portugal
| |
Collapse
|
259
|
Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY. A review on advances of treatment modalities for Alzheimer's disease. Life Sci 2021; 276:119129. [PMID: 33515559 DOI: 10.1016/j.lfs.2021.119129] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which is mainly characterized by progressive impairment in cognition, emotion, language and memory in older population. Considering the impact of AD, formulations of pharmaceutical drugs and cholinesterase inhibitors have been widely propagated, receiving endorsement by FDA as a form of AD treatment. However, these medications were gradually discovered to be ineffective in removing the root of AD pathogenesis but merely targeting the symptoms so as to improve a patient's cognitive outcome. Hence, a search for better disease-modifying alternatives is put into motion. Having a clear understanding of the neuroprotective mechanisms and diverse properties undertaken by specific genes, antibodies and nanoparticles is central towards designing novel therapeutic agents. In this review, we provide a brief introduction on the background of Alzheimer's disease, the biology of blood-brain barrier, along with the potentials and drawbacks associated with current therapeutic treatment avenues pertaining to gene therapy, immunotherapy and nanotherapy for better diagnosis and management of Alzheimer's disease.
Collapse
Affiliation(s)
- Ewen Se Thoe
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Ayesha Fauzi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Yin Quan Tang
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia
| | - Sunita Chamyuang
- School of Science, Mae Fah Luang University, Chaing Rai 57100, Thailand; Microbial Products and Innovation Research Group, Mae Fah Luang University, Chaing Rai 57100, Thailand
| | - Adeline Yoke Yin Chia
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 47500 Selangor, Malaysia.
| |
Collapse
|
260
|
Latimer CS, Lucot KL, Keene CD, Cholerton B, Montine TJ. Genetic Insights into Alzheimer's Disease. ANNUAL REVIEW OF PATHOLOGY 2021; 16:351-376. [PMID: 33497263 PMCID: PMC8664069 DOI: 10.1146/annurev-pathmechdis-012419-032551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is a pervasive, relentlessly progressive neurodegenerative disorder that includes both hereditary and sporadic forms linked by common underlying neuropathologic changes and neuropsychological manifestations. While a clinical diagnosis is often made on the basis of initial memory dysfunction that progresses to involve multiple cognitive domains, definitive diagnosis requires autopsy examination of the brain to identify amyloid plaques and neurofibrillary degeneration. Over the past 100 years, there has been remarkable progress in our understanding of the underlying pathophysiologic processes, pathologic changes, and clinical phenotypes of AD, largely because genetic pathways that include but expand beyond amyloid processing have been uncovered. This review discusses the current state of understanding of the genetics of AD with a focus on how these advances are both shaping our understanding of the disease and informing novel avenues and approaches for development of potential therapeutic targets.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98104, USA
| | - Katherine L Lucot
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98104, USA
| | - Brenna Cholerton
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California 94304, USA;
| |
Collapse
|
261
|
Contino S, Suelves N, Vrancx C, Vadukul DM, Payen VL, Stanga S, Bertrand L, Kienlen-Campard P. Presenilin-Deficient Neurons and Astrocytes Display Normal Mitochondrial Phenotypes. Front Neurosci 2021; 14:586108. [PMID: 33551720 PMCID: PMC7862347 DOI: 10.3389/fnins.2020.586108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 01/13/2023] Open
Abstract
Presenilin 1 (PS1) and Presenilin 2 (PS2) are predominantly known as the catalytic subunits of the γ-secretase complex that generates the amyloid-β (Aβ) peptide, the major constituent of the senile plaques found in the brain of Alzheimer's disease (AD) patients. Apart from their role in γ-secretase activity, a growing number of cellular functions have been recently attributed to PSs. Notably, PSs were found to be enriched in mitochondria-associated membranes (MAMs) where mitochondria and endoplasmic reticulum (ER) interact. PS2 was more specifically reported to regulate calcium shuttling between these two organelles by controlling the formation of functional MAMs. We have previously demonstrated in mouse embryonic fibroblasts (MEF) an altered mitochondrial morphology along with reduced mitochondrial respiration and increased glycolysis in PS2-deficient cells (PS2KO). This phenotype was restored by the stable re-expression of human PS2. Still, all these results were obtained in immortalized cells, and one bottom-line question is to know whether these observations hold true in central nervous system (CNS) cells. To that end, we carried out primary cultures of PS1 knockdown (KD), PS2KO, and PS1KD/PS2KO (PSdKO) neurons and astrocytes. They were obtained from the same litter by crossing PS2 heterozygous; PS1 floxed (PS2+/-; PS1flox/flox) animals. Genetic downregulation of PS1 was achieved by lentiviral expression of the Cre recombinase in primary cultures. Strikingly, we did not observe any mitochondrial phenotype in PS1KD, PS2KO, or PSdKO primary cultures in basal conditions. Mitochondrial respiration and membrane potential were similar in all models, as were the glycolytic flux and NAD+/NADH ratio. Likewise, mitochondrial morphology and content was unaltered by PS expression. We further investigated the differences between results we obtained here in primary nerve cells and those previously reported in MEF cell lines by analyzing PS2KO primary fibroblasts. We found no mitochondrial dysfunction in this model, in line with observations in PS2KO primary neurons and astrocytes. Together, our results indicate that the mitochondrial phenotype observed in immortalized PS2-deficient cell lines cannot be extrapolated to primary neurons, astrocytes, and even to primary fibroblasts. The PS-dependent mitochondrial phenotype reported so far might therefore be the consequence of a cell immortalization process and should be critically reconsidered regarding its relevance to AD.
Collapse
Affiliation(s)
- Sabrina Contino
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Nuria Suelves
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Vrancx
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Devkee M. Vadukul
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Valery L. Payen
- Laboratory of Advanced Drug Delivery and Biomaterial (ADDB), Louvain Drug Research Institute (LDRI), Université Catholique de Louvain, Brussels, Belgium
| | - Serena Stanga
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Torino, Torino, Italy
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Molecular and Cellular Division (CEMO), Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
262
|
Abstract
The history of Alzheimer's disease (AD) started in 1907, but we needed to wait until the end of the century to identify the components of pathological hallmarks and genetic subtypes and to formulate the first pathogenic hypothesis. Thanks to biomarkers and new technologies, the concept of AD then rapidly changed from a static view of an amnestic dementia of the presenium to a biological entity that could be clinically manifested as normal cognition or dementia of different types. What is clearly emerging from studies is that AD is heterogeneous in each aspect, such as amyloid composition, tau distribution, relation between amyloid and tau, clinical symptoms, and genetic background, and thus it is probably impossible to explain AD with a single pathological process. The scientific approach to AD suffers from chronological mismatches between clinical, pathological, and technological data, causing difficulty in conceiving diagnostic gold standards and in creating models for drug discovery and screening. A recent mathematical computer-based approach offers the opportunity to study AD in real life and to provide a new point of view and the final missing pieces of the AD puzzle.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
263
|
Ayodele T, Rogaeva E, Kurup JT, Beecham G, Reitz C. Early-Onset Alzheimer's Disease: What Is Missing in Research? Curr Neurol Neurosci Rep 2021; 21:4. [PMID: 33464407 PMCID: PMC7815616 DOI: 10.1007/s11910-020-01090-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Early-onset Alzheimer's disease (EOAD), defined as Alzheimer's disease (AD) occurring before age 65, is significantly less well studied than the late-onset form (LOAD) despite EOAD often presenting with a more aggressive disease progression. The aim of this review is to summarize the current understanding of the etiology of EOAD, their translation into clinical practice, and to suggest steps to be taken to move our understanding forward. RECENT FINDINGS EOAD cases make up 5-10% of AD cases but only 10-15% of these cases show known mutations in the APP, PSEN1, and PSEN2, which are linked to EOAD. New data suggests that these unexplained cases following a non-Mendelian pattern of inheritance is potentially caused by a mix of common and newly discovered rare variants. However, only a fraction of this genetic variation has been identified to date leaving the molecular mechanisms underlying this type of AD and their association with clinical, biomarker, and neuropathological changes unclear. While great advancements have been made in characterizing EOAD, much work is needed to disentangle the molecular mechanisms underlying this type of AD and to identify putative targets for more precise disease screening, diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Temitope Ayodele
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Jiji T Kurup
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gary Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University, New York, NY, USA.
