251
|
Bindschädler P, Noti C, Castagnetti E, Seeberger P. Synthesis of a Potential 10E4 Tetrasaccharide Antigen Involved in Scrapie Pathogenesis. Helv Chim Acta 2006. [DOI: 10.1002/hlca.200690234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
252
|
Clark IA, Budd AC, Alleva LM, Cowden WB. Human malarial disease: a consequence of inflammatory cytokine release. Malar J 2006; 5:85. [PMID: 17029647 PMCID: PMC1629020 DOI: 10.1186/1475-2875-5-85] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/10/2006] [Indexed: 12/24/2022] Open
Abstract
Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficiency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease.
Collapse
Affiliation(s)
- Ian A Clark
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Alison C Budd
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Lisa M Alleva
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, ACT 0200, Australia
| | - William B Cowden
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
253
|
Girard MP, Reed ZH, Friede M, Kieny MP. A review of human vaccine research and development: malaria. Vaccine 2006; 25:1567-80. [PMID: 17045367 DOI: 10.1016/j.vaccine.2006.09.074] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2006] [Accepted: 09/25/2006] [Indexed: 11/18/2022]
Abstract
The last several years have seen significant progress in the development of vaccines against malaria. Most recently, proof-of-concept of vaccine-induced protection from malaria infection and disease was demonstrated in African children. Pursued by various groups and on many fronts, several other candidate vaccines are in early clinical trials. Yet, despite the optimism and promise, an effective malaria vaccine is not yet available, in part because of the lack of understanding of the types of immune responses needed for protection, added to the difficulty of identifying, selecting and producing the appropriate protective antigens from a parasite with a genome of well over five thousand genes and to the frequent need to enhance the immunogenicity of purified antigens through the use of novel adjuvants or delivery systems. Insufficient clinical trial capacity and normative research functions such as local ethical committee reviews also contribute to slow down the development process. This article attempts to summarize the state of the art of malaria vaccine development.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, 39 rue Seignemartin, FR-69008 Lyon, France.
| | | | | | | |
Collapse
|
254
|
Priest JW, Mehlert A, Moss DM, Arrowood MJ, Ferguson MAJ. Characterization of the glycosylphosphatidylinositol anchor of the immunodominant Cryptosporidium parvum 17-kDa antigen. Mol Biochem Parasitol 2006; 149:108-12. [PMID: 16759714 DOI: 10.1016/j.molbiopara.2006.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/10/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Jeffrey W Priest
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Mail Stop F-13, Atlanta, GA 30341, USA.
| | | | | | | | | |
Collapse
|
255
|
Coullerez G, Seeberger PH, Textor M. Merging Organic and Polymer Chemistries to Create Glycomaterials for Glycomics Applications. Macromol Biosci 2006; 6:634-47. [PMID: 16881090 DOI: 10.1002/mabi.200600090] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
[Image: see text] Oligosaccharides at cell surfaces are known to play a critical role in many biological processes such as biorecognition, interactions between cells and with artificial surfaces, immune response, infection and inflammation. In order to facilitate studies of the role of sugars, an increasing number of novel tools are becoming available. New synthetic strategies now provide much more efficient access to complex carbohydrates or glycoconjugates. Branched carbohydrates and hybrids of carbohydrates conjugated to polymers have been prepared using solution and/or solid-phase synthesis and advanced methods of polymerization. These materials are essential for the development of methodologies to study and map the molecular structure-function relationship at interfaces. This article highlights recent advances in the synthesis of carbohydrates and polymer hybrids mimicking the properties and functionalities of the natural oligosaccharides, as well as selected applications in biology, biotechnology and diagnostics.
Collapse
Affiliation(s)
- Géraldine Coullerez
- Laboratory for Surface Science and Technology, BioInterfaceGroup, Department of Materials, ETH Zurich, Switzerland.
| | | | | |
Collapse
|
256
|
Wilkinson BL, Bornaghi LF, Poulsen SA, Houston TA. Synthetic utility of glycosyl triazoles in carbohydrate chemistry. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.06.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
257
|
Boutlis CS, Yeo TW, Anstey NM. Malaria tolerance--for whom the cell tolls? Trends Parasitol 2006; 22:371-7. [PMID: 16784889 PMCID: PMC2766419 DOI: 10.1016/j.pt.2006.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 05/04/2006] [Accepted: 06/02/2006] [Indexed: 01/01/2023]
Abstract
How is it that individuals exposed to intense malaria transmission can tolerate the presence of malaria parasites in their blood at levels that would produce fever in others? In light of evidence discounting a role for nitric oxide or antibodies to plasmodial glycosylphosphatidylinositols in maintaining this tolerant state, refractoriness to toxin-induced Toll-like receptor-mediated signalling has emerged as a likely explanation that links malarial and bacterial endotoxin tolerance. Understanding the mechanisms underlying tolerance and the potential for cross-tolerization has significant implications for understanding the potential for antitoxic vaccine strategies, as well as interactions between different malaria species and between malaria and other human parasites.
Collapse
Affiliation(s)
- Craig S Boutlis
- Division of Tropical and Emerging Infectious Diseases, Menzies School of Health Research, Charles Darwin University, PO Box 41096, Casuarina, NT 0811, Australia.
| | | | | |
Collapse
|
258
|
Rogers ME, Sizova OV, Ferguson MAJ, Nikolaev AV, Bates PA. Synthetic glycovaccine protects against the bite of leishmania-infected sand flies. J Infect Dis 2006; 194:512-8. [PMID: 16845636 PMCID: PMC2839923 DOI: 10.1086/505584] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Accepted: 03/22/2006] [Indexed: 01/21/2023] Open
Abstract
Leishmaniasis is a vectorborne disease transmitted to human and other mammalian hosts by sand fly bite. In the present study, we show that immunization with Leishmania mexicana promastigote secretory gel (PSG) or with a chemically defined synthetic glycovaccine containing the glycans found in L. mexicana PSG can provide significant protection against challenge by the bite of infected sand flies. Only the glycan from L. mexicana was protective; those from other species did not protect against L. mexicana infection. Furthermore, neither PSG nor the glycovaccine protected against artificial needle challenge, which is traditionally used in antileishmanial vaccine development. Conversely, an antigen preparation that was effective against needle challenge offered no protection against sand fly bite. These findings provide a new target for Leishmania vaccine development and demonstrate the critical role that the vector plays in the evaluation of candidate vaccines for leishmaniasis and other vectorborne diseases.
