251
|
Salvucci O, de la Luz Sierra M, Martina JA, McCormick PJ, Tosato G. EphB2 and EphB4 receptors forward signaling promotes SDF-1-induced endothelial cell chemotaxis and branching remodeling. Blood 2006; 108:2914-22. [PMID: 16840724 PMCID: PMC1895526 DOI: 10.1182/blood-2006-05-023341] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The complex molecular mechanisms that drive endothelial cell movement and the formation of new vessels are poorly understood and require further investigation. Eph receptor tyrosine kinases and their membrane-anchored ephrin ligands regulate cell movements mostly by cell-cell contact, whereas the G-protein-coupled receptor CXCR4 and its unique SDF-1 chemokine ligand regulate cell movement mostly through soluble gradients. By using biochemical and functional approaches, we investigated how ephrinB and SDF-1 orchestrate endothelial cell movement and morphogenesis into capillary-like structures. We describe how endogenous EphB2 and EphB4 signaling are required for the formation of extracellular matrix-dependent capillary-like structures in primary human endothelial cells. We further demonstrate that EphB2 and EphB4 activation enhance SDF-1-induced signaling and chemotaxis that are also required for extracellular matrix-dependent endothelial cell clustering. These results support a model in which SDF-1 gradients first promote endothelial cell clustering and then EphB2 and EphB4 critically contribute to subsequent cell movement and alignment into cord-like structures. This study reveals a requirement for endogenous Eph signaling in endothelial cell morphogenic processes, uncovers a novel link between EphB forward signaling and SDF-1-induced signaling, and demonstrates a mechanism for cooperative regulation of endothelial cell movement.
Collapse
Affiliation(s)
- Ombretta Salvucci
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
252
|
Yang P, Baker KA, Hagg T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog Neurobiol 2006; 79:73-94. [PMID: 16824663 DOI: 10.1016/j.pneurobio.2006.05.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 05/18/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
A disintegrin and metalloprotease (ADAM) transmembrane proteins have metalloprotease, integrin-binding, intracellular signaling and cell adhesion activities. In contrast to other metalloproteases, ADAMs are particularly important for cleavage-dependent activation of proteins such as Notch, amyloid precursor protein (APP) and transforming growth factor alpha (TGFalpha), and can bind integrins. Not surprisingly, ADAMs have been shown or suggested to play important roles in the development of the nervous system, where they regulate proliferation, migration, differentiation and survival of various cells, as well as axonal growth and myelination. On the eleventh anniversary of the naming of this family of proteins, the relatively unknown ADAMs are emerging as potential therapeutic targets for neural repair. For example, over-expression of ADAM10, one of the alpha-secretases for APP, can prevent amyloid formation and hippocampal defects in an Alzheimer mouse model. Another example of this potential neural repair role is the finding that ADAM21 is uniquely associated with neurogenesis and growing axons of the adult brain. This comprehensive review will discuss the growing literature about the roles of ADAMs in the developing and adult nervous system, and their potential roles in neurological disorders. Most excitingly, the expanding understanding of their normal roles suggests that they can be manipulated to promote neural repair in the degenerating and injured adult nervous system.
Collapse
Affiliation(s)
- Peng Yang
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville, Louisville, KY 40292, USA
| | | | | |
Collapse
|
253
|
Muñoz JJ, Alfaro D, García-Ceca J, Alonso-C LM, Jiménez E, Zapata A. Thymic Alterations in EphA4-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:804-13. [DOI: 10.4049/jimmunol.177.2.804] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
254
|
Miller K, Kolk SM, Donoghue MJ. EphA7-ephrin-A5 signaling in mouse somatosensory cortex: developmental restriction of molecular domains and postnatal maintenance of functional compartments. J Comp Neurol 2006; 496:627-42. [PMID: 16615124 DOI: 10.1002/cne.20926] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Members of the Eph family of receptor tyrosine kinases and their ligands, the ephrins, are expressed in distinct patterns in the forming cortex. EphA7 is expressed early in cortical development, becoming concentrated in anterior and posterior domains, whereas ephrin-A5 is expressed later in corticogenesis, highest in the middle region that has low levels of EphA7. The EphA7 gene produces full-length and truncated isoforms, which are repulsive and adhesive, respectively. Analysis of cortical RNA expression demonstrates that proportions of these isoforms change with time, from a more repulsive mix during embryogenesis to a more permissive mix postnatally. To examine how EphA7 and ephrin-A5 influence the formation of cortical regions, EphA7-/- mice were analyzed. Within the cortex of EphA7-/- mice, the distribution of ephrin-A5 was more extensive, encompassing its usual medial domain but also extending more posteriorly toward the occipital pole. Moreover, relative levels of ephrin-A5 along the cortex's anatomical axes changed in EphA7-/- animals, creating less striking shifts in ligand abundance. Furthermore, in vivo functional studies revealed that EphA7 exerts a repulsive influence on ephrin-A5-expressing cells during corticogenesis. In contrast, EphA7 appears to mediate permissive interactions in the postnatal cortex: the area of somatosensory cortex was significantly reduced in EphA7-/- mice. A similar reduction was present in ephrin-A5-/- animals and a more pronounced decrease was observed in EphA7/ephrin-A5-/- cortex. Taken together, this study supports a role for EphA7 and ephrin-A5 in the establishment and maintenance of certain cortical domains and suggests that the nature of their interactions changes with cortical maturity.
Collapse
Affiliation(s)
- Katherine Miller
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
255
|
Tousseyn T, Jorissen E, Reiss K, Hartmann D. (Make) stick and cut loose--disintegrin metalloproteases in development and disease. ACTA ACUST UNITED AC 2006; 78:24-46. [PMID: 16622847 DOI: 10.1002/bdrc.20066] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
"A disintegrin and metalloprotease" (ADAM) proteases form a still growing family of about 40 type 1 transmembrane proteins. They are defined by a common modular ectodomain architecture that combines cell deadhesion/adhesion and fusion motifs (disintegrin and cysteine-rich domains), with a Zn-protease domain capped by a large prodomain. Their ectodomain thus strikingly resembles snake venom disintegrin proteases, which by combined integrin blocking and extracellular proteolysis, can cause extensive tissue damage after snake bites. A surprisingly large proportion (13 ADAMs) is exclusively expressed in the male gonads, and only a minority can be found throughout all tissues. As predicted by their amino acid sequence, a major proportion of this family has not maintained a functional protease domain, most probably rendering them into pure adhesion and/or fusion proteins. For most ADAMs, the respective key function has remained elusive. Despite their overall conserved ectodomain structure, ADAMs appear to be subdivided into those with a predominant role in direct adhesion (e.g., ADAMs 1, 2, and 3) and those mainly acting as proteases (e.g., ADAMs 10 and 17). Only for a few of them are functions of more than one domain documented (e.g., ADAM9 in cell fusion and proteolysis). Several ADAMs exist in both membrane-resident and secreted isoforms; the functional significance of this dichotomy is in most cases still unclear. Knockout phenotypes have been informative only in a few cases (ADAMs 1, 2, 10, 12, 15, 17, and 19) and are mainly related to their protease function. A common denominator of ADAM-mediated proteolysis is the ectodomain shedding of a broad spectrum of substrates, including paracrine growth factors like epidermal growth factor receptor (EGFR) ligands, cell adhesion molecules like CD44 or cadherins, and the initiation of regulated intramembrane proteolysis (RIP), whereby the transmembrane fragment of the respective substrate is further cleaved by an intramembrane cleaving protease to release an intracellular domain acting as a nuclear transcription regulator. Most ADAMs feature a significant overlap of substrate specificities, explaining why an inactivation of individual ADAMs only rarely causes major phenotypes.
Collapse
Affiliation(s)
- Thomas Tousseyn
- Laboratory for Neuronal Cell Biology and Gene Transfer, Department for Human Genetics, K.U. Leuven and Flanders Interuniversity Institute for Biotechnology, Leuven/Flanders, Belgium
| | | | | | | |
Collapse
|
256
|
Hurtado O, Pradillo JM, Alonso-Escolano D, Lorenzo P, Sobrino T, Castillo J, Lizasoain I, Moro MA. Neurorepair versus neuroprotection in stroke. Cerebrovasc Dis 2006; 21 Suppl 2:54-63. [PMID: 16651815 DOI: 10.1159/000091704] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stroke is the second to third leading cause of death and the main cause of severe, long-term disability in adults. However, treatment is almost reduced to fibrinolysis, a therapy useful in a low percentage of patients. Given that the immediate treatment for stroke is often unfeasible in the clinical setting, the need for new therapy strategies is imperative. After stroke, the remaining impairment in functions essential for routine activities, such as movement programming and execution, sensorimotor integration, language and other cognitive functions have a deep and life-long impact on the quality of life. An interesting point is that a slow but consistent recovery can be observed in the clinical practice over a period of weeks and months. Whereas the recovery in the first few days likely results from edema resolution and/or from reperfusion of the ischemic penumbra, a large part of the recovery afterwards is due mainly to brain plasticity, by which some regions of the brain assume the functions previously performed by the damaged areas. Neurogenesis and angiogenesis are other possible mechanisms of recovery after stroke. An understanding of the mechanisms underlying functional recovery may shed light on strategies for neurorepair, an alternative with a wide therapeutic window when compared with neuroprotective strategies.
Collapse
Affiliation(s)
- Olivia Hurtado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
257
|
Lledo PM, Alonso M, Grubb MS. Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 2006; 7:179-93. [PMID: 16495940 DOI: 10.1038/nrn1867] [Citation(s) in RCA: 1017] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The adult brain is a plastic place. To ensure that the mature nervous system's control of behaviour is flexible in the face of a varying environment, morphological and physiological changes are possible at many levels, including that of the entire cell. In two areas of the adult brain - the olfactory bulb and the dentate gyrus - new neurons are generated throughout life and form an integral part of the normal functional circuitry. This process is not fixed, but highly modulated, revealing a plastic mechanism by which the brain's performance can be optimized for a given environment. The functional benefits of this whole-cell plasticity, however, remain a matter for debate.