- Department of Epidemiology, Sergievsky Center, Taub Institute for Research on the Aging Brain, Columbia University, 630 W 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
264
|
Wolfe MS. Probing Mechanisms and Therapeutic Potential of γ-Secretase in Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26020388. [PMID: 33450968 PMCID: PMC7828430 DOI: 10.3390/molecules26020388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/02/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
The membrane-embedded γ-secretase complex carries out hydrolysis within the lipid bilayer in proteolyzing nearly 150 different membrane protein substrates. Among these substrates, the amyloid precursor protein (APP) has been the most studied, as generation of aggregation-prone amyloid β-protein (Aβ) is a defining feature of Alzheimer's disease (AD). Mutations in APP and in presenilin, the catalytic component of γ-secretase, cause familial AD, strong evidence for a pathogenic role of Aβ. Substrate-based chemical probes-synthetic peptides and peptidomimetics-have been critical to unraveling the complexity of γ-secretase, and small drug-like inhibitors and modulators of γ-secretase activity have been essential for exploring the potential of the protease as a therapeutic target for Alzheimer's disease. Such chemical probes and therapeutic prototypes will be reviewed here, with concluding commentary on the future directions in the study of this biologically important protease complex and the translation of basic findings into therapeutics.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, 1567 Irving Hill Road, GLH-2115, Lawrence, KS 66045, USA
| |
Collapse
|
265
|
Manjula R, Anuja K, Alcain FJ. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases. Front Pharmacol 2021; 11:585821. [PMID: 33597872 PMCID: PMC7883599 DOI: 10.3389/fphar.2020.585821] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sirtuins are NAD+ dependent histone deacetylases (HDAC) that play a pivotal role in neuroprotection and cellular senescence. SIRT1-7 are different homologs from sirtuins. They play a prominent role in many aspects of physiology and regulate crucial proteins. Modulation of sirtuins can thus be utilized as a therapeutic target for metabolic disorders. Neurological diseases have distinct clinical manifestations but are mainly age-associated and due to loss of protein homeostasis. Sirtuins mediate several life extension pathways and brain functions that may allow therapeutic intervention for age-related diseases. There is compelling evidence to support the fact that SIRT1 and SIRT2 are shuttled between the nucleus and cytoplasm and perform context-dependent functions in neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). In this review, we highlight the regulation of SIRT1 and SIRT2 in various neurological diseases. This study explores the various modulators that regulate the activity of SIRT1 and SIRT2, which may further assist in the treatment of neurodegenerative disease. Moreover, we analyze the structure and function of various small molecules that have potential significance in modulating sirtuins, as well as the technologies that advance the targeted therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Ramu Manjula
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, United States
| | - Kumari Anuja
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Francisco J. Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
- Oxidative Stress and Neurodegeneration Group, Regional Center for Biomedical Research, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
266
|
Arber C, Lovejoy C, Harris L, Willumsen N, Alatza A, Casey JM, Lines G, Kerins C, Mueller AK, Zetterberg H, Hardy J, Ryan NS, Fox NC, Lashley T, Wray S. Familial Alzheimer's Disease Mutations in PSEN1 Lead to Premature Human Stem Cell Neurogenesis. Cell Rep 2021; 34:108615. [PMID: 33440141 PMCID: PMC7809623 DOI: 10.1016/j.celrep.2020.108615] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer's disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and β-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.
Collapse
Affiliation(s)
- Charles Arber
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| | - Christopher Lovejoy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Lachlan Harris
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - Nanet Willumsen
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Argyro Alatza
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Jackie M Casey
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Georgie Lines
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Caoimhe Kerins
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Anika K Mueller
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
267
|
Martín‐González J, Montero‐Bullón J, Lacal J. Dictyostelium discoideum as a non-mammalian biomedical model. Microb Biotechnol 2021; 14:111-125. [PMID: 33124755 PMCID: PMC7888446 DOI: 10.1111/1751-7915.13692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dictyostelium discoideum is one of eight non-mammalian model organisms recognized by the National Institute of Health for the study of human pathology. The use of this slime mould is possible owing to similarities in cell structure, behaviour and intracellular signalling with mammalian cells. Its haploid set of chromosomes completely sequenced amenable to genetic manipulation, its unique and short life cycle with unicellular and multicellular stages, and phenotypic richness encoding many human orthologues, make Dictyostelium a representative and simple model organism to unveil cellular processes in human disease. Dictyostelium studies within the biomedical field have provided fundamental knowledge in the areas of bacterial infection, immune cell chemotaxis, autophagy/phagocytosis and mitochondrial and neurological disorders. Consequently, Dictyostelium has been used to the development of related pharmacological treatments. Herein, we review the utilization of Dictyostelium as a model organism in biomedicine.
Collapse
Affiliation(s)
- Javier Martín‐González
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Javier‐Fernando Montero‐Bullón
- Metabolic Engineering GroupDepartment of Microbiology and GeneticsUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Jesus Lacal
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| |
Collapse
|
268
|
Antunes ASLM, de Almeida V, Crunfli F, Carregari VC, Martins-de-Souza D. Proteomics for Target Identification in Psychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:251-264. [PMID: 33725358 DOI: 10.1007/978-3-030-55035-6_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Psychiatric and neurodegenerative disorders such as schizophrenia (SCZ), Parkinson's disease (PD), and Alzheimer's disease (AD) continue to grow around the world with a high impact on health, social, and economic outcomes for the patient and society. Despite efforts, the etiology and pathophysiology of these disorders remain unclear. Omics technologies have contributed to the understanding of the molecular mechanisms that underlie these complex disorders and have suggested novel potential targets for treatment and diagnostics. Here, we have highlighted the unique and common pathways shared between SCZ, PD, and AD and highlight the main proteomic findings over the last 5 years using in vitro models, postmortem brain samples, and cerebrospinal fluid (CSF) or blood of patients. These studies have identified possible therapeutic targets and disease biomarkers. Further studies including target validation, the use of large sample sizes, and the integration of omics findings with bioinformatics tools are required to provide a better comprehension of pharmacological targets.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Victor C Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| |
Collapse
|
269
|
Ghai R, Nagarajan K, Arora M, Grover P, Ali N, Kapoor G. Current Strategies and Novel Drug Approaches for Alzheimer Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:676-690. [PMID: 32679025 DOI: 10.2174/1871527319666200717091513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/18/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's Disease (AD) is a chronic, devastating dysfunction of neurons in the brain leading to dementia. It mainly arises due to neuronal injury in the cerebral cortex and hippocampus area of the brain and is clinically manifested as a progressive mental failure, disordered cognitive functions, personality changes, reduced verbal fluency and impairment of speech. The pathology behind AD is the formation of intraneuronal fibrillary tangles, deposition of amyloid plaque and decline in choline acetyltransferase and loss of cholinergic neurons. Tragically, the disease cannot be cured, but its progression can be halted. Various cholinesterase inhibitors available in the market like Tacrine, Donepezil, Galantamine, Rivastigmine, etc. are being used to manage the symptoms of Alzheimer's disease. The paper's objective is to throw light not only on the cellular/genetic basis of the disease, but also on the current trends and various strategies of treatment including the use of phytopharmaceuticals and nutraceuticals. Enormous literature survey was conducted and published articles of PubMed, Scifinder, Google Scholar, Clinical Trials.org and Alzheimer Association reports were studied intensively to consolidate the information on the strategies available to combat Alzheimer's disease. Currently, several strategies are being investigated for the treatment of Alzheimer's disease. Immunotherapies targeting amyloid-beta plaques, tau protein and neural pathways are undergoing clinical trials. Moreover, antisense oligonucleotide methodologies are being approached as therapies for its management. Phytopharmaceuticals and nutraceuticals are also gaining attention in overcoming the symptoms related to AD. The present review article concludes that novel and traditional therapies simultaneously promise future hope for AD treatment.
Collapse
Affiliation(s)
- Roma Ghai
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Meenakshi Arora
- University of Pittsburgh, 3459, Fifth Ave, Pennsylvania 15213, United States
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| | - Nazakat Ali
- Dabur Research Foundation, Plot-22, Site-4, Industrial area, Sahibabad, Ghaziabad, UP-201010, India
| | - Garima Kapoor
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad-Meerut Road, NH-58, Ghaziabad, UP-201206, India
| |
Collapse
|
270
|
Yang G, Zhou R, Guo X, Yan C, Lei J, Shi Y. Structural basis of γ-secretase inhibition and modulation by small molecule drugs. Cell 2020; 184:521-533.e14. [PMID: 33373587 DOI: 10.1016/j.cell.2020.11.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023]
Abstract
Development of γ-secretase inhibitors (GSIs) and modulators (GSMs) represents an attractive therapeutic opportunity for Alzheimer's disease (AD) and cancers. However, how these GSIs and GSMs target γ-secretase has remained largely unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human γ-secretase bound individually to two GSI clinical candidates, Semagacestat and Avagacestat, a transition state analog GSI L685,458, and a classic GSM E2012, at overall resolutions of 2.6-3.1 Å. Remarkably, each of the GSIs occupies the same general location on presenilin 1 (PS1) that accommodates the β strand from amyloid precursor protein or Notch, interfering with substrate recruitment. L685,458 directly coordinates the two catalytic aspartate residues of PS1. E2012 binds to an allosteric site of γ-secretase on the extracellular side, potentially explaining its modulating activity. Structural analysis reveals a set of shared themes and variations for inhibitor and modulator recognition that will guide development of the next-generation substrate-selective inhibitors.