Collapse
Affiliation(s)
- Matthew E Rogers
- Liverpool School of Tropical Medicine, University of Liverpool, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | | | | | | | | |
Collapse
|
259
|
|
260
|
Hunt NH, Golenser J, Chan-Ling T, Parekh S, Rae C, Potter S, Medana IM, Miu J, Ball HJ. Immunopathogenesis of cerebral malaria. Int J Parasitol 2006; 36:569-82. [PMID: 16678181 DOI: 10.1016/j.ijpara.2006.02.016] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 02/09/2006] [Accepted: 02/17/2006] [Indexed: 01/20/2023]
Abstract
Malaria is one of the most important global health problems, potentially affecting more than one third of the world's population. Cerebral malaria (CM) is a deadly complication of Plasmodium falciparum infection, yet its pathogenesis remains incompletely understood. In this review, we discuss some of the principal pathogenic events that have been described in murine models of the disease and relate them to the human condition. One of the earliest events in CM pathogenesis appears to be a mild increase in the permeability to protein of the blood-brain barrier. Recent studies have shown a role for CD8+T cells in mediating damage to the microvascular endothelium and this damage can result in the leakage of cytokines, malaria antigens and other potentially harmful molecules across the blood-brain barrier into the cerebral parenchyma. We suggest that this, in turn, leads to the activation of microglia and the activation and apoptosis of astrocytes. The role of hypoxia in the pathogenesis of cerebral malaria is also discussed, with particular reference to the local reduction of oxygen consumption in the brain as a consequence of vascular obstruction, to cytokine-driven changes in glucose metabolism, and to cytopathic hypoxia. Interferon-gamma, a cytokine known to be produced in malaria infection, induces increased expression, by microvascular endothelial cells, of the haem enzyme indoleamine 2,3-dioxygenase, the first enzyme in the kynurenine pathway of tryptophan metabolism. Enhanced indoleamine 2,3-dioxygenase expression leads to increased production of a range of biologically active metabolites that may be part of a tissue protective response. Damage to astrocytes may result in reduced production of the neuroprotectant molecule kynurenic acid, leading to a decrease in its ratio relative to the neuroexcitotoxic molecule quinolinic acid, which might contribute to some of the neurological symptoms of cerebral malaria. Lastly, we discuss the role of other haem enzymes, cyclooxygenase-2, inducible nitric oxide synthase and haem oxygenase-1, as potentially being components of mechanisms that protect host tissue against the effects of cytokine- and leukocyte-mediated stress induced by malaria infection.
Collapse
Affiliation(s)
- Nicholas H Hunt
- Molecular Immunopathology Unit, Institute for Biomedical Research, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
261
|
Liu X, Siegrist S, Amacker M, Zurbriggen R, Pluschke G, Seeberger PH. Enhancement of the immunogenicity of synthetic carbohydrates by conjugation to virosomes: a leishmaniasis vaccine candidate. ACS Chem Biol 2006; 1:161-4. [PMID: 17163663 DOI: 10.1021/cb600086b] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel virosomal formulations of a synthetic oligosaccharide were prepared and evaluated as vaccine candidates against leishmaniasis. A lipophosphoglycan-related synthetic tetrasaccharide antigen was conjugated to a phospholipid and to the influenza virus coat protein hemagglutinin. These glycan conjugates were embedded into the lipid membrane of reconstituted influenza virus virosomes. The virosomal formulations elicited both IgM and IgG anti-glycan antibodies in mice, indicating an antibody isotype class switch to IgG. The antisera cross-reacted in vitro with the corresponding natural carbohydrate antigens expressed by leishmania cells. These findings support the concept of using virosomes as universal antigen delivery platform for synthetic carbohydrate vaccines.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratorium für Organische Chemie, ETH Zürich, Wolfgang-Pauli Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
262
|
Abstract
In the past decades, a gradual increase in the resistance to antibiotics has been observed, leading to a serious thread for successful treatment of bacterial infections. This feature in addition to difficulties in developing adequate drugs against (tropical) diseases caused by parasites has stimulated the interest in vaccines to prevent infections. In principle, various types of cell surface epitopes, characteristic for the invading organism or related to aberrant growth of cells, can be applied to develop vaccines. The progress in establishing the structure of carbohydrate immuno-determinants in conjunction with improvements in carbohydrate synthesis has rendered it feasible to develop new generations of carbohydrate-based vaccines.
Collapse
Affiliation(s)
- Johannes F G Vliegenthart
- Bijvoet Center, Division Bioorganic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| |
Collapse
|
263
|
Roelfes G, Mootz HD. Probing the Molecular Basis of Protein Function through Chemistry. Chembiochem 2006; 7:545-9. [PMID: 16453350 DOI: 10.1002/cbic.200500547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerard Roelfes
- Department of Organic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | |
Collapse
|
264
|
Naik RS, Krishnegowda G, Ockenhouse CF, Gowda DC. Naturally elicited antibodies to glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum require intact GPI structures for binding and are directed primarily against the conserved glycan moiety. Infect Immun 2006; 74:1412-5. [PMID: 16428795 PMCID: PMC1360366 DOI: 10.1128/iai.74.2.1412-1415.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunization with a synthetic glycan corresponding to Plasmodium falciparum glycosylphosphatidylinositols (GPIs) has been proposed as a vaccination strategy against malaria. We investigated the structural requirements for binding of naturally elicited anti-GPI antibodies to parasite GPIs. The data show that anti-GPI antibody binding requires intact GPI structures and that the antibodies are directed predominantly against GPIs with a conserved glycan structure with three mannoses and marginally against the terminal fourth mannose. The results provide valuable insight for exploiting GPIs for the development of malaria vaccines.
