251
|
Watkins JM, Montes C, Clark NM, Song G, Oliveira CC, Mishra B, Brachova L, Seifert CM, Mitchell MS, Yang J, Braga Dos Reis PA, Urano D, Muktar MS, Walley JW, Jones AM. Phosphorylation Dynamics in a flg22-Induced, G Protein-Dependent Network Reveals the AtRGS1 Phosphatase. Mol Cell Proteomics 2024; 23:100705. [PMID: 38135118 PMCID: PMC10837098 DOI: 10.1016/j.mcpro.2023.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023] Open
Abstract
The microbe-associated molecular pattern flg22 is recognized in a flagellin-sensitive 2-dependent manner in root tip cells. Here, we show a rapid and massive change in protein abundance and phosphorylation state of the Arabidopsis root cell proteome in WT and a mutant deficient in heterotrimeric G-protein-coupled signaling. flg22-induced changes fall on proteins comprising a subset of this proteome, the heterotrimeric G protein interactome, and on highly-populated hubs of the immunity network. Approximately 95% of the phosphorylation changes in the heterotrimeric G-protein interactome depend, at least partially, on a functional G protein complex. One member of this interactome is ATBα, a substrate-recognition subunit of a protein phosphatase 2A complex and an interactor to Arabidopsis thaliana Regulator of G Signaling 1 protein (AtRGS1), a flg22-phosphorylated, 7-transmembrane spanning modulator of the nucleotide-binding state of the core G-protein complex. A null mutation of ATBα strongly increases basal endocytosis of AtRGS1. AtRGS1 steady-state protein level is lower in the atbα mutant in a proteasome-dependent manner. We propose that phosphorylation-dependent endocytosis of AtRGS1 is part of the mechanism to degrade AtRGS1, thus sustaining activation of the heterotrimeric G protein complex required for the regulation of system dynamics in innate immunity. The PP2A(ATBα) complex is a critical regulator of this signaling pathway.
Collapse
Affiliation(s)
- Justin M Watkins
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christian Montes
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Celio Cabral Oliveira
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Biochemistry and Molecular Biology/BIOAGRO, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Bharat Mishra
- Department of Biology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Libuse Brachova
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Clara M Seifert
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Malek S Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jing Yang
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Daisuke Urano
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - M Shahid Muktar
- Department of Biology, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA.
| | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
252
|
Stewart N, Daly J, Drummond-Guy O, Krishnamoorthy V, Stark JC, Riley NM, Williams KC, Bertozzi CR, Wisnovsky S. The glycoimmune checkpoint receptor Siglec-7 interacts with T-cell ligands and regulates T-cell activation. J Biol Chem 2024; 300:105579. [PMID: 38141764 PMCID: PMC10831161 DOI: 10.1016/j.jbc.2023.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023] Open
Abstract
Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.
Collapse
Affiliation(s)
- Natalie Stewart
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - John Daly
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Olivia Drummond-Guy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vignesh Krishnamoorthy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica C Stark
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Nicholas M Riley
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn R Bertozzi
- Department of Chemistry & Sarafan ChEM-H, Stanford University, Stanford, California, USA; Howard Hughes Medical Institute, Stanford, California, USA
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
253
|
Kim S, Morgunova E, Naqvi S, Goovaerts S, Bader M, Koska M, Popov A, Luong C, Pogson A, Swigut T, Claes P, Taipale J, Wysocka J. DNA-guided transcription factor cooperativity shapes face and limb mesenchyme. Cell 2024; 187:692-711.e26. [PMID: 38262408 PMCID: PMC10872279 DOI: 10.1016/j.cell.2023.12.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024]
Abstract
Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Seppe Goovaerts
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Maram Bader
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Mervenaz Koska
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christy Luong
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Angela Pogson
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Peter Claes
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden; Department of Biochemistry, University of Cambridge, Cambridge, UK; Applied Tumor Genomics Program, University of Helsinki, Helsinki, Finland
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
254
|
Ahlstedt BA, Ganji R, Mukkavalli S, Paulo JA, Gygi SP, Raman M. UBXN1 maintains ER proteostasis and represses UPR activation by modulating translation. EMBO Rep 2024; 25:672-703. [PMID: 38177917 PMCID: PMC10897191 DOI: 10.1038/s44319-023-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
ER protein homeostasis (proteostasis) is essential for proper folding and maturation of proteins in the secretory pathway. Loss of ER proteostasis can lead to the accumulation of misfolded or aberrant proteins in the ER and triggers the unfolded protein response (UPR). In this study, we find that the p97 adaptor UBXN1 is an important negative regulator of the UPR. Loss of UBXN1 sensitizes cells to ER stress and activates the UPR. This leads to widespread upregulation of the ER stress transcriptional program. Using comparative, quantitative proteomics we show that deletion of UBXN1 results in a significant enrichment of proteins involved in ER-quality control processes including those involved in protein folding and import. Notably, we find that loss of UBXN1 does not perturb p97-dependent ER-associated degradation (ERAD). Our studies indicate that loss of UBXN1 increases translation in both resting and ER-stressed cells. Surprisingly, this process is independent of p97 function. Taken together, our studies have identified a new role for UBXN1 in repressing translation and maintaining ER proteostasis in a p97 independent manner.