Collapse
Affiliation(s)
- Guanghui Yang
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Zhou
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xuefei Guo
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology and Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
271
|
Silber M, Hitzenberger M, Zacharias M, Muhle-Goll C. Altered Hinge Conformations in APP Transmembrane Helix Mutants May Affect Enzyme-Substrate Interactions of γ-Secretase. ACS Chem Neurosci 2020; 11:4426-4433. [PMID: 33232115 DOI: 10.1021/acschemneuro.0c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cleavage of substrates by γ-secretase is an inherently slow process where substrate-enzyme affinities cannot be broken down into specific sequence requirements in contrast to soluble proteases. Nevertheless, despite its apparent sequence tolerance single point mutations in amyloid precursor protein can severely affect cleavage efficiencies and change product line preferences. We have determined by NMR spectroscopy the structures of the transmembrane domain of amyloid precursor protein in TFE/water and compared it to that of four mutants: two FAD mutants, V44M and I45T, and the two diglycine hinge mutants, G38L and G38P. In accordance with previous publications, the transmembrane domain is composed of two helical segments connected by the diglycine hinge. Mutations alter kink angles and structural flexibility. Furthermore, to our surprise, we observe different, but specific mutual orientations of N- and C-terminal helical segments in the four mutants compared to the wildtype. We speculate that the observed orientations for G38L, G38P, V44M, and I45T lead to unfavorable interactions with γ-secretase exosites during substrate movement to the enzyme's active site in presenilin and/or for the accommodation into the substrate-binding cavity of presenilin.
Collapse
Affiliation(s)
- Mara Silber
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Manuel Hitzenberger
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, James-Frank-Str. 1, 85748 Garching, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
272
|
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2020; 8:86-132. [PMID: 33490374 PMCID: PMC7815481 DOI: 10.3934/neuroscience.2021005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease is a progressive neurodegenerative disorder, mainly affecting older people, which severely impairs patients' quality of life. In the recent years, the number of affected individuals has seen a rapid increase. It is estimated that up to 107 million subjects will be affected by 2050 worldwide. Research in this area has revealed a lot about the biological and environmental underpinnings of Alzheimer, especially its correlation with β-Amyloid and Tau related mechanics; however, the precise molecular events and biological pathways behind the disease are yet to be discovered. In this review, we focus our attention on the biological mechanics that may lie behind Alzheimer development. In particular, we briefly describe the genetic elements and discuss about specific biological processes potentially associated with the disease.
Collapse
Affiliation(s)
| | | | | | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
273
|
Papadopoulou AA, Fluhrer R. Signaling Functions of Intramembrane Aspartyl-Proteases. Front Cardiovasc Med 2020; 7:591787. [PMID: 33381526 PMCID: PMC7768045 DOI: 10.3389/fcvm.2020.591787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 01/18/2023] Open
Abstract
Intramembrane proteolysis is more than a mechanism to "clean" the membranes from proteins no longer needed. By non-reversibly modifying transmembrane proteins, intramembrane cleaving proteases hold key roles in multiple signaling pathways and often distinguish physiological from pathological conditions. Signal peptide peptidase (SPP) and signal peptide peptidase-like proteases (SPPLs) recently have been associated with multiple functions in the field of signal transduction. SPP/SPPLs together with presenilins (PSs) are the only two families of intramembrane cleaving aspartyl proteases known in mammals. PS1 or PS2 comprise the catalytic center of the γ-secretase complex, which is well-studied in the context of Alzheimer's disease. The mammalian SPP/SPPL family of intramembrane cleaving proteases consists of five members: SPP and its homologous proteins SPPL2a, SPPL2b, SPPL2c, and SPPL3. Although these proteases were discovered due to their homology to PSs, it became evident in the past two decades that no physiological functions are shared between these two families. Based on studies in cell culture models various substrates of SPP/SPPL proteases have been identified in the past years and recently-developed mouse lines lacking individual members of this protease family, will help to further clarify the physiological functions of these proteases. In this review we concentrate on signaling roles of mammalian intramembrane cleaving aspartyl proteases. In particular, we will highlight the signaling roles of PS via its substrates NOTCH, VEGF, and others, mainly focusing on its involvement in vasculature. Delineating also signaling pathways that are affected and/or controlled by SPP/SPPL proteases. From SPP's participation in tumor progression and survival, to SPPL3's regulation of protein glycosylation and SPPL2c's control over cellular calcium stores, various crossovers between proteolytic activity of intramembrane proteases and cell signaling will be described.
Collapse
Affiliation(s)
- Alkmini A. Papadopoulou
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
274
|
Sciorio R, Aiello R, Irollo AM. Review: Preimplantation genetic diagnosis (PGD) as a reproductive option in patients with neurodegenerative disorders. Reprod Biol 2020; 21:100468. [PMID: 33321391 DOI: 10.1016/j.repbio.2020.100468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/01/2020] [Accepted: 11/26/2020] [Indexed: 11/28/2022]
Abstract
Preimplantation genetic diagnosis (PGD) was introduced in the late 1980s and represents an option for couples at risk of transmitting an inherited, debilitating or neurological disorder to their children. From a cleavage or blastocyst stage embryo, cell(s) are collected and then genetically analyzed for disease; enabling an unaffected embryo to be transferred into the uterus cavity. Nowadays, PGD has been carried out for several hundreds of heritable conditions including myotonic dystrophy, and for susceptibility genes involved in cancers of the nervous system. Currently, advanced molecular technologies with better resolution, such as array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing, are on the verge of becoming the gold standard in embryo preimplantation screening. Given this, it may be time for neurological societies to consider the published evidence to develop new guidelines for the integration of PGD into modern preventative neurology. Therefore, the main aim of this review is to illustrate the option of PGD to enable conception of an unaffected baby, and to assist clinicians and neurologists in the counseling of the patient at risk of transmitting an inherited disease, to explore the genetic journey throughout in vitro fertilization IVF with PGD.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh, Scotland, EH164SA, UK; IVF Department, Chianciano Salute Clinic, Via C. Marchesi 73, Chianciano Terme, Siena, Italy.
| | - Raffaele Aiello
- IVF Department, Chianciano Salute Clinic, Via C. Marchesi 73, Chianciano Terme, Siena, Italy; OMNIA Lab Scarl, Via Cesare Rosaroll 24, 80139 Naples, Italy
| | - Alfonso Maria Irollo
- IVF Department, Chianciano Salute Clinic, Via C. Marchesi 73, Chianciano Terme, Siena, Italy
| |
Collapse
|
275
|
[The future of dementia prevention and treatment strategies]. Nihon Ronen Igakkai Zasshi 2020; 57:374-396. [PMID: 33268621 DOI: 10.3143/geriatrics.57.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
276
|
Wong E, Frost GR, Li YM. γ-Secretase Modulatory Proteins: The Guiding Hand Behind the Running Scissors. Front Aging Neurosci 2020; 12:614690. [PMID: 33343338 PMCID: PMC7738330 DOI: 10.3389/fnagi.2020.614690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Described as the "proteasome of the membrane" or the "scissors in the membrane," γ-secretase has notoriously complicated biology, and even after decades of research, the full extent of its regulatory mechanism remains unclear. γ-Secretase is an intramembrane aspartyl protease complex composed of four obligatory subunits: Nicastrin (NCT), Presenilin (PS), Presenilin Enhancer-2 (Pen-2), and Anterior pharynx-defective-1 (Aph-1). γ-Secretase cleaves numerous type 1 transmembrane substrates, with no apparent homology, and plays major roles in broad biological pathways such as development, neurogenesis, and cancer. Notch and the amyloid precursor protein (APP) and are undoubtedly the best-studied γ-secretase substrates because of their role in cancer and Alzheimer's disease (AD) and therefore became the focus of increasing studies as an attractive therapeutic target. The regulation of γ-secretase is intricate and involves the function of multiple cellular entities. Recently, γ-secretase modulatory proteins (GSMPs), which are non-essential subunits and yet modulate γ-secretase activity and specificity, have emerged as an important component in guiding γ-secretase. GSMPs are responsive to cellular and environmental changes and therefore, provide another layer of regulation of γ-secretase. This type of enzymatic regulation allows for a rapid and fine-tuning of γ-secretase activity when appropriate signals appear enabling a temporal level of regulation. In this review article, we discuss the latest developments on GSMPs and implications on the development of effective therapeutics for γ-secretase-associated diseases such as AD and cancer.