Collapse
Affiliation(s)
- Pierre-Marie Lledo
- Laboratory of Perception and Memory, Institut Pasteur, Centre National de la Recherche Scientifique Unit de Recherche Associée 2182, 25, rue du Docteur Roux, 75724 Paris cedex 15, France.
| | | | | |
Collapse
|
258
|
Abstract
In the adult mouse brain, the subventricular zone (SVZ) is a neurogenic stem cell niche only 4-5 cell diameters thick. Within this narrow zone, a unique microenvironment supports stem cell self-renewal, gliogenesis or neurogenesis lineage decisions and tangential migration of newly generated neurons out of the SVZ and into the olfactory bulb. However, with aging, SVZ neurogenesis declines. Here, we examine the dynamic interplay between SVZ cytoarchitecture and neurogenesis through aging. Assembly of high-resolution electron microscopy images of corresponding coronal sections from 2-, 10- and 22-month-old mice into photomontages reveal a thinning of the SVZ with age. Following a 2-h BrdU pulse, we detect a significant decrease in cell proliferation from 2 to 22 months. Neuroblast numbers decrease with age, as do transitory amplifying progenitor cells, while both SVZ astrocytes and adjacent ependymal cells remain relatively constant. At 22 months, only residual pockets of neurogenesis remain and neuroblasts become restricted to the anterior dorsolateral horn of the SVZ. Within this dorsolateral zone many key components of the younger neurogenic niche are maintained; however, in the aged SVZ, increased numbers of SVZ astrocytes are found interposed within the ependyma. These astrocytes co-label with markers to ependymal cells and astrocytes, form intercellular adherens junctions with neighboring ependymal cells, and some possess multiple basal bodies of cilia within their cytoplasm. Together, these data reveal an age-related, progressive restriction of SVZ neurogenesis to the dorsolateral aspect of the lateral ventricle with increased numbers of SVZ astrocytes interpolated within the ependyma.
Collapse
Affiliation(s)
- Jie Luo
- Center for Regenerative Biology, Department of Physiology and Neurobiology, University of Connecticut, Storrs, 06250-4243, USA
| | | | | | | | | |
Collapse
|
259
|
Calò L, Bruno V, Spinsanti P, Molinari G, Korkhov V, Esposito Z, Patanè M, Melchiorri D, Freissmuth M, Nicoletti F. Interactions between ephrin-B and metabotropic glutamate 1 receptors in brain tissue and cultured neurons. J Neurosci 2006; 25:2245-54. [PMID: 15745950 PMCID: PMC6726088 DOI: 10.1523/jneurosci.4956-04.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the interaction between ephrins and metabotropic glutamate (mGlu) receptors in the developing brain and cultured neurons. EphrinB2 coimmunoprecipitated with mGlu1a receptors, in all of the brain regions examined, and with mGlu5 receptors in the corpus striatum. In striatal slices, activation of ephrinB2 by a clustered form of its target receptor, EphB1, amplified the mGlu receptor-mediated stimulation of polyphosphoinositide (PI) hydrolysis. This effect was abolished in slices treated with mGlu1 or NMDA receptor antagonists but was not affected by pharmacological blockade of mGlu5 receptors. An interaction among ephrinB2, mGlu1 receptor, and NMDA was supported by the following observations: (1) the NR1 subunit of NMDA receptors coimmunoprecipitated with mGlu1a receptors and ephrinB2 in striatal lysates; (2) clustered EphB1 amplified excitatory amino acid-stimulated PI hydrolysis in cultured granule cells grown under conditions that favored the expression of mGlu1a receptors; and (3) clustered EphB1 amplified the enhancing effect of mGlu receptor agonists on NMDA toxicity in cortical cultures, and its action was sensitive to mGlu1 receptor antagonists. Finally, fluorescence resonance energy transfer and coclustering analysis in human embryonic kidney 293 cells excluded a physical interaction between ephrinB2 and mGlu1a (or mGlu5 receptors). A functional interaction between ephrinB and mGlu1 receptors, which likely involves adaptor or scaffolding proteins, might have an important role in the regulation of developmental plasticity.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/metabolism
- Blotting, Western/methods
- Brain/cytology
- Brain/growth & development
- Brain/metabolism
- Carrier Proteins/metabolism
- Cells, Cultured
- Coculture Techniques/methods
- Dose-Response Relationship, Drug
- Drug Interactions
- Embryo, Mammalian
- Enzyme Activation/drug effects
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Fluorescence Resonance Energy Transfer/methods
- Glial Fibrillary Acidic Protein/metabolism
- Homer Scaffolding Proteins
- Humans
- Hydrolysis/drug effects
- Immunoprecipitation/methods
- Luminescent Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/physiology
- Peptide Fragments/pharmacology
- Phosphatidylinositol Phosphates/metabolism
- Potassium/pharmacology
- Protein Structure, Tertiary/physiology
- Quisqualic Acid/pharmacology
- RGS Proteins
- Rats
- Rats, Sprague-Dawley
- Receptor, Metabotropic Glutamate 5
- Receptors, Dopamine D1/metabolism
- Receptors, Eph Family/chemistry
- Receptors, Eph Family/metabolism
- Receptors, Metabotropic Glutamate/deficiency
- Receptors, Metabotropic Glutamate/metabolism
- Repressor Proteins/metabolism
- Spectrometry, Fluorescence/methods
- Time Factors
- Transfection/methods
- Tritium/metabolism
Collapse
Affiliation(s)
- L Calò
- Department of Human Physiology and Pharmacology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
260
|
Petros TJ, Williams SE, Mason CA. Temporal regulation of EphA4 in astroglia during murine retinal and optic nerve development. Mol Cell Neurosci 2006; 32:49-66. [PMID: 16574431 DOI: 10.1016/j.mcn.2006.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/06/2006] [Accepted: 02/16/2006] [Indexed: 01/03/2023] Open
Abstract
Eph receptors and their ephrin ligands play important roles in many aspects of visual system development. In this study, we characterized the spatial and temporal expression pattern of EphA4 in astrocyte precursor cell (APC) and astrocyte populations in the murine retina and optic nerve. EphA4 is expressed by immotile optic disc astrocyte precursor cells (ODAPS), but EphA4 is downregulated as these cells migrate into the retina. Surprisingly, mature astrocytes in the adult retina re-express EphA4. Within the optic nerve, EphA4 is expressed in specialized astrocytes that form a meshwork at the optic nerve head (ONH). Our in vitro and in vivo data indicate that EphA4 is dispensable for retinal ganglion cell (RGC) axon growth and projections through the chiasm. While optic stalk structure, APC proliferation and migration, retinal vascularization, and oligodendrocyte migration appear normal in EphA4 mutants, the expression of EphA4 in APCs and in the astrocyte meshwork at the ONH has implications for optic nerve pathologies.
Collapse
Affiliation(s)
- Timothy J Petros
- Center for Neurobiology and Behavior, Department of Pathology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
261
|
Aguirre A, Rizvi TA, Ratner N, Gallo V. Overexpression of the epidermal growth factor receptor confers migratory properties to nonmigratory postnatal neural progenitors. J Neurosci 2006; 25:11092-106. [PMID: 16319309 PMCID: PMC6725641 DOI: 10.1523/jneurosci.2981-05.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Approaches to successful cell transplantation therapies for the injured brain involve selecting the appropriate neural progenitor type and optimizing the efficiency of the cell engraftment. Here we show that epidermal growth factor receptor (EGFR) expression enhances postnatal neural progenitor migration in vitro and in vivo. Migratory NG2-expressing (NG2+) progenitor cells of the postnatal subventricular zone (SVZ) express higher EGFR levels than nonmigratory, cortical NG2+ cells. The higher endogenous EGFR expression in SVZ NG2+ cells is causally related with their migratory potential in vitro as well as in vivo after cell engraftment. EGFR overexpression in cortical NG2+ cells by transient transfection converted these cells to a migratory phenotype in vitro and in vivo. Finally, cortical NG2+ cells purified from a transgenic mouse in which the EGFR is overexpressed under the CNP promoter exhibited enhanced migratory capability. These findings reveal a new role for EGFR in the postnatal brain and open new avenues to optimize cell engraftment for brain repair.
Collapse
Affiliation(s)
- Adan Aguirre
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
262
|
Ricard J, Salinas J, Garcia L, Liebl DJ. EphrinB3 regulates cell proliferation and survival in adult neurogenesis. Mol Cell Neurosci 2006; 31:713-22. [PMID: 16483793 DOI: 10.1016/j.mcn.2006.01.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 12/07/2005] [Accepted: 01/02/2006] [Indexed: 12/26/2022] Open
Abstract
Interactions between ephrins and their receptors have been implicated in many processes during central nervous system development. In the adult, ephrins and Eph receptors have been implicated in controlling cell proliferation and neuroblast migration, although there is no direct evidence for the role of ephrinB3 in these functions. In addition, activation of Eph receptors has been shown to regulate transduction pathways important in cell cycle control as well as cell death. We show that ephrinB3 contributes to the control of cell proliferation and survival in the adult subventricular zone (SVZ). EphrinB3(-/-) mice exhibit a significant increase in dividing cells along the lateral ventricle, and altered expression of proteins involved in cell cycle regulation. Gain-of-function approach by infusing soluble ephrinB3-Fc molecules in ephrinB3(-/-) can suppress cell proliferation to wild type levels. At the same time, ephrinB3 also regulates cell survival as greater numbers of cells die in the SVZ of ephrinB3(-/-) mice. Together, our results suggest that ephrinB3 negatively regulates cell cycle progression and cell apoptosis in the adult subventricular zone.