Collapse
Affiliation(s)
- Brittany A Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- ALPCA diagnostics, Salem, NH, USA
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Sirisha Mukkavalli
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- Dana Farber Cancer Research Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
255
|
Lou R, Shui W. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023. Mol Cell Proteomics 2024; 23:100712. [PMID: 38182042 PMCID: PMC10847697 DOI: 10.1016/j.mcpro.2024.100712] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024] Open
Abstract
Data-independent acquisition (DIA) mass spectrometry (MS) has emerged as a powerful technology for high-throughput, accurate, and reproducible quantitative proteomics. This review provides a comprehensive overview of recent advances in both the experimental and computational methods for DIA proteomics, from data acquisition schemes to analysis strategies and software tools. DIA acquisition schemes are categorized based on the design of precursor isolation windows, highlighting wide-window, overlapping-window, narrow-window, scanning quadrupole-based, and parallel accumulation-serial fragmentation-enhanced DIA methods. For DIA data analysis, major strategies are classified into spectrum reconstruction, sequence-based search, library-based search, de novo sequencing, and sequencing-independent approaches. A wide array of software tools implementing these strategies are reviewed, with details on their overall workflows and scoring approaches at different steps. The generation and optimization of spectral libraries, which are critical resources for DIA analysis, are also discussed. Publicly available benchmark datasets covering global proteomics and phosphoproteomics are summarized to facilitate performance evaluation of various software tools and analysis workflows. Continued advances and synergistic developments of versatile components in DIA workflows are expected to further enhance the power of DIA-based proteomics.
Collapse
Affiliation(s)
- Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
256
|
Wang Q, Fang F, Wang Q, Sun L. Capillary zone electrophoresis-high field asymmetric ion mobility spectrometry-tandem mass spectrometry for top-down characterization of histone proteoforms. Proteomics 2024; 24:e2200389. [PMID: 37963825 PMCID: PMC10922523 DOI: 10.1002/pmic.202200389] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
Characterization of histone proteoforms with various post-translational modifications (PTMs) is critical for a better understanding of functions of histone proteoforms in epigenetic control of gene expression. Mass spectrometry (MS)-based top-down proteomics (TDP) is a valuable approach for delineating histone proteoforms because it can provide us with a bird's-eye view of histone proteoforms carrying diverse combinations of PTMs. Here, we present the first example of coupling capillary zone electrophoresis (CZE), ion mobility spectrometry (IMS), and MS for online multi-dimensional separations of histone proteoforms. Our CZE-high-field asymmetric waveform IMS (FAIMS)-MS/MS platform identified 366 (ProSight PD) and 602 (TopPIC) histone proteoforms from a commercial calf histone sample using a low microgram amount of histone sample as the starting material. CZE-FAIMS-MS/MS improved the number of histone proteoform identifications by about 3 folds compared to CZE-MS/MS alone (without FAIMS). The results indicate that CZE-FAIMS-MS/MS could be a useful tool for comprehensive characterization of histone proteoforms with high sensitivity.
Collapse
Affiliation(s)
- Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Fei Fang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Qianjie Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
257
|
Amiri M, Kiniry SJ, Possemato AP, Mahmood N, Basiri T, Dufour CR, Tabatabaei N, Deng Q, Bellucci MA, Harwalkar K, Stokes MP, Giguère V, Kaufman RJ, Yamanaka Y, Baranov PV, Tahmasebi S, Sonenberg N. Impact of eIF2α phosphorylation on the translational landscape of mouse embryonic stem cells. Cell Rep 2024; 43:113615. [PMID: 38159280 PMCID: PMC10962698 DOI: 10.1016/j.celrep.2023.113615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/β) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.