Collapse
Affiliation(s)
- Eitan Wong
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | | | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
277
|
El Bitar F, Al Sudairy N, Qadi N, Al Rajeh S, Alghamdi F, Al Amari H, Al Dawsari G, Alsubaie S, Al Sudairi M, Abdulaziz S, Al Tassan N. A Comprehensive Analysis of Unique and Recurrent Copy Number Variations in Alzheimer's Disease and its Related Disorders. Curr Alzheimer Res 2020; 17:926-938. [PMID: 33256577 DOI: 10.2174/1567205017666201130111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Copy number variations (CNVs) play an important role in the genetic etiology of various neurological disorders, including Alzheimer's disease (AD). Type 2 diabetes mellitus (T2DM) and major depressive disorder (MDD) were shown to have share mechanisms and signaling pathways with AD. OBJECTIVE We aimed to assess CNVs regions that may harbor genes contributing to AD, T2DM, and MDD in 67 Saudi familial and sporadic AD patients, with no alterations in the known genes of AD and genotyped previously for APOE. METHODS DNA was analyzed using the CytoScan-HD array. Two layers of filtering criteria were applied. All the identified CNVs were checked in the Database of Genomic Variants (DGV). RESULTS A total of 1086 CNVs (565 gains and 521 losses) were identified in our study. We found 73 CNVs harboring genes that may be associated with AD, T2DM or MDD. Nineteen CNVs were novel. Most importantly, 42 CNVs were unique in our studied cohort existing only in one patient. Two large gains on chromosomes 1 and 13 harbored genes implicated in the studied disorders. We identified CNVs in genes that encode proteins involved in the metabolism of amyloid-β peptide (AGRN, APBA2, CR1, CR2, IGF2R, KIAA0125, MBP, RER1, RTN4R, VDR and WISPI) or Tau proteins (CACNAIC, CELF2, DUSP22, HTRA1 and SLC2A14). CONCLUSION The present work provided information on the presence of CNVs related to AD, T2DM, and MDD in Saudi Alzheimer's patients.
Collapse
Affiliation(s)
- Fadia El Bitar
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nourah Al Sudairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Najeeb Qadi
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Fatimah Alghamdi
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hala Al Amari
- Institute of Biology and Environmental Research, National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Ghadeer Al Dawsari
- Institute of Biology and Environmental Research, National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sahar Alsubaie
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mishael Al Sudairi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sara Abdulaziz
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
278
|
Bruni AC, Bernardi L, Gabelli C. From beta amyloid to altered proteostasis in Alzheimer's disease. Ageing Res Rev 2020; 64:101126. [PMID: 32683041 DOI: 10.1016/j.arr.2020.101126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age related neurodegenerative disorder causing severe disability and important socio-economic burden, but with no cure available to date. To disentangle this puzzling disease genetic studies represented an important way for the comprehension of pathogenic mechanisms. Abnormal processing and accumulation of amyloid-β peptide (Aβ) has been considered the main cause and trigger factor of the disease. The amyloid cascade theory has fallen into crisis because the failure of several anti-amyloid drugs trials and because of the simple equation AD = abnormal Aβ deposition is not always the case. We now know that multiple neurodegenerative diseases share common pathogenic mechanisms leading to accumulation of misfolded protein species. Genome Wide Association studies (GWAS) led to the identification of large numbers of DNA common variants (SNPs) distributed on different chromosomes and modulating the Alzheimer's risk. GWAS genes fall into several common pathways such as immune system and neuroinflammation, lipid metabolism, synaptic dysfunction and endocytosis, all of them addressing to novel routes for different pathogenic mechanisms. Other hints could be derived from epidemiological and experimental studies showing some lifestyles may have a major role in the pathogenesis of many age-associated diseases by modifying cell metabolism, proteostasis and microglia mediated neuroinflammation.
Collapse
Affiliation(s)
- Amalia C Bruni
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy.
| | - Livia Bernardi
- Regional Neurogenetic Centre, ASP Catanzaro, Lamezia Terme (CZ), Italy
| | - Carlo Gabelli
- Regional Brain Aging Centre, Azienda Ospedale Università Di Padova, Padova Italy
| |
Collapse
|
279
|
Chami M, Checler F. Alterations of the Endoplasmic Reticulum (ER) Calcium Signaling Molecular Components in Alzheimer's Disease. Cells 2020; 9:cells9122577. [PMID: 33271984 PMCID: PMC7760721 DOI: 10.3390/cells9122577] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sustained imbalance in intracellular calcium (Ca2+) entry and clearance alters cellular integrity, ultimately leading to cellular homeostasis disequilibrium and cell death. Alzheimer’s disease (AD) is the most common cause of dementia. Beside the major pathological features associated with AD-linked toxic amyloid beta (Aβ) and hyperphosphorylated tau (p-tau), several studies suggested the contribution of altered Ca2+ handling in AD development. These studies documented physical or functional interactions of Aβ with several Ca2+ handling proteins located either at the plasma membrane or in intracellular organelles including the endoplasmic reticulum (ER), considered the major intracellular Ca2+ pool. In this review, we describe the cellular components of ER Ca2+ dysregulations likely responsible for AD. These include alterations of the inositol 1,4,5-trisphosphate receptors’ (IP3Rs) and ryanodine receptors’ (RyRs) expression and function, dysfunction of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity and upregulation of its truncated isoform (S1T), as well as presenilin (PS1, PS2)-mediated ER Ca2+ leak/ER Ca2+ release potentiation. Finally, we highlight the functional consequences of alterations of these ER Ca2+ components in AD pathology and unravel the potential benefit of targeting ER Ca2+ homeostasis as a tool to alleviate AD pathogenesis.
Collapse
Affiliation(s)
- Mounia Chami
- Correspondence: ; Tel.: +33-4939-53457; Fax: +33-4939-53408
| | | |
Collapse
|
280
|
Eiser AR, Fulop T. Extra-cranial factors in the development of Alzheimer's disease. Brain Res 2020; 1748:147076. [PMID: 32853641 DOI: 10.1016/j.brainres.2020.147076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022]
Abstract
The development of Alzheimer's Disease (AD) likely involves dysfunction in more than one extra-cranial organ system. AD appears to depend on several functional organ impairments that develops frequently during aging: lack of normal hepatic synthesis, defective detoxification of ammonia, gut microbiome dysbiosis, the development of insulin resistance, diminished adrenal production of dehydroepiandrosterone, nutrient depletion, impaired immune processes with persistent chronic neuro-inflammation, and persistent infectious processes are important components of this system-wide disorder. By reviewing these abnormalities in different organ systems, this review intends to suggest that clinical research into the prevention of dementia needs to take this interplay of organ system dysfunction into account. The design of therapeutic interventions needs to address dysfunction in more than one system at a time. We have singled out one aberrant signaling pathway, NF-kB, that seems common to several of the dysfunctional organ systems and suggest some potential interventions that may be effective when combined with others. Clinical research may need to shift from single factor interventions to studies that include multiple simultaneous interventions that restore health in multiple impaired organ systems in the aging human in order to avert future epidemics of AD.