Collapse
Affiliation(s)
- Jerome Ricard
- The Miami Project to Cure Paralysis and Department of Neurosurgery, University of Miami School of Medicine, 1095 NW 14th Terrace, R-48, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
263
|
Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W, Mühlberger E, Su SV, Bertolotti-Ciarlet A, Flick R, Lee B. Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2006; 2:e7. [PMID: 16477309 PMCID: PMC1361355 DOI: 10.1371/journal.ppat.0020007] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/30/2005] [Indexed: 11/19/2022] Open
Abstract
EphrinB2 was recently discovered as a functional receptor for Nipah virus (NiV), a lethal emerging paramyxovirus. Ephrins constitute a class of homologous ligands for the Eph class of receptor tyrosine kinases and exhibit overlapping expression patterns. Thus, we examined whether other ephrins might serve as alternative receptors for NiV. Here, we show that of all known ephrins (ephrinA1–A5 and ephrinB1–B3), only the soluble Fc-fusion proteins of ephrinB3, in addition to ephrinB2, bound to soluble NiV attachment protein G (NiV-G). Soluble NiV-G bound to cell surface ephrinB3 and B2 with subnanomolar affinities (Kd = 0.58 nM and 0.06 nM for ephrinB3 and B2, respectively). Surface plasmon resonance analysis indicated that the relatively lower affinity of NiV-G for ephrinB3 was largely due to a faster off-rate (Koff = 1.94 × 10−3 s−1 versus 1.06 × 10−4 s−1 for ephrinB3 and B2, respectively). EphrinB3 was sufficient to allow for viral entry of both pseudotype and live NiV. Soluble ephrinB2 and B3 were able to compete for NiV-envelope-mediated viral entry on both ephrinB2- and B3-expressing cells, suggesting that NiV-G interacts with both ephrinB2 and B3 via an overlapping site. Mutational analysis indicated that the Leu–Trp residues in the solvent exposed G–H loop of ephrinB2 and B3 were critical determinants of NiV binding and entry. Indeed, replacement of the Tyr–Met residues in the homologous positions in ephrinB1 with Leu–Trp conferred NiV receptor activity to ephrinB1. Thus, ephrinB3 is a bona fide alternate receptor for NiV entry, and two residues in the G–H loop of the ephrin B-class ligands are critical determinants of NiV receptor activity. Nipah virus is a deadly virus that can cause death in up to 70% of infected patients, mostly from fatal inflammation of the brain. Nipah virus is considered a “priority pathogen” for bioterrorism purposes, and it has the potential for widespread economic devastation as it can spread rapidly among susceptible livestock. The authors had previously identified the receptor that mediates Nipah virus entry into cells. This receptor, ephrinB2, is a critical molecule for the development of the vascular and nervous system and is highly expressed on endothelial cells and neurons, which are also the two cell types preferentially infected by Nipah virus in vivo. EphrinB2 belongs to a large family of related molecules that are variably conserved in structure and function. Thus, the authors screened all known ephrins, and found that a closely related molecule, ephrinB3, also can function as an entry receptor for Nipah virus. In addition, the authors established that while ephrinB2 was better used than ephrinB3 as an entry receptor, the same two critical amino acids in ephrinB2 and B3 were responsible for the viral receptor activity of these molecules. The discovery of a more comprehensive set of NiV receptors will aid our understanding of the pathology underlying NiV disease.
Collapse
Affiliation(s)
- Oscar A Negrete
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mike C Wolf
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hector C Aguilar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sven Enterlein
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wei Wang
- Department of Medicine-Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Elke Mühlberger
- Institute for Virology, Philipps-University Marburg, Marburg, Germany
| | - Stephen V Su
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Andrea Bertolotti-Ciarlet
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ramon Flick
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
264
|
Ghashghaei HT, Weber J, Pevny L, Schmid R, Schwab MH, Lloyd KCK, Eisenstat DD, Lai C, Anton ES. The role of neuregulin-ErbB4 interactions on the proliferation and organization of cells in the subventricular zone. Proc Natl Acad Sci U S A 2006; 103:1930-5. [PMID: 16446434 PMCID: PMC1413654 DOI: 10.1073/pnas.0510410103] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coordinated regulation of neuronal progenitor differentiation in the subventricular zone (SVZ) is a fundamental feature of adult neurogenesis. However, the molecular control of this process remains mostly undeciphered. Here, we investigate the role of neuregulins (NRGs) in this process and show that a NRG receptor, ErbB4, is primarily expressed by polysialylated neural cell adhesion molecule immature neuroblasts but is also detected in a subset of GFAP+ astroglial cells, ependymal cells, and Dlx2+ precursors in the SVZ. Of the NRG ligands, both NRG1 and -2 are expressed by immature polysialylated neural cell adhesion molecule neuroblasts in the SVZ. NRG2 is also expressed by some of the GFAP+ putative stem cells lining the ventricles. Infusion of exogenous NRG1 leads to rapid aggregation of Dlx2+ cells in the SVZ and affects the initiation and maintenance of organized neuroblast migration from the SVZ toward the olfactory bulb. In contrast, the infusion of NRG2 increased the number of Sox2 and GFAP+ precursors in the SVZ. An outcome of this NRG2 effect is an increase in the number of newly generated migrating neuroblasts in the rostral migratory stream and GABAergic interneurons in the olfactory bulb. The analysis of conditional null mice that lack NRG receptor, ErbB4, in the nervous system revealed that the observed activities of NRG2 require ErbB4 activation. These results indicate that different NRG ligands affect distinct populations of differentiating neural precursors in the neurogenic regions of the mature forebrain. Furthermore, these studies identify NRG2 as a factor capable of promoting SVZ proliferation, leading to the formation of new neurons in vivo.
Collapse
Affiliation(s)
- H. T. Ghashghaei
- *University of North Carolina Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Janet Weber
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037
| | - Larysa Pevny
- *University of North Carolina Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Ralf Schmid
- *University of North Carolina Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Markus H. Schwab
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037
- Max-Planck-Institut für Experimentelle Medizin, 7075 Göttingen, Germany
| | - K. C. Kent Lloyd
- Center for Comparative Medicine, School of Veterinary Medicine, University of California, Davis, CA 95616; and
| | - David D. Eisenstat
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada R3E 0V9
| | - Cary Lai
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037
| | - E. S. Anton
- *University of North Carolina Neuroscience Center and the Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
265
|
Abstract
Extracellular signals dictate the biological processes of neural stem cells (NSCs) both in vivo and in vitro. The intracellular response elicited by these signals is dependent on the context in which the signal is received, which in turn is decided by previous and concurrent signals impinging on the cell. A synthesis of signaling pathways that control proliferation, survival, and differentiation of NSCs in vivo and in vitro will lead to a better understanding of their biology, and will also permit more precise and reproducible manipulation of these cells to particular end points. In this review we summarize the known signals that cause proliferation, survival, and differentiation in mammalian NSCs.
Collapse
Affiliation(s)
- Prithi Rajan
- Center for Neuroscience and Aging, Burham Institute for Medical Research, La Jolla, CA, USA
| | | |
Collapse
|
266
|
Lim DA, Suárez-Fariñas M, Naef F, Hacker CR, Menn B, Takebayashi H, Magnasco M, Patil N, Alvarez-Buylla A. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis. Mol Cell Neurosci 2005; 31:131-48. [PMID: 16330219 DOI: 10.1016/j.mcn.2005.10.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 08/21/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022] Open
Abstract
Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.
Collapse
Affiliation(s)
- Daniel A Lim
- Department of Neurological Surgery and Developmental and Stem Cell Biology Program, University of California, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Cárdenas A, Moro MA, Hurtado O, Leza JC, Lizasoain I. Dual role of nitric oxide in adult neurogenesis. ACTA ACUST UNITED AC 2005; 50:1-6. [PMID: 16291071 DOI: 10.1016/j.brainresrev.2005.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 03/17/2005] [Accepted: 03/23/2005] [Indexed: 01/19/2023]
Abstract
In the last decade, it has been demonstrated that neurogenesis persists in the adult mammalian brain and that it is induced after insults, where newborn neurons migrate to damaged areas, differentiate and contribute to the recovery. The understanding of the cellular and molecular events involved in this phenomenon could provide effective therapies not only to promote brain repair in stroke or seizures, but also to facilitate functional improvement in depression or Alzheimer. In this context, many advances have been made, such as the implication of different growth factors, membrane receptors, and most importantly diffusible messengers like nitric oxide (NO). We review here studies in both normal and pathophysiological conditions that suggest a dual role for NO in adult neurogenesis and its relation to different pharmacological strategies stimulating neurogenesis.