Collapse
Affiliation(s)
- Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | | | - Niaz Mahmood
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Tayebeh Basiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Qiyun Deng
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Michael A Bellucci
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Matthew P Stokes
- Cell Signaling Technology, Inc., 3 Trask Lane, Danvers, MA 01923, USA
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
258
|
An S, Lu M, Wang R, Wang J, Jiang H, Xie C, Tong J, Yu C. Ion entropy and accurate entropy-based FDR estimation in metabolomics. Brief Bioinform 2024; 25:bbae056. [PMID: 38426325 PMCID: PMC10939419 DOI: 10.1093/bib/bbae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/07/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Accurate metabolite annotation and false discovery rate (FDR) control remain challenging in large-scale metabolomics. Recent progress leveraging proteomics experiences and interdisciplinary inspirations has provided valuable insights. While target-decoy strategies have been introduced, generating reliable decoy libraries is difficult due to metabolite complexity. Moreover, continuous bioinformatics innovation is imperative to improve the utilization of expanding spectral resources while reducing false annotations. Here, we introduce the concept of ion entropy for metabolomics and propose two entropy-based decoy generation approaches. Assessment of public databases validates ion entropy as an effective metric to quantify ion information in massive metabolomics datasets. Our entropy-based decoy strategies outperform current representative methods in metabolomics and achieve superior FDR estimation accuracy. Analysis of 46 public datasets provides instructive recommendations for practical application.
Collapse
Affiliation(s)
- Shaowei An
- Shandong First Medical University & Central Hospital Affiliated to Shandong First Medical University, 6699 Qingdao Road, Jinan 271016, Shandong, China
- Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Miaoshan Lu
- Shandong First Medical University & Central Hospital Affiliated to Shandong First Medical University, 6699 Qingdao Road, Jinan 271016, Shandong, China
- Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Zhejiang University, 866 Yuhangtang Road, Hangzhou 310009, Zhejiang, China
| | - Ruimin Wang
- Shandong First Medical University & Central Hospital Affiliated to Shandong First Medical University, 6699 Qingdao Road, Jinan 271016, Shandong, China
- Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Jinyin Wang
- Shandong First Medical University & Central Hospital Affiliated to Shandong First Medical University, 6699 Qingdao Road, Jinan 271016, Shandong, China
- Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Zhejiang University, 866 Yuhangtang Road, Hangzhou 310009, Zhejiang, China
| | - Hengxuan Jiang
- Shandong First Medical University & Central Hospital Affiliated to Shandong First Medical University, 6699 Qingdao Road, Jinan 271016, Shandong, China
| | - Cong Xie
- Shandong First Medical University & Central Hospital Affiliated to Shandong First Medical University, 6699 Qingdao Road, Jinan 271016, Shandong, China
| | - Junjie Tong
- Shandong First Medical University & Central Hospital Affiliated to Shandong First Medical University, 6699 Qingdao Road, Jinan 271016, Shandong, China
| | - Changbin Yu
- Shandong First Medical University & Central Hospital Affiliated to Shandong First Medical University, 6699 Qingdao Road, Jinan 271016, Shandong, China
| |
Collapse
|
259
|
Ouyang Y, Jeong MY, Cunningham CN, Berg JA, Toshniwal AG, Hughes CE, Seiler K, Van Vranken JG, Cluntun AA, Lam G, Winter JM, Akdogan E, Dove KK, Nowinski SM, West M, Odorizzi G, Gygi SP, Dunn CD, Winge DR, Rutter J. Phosphate starvation signaling increases mitochondrial membrane potential through respiration-independent mechanisms. eLife 2024; 13:e84282. [PMID: 38251707 PMCID: PMC10846858 DOI: 10.7554/elife.84282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2024] [Indexed: 01/23/2024] Open
Abstract
Mitochondrial membrane potential directly powers many critical functions of mitochondria, including ATP production, mitochondrial protein import, and metabolite transport. Its loss is a cardinal feature of aging and mitochondrial diseases, and cells closely monitor membrane potential as an indicator of mitochondrial health. Given its central importance, it is logical that cells would modulate mitochondrial membrane potential in response to demand and environmental cues, but there has been little exploration of this question. We report that loss of the Sit4 protein phosphatase in yeast increases mitochondrial membrane potential, both by inducing the electron transport chain and the phosphate starvation response. Indeed, a similarly elevated mitochondrial membrane potential is also elicited simply by phosphate starvation or by abrogation of the Pho85-dependent phosphate sensing pathway. This enhanced membrane potential is primarily driven by an unexpected activity of the ADP/ATP carrier. We also demonstrate that this connection between phosphate limitation and enhancement of mitochondrial membrane potential is observed in primary and immortalized mammalian cells as well as in Drosophila. These data suggest that mitochondrial membrane potential is subject to environmental stimuli and intracellular signaling regulation and raise the possibility for therapeutic enhancement of mitochondrial function even in defective mitochondria.