Collapse
Affiliation(s)
- Ramachandra S Naik
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
265
|
Crane CM, Kaiser J, Ramsden NL, Lauw S, Rohdich F, Eisenreich W, Hunter WN, Bacher A, Diederich F. Fluoreszierende Inhibitoren von IspF, einem Enzym im “Nicht-Mevalonat-Biosyntheseweg” der Isoprenoide und möglichen Ziel einer Antimalariatherapie. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200503003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
266
|
Crane CM, Kaiser J, Ramsden NL, Lauw S, Rohdich F, Eisenreich W, Hunter WN, Bacher A, Diederich F. Fluorescent Inhibitors for IspF, an Enzyme in the Non-Mevalonate Pathway for Isoprenoid Biosynthesis and a Potential Target for Antimalarial Therapy. Angew Chem Int Ed Engl 2006; 45:1069-74. [PMID: 16392111 DOI: 10.1002/anie.200503003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christine M Crane
- Laboratorium für Organische Chemie, ETH Hönggerberg, HCI, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Nebl T, De Veer MJ, Schofield L. Stimulation of innate immune responses by malarial glycosylphosphatidylinositol via pattern recognition receptors. Parasitology 2006; 130 Suppl:S45-62. [PMID: 16281992 DOI: 10.1017/s0031182005008152] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The glycosylphosphatidylinositol (GPI) anchor of Plasmodium falciparum is thought to function as a critical toxin that contributes to severe malarial pathogenesis by eliciting the production of proinflammatory responses by the innate immune system of mammalian hosts. Analysis of the fine structure of P. falciparum GPI suggests a requirement for the presence of both core glycan and lipid moieties in the recognition and signalling of parasite glycolipids by host immune cells. It has been demonstrated that GPI anchors of various parasitic protozoa can mediate cellular immune responses via members of the Toll-like family of pattern recognition receptors (TLRs). Recent studies indicate that GPI anchors of P. falciparum and other protozoa are preferentially recognized by TLR-2, involving the MyD88-dependent activation of specific signalling pathways that mediate the production of proinflammatory cytokines and nitric oxide from host macrophages in vitro. However, the contribution of malaria GPI toxin to severe disease syndromes and the role of specific TLRs or other pattern recognition receptors in innate immunity in vivo is only just beginning to be characterized. A better understanding of the molecular mechanisms underlying severe malarial pathogenesis may yet lead to substantial new insights with important implications for the development of novel therapeutics for malaria treatment.
Collapse
Affiliation(s)
- T Nebl
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | | | | |
Collapse
|
268
|
Doores KJ, Gamblin DP, Davis BG. Exploring and Exploiting the Therapeutic Potential of Glycoconjugates. Chemistry 2006; 12:656-65. [PMID: 16187378 DOI: 10.1002/chem.200500557] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Carbohydrates, either bound to proteins or in lipids, play essential roles as communication molecules in many intercellular and intracellular processes. In particular, carbohydrates are important mediators of cell-cell recognition events and have been implicated in related processes such as cell signaling regulation, cellular differentiation and immune response. This diverse utility has long suggested the power of carbohydrates in therapeutic approaches. This Concepts article highlights the recent potential uses of glycoconjugates as therapeutics, with particular reference to glycopeptides, glycoproteins, glycodendrimers, and glycoarrays.
Collapse
Affiliation(s)
- Katie J Doores
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, UK
| | | | | |
Collapse
|
269
|
Rich JR, Wakarchuk WW, Bundle DR. Chemical and Chemoenzymatic Synthesis of S-Linked Ganglioside Analogues and Their Protein Conjugates for Use as Immunogens. Chemistry 2006; 12:845-58. [PMID: 16196067 DOI: 10.1002/chem.200500518] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Analogues of the tumor-associated gangliosides GM(3) and GM(2) containing terminal S-linked neuraminic acid residues and an amino terminated, truncated ceramide homologue have been synthesized and conjugated to a protein. The synthesis involved coupling of a S-linked sialyl alpha(2-->3) galactose disaccharide with a glucosyl sphingosine analogue, followed by elaboration and deprotection to give amino-terminated glycosyl ceramide 1. Glycosyltransferase-catalyzed extension of the trisaccharide 1 provided access to the modified GM(2) tetrasaccharide 2 or sulphur-containing GD(3) analogue 30. Owing to their potentially enhanced resistance to endogenous exo-glycoside hydrolases and their inherent non-self character, carbohydrate antigens containing non-reducing terminal thioglycosidic linkages may be more immunogenic than O-linked antigens and may stimulate the production of antibodies capable of recognizing naturally occurring oligosaccharides. Our initial results suggest that in fact these antigens are viable immunogens and furthermore, that immune sera cross reacts with O-gangliosides in the context of a heterologous glycoprotein conjugate.
Collapse
Affiliation(s)
- Jamie R Rich
- Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
270
|
Vats D, Vishwakarma RA, Bhattacharya S, Bhattacharya A. Reduction of cell surface glycosylphosphatidylinositol conjugates in Entamoeba histolytica by antisense blocking of E. histolytica GlcNAc-phosphatidylinositol deacetylase expression: effect on cell proliferation, endocytosis, and adhesion to target cells. Infect Immun 2006; 73:8381-92. [PMID: 16299336 PMCID: PMC1307042 DOI: 10.1128/iai.73.12.8381-8392.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored molecules such as cell surface Gal/GalNAc lectin and proteophosphoglycans of the protozoan parasite Entamoeba histolytica are thought to be involved in pathogenesis. Here, we report the identification of genes that may be involved in the GPI biosynthetic pathway of E. histolytica by use of bioinformatic tools applied to the recently published genome sequence. Of the genes identified, one of the early genes, GlcNAc-phosphatidylinositol deacetylase (PIG-L), was partially characterized. Cell lines deficient in E. histolytica PIG-L (EhPL-AS) or overproducing it (EhPL-S) were generated by expressing the gene in the antisense or sense orientation, respectively, in a tetracycline-inducible system. The overexpressing cells showed higher EhPIG-L activity and increased production of GlcN-PI. Conversely, cells expressing the antisense RNA displayed reduced GlcN-PI production. The total number of GPI-containing molecules was also reduced in these cells, as demonstrated by Alexa 488 fluorescently labeled proaerolysin labeling. The distribution of GPI-linked PPG and Gal/GalNAc lectin was altered in the tetracycline-induced EhPL-AS cell lines. Further, the antisense-blocked cells showed 36% suppression of cell growth, 50 to 60% inhibition of fluid phase endocytosis, and about 50% inhibition of adhesion to target cells. Therefore, our data suggest the importance of GPI anchors in regulating some of the events in amoebic pathogenesis. They also demonstrated the use of antisense RNA-mediated inhibition of GPI biosynthetic enzymes as an approach to decrease the amount of GPI conjugates in E. histolytica.