Collapse
Affiliation(s)
- Antonio Cárdenas
- Instituto de Farmacología y Toxicología del CSIC, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | | | | | | | | |
Collapse
|
268
|
Matarredona ER, Murillo-Carretero M, Moreno-López B, Estrada C. Role of nitric oxide in subventricular zone neurogenesis. ACTA ACUST UNITED AC 2005; 49:355-66. [PMID: 16111562 DOI: 10.1016/j.brainresrev.2005.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 12/27/2004] [Accepted: 01/03/2005] [Indexed: 01/18/2023]
Abstract
A possible role of nitric oxide (NO) in adult neurogenesis has been suggested based on anatomical findings showing that subventricular zone (SVZ) neuroblasts are located close to NO-producing cells, and on the known antiproliferative actions of NO in many cell types. Experiments have been performed in rodents with systemic and intracerebroventricular administrations of the NO synthase (NOS) inhibitor L-NAME. NOS inhibition leads to significant increases in the number of proliferating cells in the SVZ and olfactory bulb (OB). NO exerts its cytostatic action preferentially on the cell population expressing nestin but not betaIII-tubulin, which may correspond to the type C cells described in the SVZ. The negative effect of NO on SVZ cell proliferation has also been confirmed in SVZ primary cultures. An inhibition of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) is described as one of the molecular mechanisms responsible for the antiproliferative effect of NO in SVZ cells. Biochemical data supporting this conclusion has been obtained using the neuroblastoma cell line NB69, which endogenously expresses the EGFR. In these cells, the antimitotic action of NO occurs upon inhibition of the EGFR tyrosine phosphorylation, probably by a direct S-nitrosylation of the receptor. The latest published reports on NO and neurogenesis indicate that NO physiologically participates in the control of adult neurogenesis by modulating the proliferation and fate of the SVZ progenitor cells. These effects might be partially due to a direct inhibition of the EGFR by S-nitrosylation.
Collapse
Affiliation(s)
- Esperanza R Matarredona
- Area de Fisiología, Facultad de Medicina, Universidad de Cádiz, Plaza Falla 9, 11003, Cádiz, Spain.
| | | | | | | |
Collapse
|
269
|
Yang P, Baker KA, Hagg T. A disintegrin and metalloprotease 21 (ADAM21) is associated with neurogenesis and axonal growth in developing and adult rodent CNS. J Comp Neurol 2005; 490:163-79. [PMID: 16052496 DOI: 10.1002/cne.20659] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have reported that alpha6beta1 integrin regulates the directed migration of neuroblasts from the adult rodent subventricular zone (SVZ) through the rostral migratory stream (RMS). ADAM (a disintegrin and metalloprotease) proteins bind integrins. Here, we show that ADAM21, but not ADAM2, -3, -9, -10, -12, -15, or -17, is expressed in adult rats and mice by ependyma and SVZ cells with long basal processes, and in radial glia at early postnatal times. ADAM21-positive processes projected into the RMS, contacted blood vessels, and were present within the RMS intermingled with neuroblasts up to where neuroblasts start their radial migration and differentiation in the olfactory bulb. Tissue inhibitors of metalloproteases (TIMPs) 1, 2, and 3 are present in the ependymal layer but not in the SVZ and RMS. Thus, ADAM21 could regulate neurogenesis and guide neuroblast migration through cleavage-dependent activation of proteins and integrin binding. ADAM21 is also present in growing axonal tracts during postnatal development and in growing primary olfactory axons in adults. In the olfactory nerve layer, ADAM21 often, but not always, colocalizes with OMP, a marker of mature olfactory neurons, but is not colocalized with the immature marker betaIII-tubulin. This suggests that ADAM21 is involved in the final axonal outgrowth phase and/or synapse formation. TIMP3 is present in periglomerular neurons, where it could restrict ADAM21-mediated axonal growth to the glomeruli. ADAM21's unique disintegrin and metalloprotease sequences and its restricted expression suggest that it might be a good target for influencing neurogenesis and neuronal plasticity.
Collapse
Affiliation(s)
- Peng Yang
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, 511 S. Floyd Street, Louisville, KY 40292, USA
| | | | | |
Collapse
|
270
|
Wimmer-Kleikamp SH, Lackmann M. Eph-modulated cell morphology, adhesion and motility in carcinogenesis. IUBMB Life 2005; 57:421-31. [PMID: 16012051 DOI: 10.1080/15216540500138337] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eph receptor tyrosine kinases (Ephs) and their membrane anchored ephrin ligands (ephrins) form an essential cell-cell communication system that directs the positioning, adhesion and migration of cells and cell layers during development. While less prominent in normal adult tissues, there is evidence that up-regulated expression and de-regulated function of Ephs and ephrins in a large variety of human cancers may promote a more aggressive and metastatic tumour phenotype. However, in contrast to other RTKs, Ephs do not act as classical proto-oncogenes and do not effect cell proliferation or differentiation. Mounting evidence suggests that Eph receptors, through de-regulated re-emergence of their mode of action in the embryo may direct cell movements and positioning during metastasis, invasion and tumour angiogenesis. This review discusses these and other emerging roles of Eph receptors during oncogenesis.
Collapse
Affiliation(s)
- Sabine H Wimmer-Kleikamp
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | |
Collapse
|
271
|
Rodger J, Symonds ACE, Springbett J, Shen WY, Bartlett CA, Rakoczy PE, Beazley LD, Dunlop SA. Eph/ephrin expression in the adult rat visual system following localized retinal lesions: localized and transneuronal up-regulation in the retina and superior colliculus. Eur J Neurosci 2005; 22:1840-52. [PMID: 16262624 DOI: 10.1111/j.1460-9568.2005.04381.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following unilateral optic nerve section in adult PVG hooded rat, the axon guidance cue ephrin-A2 is up-regulated in caudal but not rostral superior colliculus (SC) and the EphA5 receptor is down-regulated in axotomised retinal ganglion cells (RGCs). Changes occur bilaterally despite the retino-collicular projection being mostly crossed. Here we investigate the dynamics of Eph/ephrin expression using in situ hybridization and semi-quantitative immunohistochemistry after localized retinal lesions. Unilateral krypton laser lesions to dorso-nasal retina ablated contralaterally projecting RGCs (DN group); ventro-temporal lesions ablated contralaterally and ipsilaterally projecting RGCs (VT group). Lesions of the entire retina served as controls (Total group). Results are compared to normal animals in which tectal ephrin-A2 and retinal EphA5 are expressed, respectively, as shallow ascending rostro-caudal and naso-temporal gradients. In both SCs of DN and Total groups, tectal ephrin-A2 was up-regulated caudally; in the VT group, expression remained normal bilaterally. Unilateral collicular ablation indicated that bilateral changes in ephrin-A2 expression are mediated via intercollicular pathways. EphA5 expression in the VT group was elevated in the intact nasal region of experimental retinae. For each experimental group, EphA5 expression was also elevated in nasal retina of the opposite eye, resulting in uniform expression across the naso-temporal axis. Up-regulation of ephrin-A2 in caudal, but not rostral, SC suggests the enhancement of developmental positional information as a result of injury. Bilateral increases in retinal EphA5 expression demonstrate that signals for up-regulation operate interocularly. The study demonstrates that signals regulating guidance cue expression are both localized and relayed transneuronally.
Collapse
Affiliation(s)
- J Rodger
- School of Animal Biology (Zoology), The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia.
| | | | | | | | | | | | | | | |
Collapse
|
272
|
Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 2005; 8:323-35. [PMID: 16226707 DOI: 10.1016/j.ccr.2005.09.001] [Citation(s) in RCA: 602] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/01/2005] [Accepted: 09/06/2005] [Indexed: 01/22/2023]
Abstract
Tumors of the same histologic type often comprise clinically and molecularly distinct subgroups; however, the etiology of these subgroups is unknown. Here, we report that histologically identical, but genetically distinct, ependymomas exhibit patterns of gene expression that recapitulate those of radial glia cells in the corresponding region of the central nervous system. Cancer stem cells isolated from ependymomas displayed a radial glia phenotype and formed tumors when orthotopically transplanted in mice. These findings identify restricted populations of radial glia cells as candidate stem cells of the different subgroups of ependymoma, and they support a general hypothesis that subgroups of the same histologic tumor type are generated by different populations of progenitor cells in the tissues of origin.
Collapse
Affiliation(s)
- Michael D Taylor
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
273
|
Abstract
Forty years since the initial discovery of neurogenesis in the postnatal rat hippocampus, investigators have now firmly established that active neurogenesis from neural progenitors continues throughout life in discrete regions of the central nervous systems (CNS) of all mammals, including humans. Significant progress has been made over the past few years in understanding the developmental process and regulation of adult neurogenesis, including proliferation, fate specification, neuronal maturation, targeting, and synaptic integration of the newborn neurons. The function of this evolutionarily conserved phenomenon, however, remains elusive in mammals. Adult neurogenesis represents a striking example of structural plasticity in the mature CNS environment. Advances in our understanding of adult neurogenesis will not only shed light on the basic principles of adult plasticity, but also may lead to strategies for cell replacement therapy after injury or degenerative neurological diseases.
Collapse
Affiliation(s)
- Guo-li Ming
- Institute for Cell Engineering, Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
274
|
Rashid T, Upton AL, Blentic A, Ciossek T, Knöll B, Thompson ID, Drescher U. Opposing gradients of ephrin-As and EphA7 in the superior colliculus are essential for topographic mapping in the mammalian visual system. Neuron 2005; 47:57-69. [PMID: 15996548 DOI: 10.1016/j.neuron.2005.05.030] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 01/27/2005] [Accepted: 05/26/2005] [Indexed: 11/22/2022]
Abstract
During development of the retinocollicular projection in mouse, retinal axons initially overshoot their future termination zones (TZs) in the superior colliculus (SC). The formation of TZs is initiated by interstitial branching at topographically appropriate positions. Ephrin-As are expressed in a decreasing posterior-to-anterior gradient in the SC, and they suppress branching posterior to future TZs. Here we investigate the role of an EphA7 gradient in the SC, which has the reverse orientation to the ephrin-A gradient. We find that in EphA7 mutant mice the retinocollicular map is disrupted, with nasal and temporal axons forming additional or extended TZs, respectively. In vitro, retinal axons are repelled from growing on EphA7-containing stripes. Our data support the idea that EphA7 is involved in suppressing branching anterior to future TZs. These findings suggest that opposing ephrin-A and EphA gradients are required for the proper development of the retinocollicular projection.