Collapse
Affiliation(s)
- Yeyun Ouyang
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Mi-Young Jeong
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Corey N Cunningham
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Jordan A Berg
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Ashish G Toshniwal
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Casey E Hughes
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Kristina Seiler
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | | | - Ahmad A Cluntun
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Geanette Lam
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Jacob M Winter
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Emel Akdogan
- Department of Molecular Biology and Genetics, Koç UniversityİstanbulTurkey
| | - Katja K Dove
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Sara M Nowinski
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
| | - Matthew West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, BoulderBoulderUnited States
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, BoulderBoulderUnited States
| | - Steven P Gygi
- Department of Cell Biology, Harvard University School of MedicineBostonUnited States
| | - Cory D Dunn
- Department of Molecular Biology and Genetics, Koç UniversityİstanbulTurkey
- Institute of Biotechnology, University of HelsinkiHelsinkiFinland
| | - Dennis R Winge
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
- Department of Medicine, The University of UtahSalt Lake CityUnited States
| | - Jared Rutter
- Department of Biochemistry, The University of UtahSalt Lake CityUnited States
- Howard Hughes Medical Institute, University of UtahSalt Lake CityUnited States
| |
Collapse
|
260
|
Yang T, Ling T, Sun B, Liang Z, Xu F, Huang X, Xie L, He Y, Li L, He F, Wang Y, Chang C. Introducing π-HelixNovo for practical large-scale de novo peptide sequencing. Brief Bioinform 2024; 25:bbae021. [PMID: 38340092 PMCID: PMC10858680 DOI: 10.1093/bib/bbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/12/2024] Open
Abstract
De novo peptide sequencing is a promising approach for novel peptide discovery, highlighting the performance improvements for the state-of-the-art models. The quality of mass spectra often varies due to unexpected missing of certain ions, presenting a significant challenge in de novo peptide sequencing. Here, we use a novel concept of complementary spectra to enhance ion information of the experimental spectrum and demonstrate it through conceptual and practical analyses. Afterward, we design suitable encoders to encode the experimental spectrum and the corresponding complementary spectrum and propose a de novo sequencing model $\pi$-HelixNovo based on the Transformer architecture. We first demonstrated that $\pi$-HelixNovo outperforms other state-of-the-art models using a series of comparative experiments. Then, we utilized $\pi$-HelixNovo to de novo gut metaproteome peptides for the first time. The results show $\pi$-HelixNovo increases the identification coverage and accuracy of gut metaproteome and enhances the taxonomic resolution of gut metaproteome. We finally trained a powerful $\pi$-HelixNovo utilizing a larger training dataset, and as expected, $\pi$-HelixNovo achieves unprecedented performance, even for peptide-spectrum matches with never-before-seen peptide sequences. We also use the powerful $\pi$-HelixNovo to identify antibody peptides and multi-enzyme cleavage peptides, and $\pi$-HelixNovo is highly robust in these applications. Our results demonstrate the effectivity of the complementary spectrum and take a significant step forward in de novo peptide sequencing.
Collapse
Affiliation(s)
- Tingpeng Yang
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Tianze Ling
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boyan Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Zhendong Liang
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Fan Xu
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | | | - Linhai Xie
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yonghong He
- Peng Cheng Laboratory, Shenzhen, 518055, China
- Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, China
| | - Leyuan Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Yu Wang
- Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Cheng Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing 102206, China
| |
Collapse
|
261
|
Santos LGC, Parreira VDSC, da Silva EMG, Santos MDM, Fernandes ADF, Neves-Ferreira AGDC, Carvalho PC, Freitas FCDP, Passetti F. SpliceProt 2.0: A Sequence Repository of Human, Mouse, and Rat Proteoforms. Int J Mol Sci 2024; 25:1183. [PMID: 38256255 PMCID: PMC10816255 DOI: 10.3390/ijms25021183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository provides an even broader range of computationally translated proteins and serves, for example, to aid with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database. We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and murines based on transcript reconstruction, sequence annotation and detection at the transcriptome and proteome levels. In this release, the annotation data used in the reconstruction of transcripts based on the methodology of ternary matrices were acquired from new databases such as Ensembl, UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository and its applications represent a valuable resource for the proteogenomics community.