Collapse
Affiliation(s)
- Arnold R Eiser
- Adjunct Senior Fellow, Leonard Davis Institute, University of Pennsylvania, 3641 Locust Walk, Philadelphia, PA 19104, United States.
| | - Tamas Fulop
- Professor of Medicine and Geriatrics, Research Center on Aging, University of Sherbrooke, Quebec, Canada
| |
Collapse
|
281
|
Shabir O, Moll TA, Matuszyk MM, Eyre B, Dake MD, Berwick J, Francis SE. Preclinical models of disease and multimorbidity with focus upon cardiovascular disease and dementia. Mech Ageing Dev 2020; 192:111361. [PMID: 32998028 DOI: 10.1016/j.mad.2020.111361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
282
|
Lee SH, Kang J, Ho A, Watanabe H, Bolshakov VY, Shen J. APP Family Regulates Neuronal Excitability and Synaptic Plasticity but Not Neuronal Survival. Neuron 2020; 108:676-690.e8. [PMID: 32891188 PMCID: PMC7704911 DOI: 10.1016/j.neuron.2020.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/03/2023]
Abstract
Amyloid precursor protein (APP) is associated with both familial and sporadic forms of Alzheimer's disease. Despite its importance, the role of APP family in neuronal function and survival remains unclear because of perinatal lethality exhibited by knockout mice lacking all three APP family members. Here we report that selective inactivation of APP family members in excitatory neurons of the postnatal forebrain results in neither cortical neurodegeneration nor increases in apoptosis and gliosis up to ∼2 years of age. However, hippocampal synaptic plasticity, learning, and memory are impaired in these mutant mice. Furthermore, hippocampal neurons lacking APP family exhibit hyperexcitability, as evidenced by increased neuronal spiking in response to depolarizing current injections, whereas blockade of Kv7 channels mimics and largely occludes the effects of APP family inactivation. These findings demonstrate that APP family is not required for neuronal survival and suggest that APP family may regulate neuronal excitability through Kv7 channels.
Collapse
Affiliation(s)
- Sang Hun Lee
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angela Ho
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hirotaka Watanabe
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
283
|
Bhattacharya A, Izzo A, Mollo N, Napolitano F, Limone A, Margheri F, Mocali A, Minopoli G, Lo Bianco A, Di Maggio F, D’Argenio V, Montuori N, Lavecchia A, Sarnataro D. Inhibition of 37/67kDa Laminin-1 Receptor Restores APP Maturation and Reduces Amyloid-β in Human Skin Fibroblasts from Familial Alzheimer's Disease. J Pers Med 2020; 10:jpm10040232. [PMID: 33207563 PMCID: PMC7712490 DOI: 10.3390/jpm10040232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a fatal neurodegenerative disorder caused by protein misfolding and aggregation, affecting brain function and causing dementia. Amyloid beta (Aβ), a peptide deriving from amyloid precursor protein (APP) cleavage by-and γ-secretases, is considered a pathological hallmark of AD. Our previous study, together with several lines of evidence, identified a strict link between APP, Aβ and 37/67kDa laminin receptor (LR), finding the possibility to regulate intracellular APP localization and maturation through modulation of the receptor. Here, we report that in fibroblasts from familial AD (fAD), APP was prevalently expressed as an immature isoform and accumulated preferentially in the transferrin-positive recycling compartment rather than in the Golgi apparatus. Moreover, besides the altered mitochondrial network exhibited by fAD patient cells, the levels of pAkt and pGSK3 were reduced in respect to healthy control fibroblasts and were accompanied by an increased amount of secreted Aβ in conditioned medium from cell cultures. Interestingly, these features were reversed by inhibition of 37/67kDa LR by NSC47924 a small molecule that was able to rescue the “typical” APP localization in the Golgi apparatus, with consequences on the Aβ level and mitochondrial network. Altogether, these findings suggest that 37/67kDa LR modulation may represent a useful tool to control APP trafficking and Aβ levels with implications in Alzheimer’s disease.
Collapse
Affiliation(s)
- Antaripa Bhattacharya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Filomena Napolitano
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Adriana Limone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (F.M.); (A.M.)
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy; (F.M.); (A.M.)
| | - Giuseppina Minopoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
| | - Alessandra Lo Bianco
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (A.L.B.); (A.L.)
| | - Federica Di Maggio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Naples, Italy;
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Naples, Italy;
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Nunzia Montuori
- Department of Translational Medical Sciences, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (F.N.); (N.M.)
| | - Antonio Lavecchia
- Department of Pharmacy, “Drug Discovery Lab”, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (A.L.B.); (A.L.)
| | - Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy; (A.B.); (A.I.); (N.M.); (A.L.); (G.M.); (F.D.M.)
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Naples, Italy;
- Correspondence:
| |
Collapse
|
284
|
Mutational analysis in familial Alzheimer's disease of Han Chinese in Taiwan with a predominant mutation PSEN1 p.Met146Ile. Sci Rep 2020; 10:19769. [PMID: 33188256 PMCID: PMC7666133 DOI: 10.1038/s41598-020-76794-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022] Open
Abstract
Mutations in PSEN1, PSEN2, or APP genes are known to be causative for autosomal dominant Alzheimer’s disease (ADAD). While more than 400 mutations were reported worldwide, predominantly PSEN1, over 40 mutations have been reported in Han Chinese and were associated with earlier onset and more affected family members. Between 2002 and 2018, 77 patients in the neurological clinic of Taipei Veterans General Hospital with a history suggestive of ADAD were referred for mutational analysis. We retrospectively collected demographics, initial symptoms, neurological features and inheritance. We identified 16 patients with PSEN1 and 1 with APP mutation. Among the mutations identified, PSEN1 p.Pro117Leu, p.Met146Ile, p.Gly206Asp, p.Gly209Glu, p.Glu280Lys and p.Leu286Val and APP p.Asp678His were known pathogenic mutations; PSEN1 p.His131Arg and p.Arg157Ser were classified as likely pathogenic and variance of unknown significance respectively. The mean age at onset was 46.2 ± 6.2 years in patients with mutation found. PSEN1 p.Met146Ile, occurred in 56.2% (9/16) of patients with PSEN1 mutations, was the most frequent mutation in the cohort. The additional neurological features occurring in 9 PSEN1 p.Met146Ile index patients were similar with the literature. We found patients with genetic diagnoses were more likely to have positive family history, younger age at onset and less brain white matter hyperintensity.
Collapse
|
285
|
Kulminski AM, Philipp I, Loika Y, He L, Culminskaya I. Haplotype architecture of the Alzheimer's risk in the APOE region via co-skewness. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12129. [PMID: 33204816 PMCID: PMC7656174 DOI: 10.1002/dad2.12129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION As a multifactorial polygenic disorder, Alzheimer's disease (AD) can be associated with complex haplotypes or compound genotypes. METHODS We examined associations of 4960 single nucleotide polymorphism (SNP) triples, comprising 32 SNPs from five genes in the apolipoprotein E gene (APOE) region with AD in a sample of 2789 AD-affected and 16,334 unaffected subjects. RESULTS We identified a large number of 1127 AD-associated triples, comprising SNPs from all five genes, in support of definitive roles of complex haplotypes in predisposition to AD. These haplotypes may not include the APOE ε4 and ε2 alleles. For triples with rs429358 or rs7412, which encode these alleles, AD is characterized mainly by strengthening connections of the ε4 allele and weakening connections of the ε2 allele with the other alleles in this region. DISCUSSION Dissecting heterogeneity attributed to AD-associated complex haplotypes in the APOE region will target more homogeneous polygenic profiles of people at high risk of AD.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research UnitSocial Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Ian Philipp
- Biodemography of Aging Research UnitSocial Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Yury Loika
- Biodemography of Aging Research UnitSocial Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Liang He
- Biodemography of Aging Research UnitSocial Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| | - Irina Culminskaya
- Biodemography of Aging Research UnitSocial Science Research InstituteDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
286
|
Oliveira AC, Costa T, Justino LLG, Fausto R, Morfin JF, Tóth É, Geraldes CFGC, Burrows HD. Photophysical studies on lanthanide(III) chelates conjugated to Pittsburgh compound B as luminescent probes targeted to Aβ amyloid aggregates. Photochem Photobiol Sci 2020; 19:1522-1537. [PMID: 32966544 DOI: 10.1039/d0pp00214c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The photophysical properties of Eu3+ and Tb3+ complexes of DOTAGA and DO3A-monoamide conjugates of the Pittsburgh compound B (PiB) chromophore, prepared using linkers of different lengths and flexibilities, and which form stable negatively charged (LnL1), and uncharged (LnL2) complexes, respectively, were studied as potential probes for optical detection of amyloid aggregates. The phenylbenzothiazole (PiB) moiety absorbs light at wavelengths longer than 330 nm with a high molar absorption coefficient in both probes, and acts as an antenna in these systems. The presence of the luminescent Ln3+ ion quenches the excited states of PiB through an energy transfer process from the triplet state of PiB to the metal centre, and structured emission is seen from Eu3+ and Tb3+. The luminescence study indicates the presence of a 5D4 → T1 back transfer process in the Tb3+ complexes. It also provides insights on structural properties of the Eu3+ complexes, such as the high symmetry environment of the Eu3+ ion in a single macrocyclic conformation and the presence of one water molecule in its inner coordination sphere. The overall quantum yield of luminescence of EuL1 is higher than for EuL2. However, their low values reflect the low overall sensitization efficiency of the energy transfer process, which is a consequence of the large distances between the metal center and the antenna, especially in the EuL2 complex. DFT calculations confirmed that the most stable conformation of the Eu3+ complexes involves a combination of a square antiprismatic (SAP) geometry of the chelate and an extended conformation of the linker. The large calculated average distances between the metal center and the antenna point to the predominance of the Förster energy transfer mechanism, especially for EuL2. This study provides insights into the behavior of amyloid-targeted Ln3+ complexes as optical probes, and contributes towards their rational design.