Collapse
Affiliation(s)
- Tahira Rashid
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
275
|
Katakowski M, Zhang Z, deCarvalho AC, Chopp M. EphB2 induces proliferation and promotes a neuronal fate in adult subventricular neural precursor cells. Neurosci Lett 2005; 385:204-9. [PMID: 15970380 DOI: 10.1016/j.neulet.2005.05.060] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/16/2005] [Accepted: 05/19/2005] [Indexed: 01/19/2023]
Abstract
The subventricular germinal zone (SVZ) retains an active population of stem cells and neural precursor cells throughout adulthood. EphrinB signaling mediates angiogenesis and vasculogenesis in the developing and adult brain. Recent studies indicate that molecules involved in angiogenesis often influence neurogenesis as well. However, little work has been done considering a role for EphB2/EphrinB in adult neural precursor cells. We therefore examined whether the EphB2 receptor tyrosine kinase could directly effect proliferation of SVZ neural precursors and/or direct the cell fate of SVZ cells in vitro. Here, we found that clustered EphB2 increased bromodeoxyuridine (BrdU) incorporation and proliferation of SVZ neurosphere cultures. Immunostaining and RT-PCR analysis for beta-tubulin III (Tuj1) and GFAP indicated 4-day treatment with EphB2 promoted a neuronal phenotype, suggesting that the EphB2 receptor might also direct SVZ cell fate. EphB2 transiently down-regulated SVZ cell mRNA of Notch1 and Zic1, genes that regulate neurogenesis and neuronal differentiation. Notch1 has been implicated in apoptosis of neural precursors, however, a cell viability assay revealed no statistical difference between EphB2-treated and control cultures. When SVZ neurospheres were cultured upon Matrigel, EphB2 attenuated radial migration of SVZ cells in vitro. These results demonstrate that EphB2/EphrinB signaling directly induces SVZ proliferation, decreases migration, and promotes a neuronal fate of SVZ neural precursors independent of cell survival.
Collapse
Affiliation(s)
- Mark Katakowski
- Department of Neurology, Henry Ford Health Sciences Center, 2799 West Grand Boulevard, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester MI, 48309, USA
| | | | | | | |
Collapse
|
276
|
Nieoullon V, Belvindrah R, Rougon G, Chazal G. mCD24 regulates proliferation of neuronal committed precursors in the subventricular zone. Mol Cell Neurosci 2005; 28:462-74. [PMID: 15737737 DOI: 10.1016/j.mcn.2004.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 10/07/2004] [Accepted: 10/19/2004] [Indexed: 11/16/2022] Open
Abstract
We previously showed that deletion of the cell surface molecule mCD24 resulted in an increased proliferation in adult subventricular zone (SVZ). Here, we report an increased PSA-NCAM+/TuJ1- population in the mCD24-/- in vivo SVZ as well as in vitro neurospheres. Isolated in vitro, these cells were able to generate neurospheres. Proliferation studies, using BrdU incorporation, showed an increased proliferation in P7 mCD24-/- SVZ and neurospheres. Using electron microscopy, the same cell types were identified in the in vivo SVZ as well as in vitro neurospheres from the WT and mCD24-/- mice. In mixed neurospheres, formed with WT and EGFP/KO cells (enhanced green fluorescent protein mCD24-/-), the WT environment was able to control the proliferation rate of the mCD24-/- cells, but was unable to regulate their differentiation. We concluded that mCD24 acts cell nonautonomously to regulate transit-amplifying cells proliferation and/or differentiation.
Collapse
Affiliation(s)
- Vincent Nieoullon
- Neurogenèse et Morphogenèse dans le Développement et chez l'Adulte/Institut de Biologie du Développement de Marseille, Centre National de la Recherche Scientifique, Marseilles, France
| | | | | | | |
Collapse
|
277
|
Wilson DT, Polunas MA, Zhou R, Halladay AK, Lowndes HE, Reuhl KR. Methylmercury Alters Eph and Ephrin Expression During Neuronal Differentiation of P19 Embryonal Carcinoma Cells. Neurotoxicology 2005; 26:661-74. [PMID: 15990172 DOI: 10.1016/j.neuro.2005.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 01/15/2005] [Indexed: 11/19/2022]
Abstract
Developmental exposure to methylmercury (MeHg) induces a spectrum of neurological impairment characterized by cognitive disturbance, sensory/motor deficit, and diffuse structural abnormalities of the brain. These alterations may arise from neural path-finding errors during brain development, resulting from disturbances in the function of morphoregulatory guidance molecules. The Eph family of tyrosine kinase receptors and their ligands, the ephrins, guide neuronal migration and neurite pathfinding mainly via repulsive intercellular interactions. The present study examined the effects of MeHg on mRNA and protein expression profiles of Ephs and ephrins in the P19 embryonal carcinoma (EC) cell line and its neuronal derivatives. Undifferentiated control P19 cells displayed low- to undetectable levels of mRNA for ephrins or Ephs, with the sole exception of EphA2 which was highly expressed. Upon differentiation into neurons, the ephrin expression increased progressively through day 10. Similarly, expression of the Ephs, including EphsA3, -A4, -A8, -B2, -B3, -B4, and -B6, increased significantly. In contrast, EphA2 expression decreased in day 2, 6 and 10 control neurons. Treatment with MeHg did not affect the expression of mRNA for ephrins or Ephs in undifferentiated P19 cells. However, treatment of differentiating neurons with MeHg for 24 h caused consistent increases in ligand mRNA expression, particularly ephrin-A5, -A6, -B1, and -B2. Similarly, MeHg induced variable increases in mRNA expression of receptors EphA2, -A3, -B3, and -B6. A trend toward a concentration-response relationship was observed for the alterations in Eph receptor mRNA expression although increases at the low and mid concentrations did not reach statistical significance. Immunoblots for ligand and receptor proteins mirrored the increases in the mRNA levels at the 0.5 and 1.5 microM MeHg concentrations but showed decreased protein levels compared to controls at the 3.0 microM concentration. Alterations in the Eph/ephrin family of repulsion molecules may represent an important mechanism in developmental MeHg neurotoxicity.
Collapse
Affiliation(s)
- D T Wilson
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
278
|
Hauwel M, Furon E, Canova C, Griffiths M, Neal J, Gasque P. Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, "protective" glial stem cells and stromal ependymal cells. ACTA ACUST UNITED AC 2005; 48:220-33. [PMID: 15850661 DOI: 10.1016/j.brainresrev.2004.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 12/21/2022]
Abstract
In invertebrates and primitive vertebrates, the brain contains large numbers of "professional" macrophages associated with neurones, ependymal tanycytes and radial glia to promote robust regenerative capacity. In higher vertebrates, hematogenous cells are largely excluded from the brain, and innate immune molecules and receptors produced by the resident "amateur" macrophages (microglia, astrocytes and ependymal cells) control pathogen infiltration and clearance of toxic cell debris. However, there is minimal capacity for regeneration. The transfer of function from hematogenous cells to macroglia and microglia is associated with the sophistication of a yet poorly-characterized neurone-glia network. This evolutionary pattern may have been necessary to reduce the risk of autoimmune attack while preserving the neuronal web but the ability to repair central nervous system damage may have been sacrificed in the process. We herein argue that it may be possible to re-educate and stimulate the resident phagocytes to promote clearance of pathogens (e.g., Prion), toxic cell debris (e.g., amyloid fibrils and myelin) and apoptotic cells. Moreover, as part of this greater division of labour between cell types in vertebrate brains, it may be possible to harness the newly described properties of glial stem cells in neuronal protection (revitalization) rather than replacement, and to control brain inflammation. We will also highlight the emerging roles of stromal ependymal cells in controlling stem cell production and migration into areas of brain damage. Understanding the mechanisms involved in the nurturing of damaged neurons by protective glial stem cells with the safe clearance of cell debris could lead to remedial strategies for chronic brain diseases.
Collapse
Affiliation(s)
- Mathieu Hauwel
- Department of Medical Biochemistry and Immunology, Brain Inflammation and Immunity Group (BIIG), University of Wales College of Medicine, Tenovus Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
279
|
Abstract
Eph receptor tyrosine kinases mould the behaviour of many cell types by binding membrane-anchored ligands, ephrins, at sites of cell-cell contact. Eph signals affect both of the contacting cells and can produce diverse biological responses. New models explain how quantitative variations in the densities and signalling abilities of Eph receptors and ephrins could account for the different effects that are elicited on axon guidance, cell adhesion and cell migration during development, homeostasis and disease.
Collapse
Affiliation(s)
- Elena B Pasquale
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
280
|
Calò L, Spillantini M, Nicoletti F, Allen ND. Nurr1 co-localizes with EphB1 receptors in the developing ventral midbrain, and its expression is enhanced by the EphB1 ligand, ephrinB2. J Neurochem 2005; 92:235-45. [PMID: 15663472 DOI: 10.1111/j.1471-4159.2004.02853.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both ephrins and the transcription factor, Nurr1, are critically involved in CNS development and, particularly, in the ontogenesis of the nigro-striatal system. Here we examined whether the ephrin receptor, EphB1, and Nurr1 share a similar expression pattern in the embryonic brain and whether expression of Nurr1 is under the control of EphB1 activation. The transcripts of EphB1 receptor and Nurr1 showed a similar pattern of expression in the ventral midbrain of mice at early stages of embryonic development (E11.5 and E12.5). At later stages (E15.5), only Nurr1 mRNA could still be detected in significant amounts in the A9-A10 regions of the ventral midbrain, whereas the two transcripts still showed a similar pattern of expression in discrete regions of the hindbrain. To examine whether activation of EphB1 receptor could induce the expression of Nurr1 in the ventral midbrain, we applied the EphB1 ligand, ephrinB2, to explants of embryonic mouse ventral midbrain. Low concentrations of clustered ephrinB2 (0.25 microg/mL) enhanced Nurr1 mRNA and protein levels, whereas higher concentrations were inactive. We conclude that activation of EphB1 receptors by appropriate concentrations of its ligand ephrinB2 might contribute to the acquisition of a dopaminergic fate in developing midbrain ventral neurones.