Collapse
Affiliation(s)
- Letícia Graziela Costa Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Vinícius da Silva Coutinho Parreira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Marlon Dias Mariano Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Alexander da Franca Fernandes
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Flávia Cristina de Paula Freitas
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| |
Collapse
|
262
|
Dong KD, Schmid EW, Bomgarden RD, Choi JH, Gygi SP, Yu Q, Paulo JA. Adapting an Isobaric Tag-Labeled Yeast Peptide Standard to Develop Targeted Proteomics Assays. J Proteome Res 2024; 23:142-148. [PMID: 38009700 PMCID: PMC10777125 DOI: 10.1021/acs.jproteome.3c00493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Targeted proteomics strategies present a streamlined hypothesis-driven approach to analyze specific sets of pathways or disease related proteins. goDig is a quantitative, targeted tandem mass tag (TMT)-based assay that can measure the relative abundance differences for hundreds of proteins directly from unfractionated mixtures. Specific protein groups or entire pathways of up to 200 proteins can be selected for quantitative profiling, while leveraging sample multiplexing permits the simultaneous analysis of up to 18 samples. Despite these benefits, implementing goDig is not without challenges, as it requires access to an instrument application programming interface (iAPI), an elution order and spectral library, a web-based method builder, and dedicated companion software. In addition, the absence of an example test assay may dissuade researchers from testing or implementing goDig. Here, we repurpose the TKO11 standard─which is commercially available but may also be assembled in-lab─and establish it as a de facto test assay for goDig. We build a proteome-wide goDig yeast library, quantify protein expression across several gene ontology (GO) categories, and compare these results to a fully fractionated yeast gold-standard data set. Essentially, we provide a guide detailing the goDig-based quantification of TKO11, which can also be used as a template for user-defined assays in other species.
Collapse
Affiliation(s)
- Kevin D Dong
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ernst W Schmid
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ryan D Bomgarden
- Thermo Fisher Scientific, Rockford, Illinois 61101, United States
| | - Jae H Choi
- Thermo Fisher Scientific, Rockford, Illinois 61101, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
263
|
Burger N, Mittenbühler MJ, Xiao H, Shin S, Bozi LHM, Wei S, Sprenger HG, Sun Y, Zhu Y, Darabedian N, Petrocelli JJ, Muro PL, Che J, Chouchani ET. A comprehensive landscape of the zinc-regulated human proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574225. [PMID: 38260676 PMCID: PMC10802333 DOI: 10.1101/2024.01.04.574225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.
Collapse
|
264
|
Liu S, Li J, Peraramelli S, Luo N, Chen A, Dai M, Liu F, Yu Y, Leib RD, Li Y, Lin K, Huynh D, Li S, Ou L. Systematic comparison of rAAV vectors manufactured using large-scale suspension cultures of Sf9 and HEK293 cells. Mol Ther 2024; 32:74-83. [PMID: 37990495 PMCID: PMC10787191 DOI: 10.1016/j.ymthe.2023.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors could be manufactured by plasmid transfection into human embryonic kidney 293 (HEK293) cells or baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. However, systematic comparisons between these systems using large-scale, high-quality AAV vectors are lacking. rAAV from Sf9 cells (Sf9-rAAV) at 2-50 L and HEK293 cells (HEK-rAAV) at 2-200 L scales were characterized. HEK-rAAV had ∼40-fold lower yields but ∼10-fold more host cell DNA measured by droplet digital PCR and next-generation sequencing, respectively. The electron microscope observed a lower full/empty capsid ratio in HEK-rAAV (70.8%) than Sf9-rAAV (93.2%), while dynamic light scattering and high-performance liquid chromatography analysis showed that HEK-rAAV had more aggregation. Liquid chromatography tandem mass spectrometry identified different post-translational modification profiles between Sf9-rAAV and HEK-rAAV. Furthermore, Sf9-rAAV had a higher tissue culture infectious dose/viral genome than HEK-rAAV, indicating better infectivity. Additionally, Sf9-rAAV achieved higher in vitro transgene expression, as measured by ELISA. Finally, after intravitreal dosing into a mouse laser choroidal neovascularization model, Sf9-rAAV and HEK-rAAV achieved similar efficacy. Overall, this study detected notable differences in the physiochemical characteristics of HEK-rAAV and Sf9-rAAV. However, the in vitro and in vivo biological functions of the rAAV from these systems were highly comparable. Sf9-rAAV may be preferred over HEK293-rAAV for advantages in yields, full/empty ratio, scalability, and cost.
Collapse
Affiliation(s)
| | - Jinzhong Li
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | | | | | - Alan Chen
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | - Minghua Dai
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | - Fang Liu
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ryan D Leib
- Stanford University Mass Spectrometry, Stanford University, Stanford, CA 94305, USA
| | - Ying Li
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | - Kevin Lin
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | | | - Shuyi Li
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| | - Li Ou
- Avirmax Biopharma Inc., Hayward, CA 94545, USA
| |
Collapse
|
265
|
Holstein T, Muth T. Bioinformatic Workflows for Metaproteomics. Methods Mol Biol 2024; 2820:187-213. [PMID: 38941024 DOI: 10.1007/978-1-0716-3910-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The strong influence of microbiomes on areas such as ecology and human health has become widely recognized in the past years. Accordingly, various techniques for the investigation of the composition and function of microbial community samples have been developed. Metaproteomics, the comprehensive analysis of the proteins from microbial communities, allows for the investigation of not only the taxonomy but also the functional and quantitative composition of microbiome samples. Due to the complexity of the investigated communities, methods developed for single organism proteomics cannot be readily applied to metaproteomic samples. For this purpose, methods specifically tailored to metaproteomics are required. In this work, a detailed overview of current bioinformatic solutions and protocols in metaproteomics is given. After an introduction to the proteomic database search, the metaproteomic post-processing steps are explained in detail. Ten specific bioinformatic software solutions are focused on, covering various steps including database-driven identification and quantification as well as taxonomic and functional assignment.