Collapse
Affiliation(s)
- Alexandre C Oliveira
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Telma Costa
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Licinia L G Justino
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Rui Fausto
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Carlos F G C Geraldes
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal. and University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-393 Coimbra, Portugal. and CIBIT/ICNAS - Instituto de Ciências Nucleares Aplicadas à Saúde, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Hugh D Burrows
- University of Coimbra, Coimbra Chemistry Centre (CQC), Department of Chemistry, 3004-535 Coimbra, Portugal.
| |
Collapse
|
287
|
Barel G, Herwig R. NetCore: a network propagation approach using node coreness. Nucleic Acids Res 2020; 48:e98. [PMID: 32735660 PMCID: PMC7515737 DOI: 10.1093/nar/gkaa639] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
We present NetCore, a novel network propagation approach based on node coreness, for phenotype–genotype associations and module identification. NetCore addresses the node degree bias in PPI networks by using node coreness in the random walk with restart procedure, and achieves improved re-ranking of genes after propagation. Furthermore, NetCore implements a semi-supervised approach to identify phenotype-associated network modules, which anchors the identification of novel candidate genes at known genes associated with the phenotype. We evaluated NetCore on gene sets from 11 different GWAS traits and showed improved performance compared to the standard degree-based network propagation using cross-validation. Furthermore, we applied NetCore to identify disease genes and modules for Schizophrenia GWAS data and pan-cancer mutation data. We compared the novel approach to existing network propagation approaches and showed the benefits of using NetCore in comparison to those. We provide an easy-to-use implementation, together with a high confidence PPI network extracted from ConsensusPathDB, which can be applied to various types of genomics data in order to obtain a re-ranking of genes and functionally relevant network modules.
Collapse
Affiliation(s)
- Gal Barel
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max-Planck-Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| |
Collapse
|
288
|
Caldwell AB, Liu Q, Schroth GP, Galasko DR, Yuan SH, Wagner SL, Subramaniam S. Dedifferentiation and neuronal repression define familial Alzheimer's disease. SCIENCE ADVANCES 2020; 6:6/46/eaba5933. [PMID: 33188013 PMCID: PMC7673760 DOI: 10.1126/sciadv.aba5933] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/23/2020] [Indexed: 05/05/2023]
Abstract
Identifying the systems-level mechanisms that lead to Alzheimer's disease, an unmet need, is an essential step toward the development of therapeutics. In this work, we report that the key disease-causative mechanisms, including dedifferentiation and repression of neuronal identity, are triggered by changes in chromatin topology. Here, we generated human induced pluripotent stem cell (hiPSC)-derived neurons from donor patients with early-onset familial Alzheimer's disease (EOFAD) and used a multiomics approach to mechanistically characterize the modulation of disease-associated gene regulatory programs. We demonstrate that EOFAD neurons dedifferentiate to a precursor-like state with signatures of ectoderm and nonectoderm lineages. RNA-seq, ATAC-seq, and ChIP-seq analysis reveals that transcriptional alterations in the cellular state are orchestrated by changes in histone methylation and chromatin topology. Furthermore, we demonstrate that these mechanisms are observed in EOFAD-patient brains, validating our hiPSC-derived neuron models. The mechanistic endotypes of Alzheimer's disease uncovered here offer key insights for therapeutic interventions.
Collapse
Affiliation(s)
- Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Qing Liu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
289
|
Bustos V, Pulina MV, Ledo J. Amyloidogenic and anti-amyloidogenic properties of presenilin 1. ADVANCES IN PHARMACOLOGY 2020; 90:239-251. [PMID: 33706935 DOI: 10.1016/bs.apha.2020.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Presenilin 1 (PS1) is an intramembrane protease, the active subunit of the γ-secretase complex. Its well-studied function is the amyloidogenic cleavage of the C-terminal fragment of the amyloid precursor protein, also known as C99, to produce the Abeta peptide. Recent findings from the Greengard laboratory suggest that PS1 also have anti-amyloidogenic activities, which reduce Abeta levels. First, it redirects APP-C99 toward autophagic degradation, lowering the amount that can be converted into Abeta. The protein kinase CK1γ2 phosphorylates PS1 at Ser367. Phosphorylated PS1 at this position interacts with Annexin A2, which, in turn, interacts with the lysosomal N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) Vamp8. Annexin A2 facilitates the binding of Vamp8 to the autophagosomal SNARE Syntaxin 17 to modulate the fusion of autophagosomes with lysosomes. Thus, PS1 phosphorylated at Ser367 has an anti-amyloidogenic function, promoting autophagosome-lysosome fusion and increasing C99 degradation. Second, it enhances the ability of microglia to phagocyte and degrade extracellular Abeta oligomer, through regulating the expression of the lysosomal master regulator TFEB. Thus, PS1 has a role in both the production and the clearance of Abeta. Drugs designed to activate CK1γ2 and increase the level of PS1 phosphorylated at Ser367 should be useful in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Victor Bustos
- Laboratory of Cellular and Molecular Neuroscience, Rockefeller University, New York, NY, United States.
| | - Maria V Pulina
- Laboratory of Cellular and Molecular Neuroscience, Rockefeller University, New York, NY, United States
| | - Jose Ledo
- Laboratory of Cellular and Molecular Neuroscience, Rockefeller University, New York, NY, United States
| |
Collapse
|
290
|
A Novel NIR-FRET Biosensor for Reporting PS/γ-Secretase Activity in Live Cells. SENSORS 2020; 20:s20215980. [PMID: 33105735 PMCID: PMC7660074 DOI: 10.3390/s20215980] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
Presenilin (PS)/γ-secretase plays a pivotal role in essential cellular events via proteolytic processing of transmembrane proteins that include APP and Notch receptors. However, how PS/γ-secretase activity is spatiotemporally regulated by other molecular and cellular factors and how the changes in PS/γ-secretase activity influence signaling pathways in live cells are poorly understood. These questions could be addressed by engineering a new tool that enables multiplexed imaging of PS/γ-secretase activity and additional cellular events in real-time. Here, we report the development of a near-infrared (NIR) FRET-based PS/γ-secretase biosensor, C99 720-670 probe, which incorporates an immediate PS/γ-secretase substrate APP C99 with miRFP670 and miRFP720 as the donor and acceptor fluorescent proteins, respectively. Extensive validation demonstrates that the C99 720-670 biosensor enables quantitative monitoring of endogenous PS/γ-secretase activity on a cell-by-cell basis in live cells (720/670 ratio: 2.47 ± 0.66 (vehicle) vs. 3.02 ± 1.17 (DAPT), ** p < 0.01). Importantly, the C99 720-670 and the previously developed APP C99 YPet-Turquoise-GL (C99 Y-T) biosensors simultaneously report PS/γ-secretase activity. This evidences the compatibility of the C99 720-670 biosensor with cyan (CFP)-yellow fluorescent protein (YFP)-based FRET biosensors for reporting other essential cellular events. Multiplexed imaging using the novel NIR biosensor C99 720-670 would open a new avenue to better understand the regulation and consequences of changes in PS/γ-secretase activity.
Collapse
|
291
|
Ho HY, Lin FCF, Chen PN, Chen MK, Hsin CH, Yang SF, Lin CW. Tricetin Suppresses Migration and Presenilin-1 Expression of Nasopharyngeal Carcinoma through Akt/GSK-3β Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1203-1220. [PMID: 32668971 DOI: 10.1142/s0192415x20500597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lymph node migration results in poor prognoses for nasopharyngeal carcinoma (NPC) patients. Tricetin, a flavonoid derivative, regulates tumorigenesis activity through its antiproliferative and antimetastatic properties. However, the molecular mechanism of tricetin affecting the migration and invasion of NPC cells remains poorly understood. In this paper, we examined the antimetastatic properties of tricetin in human NPC cells. Our results demonstrated that tricetin at noncytotoxic concentrations (0-80 3M) noticeably reduced the migration and invasion of NPC cells (HONE-1, NPC-39, and NPC-BM). Moreover, tricetin suppressed the indicative protease, presenilin-1 (PS-1), as indicated by protease array. PS-1 was transcriptionally inhibited via the Akt signaling pathway but not mitogen-activated protein kinase pathways, such as the JNK, p38, and ERK1/2 pathways. In addition to upregulating GSK-3[Formula: see text] phosphorylation through Akt suppression, tricetin may downregulate the activity of PS-1. Overall, our study provides new insight into the role of tricetin-induced molecular regulation in the suppression of NPC metastasis and suggests that tricetin has prospective therapeutic applications for patients with NPC.