Collapse
Affiliation(s)
- Laura Calò
- Laboratory of Cognitive and Developmental Neurobiology, The Babraham Institute, Babraham, Cambridge, UK.
| | | | | | | |
Collapse
|
281
|
Lledo PM, Saghatelyan A. Integrating new neurons into the adult olfactory bulb: joining the network, life–death decisions, and the effects of sensory experience. Trends Neurosci 2005; 28:248-54. [PMID: 15866199 DOI: 10.1016/j.tins.2005.03.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In contrast to the situation in the developing brain, neurons born during adulthood must integrate into established neuronal networks characterized by ongoing activity. For sensory systems, this neuronal activity is driven mainly by external stimuli that can lead to experience-dependent morpho-functional changes in adult circuits. Here, we describe new insights into the mechanisms by which sensory experience might govern the targeting of adult-generated neurons to appropriate regions, their differentiation into distinct neuronal subtypes, and finally their survival in the adult olfactory bulb. We propose not only that neurogenesis depends on the degree of sensory experience, but also that new neurons bring unique features to the operational network, allowing a continuous adjustment of information processing in response to an ever-changing external word.
Collapse
Affiliation(s)
- Pierre-Marie Lledo
- Laboratory of Perception and Memory, Centre National de la Recherche Scientifique, Unité de Recherche Associée 2182, Pasteur Institute, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
282
|
Kamitori K, Tanaka M, Okuno-Hirasawa T, Kohsaka S. Receptor related to tyrosine kinase RYK regulates cell migration during cortical development. Biochem Biophys Res Commun 2005; 330:446-53. [PMID: 15796903 DOI: 10.1016/j.bbrc.2005.02.177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Indexed: 11/20/2022]
Abstract
Mammalian RYK is a receptor related to tyrosine kinase without detectable catalytic activity. We have previously reported that rat RYK is dominantly expressed in neural progenitor cells and mature neurons in the developing central nervous system. Mouse RYK has been found to bind to EphB2/B3 receptors, which have diverse functions during development. In this study, we demonstrated that RYK, EphB2, EphB3, ephrinB1, and ephrinB2 are expressed in embryonic brain. In vitro analysis using COS-7 cells revealed binding between rat RYK and EphB3, and that the RYK deletion mutant without extracellular leucine-rich motifs lacked this binding ability. To investigate the function of RYK in vivo, embryonic cortical slice cultures were analyzed after electroporation of expression plasmids for RYK or its deletion mutants. The results showed that overexpression of RYK suppressed cell migration from the ventricular zone to the pial surface, however, overexpression of the RYK deletion mutant without leucine-rich motifs had no effect on cell migration. These results suggest that RYK regulates cell migration during mammalian cortical development through the binding to Eph receptors.
Collapse
Affiliation(s)
- Kazuyo Kamitori
- Department of Neurochemistry, National Institute of Neuroscience, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | |
Collapse
|
283
|
Yoshihara SI, Omichi K, Yanazawa M, Kitamura K, Yoshihara Y. Arx homeobox gene is essential for development of mouse olfactory system. Development 2005; 132:751-62. [PMID: 15677725 DOI: 10.1242/dev.01619] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The olfactory system provides an excellent model in which to study cell proliferation, migration, differentiation, axon guidance, dendritic morphogenesis, and synapse formation. We report here crucial roles of the Arx homeobox gene in the developing olfactory system by analyzing its mutant phenotypes. Arx protein was expressed strongly in the interneurons and weakly in the radial glia of the olfactory bulb, but in neither the olfactory sensory neurons nor bulbar projection neurons. Arx-deficient mice showed severe anatomical abnormalities in the developing olfactory system: (1) size reduction of the olfactory bulb, (2) reduced proliferation and impaired entry into the olfactory bulb of interneuron progenitors, (3) loss of tyrosine hydroxylase-positive periglomerular cells, (4) disorganization of the layer structure of the olfactory bulb, and (5) abnormal axonal termination of olfactory sensory neurons in an unusual axon-tangled structure, the fibrocellular mass. Thus, Arx is required for not only the proper developmental processes of Arx-expressing interneurons, but also the establishment of functional olfactory neural circuitry by affecting Arx-non-expressing sensory neurons and projection neurons. These findings suggest a likely role of Arx in regulating the expression of putative instructive signals produced in the olfactory bulb for the proper innervation of olfactory sensory axons.
Collapse
Affiliation(s)
- Sei-ichi Yoshihara
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
284
|
Abstract
Normal central nervous system development is dependent on extensive cell migration. Cells born in the proliferative ventricular zone migrate radially along specialized glial processes to their final locations. In contrast, most inhibitory interneurons found in the adult mammalian cerebral cortex and some other structures migrate along a nonradial pathway and on substrates only recently defined. Defects in radial cell migration have been implicated in several distinct human syndromes in which patients often present with epilepsy and mental retardation and have characteristic cerebral abnormalities. The identification of several genes responsible for human neural cell migration defects has led to a better understanding of the cellular and molecular interactions necessary for normal migration and the pathogenesis of these disorders. The prototypic cell migration disorder in humans is type I lissencephaly. Although type 1 lissencephaly is clearly a defect in radial cell migration, recent data from two model systems (Lis1 and ARX mutant mice) indicate that a defect in non-radial cell migration also exists. Thus, the result of a LIS1 mutation appears to have broader implications than a radial cell migration defect alone. Furthermore, it is likely that the observed defect in non-radial cell migration contributes to the clinical phenotype observed in these patients. Herein we discuss the role of normal non-radial cell migration in cortical development, as well as how perturbations in both radial and nonradial migration result in developmental anomalies.
Collapse
Affiliation(s)
- Matthew F McManus
- Neuroscience Program, University of Pennsylvania School of Medicine, USA
| | | |
Collapse
|
285
|
Holmberg J, Armulik A, Senti KA, Edoff K, Spalding K, Momma S, Cassidy R, Flanagan JG, Frisén J. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 2005; 19:462-71. [PMID: 15713841 PMCID: PMC548947 DOI: 10.1101/gad.326905] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The number of cells in an organ is regulated by mitogens and trophic factors that impinge on intrinsic determinants of proliferation and apoptosis. We here report the identification of an additional mechanism to control cell number in the brain: EphA7 induces ephrin-A2 reverse signaling, which negatively regulates neural progenitor cell proliferation. Cells in the neural stem cell niche in the adult brain proliferate more and have a shorter cell cycle in mice lacking ephrin-A2. The increased progenitor proliferation is accompanied by a higher number of cells in the olfactory bulb. Disrupting the interaction between ephrin-A2 and EphA7 in the adult brain of wild-type mice disinhibits proliferation and results in increased neurogenesis. The identification of ephrin-A2 and EphA7 as negative regulators of progenitor cell proliferation reveals a novel mechanism to control cell numbers in the brain.
Collapse
Affiliation(s)
- Johan Holmberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
286
|
Koolpe M, Burgess R, Dail M, Pasquale EB. EphB receptor-binding peptides identified by phage display enable design of an antagonist with ephrin-like affinity. J Biol Chem 2005; 280:17301-11. [PMID: 15722342 DOI: 10.1074/jbc.m500363200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Eph receptor tyrosine kinases are overexpressed in many pathologic tissues and have therefore emerged as promising drug target candidates. However, there are few molecules available that can selectively bind to a single Eph receptor and not other members of this large receptor family. Here we report the identification by phage display of peptides that bind selectively to different receptors of the EphB class, including EphB1, EphB2, and EphB4. Peptides with the same EphB receptor specificity compete with each other for binding, suggesting that they have partially overlapping binding sites. In addition, several of the peptides contain amino acid motifs found in the G-H loop of the ephrin-B ligands, which is the region that mediates high-affinity interaction with the EphB receptors. Consistent with targeting the ephrin-binding site, the higher affinity peptides antagonize ephrin binding to the EphB receptors. We also designed an optimized EphB4-binding peptide with affinity comparable with that of the natural ligand, ephrin-B2. These peptides should be useful as selective inhibitors of the pathological activities of EphB receptors and as targeting agents for imaging probes and therapeutic drugs.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Binding Sites
- Binding, Competitive
- COS Cells
- Cell Line
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Ephrins/chemistry
- Humans
- Immunoblotting
- Immunoprecipitation
- Ligands
- Microscopy, Fluorescence
- Peptide Library
- Peptides/chemistry
- Protein Binding
- Protein Structure, Tertiary
- Receptor, EphB1/chemistry
- Receptor, EphB2/chemistry
- Receptor, EphB4/chemistry
- Receptors, Eph Family/metabolism
- Receptors, Eph Family/physiology
Collapse
|
287
|
Peretto P, Dati C, De Marchis S, Kim HH, Ukhanova M, Fasolo A, Margolis FL. Expression of the secreted factors noggin and bone morphogenetic proteins in the subependymal layer and olfactory bulb of the adult mouse brain. Neuroscience 2005; 128:685-96. [PMID: 15464277 DOI: 10.1016/j.neuroscience.2004.06.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2004] [Indexed: 11/28/2022]
Abstract
The antagonism between noggin and the bone morphogenetic proteins (BMPs) plays a key role during CNS morphogenesis and differentiation. Recent studies indicate that these secreted factors are also widely expressed in the postnatal and adult mammalian brain in areas characterized by different types of neural plasticity. In particular, significant levels of noggin and BMP expression have been described in the rodent olfactory system. In the mammalian forebrain, the olfactory bulb (OB) and associated subependymal layer (SEL) are documented as sites of adult neurogenesis. Here, using multiple approaches, including the analysis of noggin-LacZ heterozygous mice, we report the expression of noggin and two members of the BMP family, BMP4 and BMP7, in these regions of the adult mammalian forebrain. We observe that along the full extent of the SEL, from the lateral ventricle to the olfactory bulb, noggin and BMP4 and 7 are mainly associated with the astrocytic glial compartment. In the OB, BMP4 and 7 proteins remain primarily associated with the SEL while strong noggin expression was also found in cells located in different OB layers (i.e. granule, external plexiform, glomerular layers). Taken together our data lead us to hypothesize that within the SEL the antagonism between noggin and BMPs, both produced by the glial tubes, act through autocrine/paracrine inductive mechanisms to maintain a neurogenetic environment all the way from the lateral ventricle to the olfactory bulb. In the OB, their expression patterns suggest multiple regulatory roles on the unusual neural plasticity exhibited by this region.