Collapse
Affiliation(s)
- Tanja Holstein
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany
- VIB-UGent Center for Medical Biotechnology, VIB and Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Data Competence Center, Robert Koch Institute, Berlin, Deutschland
| | - Thilo Muth
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Berlin, Germany.
- Data Competence Center, Robert Koch Institute, Berlin, Deutschland.
| |
Collapse
|
266
|
Shumate AD, Farrens DL. A rapid, tag-free way to purify functional GPCRs. J Biol Chem 2024; 300:105558. [PMID: 38097184 PMCID: PMC10820827 DOI: 10.1016/j.jbc.2023.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play diverse signaling roles and represent major pharmaceutical targets. Consequently, they are the focus of intense study, and numerous advances have been made in their handling and analysis. However, a universal way to purify GPCRs has remained elusive, in part because of their inherent instability when isolated from cells. To address this, we have developed a general, rapid, and tag-free way to purify GPCRs. The method uses short peptide analogs of the Gα subunit C terminus (Gα-CT) that are attached to chromatography beads (Gα-CT resin). Because the Gα-CT peptides bind active GPCRs with high affinity, the Gα-CT resin selectively purifies only active functional receptors. We use this method to purify both rhodopsin and the β2-adrenergic receptor and show they can be purified in either active conformations or inactive conformations, simply by varying elution conditions. While simple in concept-leveraging the conserved GPCR-Gα-CT binding interaction for the purpose of GPCR purification-we think this approach holds excellent potential to isolate functional receptors for a myriad of uses, from structural biology to proteomics.
Collapse
Affiliation(s)
- Anthony D Shumate
- Department of Chemical Biology and Physiology, Oregon Health and Science University, Portland, Oregon, USA
| | - David L Farrens
- Department of Chemical Biology and Physiology, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
267
|
Verkerke AR, Shi X, Abe I, Gerszten RE, Kajimura S. Mitochondrial choline import regulates purine nucleotide pools via SLC25A48. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573776. [PMID: 38260464 PMCID: PMC10802347 DOI: 10.1101/2023.12.31.573776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Choline is an essential nutrient for cellular metabolism, including the biosynthesis of phospholipids, neurotransmitters, and one-carbon metabolism. A critical step of choline catabolism is the mitochondrial import and synthesis of chorine-derived methyl donors, such as betaine. However, the underlying mechanisms and the biological significance of mitochondrial choline catabolism remain insufficiently understood. Here, we report that a mitochondrial inner-membrane protein SLC25A48 controls mitochondrial choline transport and catabolism in vivo. We demonstrate that SLC25A48 is highly expressed in brown adipose tissue and required for whole-body cold tolerance, thermogenesis, and mitochondrial respiration. Mechanistically, choline uptake into the mitochondrial matrix via SLC25A48 facilitates betaine synthesis and one-carbon metabolism. Importantly, cells lacking SLC25A48 exhibited reduced synthesis of purine nucleotides and failed to initiate the G1-to-S phase transition, thereby leading to cell death. Taken together, the present study identified SLC25A48 as a mitochondrial carrier that mediates choline import and plays a critical role in mitochondrial respiratory capacity, purine nucleotide synthesis, and cell survival.