Collapse
Affiliation(s)
- Divya Vats
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi-110067, India.
| | | | | | | |
Collapse
|
271
|
Abstract
The optimal outcome of a malaria infection is that parasitized cells are killed and degraded without inducing significant pathology. Since much of the pathology of malaria infection can be immune-mediated, this implies that immune responses have to be carefully regulated. The mechanisms by which anti-malarial immune responses are believed to be regulated were discussed at the recent Malaria Immunology Workshop (Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; February 2005). Potential regulatory mechanisms include regulatory T cells, which have been shown to significantly modify cellular immune responses to various protozoan infections, including leishmania and malaria; neutralising antibodies to pro-inflammatory malarial toxins such as glycosylphosphatidylinositol and haemozoin; and self-regulating networks of effector molecules. Innate and adaptive immune responses are further moderated by the broader immunological environment, which is influenced by both the genetic background of the host and by co-infection with other pathogens. A detailed understanding of the interplay between these different immunoregulatory processes may facilitate the rationale design of vaccines and novel therapeutics.
Collapse
Affiliation(s)
- E M Riley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | |
Collapse
|
272
|
Engwerda C, Belnoue E, Grüner AC, Rénia L. ExperimentalModels of Cerebral Malaria. Curr Top Microbiol Immunol 2005. [DOI: 10.1007/3-540-29967-x_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
273
|
Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, Otchwemah RN, Dietz E, Ehrhardt S, Schröder NWJ, Bienzle U, Schumann RR. Toll-like receptor (TLR) polymorphisms in African children: Common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci U S A 2005; 103:177-82. [PMID: 16371473 PMCID: PMC1324982 DOI: 10.1073/pnas.0506803102] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic host factors play a substantial role in susceptibility to and severity of malaria, which continues to cause at least one million deaths per year. Recently, members of the toll-like receptor (TLR) family have been shown to be involved in recognition of the etiologic organism Plasmodium falciparum: The glycosylphosphatidylinositol anchor induces signaling in host cells via TLR-2 and -4, whereas hemozoin-induced immune activation involves TLR-9. Binding of microbial ligands to the respective TLRs triggers the release of proinflammatory cytokines via the TLR/IL-1 receptor (TIR) domain and may contribute to the host response in malaria, including cytokine induction and fever. In a case-control study among 870 Ghanaian children, we examined the influence of TLR-2, -4, and -9 polymorphisms in susceptibility to severe malaria. TLR-2 variants common in Caucasians and Asians were completely absent. However, we found a rare previously undescribed mutation (Leu658Pro), which impairs signaling via TLR-2. We failed to detect any polymorphisms within the TLR-9 Toll/IL-1 receptor domain. Two frequent TLR-9 promoter polymorphisms did not show a clear association with malaria severity. In contrast, the TLR-4-Asp299Gly variant occurred at a high rate of 17.6% in healthy controls and was even more frequent in severe malaria patients (24.1%, P < 0.05). Likewise, TLR-4-Thr399Ile was seen in 2.4% of healthy children and in 6.2% of patients (P = 0.02). TLR-4-Asp299Gly and TLR-4-Thr399Ile conferred 1.5- and 2.6-fold increased risks of severe malaria, respectively. These findings suggest TLR4-mediated responses to malaria in vivo and TLR-4 polymorphisms to be associated with disease manifestation.
Collapse
Affiliation(s)
- Frank P Mockenhaupt
- Institute of Tropical Medicine Berlin, Charité-Universitätsmedizin Berlin, Spandauer Damm 130, 14050 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
274
|
Schaecher K, Kumar S, Yadava A, Vahey M, Ockenhouse CF. Genome-wide expression profiling in malaria infection reveals transcriptional changes associated with lethal and nonlethal outcomes. Infect Immun 2005; 73:6091-100. [PMID: 16113330 PMCID: PMC1231079 DOI: 10.1128/iai.73.9.6091-6100.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-density oligonucleotide microarrays are widely used to study gene expression in cells exposed to a variety of pathogens. This study addressed the global genome-wide transcriptional activation of genes in hosts infected in vivo, which result in radically different clinical outcomes. We present an analysis of the gene expression profiles that identified a set of host biomarkers which distinguish between lethal and nonlethal blood stage Plasmodium yoelii malaria infections. Multiple biological replicates sampled during the course of infection were used to establish statistically valid sets of differentially expressed genes. These genes that correlated with the intensity of infection were used to identify pathways of cellular processes related to metabolic perturbations, erythropoiesis, and B-cell immune responses and other innate and cellular immune responses. The transcriptional apparatus that controls gene expression in erythropoiesis was also differentially expressed and regulated the expression of target genes involved in the host's response to malaria anemia. The biological systems approach provides unprecedented opportunities to explore the pathophysiology of host-pathogen interactions in experimental malaria infection and to decipher functionally complex networks of gene and protein interactions.
Collapse
Affiliation(s)
- Kurt Schaecher
- Department of Immunology, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | | | | | | |
Collapse
|
275
|
Werz DB, Seeberger PH. Totalsynthese eines Tetrasaccharid-Antigens vonBacillus anthracis - Basis für einen Impfstoff gegen Anthrax. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200502615] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
276
|
Werz DB, Seeberger PH. Total Synthesis of AntigenBacillus Anthracis Tetrasaccharide—Creation of an Anthrax Vaccine Candidate. Angew Chem Int Ed Engl 2005; 44:6315-8. [PMID: 16172990 DOI: 10.1002/anie.200502615] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel B Werz
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology ETH Zürich, ETH Hönggerberg, HCI F 315, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | |
Collapse
|
277
|
Evans KJ, Hansen DS, van Rooijen N, Buckingham LA, Schofield L. Severe malarial anemia of low parasite burden in rodent models results from accelerated clearance of uninfected erythrocytes. Blood 2005; 107:1192-9. [PMID: 16210332 PMCID: PMC1895912 DOI: 10.1182/blood-2005-08-3460] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe malarial anemia (SMA) is the most frequent life-threatening complication of malaria and may contribute to the majority of malarial deaths worldwide. To explore the mechanisms of pathogenesis, we developed a novel murine model of SMA in which parasitemias peaked around 1.0% of circulating red blood cells (RBCs) and yet hemoglobin levels fell to 47% to 56% of baseline. The severity of anemia was independent of the level of peak or cumulative parasitemia, but was linked kinetically to the duration of patent infection. In vivo biotinylation analysis of the circulating blood compartment revealed that anemia arose from accelerated RBC turnover. Labeled RBCs were reduced to 1% of circulating cells by 8 days after labeling, indicating that the entire blood compartment had been turned over in approximately one week. The survival rate of freshly transfused RBCs was also markedly reduced in SMA animals, but was not altered when RBCs from SMA donors were transferred into naive recipients, suggesting few functional modifications to target RBCs. Anemia was significantly alleviated by depletion of either phagocytic cells or CD4+ T lymphocytes. This study demonstrates that immunologic mechanisms may contribute to SMA by promoting the accelerated turnover of uninfected RBCs.