Collapse
Affiliation(s)
- Hsin-Yu Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Frank Cheau-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Mu-Kuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Chung-Han Hsin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
292
|
O'Connor A, Weston PSJ, Pavisic IM, Ryan NS, Collins JD, Lu K, Crutch SJ, Alexander DC, Fox NC, Oxtoby NP. Quantitative detection and staging of presymptomatic cognitive decline in familial Alzheimer's disease: a retrospective cohort analysis. Alzheimers Res Ther 2020; 12:126. [PMID: 33023653 PMCID: PMC7539456 DOI: 10.1186/s13195-020-00695-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/17/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Understanding the earliest manifestations of Alzheimer's disease (AD) is key to realising disease-modifying treatments. Advances in neuroimaging and fluid biomarkers have improved our ability to identify AD pathology in vivo. The critical next step is improved detection and staging of early cognitive change. We studied an asymptomatic familial Alzheimer's disease (FAD) cohort to characterise preclinical cognitive change. METHODS Data included 35 asymptomatic participants at 50% risk of carrying a pathogenic FAD mutation. Participants completed a multi-domain neuropsychology battery. After accounting for sex, age and education, we used event-based modelling to estimate the sequence of cognitive decline in presymptomatic FAD, and uncertainty in the sequence. We assigned individuals to their most likely model stage of cumulative cognitive decline, given their data. Linear regression of estimated years to symptom onset against model stage was used to estimate the timing of preclinical cognitive decline. RESULTS Cognitive change in mutation carriers was first detected in measures of accelerated long-term forgetting, up to 10 years before estimated symptom onset. Measures of subjective cognitive decline also revealed early abnormalities. Our data-driven model demonstrated subtle cognitive impairment across multiple cognitive domains in clinically normal individuals on the AD continuum. CONCLUSIONS Data-driven modelling of neuropsychological test scores has potential to differentiate cognitive decline from cognitive stability and to estimate a fine-grained sequence of decline across cognitive domains and functions, in the preclinical phase of Alzheimer's disease. This can improve the design of future presymptomatic trials by informing enrichment strategies and guiding the selection of outcome measures.
Collapse
Affiliation(s)
- Antoinette O'Connor
- Dementia Research Centre, UCL Queen Square Institute Of Neurology, 8-11 Queen Square, London, WC1N 3AR, UK. antoinette.o'
- UK Dementia Research Institute at UCL, UCL, London, UK. antoinette.o'
| | - Philip S J Weston
- Dementia Research Centre, UCL Queen Square Institute Of Neurology, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Ivanna M Pavisic
- Dementia Research Centre, UCL Queen Square Institute Of Neurology, 8-11 Queen Square, London, WC1N 3AR, UK
- UK Dementia Research Institute at UCL, UCL, London, UK
| | - Natalie S Ryan
- Dementia Research Centre, UCL Queen Square Institute Of Neurology, 8-11 Queen Square, London, WC1N 3AR, UK
- UK Dementia Research Institute at UCL, UCL, London, UK
| | - Jessica D Collins
- Dementia Research Centre, UCL Queen Square Institute Of Neurology, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Kirsty Lu
- Dementia Research Centre, UCL Queen Square Institute Of Neurology, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Sebastian J Crutch
- Dementia Research Centre, UCL Queen Square Institute Of Neurology, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Daniel C Alexander
- Department of Computer Science, UCL Centre for Medical Image Computing, 1st Floor, 90 High Holborn, London, WC1V 6LJ, UK
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute Of Neurology, 8-11 Queen Square, London, WC1N 3AR, UK
- UK Dementia Research Institute at UCL, UCL, London, UK
| | - Neil P Oxtoby
- Department of Computer Science, UCL Centre for Medical Image Computing, 1st Floor, 90 High Holborn, London, WC1V 6LJ, UK.
| |
Collapse
|
293
|
Jaunmuktane Z, Brandner S. Invited Review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathol Appl Neurobiol 2020; 46:522-545. [PMID: 31868945 PMCID: PMC7687189 DOI: 10.1111/nan.12592] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/30/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The prototype of transmissible neurodegenerative proteinopathies is prion diseases, characterized by aggregation of abnormally folded conformers of the native prion protein. A wealth of mechanisms has been proposed to explain the conformational conversion from physiological protein into misfolded, pathological form, mode of toxicity, propagation from cell-to-cell and regional spread. There is increasing evidence that other neurodegenerative diseases, most notably Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), frontotemporal dementia (TDP43, tau or FUS) and motor neurone disease (TDP43), exhibit at least some of the misfolded prion protein properties. In this review, we will discuss to what extent each of the properties of misfolded prion protein is known to occur for Aβ, tau, α-synuclein and TDP43, with particular focus on self-propagation through seeding, conformational strains, selective cellular and regional vulnerability, stability and resistance to inactivation, oligomers, toxicity and summarize the most recent literature on transmissibility of neurodegenerative disorders.
Collapse
Affiliation(s)
- Z. Jaunmuktane
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders
| | - S. Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryUniversity College London NHS Foundation Trust
- Department of Neurodegenerative diseaseQueen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
294
|
Mo D, Li X, Raabe CA, Rozhdestvensky TS, Skryabin BV, Brosius J. Circular RNA Encoded Amyloid Beta peptides-A Novel Putative Player in Alzheimer's Disease. Cells 2020; 9:E2196. [PMID: 33003364 PMCID: PMC7650678 DOI: 10.3390/cells9102196] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related detrimental dementia. Amyloid beta peptides (Aβ) play a crucial role in the pathology of AD. In familial AD, Aβ are generated from the full-length amyloid beta precursor protein (APP) via dysregulated proteolytic processing; however, in the case of sporadic AD, the mechanism of Aβ biogenesis remains elusive. circRNAs are a class of transcripts preferentially expressed in brain. We identified a circRNA harboring the Aβ-coding region of the APP gene termed circAβ-a. This circular RNA was detected in the brains of AD patients and non-dementia controls. With the aid of our recently established approach for analysis of circRNA functions, we demonstrated that circAβ-a is efficiently translated into a novel Aβ-containing Aβ175 polypeptide (19.2 KDa) in both cultured cells and human brain. Furthermore, Aβ175 was shown to be processed into Aβ peptides-a hallmark of AD. In summary, our analysis revealed an alternative pathway of Aβ biogenesis. Consequently, circAβ-a and its corresponding translation product could potentially represent novel therapeutic targets for AD treatment. Importantly, our data point to yet another evolutionary route for potentially increasing proteome complexity by generating additional polypeptide variants using back-splicing of primary transcripts that yield circular RNA templates.
Collapse
Affiliation(s)
- Dingding Mo
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany;
- VIB-KU Leuven Center for Brain & Disease Research, KU Leuven, O&N IV Herestraat 49—box 602, 3000 Leuven, Belgium
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (T.S.R.); (B.V.S.)
| | - Xinping Li
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany;
| | - Carsten A. Raabe
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (C.A.R.); (J.B.)
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Germany
| | - Timofey S. Rozhdestvensky
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (T.S.R.); (B.V.S.)
| | - Boris V. Skryabin
- Medical Faculty, Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (T.S.R.); (B.V.S.)
| | - Juergen Brosius
- Institute of Experimental Pathology, Centre for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany; (C.A.R.); (J.B.)