Collapse
Affiliation(s)
- Anthony R.P. Verkerke
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ichitaro Abe
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
- Department of Cardiology and Clinical Examination, Oita University, Faculty of Medicine, Oita, Japan
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
268
|
Shrestha HK, Sun H, Wang J, Peng J. Profiling Mouse Brain Single-Cell-Type Proteomes Via Adeno-Associated Virus-Mediated Proximity Labeling and Mass Spectrometry. Methods Mol Biol 2024; 2817:115-132. [PMID: 38907151 DOI: 10.1007/978-1-0716-3934-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Single-cell-type proteomics is an emerging field of research that combines cell-type specificity with the comprehensive proteome coverage offered by bulk proteomics. However, the extraction of single-cell-type proteomes remains a challenge, particularly for hard-to-isolate cells like neurons. In this chapter, we present an innovative technique for profiling single-cell-type proteomes using adeno-associated virus (AAV)-mediated proximity labeling (PL) and tandem-mass-tag (TMT) mass spectrometry. This technique eliminates the need for cell isolation and offers a streamlined workflow, including AAV delivery to express TurboID (an engineered biotin ligase) controlled by cell-type-specific promoters, biotinylated protein purification, on-bead digestion, TMT labeling, and liquid chromatography-mass spectrometry (LC-MS). We examined this method by analyzing distinct brain cell types in mice. Initially, recombinant AAVs were used to concurrently express TurboID and mCherry proteins driven by neuron- or astrocyte-specific promoters, which was validated through co-immunostaining with cellular markers. With biotin purification and TMT analysis, we successfully identified around 10,000 unique proteins from a few micrograms of protein samples with high reproducibility. Our statistical analyses revealed that these proteomes encompass cell-type-specific cellular pathways. By utilizing this technique, researchers can explore the proteomic landscape of specific cell types, paving the way for new insights into cellular processes, deciphering disease mechanisms, and identifying therapeutic targets in neuroscience and beyond.
Collapse
Affiliation(s)
- Him K Shrestha
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huan Sun
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ju Wang
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structural Biology, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
269
|
Na S, Paek E. Demystifying PTM Identification Using MODplus: Best Practices and Pitfalls. Methods Mol Biol 2024; 2836:37-55. [PMID: 38995534 DOI: 10.1007/978-1-0716-4007-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Tandem mass spectrometry (MS/MS) facilitates the rapid identification of posttranslational modifications (PTMs), which play a pivotal role in regulating numerous biological processes. This chapter explores recent advancements that expand the types of detectable PTMs and enhance the speed of the PTM searches. We also delve into computational challenges associated with searching for a multitude of PTMs simultaneously. The latter section introduces an automated procedure to identify an extensive range of PTMs using MODplus, a free PTM analysis software tool. We guide the reader through the preparation of the modification search, the determination of optional search parameters, the execution of the search, and the analysis of results, exemplified by a case study using specific MS/MS dataset.
Collapse
Affiliation(s)
- Seungjin Na
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, South Korea
| | - Eunok Paek
- Department of Computer Science, Hanyang University, Seoul, South Korea.
- Department of Artificial Intelligence, Hanyang University, Seoul, South Korea.
- Institute for Artificial Intelligence Research, Hanyang University, Seoul, South Korea.
| |
Collapse
|
270
|
Xie S, Yuan L, Sui Y, Feng S, Li H, Li X. NME4 mediates metabolic reprogramming and promotes nonalcoholic fatty liver disease progression. EMBO Rep 2024; 25:378-403. [PMID: 38177901 PMCID: PMC10897415 DOI: 10.1038/s44319-023-00012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is mainly characterized by excessive fat accumulation in the liver, and it is associated with liver-related complications and adverse systemic diseases. NAFLD has become the most prevalent liver disease; however, effective therapeutic agents for NAFLD are still lacking. We combined clinical data with proteomics and metabolomics data, and found that the mitochondrial nucleoside diphosphate kinase NME4 plays a central role in mitochondrial lipid metabolism. Nme4 is markedly upregulated in mice fed with high-fat diet, and its expression is positively correlated with the level of steatosis. Hepatic deletion of Nme4 suppresses the progression of hepatic steatosis. Further studies demonstrated that NME4 interacts with several key enzymes in coenzyme A (CoA) metabolism and increases the level of acetyl-CoA and malonyl-CoA, which are the major lipid components of the liver in NAFLD. Increased level of acetyl-CoA and malonyl-CoA lead to increased triglyceride levels and lipid accumulation in the liver. Taken together, these findings reveal that NME4 is a critical regulator of NAFLD progression and a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Shaofang Xie
- Westlake Institute for Advanced Study, Fudan University, 310018, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
| | - Lei Yuan
- Westlake Institute for Advanced Study, Fudan University, 310018, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
| | - Yue Sui
- Westlake Institute for Advanced Study, Fudan University, 310018, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
| | - Shan Feng
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China
| | - Hengle Li
- School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xu Li
- Westlake Institute for Advanced Study, Fudan University, 310018, Shanghai, China.