Collapse
Affiliation(s)
- Krystal J Evans
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
278
|
Abstract
Malaria is possibly the most serious infectious disease of humans, infecting 5-10% of the world's population, with 300-600 million clinical cases and more than 2 million deaths annually. Adaptive immune responses in the host limit the clinical impact of infection and provide partial, but incomplete, protection against pathogen replication; however, these complex immunological reactions can contribute to disease and fatalities. So, appropriate regulation of immune responses to malaria lies at the heart of the host-parasite balance and has consequences for global public health. This Review article addresses the innate and adaptive immune mechanisms elicited during malaria that either cause or prevent disease and fatalities, and it considers the implications for vaccine design.
Collapse
Affiliation(s)
- Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
279
|
Seeberger PH, Werz DB. Automated synthesis of oligosaccharides as a basis for drug discovery. Nat Rev Drug Discov 2005; 4:751-63. [PMID: 16138107 DOI: 10.1038/nrd1823] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carbohydrates present both potential and problems - their biological relevance has been recognized, but problems in procuring sugars rendered them a difficult class of compounds to handle in drug discovery efforts. The development of the first automated solid-phase oligosaccharide synthesizer and other methods to assemble defined oligosaccharides rapidly has fundamentally altered this situation. This review describes how quick access to oligosaccharides has not only contributed to biological, biochemical and biophysical investigations, but also to drug discovery. Particular focus will be placed on the development of carbohydrate-based vaccines, defined heparin oligosaccharides and aminoglycosides that have recently begun to affect drug discovery.
Collapse
Affiliation(s)
- Peter H Seeberger
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, HCI F315, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.
| | | |
Collapse
|
280
|
Abstract
Vaccines have had a tremendous impact on the control of infectious diseases. Not only are vaccines potentially the least expensive mechanism to combat infectious diseases, under optimal conditions, widespread vaccination can result in disease eradication - as in the case of smallpox. Despite this great potential, vaccines have had little impact on human parasitic infections. The reasons for this are many - these eukaryotic pathogens are genetically and biologically complex organisms, some with elaborate life cycles and well-honed immune evasion mechanisms. Additionally, our understanding of the mechanisms of immune control of many parasitic infections -- of what constitutes an effective immune response and of how to induce high-quality immunological memory -- is not fully developed. This review attempts to highlight recent advances that could impact vaccine discovery and development in parasitic infections and proposes areas where future studies may lead to breakthroughs in vaccines for the agents of parasitic diseases. There are several other recent reviews highlighting the results of vaccine trials, specifically in the malaria field.
Collapse
Affiliation(s)
- Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, Biological Sciences Building, University of Georgia, Athens, 30602, USA.
| |
Collapse
|
281
|
Abstract
The recent infusion of public and private funding for malaria vaccine development has greatly accelerated the pace at which candidate malaria vaccines are entering the clinic. Recent promising results from vaccine trials carried out in malaria-naive and -endemic populations have revealed important insights into what will be required of a successful vaccine. Significant challenges lie ahead, not the least of which is insuring access of a malaria vaccine to the populations that need it most. Creative strategies, strong partnerships with developing countries, industry-like approaches to product development, and political vision and leadership on the part of wealthy nations will be critical to the successful implementation of this important new tool to reduce the intolerable burden of malaria.
Collapse
Affiliation(s)
- W Ripley Ballou
- Clinical Research and Development, GlaxoSmithKline Biologicals, Rixensart, Belgium.
| |
Collapse
|
282
|
Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet 2005; 77:171-92. [PMID: 16001361 PMCID: PMC1224522 DOI: 10.1086/432519] [Citation(s) in RCA: 664] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 06/03/2005] [Indexed: 12/22/2022] Open
Abstract
Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, alpha+ thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Dominic P Kwiatkowski
- Wellcome Trust Centre for Human Genetics and University Department of Paediatrics, Oxford, United Kingdom.
| |
Collapse
|
283
|
Lucas AH, Apicella MA, Taylor CE. Carbohydrate moieties as vaccine candidates. Clin Infect Dis 2005; 41:705-12. [PMID: 16080094 PMCID: PMC7107877 DOI: 10.1086/432582] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Accepted: 05/10/2005] [Indexed: 11/04/2022] Open
Abstract
Carbohydrate epitopes or glycotopes are structurally diverse, occur in a variety of chemical contexts, and are present on the surfaces of cells in the body and on the surfaces of pathogens. These various structures and modes of presentation affect how they are perceived and processed by the body and dictate the outcome of the immune response directed against them. This review focuses on mechanisms of carbohydrate immunity, with an emphasis on carbohydrate vaccines that have been or are being developed for protection against encapsulated bacterial pathogens. We discuss the cellular basis of carbohydrate immunity, newly identified glycotope processing pathways and recognition capabilities, and the synthetic and microarray technologies that are being developed that will permit new experimental approaches to carbohydrate vaccine development and the exploration of the interaction of the immune system with self and nonself glycans.