Collapse
Affiliation(s)
- P Peretto
- Department of Human and Animal Biology, University of Torino, 10123 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
288
|
Cooper O, Isacson O. Intrastriatal transforming growth factor alpha delivery to a model of Parkinson's disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci 2005; 24:8924-31. [PMID: 15483111 PMCID: PMC2613225 DOI: 10.1523/jneurosci.2344-04.2004] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We examined the cell proliferative, neurogenic, and behavioral effects of transforming growth factor alpha (TGFalpha) in a 6-OHDA Parkinson's disease model when compared with naive rats. Intrastriatal TGFalpha infusion induced significant proliferation, hyperplastic nodules, and substantial migratory waves of nestin-positive progenitor cells from the adult subventricular zone (SVZ) of dopamine-denervated rats. Interestingly, SVZ cells in naive rats displayed proliferation but minimal migration in response to the TGFalpha infusion. The cells in the expanded SVZ accumulated cytoplasmic beta-catenin, indicating activation of classical Wnt signaling. However, no evidence of any neuronal differentiation was found of these recruited progenitor cells anywhere examined in the brain. Consequently, no evidence of dopaminergic (DA) neurogenesis was found in the striatum or substantia nigra in any experimental group, and amphetamine-induced behavioral rotations did not improve. In summary, the cells in the TGFalpha-induced migratory cellular wave remain undifferentiated and do not differentiate into midbrain-like DA neurons.
Collapse
Affiliation(s)
- Oliver Cooper
- Harvard University and McLean Hospital, National Institute of Neurological Disorders and Stroke Udall Parkinson's Disease Research Center of Excellence, Belmont, Massachusetts 02478, USA
| | | |
Collapse
|
289
|
Sobel RA. Ephrin A receptors and ligands in lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol 2005; 15:35-45. [PMID: 15779235 PMCID: PMC8095972 DOI: 10.1111/j.1750-3639.2005.tb00098.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Complexes of the tyrosine kinase ephrin ligands (ephrins) and their receptors (Ephs) provide critical cell recognition signals in CNS development. Complementary ephrin/Eph expression gradients present topographic guidance cues that may either stimulate or repulse axon growth. Some ephrin/Ephs are upregulated in adult CNS injury models. To assess their involvement in multiple sclerosis (MS), ephrin A1-5 and Eph A1-8 expression was analyzed in CNS tissues using immunohistochemistry. Control samples showed distinct expression patterns for each ephrin/Eph on different cell types. Perivascular mononuclear inflammatory cells, reactive astrocytes and macrophages expressed ephrin A1-4, Eph A1, -A3, -A4, -A6 and -A7 in active MS lesions. Axonal ephrin A1 and Eph A3, -A4, and -A7 expression was increased in active lesions and was greater in normal-appearing white matter (NAWM) adjacent to active lesions than within or adjacent to chronic MS lesions, in contralateral NAWM, or in control samples. As in development, therefore, there are temporally dynamic, lesion-associated axonal ephrin/Eph A expression gradients in the CNS of MS patients. These results indicate that ephrin/Eph As are useful cell markers in human CNS tissue samples; they likely are involved in the immunopathogenesis of active lesions and in neurodegeneration in MS NAWM; and they represent potential therapeutic targets in MS.
Collapse
Affiliation(s)
- Raymond A Sobel
- Laboratory Service, Veterans Affairs Health Care System, Palo Alto, California 94304, USA.
| |
Collapse
|
290
|
Mignon L, Vourc'h P, Romero-Ramos M, Osztermann P, Young HE, Lucas PA, Chesselet MF. Transplantation of multipotent cells extracted from adult skeletal muscles into the subventricular zone of adult rats. J Comp Neurol 2005; 491:96-108. [PMID: 16127692 DOI: 10.1002/cne.20685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stem cells isolated from adult tissues may be useful for autologous cell therapy in the nervous system. In the present study we tested the ability of multipotent stem cells isolated from adult muscle to survive and respond to migratory and differentiating cues when transplanted into the adult subventricular zone (SVZ). Prior to transplantation the cells were grown as spheres that expressed doublecortin, nestin, and betaIII-tubulin, as well as the mRNAs for the receptor EphA4 and the ligands ephrin B1, ephrin B2, but not ephrin B3. Four weeks after transplantation into the anterior part of the SVZ in adult rats, surviving cells were observed along the ventricular wall, in the SVZ, and in the posterior rostral migratory stream (RMS). None of these cells stained for betaIII-tubulin or doublecortin, which are molecules expressed by migrating neuroblasts, and none were present in the more rostral regions of the RMS or the olfactory bulb. However, most surviving transplanted cells were integrated into the wall of the lateral ventricle and expressed vimentin, a marker also expressed by ependymocytes. No tumors were observed 4 weeks posttransplantation. Our results suggest that multipotent stem cells isolated from adult muscle, which can be easily and safely isolated from patients and rapidly expanded ex vivo, may provide autologous vectors for the local delivery of secreted factors to the ventricles or nearby regions.
Collapse
Affiliation(s)
- Laurence Mignon
- Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
291
|
Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 2004; 101:18117-22. [PMID: 15608062 PMCID: PMC536055 DOI: 10.1073/pnas.0408258102] [Citation(s) in RCA: 842] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Migration toward pathology is the first critical step in stem cell engagement during regeneration. Neural stem cells (NSCs) migrate through the parenchyma along nonstereotypical routes in a precise directed manner across great distances to injury sites in the CNS, where they might engage niches harboring local transiently expressed reparative signals. The molecular mechanisms for NSC mobilization have not been identified. Because NSCs seem to home similarly to pathologic sites derived from disparate etiologies, we hypothesized that the inflammatory response itself, a characteristic common to all, guides the behavior of potentially reparative cells. As proof of concept, we show that human NSCs migrate in vivo (including from the contralateral hemisphere) toward an infarcted area (a representative CNS injury), where local astrocytes and endothelium up-regulate the inflammatory chemoattractant stromal cell-derived factor 1alpha (SDF-1alpha). NSCs express CXC chemokine receptor 4 (CXCR4), the cognate receptor for SDF-1alpha. Exposure of SDF-1alpha to quiescent NSCs enhances proliferation, promotes chain migration and transmigration, and activates intracellular molecular pathways mediating engagement. CXCR4 blockade abrogates their pathology-directed chain migration, a developmentally relevant mode of tangential migration that, if recapitulated, could explain homing along nonstereotypical paths. Our data implicate SDF-1alpha/CXCR4, representative of the inflammatory milieu characterizing many pathologies, as a pathway that activates NSC molecular programs during injury and suggest that inflammation may be viewed not simply as playing an adverse role but also as providing stimuli that recruit cells with a regenerative homeostasis-promoting capacity. CXCR4 expression within germinal zones suggests that NSC homing after injury and migration during development may invoke similar mechanisms.
Collapse
Affiliation(s)
- Jaime Imitola
- Center for Neurologic Diseases, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
292
|
Abstract
Neural stem cells contribute to neurogenesis in both the embryonic and adult brain. However, while adult neural stem cells produce new neurons that populate the olfactory bulb and the granule cell layer of the hippocampus, they do not normally participate in reparative neurogenesis following injury or disease affecting regions distant from the subventricular zone or the dentate gyrus. Here we review differences between neural stem cells found in the embryo and the adult, and describe factors that enhance neuronal output from these cells in vivo. Additionally, we review evidence that neural stem cells can be transplanted into injured regions of the adult brain to enhance compensatory neurogenesis from endogenous precursors. Pre-differentiation of neural stem cells into immature neurons prior to transplantation can also aid in functional recovery following injury or disease.
Collapse
Affiliation(s)
- Christine Y Brazel
- Laboratory of Neurosciences, National Institute on Aging, 333 Cassell Dr., Triad 406A, Baltimore, MD 21224, USA.
| | | |
Collapse
|
293
|
De Marchis S, Fasolo A, Puche AC. Subventricular zone-derived neuronal progenitors migrate into the subcortical forebrain of postnatal mice. J Comp Neurol 2004; 476:290-300. [PMID: 15269971 DOI: 10.1002/cne.20217] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The presence of a germinal layer and the capacity to generate neurons, once thought restricted to the embryonic brain, persists in the forebrain of both postnatal and adult mammals. The two regions in which this phenomenon has been extensively demonstrated are the hippocampal dentate gyrus and the lateral ventricle subventricular zone (SVZ). SVZ-derived cells migrate along the rostral migratory stream into the olfactory bulb, where they differentiate into local interneurons. In this study, using tracer injections into the SVZ at different postnatal ages, we investigated the occurrence of secondary migratory pathways in the mouse subcortical forebrain. During the course of the first week postnatal, in addition to the well-characterized rostral migratory stream, SVZ-derived progenitors migrate in a ventral migratory mass across the nucleus accumbens into the basal forebrain and along a ventrocaudal migratory stream originating at the elbow between the vertical and horizontal limbs of the rostral migratory stream. These cells give rise to granule neurons in the Islands of Calleja and olfactory tubercle pyramidal layer, respectively. In adult, a very small number of cells continue to migrate along the ventrocaudal migratory stream, whereas no migration was observed across the nucleus accumbens. These data demonstrate that in early postnatal and, to a minor extent in adult mice, SVZ-derived cells contribute new neurons to the subcortical forebrain.