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610212, China
| |
Collapse
|
295
|
Zhang W, Jiao B, Xiao T, Liu X, Liao X, Xiao X, Guo L, Yuan Z, Yan X, Tang B, Shen L. Association of rare variants in neurodegenerative genes with familial Alzheimer's disease. Ann Clin Transl Neurol 2020; 7:1985-1995. [PMID: 32941707 PMCID: PMC7545599 DOI: 10.1002/acn3.51197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Objective To investigate the impact of rare variants underlying neurodegenerative‐related genes to familial Alzheimer’s disease (AD). Methods We performed targeted sequencing of 277 neurodegenerative‐related genes on probands from 75 Chinese AD families non‐carrying causative mutation of dementia genes. Rare coding variants segregated in families were tested for association in an independent cohort of 506 patients with sporadic AD and 498 cognitively normal controls. East Asians data from the Exome Aggregation Consortium (ExAC) were used as a reference control. Results A novel rare variant, P410S of PLD3 was found in an early‐onset AD family. LRRK2 I2012T, a causative mutation of Parkinson’s disease, was identified in another early‐onset AD family. Missense variants in ABCA7 (P143S and A1507T) and CR1(T239M) were significantly associated with familial AD (P = 0.005437, 0.001383, 0.000549), a missense variant in TREM2(S183C) was significantly associated with AD (P = 0.000396) when compared with the East Asian controls in ExAC database. A non‐frameshift variant in FUS (G223del) was frequent in AD cases and significantly associated with familial AD (P = 0.008). Interpretation Multiple rare coding variants of causal and risk neurodegenerative genes were presented in clinically diagnosed AD families that may confer risk of AD. Our data supported that the clinical, pathological, and genetic architectures of AD, PD, and FTD/ALS may overlapping. We propose that targeted sequencing on neurodegenerative‐related genes is necessary for genetically unclear AD families.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Imaging Center, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Tingting Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Geriatric, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
296
|
Stojković D, Kostić M, Smiljković M, Aleksić M, Vasiljević P, Nikolić M, Soković M. Linking Antimicrobial Potential of Natural Products Derived from Aquatic Organisms and Microbes Involved in Alzheimer's Disease - A Review. Curr Med Chem 2020. [PMID: 29521212 DOI: 10.2174/0929867325666180309103645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The following review is oriented towards microbes linked to Alzheimer's disease (AD) and antimicrobial effect of compounds and extracts derived from aquatic organisms against specific bacteria, fungi and viruses which were found previously in patients suffering from AD. Major group of microbes linked to AD include bacteria: Chlamydia pneumoniae, Helicobacter pylori, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Actinomyces naeslundii, spirochete group; fungi: Candida sp., Cryptococcus sp., Saccharomyces sp., Malassezia sp., Botrytis sp., and viruses: herpes simplex virus type 1 (HSV-1), Human cytomegalovirus (CMV), hepatitis C virus (HCV). In the light of that fact, this review is the first to link antimicrobial potential of aquatic organisms against these sorts of microbes. This literature review might serve as a starting platform to develop novel supportive therapy for patients suffering from AD and to possibly prevent escalation of the disease in patients already having high-risk factors for AD occurrence.
Collapse
Affiliation(s)
- Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Smiljković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Milena Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
| | - Perica Vasiljević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Nis, Visegradska 33, 18000 Nis, Serbia
| | - Miloš Nikolić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
297
|
Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer's Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med 2020; 10:jpm10030116. [PMID: 32911755 PMCID: PMC7565390 DOI: 10.3390/jpm10030116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients. These findings have defined, together with the extensive neurodegeneration, the diagnostic criteria of the disease. The ability to detect changes in the levels of amyloid and tau in cerebrospinal fluid (CSF) first, and more recently in blood, has allowed us to use these biomarkers for the specific in-vivo diagnosis of AD in humans. Furthermore, other pathological elements of AD, such as the loss of neurons, inflammation and metabolic derangement, have translated to the definition of other CSF and blood biomarkers, which are not specific of the disease but, when combined with amyloid and tau, correlate with the progression from mild cognitive impairment to AD dementia, or identify patients who will develop AD pathology. In this review, we discuss the role of current and hypothetical biomarkers of Alzheimer's disease, their specificity, and the caveats of current high-sensitivity platforms for their peripheral detection.
Collapse
|
298
|
Jia L, Xu H, Chen S, Wang X, Yang J, Gong M, Wei C, Tang Y, Qu Q, Chu L, Shen L, Zhou C, Wang Q, Zhao T, Zhou A, Li Y, Li F, Li Y, Jin H, Qin Q, Jiao H, Li Y, Zhang H, Lyu D, Shi Y, Song Y, Jia J. The APOE ε4 exerts differential effects on familial and other subtypes of Alzheimer's disease. Alzheimers Dement 2020; 16:1613-1623. [PMID: 32881347 PMCID: PMC7984370 DOI: 10.1002/alz.12153] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/24/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The genetic risk effects of apolipoprotein E (APOE) on familial Alzheimer's disease (FAD) with or without gene mutations, sporadic AD (SAD), and normal controls (NC) remain unclear in the Chinese population. METHODS In total, 15 119 subjects, including 311 FAD patients without PSEN1, PSEN2, APP, TREM2, and SORL1 pathogenic mutations (FAD [unknown]); 126 FAD patients with PSENs/APP mutations (FAD [PSENs/APP]); 7234 SAD patients; and 7448 NC were enrolled. The risk effects of APOE ε4 were analyzed across groups. RESULTS The prevalence of the APOE ε4 genotype in FAD (unknown), FAD (PSENs/APP), SAD, and NC groups was 56.27%, 26.19%, 36.23%, and 19.54%, respectively. Further, the APOE ε4 positive genotype had predictive power for FAD (unknown) risk (odds ratio: 4.51, 95% confidence interval: 3.57-5.45, P < .001). DISCUSSION APOE ε4 positive genotype may cause familial aggregation, and the investigation of multiple interventions targeting APOE pathological function to reduce the risk for this disease warrants attention.
Collapse
Affiliation(s)
- Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hui Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuoqi Chen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiu Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianwei Yang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Min Gong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Lan Chu
- Department of Neurology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital Central South University, Changsha, China
| | - Chunkui Zhou
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Tan Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haishan Jiao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Heng Zhang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Diyang Lyu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yuqing Shi
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Song
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
299
|
Mekala S, Nelson G, Li YM. Recent developments of small molecule γ-secretase modulators for Alzheimer's disease. RSC Med Chem 2020; 11:1003-1022. [PMID: 33479693 PMCID: PMC7513388 DOI: 10.1039/d0md00196a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of progressive neurodegenerative disorder, marked by memory loss and a decline in cognitive function. The major hallmarks of AD are the presence of intracellular neurofibrillary tau tangles (NFTs) composed of hyperphosphorylated tau proteins and extracellular plaques composed of amyloid beta peptides (Aβ). The amyloid (Aβ) cascade hypothesis proposes that the AD pathogenesis is initiated by the accumulation of Aβ peptides in the parenchyma of the brain. An aspartyl intramembranal protease called γ-secretase is responsible for the production of Aβ by the cleavage of the amyloid precursor protein (APP). Clinical studies of γ-secretase inhibitors (GSIs) for AD failed due to the lack of substrate specificity. Therefore, γ-secretase modulators (GSMs) have been developed as potential disease modifying agents to modulate the γ-secretase cleavage activity towards the production of toxic Aβ42 peptides. Following the first-generation 'nonsteroidal anti-inflammatory drug' (NSAID) based GSMs, second-generation GSMs (carboxylic acid based NSAID derivatives and non-NSAID derived heterocyclic analogues), as well as natural product-based GSMs, have been developed. In this review, we focus on the recent developments of small molecule-based GSMs that show potential improvements in terms of drug-like properties as well as their current status in human clinical trials and the future perspectives of GSM research.
Collapse
Affiliation(s)
- Shekar Mekala
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
| | - Grady Nelson
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
| | - Yue-Ming Li
- Chemical Biology Program , Memorial Sloan-Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , USA . ;
- Pharmacology Graduate Program , Weill Graduate School of Medical Sciences of Cornell University , New York , New York 10021 , USA
| |
Collapse
|
300
|
Neuner SM, Tcw J, Goate AM. Genetic architecture of Alzheimer's disease. Neurobiol Dis 2020; 143:104976. [PMID: 32565066 PMCID: PMC7409822 DOI: 10.1016/j.nbd.2020.104976] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/30/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Advances in genetic and genomic technologies over the last thirty years have greatly enhanced our knowledge concerning the genetic architecture of Alzheimer's disease (AD). Several genes including APP, PSEN1, PSEN2, and APOE have been shown to exhibit large effects on disease susceptibility, with the remaining risk loci having much smaller effects on AD risk. Notably, common genetic variants impacting AD are not randomly distributed across the genome. Instead, these variants are enriched within regulatory elements active in human myeloid cells, and to a lesser extent liver cells, implicating these cell and tissue types as critical to disease etiology. Integrative approaches are emerging as highly effective for identifying the specific target genes through which AD risk variants act and will likely yield important insights related to potential therapeutic targets in the coming years. In the future, additional consideration of sex- and ethnicity-specific contributions to risk as well as the contribution of complex gene-gene and gene-environment interactions will likely be necessary to further improve our understanding of AD genetic architecture.
Collapse
Affiliation(s)
- Sarah M Neuner
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Julia Tcw
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison M Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|