Collapse
Affiliation(s)
| | | | - Christopher E. Taylor
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
- Reprints or correspondence: Christopher E. Taylor, Bacterial Respiratory Diseases Program, Div. of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, 6610 Rockledge Dr., Rm. 5045, Bethesda, MD 20852 ()
| |
Collapse
|
284
|
|
285
|
Dube DH, Bertozzi CR. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 2005; 4:477-88. [PMID: 15931257 DOI: 10.1038/nrd1751] [Citation(s) in RCA: 1249] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Changes in glycosylation are often a hallmark of disease states. For example, cancer cells frequently display glycans at different levels or with fundamentally different structures than those observed on normal cells. This phenomenon was first described in the early 1970s, but the molecular details underlying such transformations were poorly understood. In the past decade advances in genomics, proteomics and mass spectrometry have enabled the association of specific glycan structures with disease states. In some cases, the functional significance of disease-associated changes in glycosylation has been revealed. This review highlights changes in glycosylation associated with cancer and chronic inflammation and new therapeutic and diagnostic strategies that are based on the underlying glycobiology.
Collapse
Affiliation(s)
- Danielle H Dube
- Department of Chemistry, University of California, Berkeley, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | |
Collapse
|
286
|
Malhotra I, Mungai P, Muchiri E, Ouma J, Sharma S, Kazura JW, King CL. Distinct Th1- and Th2-Type prenatal cytokine responses to Plasmodium falciparum erythrocyte invasion ligands. Infect Immun 2005; 73:3462-70. [PMID: 15908375 PMCID: PMC1111871 DOI: 10.1128/iai.73.6.3462-3470.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prenatal immunity to Plasmodium falciparum merozoite proteins involved in erythrocyte invasion may contribute to the partial protection against malaria that is acquired during infancy in areas of stable malaria transmission. We examined newborn and maternal cytokine and antibody responses to merozoite surface protein-1 (MSP-1), ribosomal phosphoprotein P0 (PfP0), and region II of erythrocyte binding antigen-175 (EBA-175) in infant-mother pairs in Kenya. Overall, 82 of 167 (50%), 106 of 176 (60%), and 38 of 84 (45%) cord blood lymphocytes (CBL) from newborns produced one or more cytokines in response to MSP-1, PfP0, and EBA-175, respectively. Newborns of primigravid and/or malaria-infected women were more likely to have antigen-responsive CBL than were newborns of multigravid and/or uninfected women at delivery. Newborn cytokine responses did not match those of their mothers and fell into three distinct categories, Th1 (21 of 55 CBL donors produced only gamma interferon and/or interleukin 2 [IL-2]), Th2 (21 of 55 produced only IL-5 and/or IL-13), and mixed Th1/Th2 (13 of 55). Newborns produced more IL-10 than adults. High and low levels of cord blood IL-12 p70 production induced by anti-CD40 activation were associated with malaria-specific Th1 and Th2 responses, respectively. Antigen-responsive CBL in some newborns were detected only after depletion of IL-10-secreting CD8 cells with enrichment for CD4 cells. These data indicate that prenatal sensitization to blood-stage Plasmodium falciparum occurs frequently in areas where malaria is holoendemic. Modulation of this immunity, possibly by maternal parity and malaria, may affect the acquisition of protective immunity against malaria during infancy.
Collapse
Affiliation(s)
- Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, 2103 Cornell Rd., WRC Room 4132, Cleveland, OH 44106-7286, USA
| | | | | | | | | | | | | |
Collapse
|
287
|
Hölemann A, Seeberger PH. Carbohydrate diversity: synthesis of glycoconjugates and complex carbohydrates. Curr Opin Biotechnol 2005; 15:615-22. [PMID: 15560990 DOI: 10.1016/j.copbio.2004.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fundamental role of glycoconjugates in many biological processes is now well appreciated and has intensified the development of innovative and improved synthetic strategies. All areas of synthetic methodology have seen major advances and many complex, highly branched carbohydrates and glycoproteins have been prepared using solution- and/or solid-phase approaches. The development of an automated oligosaccharide synthesizer provides rapid access to biologically relevant compounds. These chemical approaches help to produce sufficient quantities of defined oligosaccharides for biological studies. Synthetic chemistry also supports an improved understanding of glycobiology and will eventually result in the discovery of new therapeutics.
Collapse
Affiliation(s)
- Alexandra Hölemann
- Eidgenössische Technische Hochschule Zürich, Laboratory for Organic Chemistry, ETH Hönggerberg, HCI F315, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
288
|
Kwon YU, Soucy RL, Snyder DA, Seeberger PH. Assembly of a Series of Malarial Glycosylphosphatidylinositol Anchor Oligosaccharides. Chemistry 2005; 11:2493-504. [PMID: 15729674 DOI: 10.1002/chem.200400934] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report an efficient and convergent synthesis of a series of oligosaccharides comprised of the malaria GPI glycan (2a), a promising anti-malaria vaccine candidate currently in preclinical trials and several related oligosaccharide sequences (3-8) that are possible biosynthetic precursors of the malarial GPI. A flexible synthetic strategy is disclosed that relies on a late-stage coupling between oligomannosides of varying length and pseudo-disaccharide glycosyl acceptor 11 to readily access various malarial GPI structures. Phosphorylation was accomplished by mild and efficient H-phosphonate chemistry before the final deprotection was carried out by using sodium in ammonia. The direct connection of a thiol group via a phosphate diester linkage to the inositol moiety provides a handle for easy conjugation of the GPI glycan to carrier proteins, immobilization on carbohydrate microarrays and photo-affinity labels identification. These synthetic oligosaccharides will serve as molecular probes.
Collapse
Affiliation(s)
- Yong-Uk Kwon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
289
|
Abstract
There are several malaria vaccine candidates at various stages of development. Many of these target blood stages of Plasmodium falciparum. The spleen is a key site for removal of parasitized red blood cells, generation of immunity and production of new red blood cells during malaria. This article describes how all of these processes are modified following infection, and suggests that until we fully understand how these processes function and are modulated by infection, appropriate malaria vaccine design and delivery will be extremely difficult to achieve.