Collapse
Affiliation(s)
- Silvia De Marchis
- Department of Human and Animal Biology, University of Torino, Torino 10123, Italy
| | | | | |
Collapse
|
294
|
Schell MJ. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective. Philos Trans R Soc Lond B Biol Sci 2004; 359:943-64. [PMID: 15306409 PMCID: PMC1693380 DOI: 10.1098/rstb.2003.1399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.
Collapse
Affiliation(s)
- Michael J Schell
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
295
|
Goh ELK, Ma D, Ming GL, Song H. Adult neural stem cells and repair of the adult central nervous system. ACTA ACUST UNITED AC 2004; 12:671-9. [PMID: 14977476 DOI: 10.1089/15258160360732696] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural stem cells are present not only in the developing nervous systems, but also in the adult central nervous system of mammals, including humans. The mature central nervous system has been traditionally regarded as an unfavorable environment for the regeneration of damaged axons of mature neurons and the generation of new neurons. In the adult central nervous system, however, newly generated neurons from adult neural stem cells in specific regions exhibit a striking ability to migrate, send out long axonal and dendritic projections, integrate into pre-existing neuronal circuits, and contribute to normal brain functions. Adult stem cells with potential neural capacity recently have been isolated from various neural and nonneural sources. Rapid advances in the stem cell biology have raised exciting possibilities of replacing damaged or lost neurons by activation of endogenous neural stem cells and/or transplantation of in vitro-expanded stem cells and/or their neuronal progeny. Before the full potential of adult stem cells can be realized for regenerative medicine, we need to identify the sources of stem cells, to understand mechanisms regulating their proliferation, fate specification, and, most importantly in the case of neuronal lineages, to characterize their functional properties. Equally important, we need to understand the neural development processes in the normal and diseased adult central nervous system environment, which is quite different from the embryonic central nervous system, where neural development has been traditionally investigated. Here we will review some recent progress of adult neural stem cell research that is applicable to developmental neurobiology and also has potential implications in clinical neuroscience.
Collapse
Affiliation(s)
- Eyleen Lay Keow Goh
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
296
|
Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004; 73:1-60. [PMID: 15193778 DOI: 10.1016/j.pneurobio.2004.03.009] [Citation(s) in RCA: 613] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/24/2004] [Indexed: 01/09/2023]
Abstract
This review focuses on the remodeling of brain circuitry associated with epilepsy, particularly in excitatory glutamate and inhibitory GABA systems, including alterations in synaptic efficacy, growth of new connections, and loss of existing connections. From recent studies on the kindling and status epilepticus models, which have been used most extensively to investigate temporal lobe epilepsy, it is now clear that the brain reorganizes itself in response to excess neural activation, such as seizure activity. The contributing factors to this reorganization include activation of glutamate receptors, second messengers, immediate early genes, transcription factors, neurotrophic factors, axon guidance molecules, protein synthesis, neurogenesis, and synaptogenesis. Some of the resulting changes may, in turn, contribute to the permanent alterations in seizure susceptibility. There is increasing evidence that neurogenesis and synaptogenesis can appear not only in the mossy fiber pathway in the hippocampus but also in other limbic structures. Neuronal loss, induced by prolonged seizure activity, may also contribute to circuit restructuring, particularly in the status epilepticus model. However, it is unlikely that any one structure, plastic system, neurotrophin, or downstream effector pathway is uniquely critical for epileptogenesis. The sensitivity of neural systems to the modulation of inhibition makes a disinhibition hypothesis compelling for both the triggering stage of the epileptic response and the long-term changes that promote the epileptic state. Loss of selective types of interneurons, alteration of GABA receptor configuration, and/or decrease in dendritic inhibition could contribute to the development of spontaneous seizures.
Collapse
Affiliation(s)
- Kiyoshi Morimoto
- Department of Neuropsychiatry, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
297
|
Pennartz S, Belvindrah R, Tomiuk S, Zimmer C, Hofmann K, Conradt M, Bosio A, Cremer H. Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis. Mol Cell Neurosci 2004; 25:692-706. [PMID: 15080897 DOI: 10.1016/j.mcn.2003.12.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 12/16/2003] [Indexed: 10/26/2022] Open
Abstract
The progeny of neural stem cells in the subventricular zone (SVZ) of the adult mammalian brain consists in polysialylated NCAM-expressing immature neurons (PSA(+) cells), which migrate to the olfactory bulb (OB) to differentiate into GABAergic interneurons. We purified murine PSA(+) cells directly from the adult brain by FACS and analyzed their gene expression profile by SAGE. Comparative analyses led to the identification of precursor-enriched genes, including Survivin, Sox-4, Meis2, Dishevelled-2, C3aR1 and Riken 3110003A17, and many so far uncharacterized transcripts. Cluster analysis showed that groups of genes involved in axon guidance and gene clusters implicated in chemotaxis are strongly upregulated, indicating a role of both cues in the control of cell migration in the adult brain. Furthermore, genes involved in apoptosis and cell proliferation are co-expressed, suggesting that the amount of precursors that is present in the adult brain is a result of an equilibrium of these processes.
Collapse
Affiliation(s)
- Sandra Pennartz
- Memorec Biotec GmbH, a Miltenyi Biotec Company, 50829 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Aoki M, Yamashita T, Tohyama M. EphA Receptors Direct the Differentiation of Mammalian Neural Precursor Cells through a Mitogen-activated Protein Kinase-dependent Pathway. J Biol Chem 2004; 279:32643-50. [PMID: 15145949 DOI: 10.1074/jbc.m313247200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ephrins are cell surface-associated ligands for Eph receptor tyrosine kinases and are implicated in repulsive axon guidance and cell migration. EphA2, 3, and 4 receptors and one of their cognate ligands, ephrin-A2, are expressed by cells in the subventricular zone and ganglionic eminence of the embryonic day 14.5 telencephalon and by neural precursor cells in vitro. Activation of EphA receptors in dissociated neural precursor cells in vitro facilitates the commitment to neuronal fates. The majority of ephrin-A1-induced neurons is immunoreactive for tyrosine hydroxylase. Blocking the signal by the extracellular domain of EphA in forebrain slices results in a decrease in neurogenesis. Extracellular signal-regulated kinase is activated by the ligand binding to EphA receptors and is involved in the neurogenesis through EphA receptors. Rap1, but not Ras, is activated in response to ephrin-A1. Our results identify EphA receptors as positive regulators of the mitogen-activated protein kinase pathway that exerts neurogenesis of neural precursor cells from the developing central nervous system.
Collapse
Affiliation(s)
- Miwa Aoki
- Department of Neurobiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | |
Collapse
|
299
|
Abstract
The Eph receptors are a large family of receptor tyrosine kinases with important roles in the establishment of neuronal and vascular networks during embryonic development. The functions of Eph receptors in the adult brain have only recently been investigated, and the results are forcing us to amend the conventional view that these molecules function predominantly in a developmental context. This review summarizes this rapidly expanding new area of research, which has shown that the Eph receptors regulate the structure and physiological function of excitatory synapses through multiple mechanisms, and might thus play a significant role in higher brain functions.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Developmental Neurobiology Program, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
300
|
Agasse F, Roger M, Coronas V. Neurogenic and intact or apoptotic non-neurogenic areas of adult brain release diffusible molecules that differentially modulate the development of subventricular zone cell cultures. Eur J Neurosci 2004; 19:1459-68. [PMID: 15066142 DOI: 10.1111/j.1460-9568.2004.03259.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abstract In the adult mammalian brain, neurogenic activity is maintained in the subventricular zone (SVZ). Damage to non-neurogenic areas can stimulate SVZ cell proliferation and trigger addition of new neurons in the affected areas. We therefore examined the possible control exerted by specific microenvironment cues on SVZ neurogenic activity. To this end, neonatal SVZ neurospheres were maintained in the presence of diffusible signals derived from the adult neurogenic SVZ or from the non-neurogenic cerebral cortex either previously treated (apoptotic cortex) or not (untreated cortex) with staurosporine, a known apoptosis inducer. To restrict interactions to soluble signals, the explants were separated from the SVZ neurospheres by a microporous membrane. The results indicated that molecules released by the SVZ itself promoted the expansion of SVZ cell population through increased proliferation and reduced apoptosis. In contrast, untreated cortex factors reduced the expansion of SVZ cell population by decreasing proliferation. In addition, SVZ or untreated cortex factors, respectively, promoted or inhibited neuronal differentiation. Following apoptotic damage, cortex factors no longer inhibited and instead promoted the expansion of the SVZ cell population by increasing proliferation. These effects on cell numbers were replicated following use of culture media conditioned with the different explants but were no longer present following heat inactivation, which indicates that proteins were involved. These findings indicate that the neurogenic SVZ delivers autocrine/paracrine signals that promote neurogenesis whereas the non-neurogenic cerebral cortex releases signals that inhibit proliferation and neuronal differentiation. Interestingly, this constitutive growth inhibitory effect of the cerebral cortex is inverted following apoptotic lesion.
Collapse
Affiliation(s)
- Fabienne Agasse
- CNRS: UMR 6187, Laboratoire de Biomembranes et Signalisation Cellulaire, Faculté des Sciences, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | | | |
Collapse
|