Collapse
|
290
|
Good MF, Xu H, Wykes M, Engwerda CR. DEVELOPMENT AND REGULATION OF CELL-MEDIATED IMMUNE RESPONSES TO THE BLOOD STAGES OF MALARIA: Implications for Vaccine Research. Annu Rev Immunol 2005; 23:69-99. [PMID: 15771566 DOI: 10.1146/annurev.immunol.23.021704.115638] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The immune response to the malaria parasite is complex and poorly understood. Although antibodies and T cells can control parasite growth in model systems, natural immunity to malaria in regions of high endemicity takes several years to develop. Variation and polymorphism of antibody target antigens are known to impede immune responses, but these factors alone cannot account for the slow acquisition of immunity. In human and animal model systems, cell-mediated responses can control parasite growth effectively, but such responses are regulated by parasite load via direct effects on dendritic cells and possibly on T and B cells as well. Furthermore, high parasite load is associated with pathology, and cell-mediated responses may also harm the host. Inflammatory cytokines have been implicated in the pathogenesis of cerebral malaria, anemia, weight loss, and respiratory distress in malaria. Immunity without pathology requires rapid parasite clearance, effective regulation of the inflammatory anti-parasite effects of cellular responses, and the eventual development of a repertoire of antibodies effective against multiple strains. Data suggest that this may be hastened by exposure to malaria antigens in low dose, leading to augmented cellular immunity and rapid parasite clearance.
Collapse
Affiliation(s)
- Michael F Good
- The Queensland Institute of Medical Research, Brisbane, 4029, Australia.
| | | | | | | |
Collapse
|
291
|
Love KR, Seeberger PH. Solution Syntheses of Protected Type II Lewis Blood Group Oligosaccharides: Study for Automated Synthesis. J Org Chem 2005; 70:3168-77. [PMID: 15822979 DOI: 10.1021/jo047723b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosyl phosphate and trichloroacetimidate monosaccharide building blocks were used in a stepwise solution-phase synthesis of three Lewis blood group oligosaccharides. The syntheses were conducted to establish general routes for the automated assembly of the oligosaccharide portion of biologically important glycolipids. The H-type II pentasaccharide, Le(x) pentasaccharide, and Le(y) hexasaccharide were prepared in high yield. These syntheses served to evaluate the utility and limitations of the 2-(azidomethyl)benzoate ester (AZMB) for the construction of complex carbohydrates. Development of a glucosamine building block containing a N-trichloroacetamide group to mask the C2 amine improved coupling yields and was key for completion of the Le(x) and Le(y) structures.
Collapse
Affiliation(s)
- Kerry Routenberg Love
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
292
|
Hansen DS, Evans KJ, D'Ombrain MC, Bernard NJ, Sexton AC, Buckingham L, Scalzo AA, Schofield L. The natural killer complex regulates severe malarial pathogenesis and influences acquired immune responses to Plasmodium berghei ANKA. Infect Immun 2005; 73:2288-97. [PMID: 15784573 PMCID: PMC1087422 DOI: 10.1128/iai.73.4.2288-2297.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 09/29/2004] [Accepted: 11/22/2004] [Indexed: 01/09/2023] Open
Abstract
The natural killer complex (NKC) is a genetic region of highly linked genes encoding several receptors involved in the control of NK cell function. The NKC is highly polymorphic, and allelic variability of various NKC loci has been demonstrated in inbred mice. Making use of BALB.B6-Cmv1r congenic mice, in which the NKC from disease-susceptible C57BL/6 mice has been introduced into the disease-resistant BALB/c background, we show here that during murine malaria infection, the NKC regulates a range of pathophysiological syndromes such as cerebral malaria, pulmonary edema, and severe anemia, which contribute to morbidity and mortality in human malaria. Parasitemia levels were not affected by the NKC genotype, indicating that control of malarial fatalities by the NKC cells does not operate through effects on parasite growth rate. Parasite-specific antibody responses and the proinflammatory gene transcription profile, as well as the TH1/TH2 balance, also appeared to be influenced by NKC genotype, providing evidence that this region, known to control innate immune responses via NK and/or NK T-cell activation, can also significantly regulate acquired immunity to infection. To date, NKC-encoded innate system receptors have been shown mainly to regulate viral infections. Our data provide evidence for critical NKC involvement in the broad immunological responses to a protozoan parasite.
Collapse
Affiliation(s)
- Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
293
|
Perraut R, Diatta B, Marrama L, Garraud O, Jambou R, Longacre S, Krishnegowda G, Dieye A, Gowda DC. Differential antibody responses to Plasmodium falciparum glycosylphosphatidylinositol anchors in patients with cerebral and mild malaria. Microbes Infect 2005; 7:682-7. [PMID: 15848275 DOI: 10.1016/j.micinf.2005.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Revised: 01/06/2005] [Accepted: 01/14/2005] [Indexed: 11/20/2022]
Abstract
Glycosylphosphatidylinositol (GPI) membrane anchors of Plasmodium falciparum surface proteins are thought to be important factors contributing to malaria pathogenesis, and anti-GPI antibodies have been suggested to provide protection by neutralizing the toxic activity of GPIs. In this study, IgG responses against P. falciparum GPIs and a baculovirus recombinant MSP1p19 antigen were evaluated in two distinct groups of 70 patients each, who were hospitalized with malaria. Anti-GPI IgGs were significantly lower in patients hospitalized with confirmed cerebral malaria compared to those with mild malaria (P < 0.01) but did not discriminate for fatal outcome. In contrast, a specific marker of the anti-parasite immunity, as monitored by the anti-MSP1p19 IgG response, was similar in both cerebral and mild malaria individuals, although it was significantly lower in a subgroup with fatal outcomes. These results are consistent with a potential anti-toxin role for anti-GPI antibodies associated with protection against cerebral malaria.
Collapse
Affiliation(s)
- Ronald Perraut
- Unité d'Immunologie, Institut Pasteur de Dakar, 36 Av. Pasteur, BP-220, Dakar, Senegal.
| | | | | | | | | | | | | | | | | |
Collapse
|
294
|
Hisaeda H, Yasutomo K, Himeno K. Malaria: immune evasion by parasites. Int J Biochem Cell Biol 2005; 37:700-6. [PMID: 15694829 DOI: 10.1016/j.biocel.2004.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 10/07/2004] [Accepted: 10/13/2004] [Indexed: 11/23/2022]
Abstract
Malaria is one of the most life-threatening infectious diseases worldwide. Specific immunity to natural infection is acquired slowly despite a high degree of repeated exposure and rarely continues for a long time even in endemic areas. Malaria parasites have evolved to acquire diverse immune evasion mechanisms that evoke poor immune responses and allow infection of individuals previously exposed. The shrewd schema of malaria parasites also hampers the development of effective vaccines. Furthermore, some of those mechanisms are essential for malaria pathogenesis. In this article, an outline of protective immunity to malaria is given, then strategies used by malaria parasites to evade host immunity, including antigen diversity/polymorphism, antigen variation and total immune suppression, are reviewed. Finally, trials to control malaria based on accumulating insights into the host-parasite relationship are discussed.
Collapse
Affiliation(s)
- Hajime Hisaeda
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku Fukuoka 812-8582, Japan.
| | | | | |
Collapse
|
295
|
Liu X, Kwon YU, Seeberger PH. Convergent Synthesis of a Fully Lipidated Glycosylphosphatidylinositol Anchor of Plasmodium falciparum. J Am Chem Soc 2005; 127:5004-5. [PMID: 15810819 DOI: 10.1021/ja042374o] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly convergent strategy for the synthesis of fully lipidated GPI anchors of malarial origin is reported. This strategy utilized three orthogonal protecting groups, which can be chemoselectively deprotected and functionalized in the late stage of the synthesis. Rapid access to the target GPIs in a highly efficient manner in sufficient quantities for the biological studies has been achieved.
Collapse
Affiliation(s)
- Xinyu Liu
- Laboratory for Organic Chemistry, ETH Zürich, Wolfgang-Pauli-Str. 10, HCI F315, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
296
|
Serghides L, Kain KC. Peroxisome proliferator-activated receptor gamma and retinoid X receptor agonists have minimal effects on the interaction of endothelial cells with Plasmodium falciparum-infected erythrocytes. Infect Immun 2005; 73:1209-13. [PMID: 15664966 PMCID: PMC547031 DOI: 10.1128/iai.73.2.1209-1213.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma-retinoid X receptor (PPARgamma-RXR) agonists had minimal effects on the surface levels of CD36, intercellular cell adhesion molecule-1, or platelet-endothelial cell adhesion molecule-1 and had no effect on the cytoadherence of infected erythrocytes to either human umbilical vein endothelial cells or human microvascular endothelial cells or on malaria-induced interleukin-6 secretion from these cells. PPARgamma-RXR agonists do not significantly modify malaria-infected erythrocyte-endothelial cell interactions in vitro.
Collapse
Affiliation(s)
- Lena Serghides
- Toronto General Hospital, 200 Elizabeth St. 9ES-412, Toronto, Ontario, M5G 2C4 Canada
| | | |
Collapse
|
297
|
Mackintosh CL, Beeson JG, Marsh K. Clinical features and pathogenesis of severe malaria. Trends Parasitol 2005; 20:597-603. [PMID: 15522670 DOI: 10.1016/j.pt.2004.09.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major change in recent years has been the recognition that severe malaria, predominantly caused by Plasmodium falciparum, is a complex multi-system disorder presenting with a range of clinical features. It is becoming apparent that syndromes such as cerebral malaria, which were previously considered relatively clear cut, are not homogenous conditions with a single pathological correlate or pathogenic process. This creates challenges both for elucidating key mechanisms of disease and for identifying suitable targets for adjunctive therapy. The development of severe malaria probably results from a combination of parasite-specific factors, such as adhesion and sequestration in the vasculature and the release of bioactive molecules, together with host inflammatory responses. These include cytokine and chemokine production and cellular infiltrates. This review summarizes progress in several areas presented at a recent meeting.
Collapse
Affiliation(s)
- Claire L Mackintosh
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute Wellcome Trust Collaborative Programme, Kilifi, Kenya
| | | | | |
Collapse
|
298
|
Boutlis CS, Riley EM, Anstey NM, de Souza JB. Glycosylphosphatidylinositols in malaria pathogenesis and immunity: potential for therapeutic inhibition and vaccination. Curr Top Microbiol Immunol 2005; 297:145-85. [PMID: 16265905 DOI: 10.1007/3-540-29967-x_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glycosylphosphatidylinositols (GPIs) are found in the outer cell membranes of all eukaryotes. GPIs anchor a diverse range of proteins to the surface of Plasmodium falciparum, but may also exist free of protein attachment. In vitro and in vivo studies have established GPIs as likely candidate toxins in malaria, consistent with the prevailing paradigm that attributes induction of inflammatory cytokines, fever and other pathology to parasite toxins released when schizonts rupture. Although evolutionarily conserved, sufficient structural differences appear to exist that impart upon plasmodial GPIs the ability to activate second messengers in mammalian cells and elicit immune responses. In populations exposed to P. falciparum, the antibody response to purified GPIs is characterised by a predominance of immunoglobulin (Ig)G over IgM and an increase in the prevalence, level and persistence of responses with increasing age. It remains unclear, however, if these antibodies or other cellular responses to GPIs mediate anti-toxic immunity in humans; anti-toxic immunity may comprise either reduction in the severity of disease or maintenance of the malaria-tolerant state (i.e. persistent asymptomatic parasitaemia). P. falciparum GPIs are potentially amenable to specific therapeutic inhibition and vaccination; more needs to be known about their dual roles in malaria pathogenesis and protection for these strategies to succeed.
Collapse
Affiliation(s)
- C S Boutlis
- International Health Program, Infectious Diseases Division, Menzies School of Health Research, P.O. Box 41096, 0811 Casuarina, NT, Australia.
| | | | | | | |
Collapse
|
299
|
Roy R. New trends in carbohydrate-based vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:327-36. [PMID: 24981502 DOI: 10.1016/j.ddtec.2004.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
300
|
Shriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nat Rev Drug Discov 2004; 3:863-73. [PMID: 15459677 DOI: 10.1038/nrd1521] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Complex glycans that are located at the surface of cells, deposited in the extracellular matrix and attached to soluble signalling molecules have a crucial role in the phenotypic expression of cellular genotypes. However, owing to their structural complexity and some redundancy in terms of structures that elicit a function, the therapeutic potential of complex glycans has not been well exploited, with a few notable exceptions. This review outlines recent advances that promise to increase our ability to use complex glycans as therapeutics. Opportunities for the development of further structure-function relationships for these complex molecules are also discussed.
Collapse
Affiliation(s)
- Zachary Shriver
- Momenta Pharmaceuticals, 43 Moulton Street, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|