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 310024, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
271
|
Ugwuodo CJ, Colosimo F, Adhikari J, Purvine SO, Eder EK, Hoyt DW, Wright SA, Lipton MS, Mouser PJ. Aromatic amino acid metabolism and active transport regulation are implicated in microbial persistence in fractured shale reservoirs. ISME COMMUNICATIONS 2024; 4:ycae149. [PMID: 39670059 PMCID: PMC11637423 DOI: 10.1093/ismeco/ycae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium Halanaerobium congolense WG10 and mixed microbial consortia enriched from shale-produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that H. congolense WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enables its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH 03824, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| | | | | | - Samuel O Purvine
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Elizabeth K Eder
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - David W Hoyt
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Stephanie A Wright
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Mary S Lipton
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
272
|
Mende H, Khatri A, Lange C, Poveda-Cuevas SA, Tascher G, Covarrubias-Pinto A, Löhr F, Koschade SE, Dikic I, Münch C, Bremm A, Brunetti L, Brandts CH, Uckelmann H, Dötsch V, Rogov VV, Bhaskara RM, Müller S. An atypical GABARAP binding module drives the pro-autophagic potential of the AML-associated NPM1c variant. Cell Rep 2023; 42:113484. [PMID: 37999976 DOI: 10.1016/j.celrep.2023.113484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The nucleolar scaffold protein NPM1 is a multifunctional regulator of cellular homeostasis, genome integrity, and stress response. NPM1 mutations, known as NPM1c variants promoting its aberrant cytoplasmic localization, are the most frequent genetic alterations in acute myeloid leukemia (AML). A hallmark of AML cells is their dependency on elevated autophagic flux. Here, we show that NPM1 and NPM1c induce the autophagy-lysosome pathway by activating the master transcription factor TFEB, thereby coordinating the expression of lysosomal proteins and autophagy regulators. Importantly, both NPM1 and NPM1c bind to autophagy modifiers of the GABARAP subfamily through an atypical binding module preserved within its N terminus. The propensity of NPM1c to induce autophagy depends on this module, likely indicating that NPM1c exerts its pro-autophagic activity by direct engagement with GABARAPL1. Our data report a non-canonical binding mode of GABARAP family members that drives the pro-autophagic potential of NPM1c, potentially enabling therapeutic options.
Collapse
Affiliation(s)
- Hannah Mende
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Anshu Khatri
- Goethe University Frankfurt, Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Max-von-Laue Street 9, 60438 Frankfurt, Germany
| | - Carolin Lange
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue Street 15, 60438 Frankfurt, Germany
| | - Sergio Alejandro Poveda-Cuevas
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue Street 15, 60438 Frankfurt, Germany
| | - Georg Tascher
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Adriana Covarrubias-Pinto
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Frank Löhr
- Goethe University Frankfurt, Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Max-von-Laue Street 9, 60438 Frankfurt, Germany
| | - Sebastian E Koschade
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Ivan Dikic
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Christian Münch
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Anja Bremm
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Lorenzo Brunetti
- Marche Polytechnic University, Department of Clinical and Molecular Sciences, Via Tronto 10, 60020 Ancona, Italy
| | - Christian H Brandts
- Goethe University Frankfurt, University Hospital, Department of Medicine, Hematology/Oncology, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Hannah Uckelmann
- Goethe University Frankfurt, University Hospital, Department of Pediatrics, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Dötsch
- Goethe University Frankfurt, Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Max-von-Laue Street 9, 60438 Frankfurt, Germany
| | - Vladimir V Rogov
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue Street 15, 60438 Frankfurt, Germany; Goethe University Frankfurt, Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue Street 15, 60438 Frankfurt, Germany
| | - Ramachandra M Bhaskara
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue Street 15, 60438 Frankfurt, Germany.
| | - Stefan Müller
- Goethe University Frankfurt, Institute of Biochemistry II, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
273
|
Lee JD, Menasche BL, Mavrikaki M, Uyemura MM, Hong SM, Kozlova N, Wei J, Alfajaro MM, Filler RB, Müller A, Saxena T, Posey RR, Cheung P, Muranen T, Heng YJ, Paulo JA, Wilen CB, Slack FJ. Differences in syncytia formation by SARS-CoV-2 variants modify host chromatin accessibility and cellular senescence via TP53. Cell Rep 2023; 42:113478. [PMID: 37991919 PMCID: PMC10785701 DOI: 10.1016/j.celrep.2023.113478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) remains a significant public health threat due to the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants to evade the immune system and cause breakthrough infections. Although pathogenic coronaviruses such as SARS-CoV-2 and Middle East respiratory syndrome (MERS)-CoV lead to severe respiratory infections, how these viruses affect the chromatin proteomic composition upon infection remains largely uncharacterized. Here, we use our recently developed integrative DNA And Protein Tagging methodology to identify changes in host chromatin accessibility states and chromatin proteomic composition upon infection with pathogenic coronaviruses. SARS-CoV-2 infection induces TP53 stabilization on chromatin, which contributes to its host cytopathic effect. We mapped this TP53 stabilization to the SARS-CoV-2 spike and its propensity to form syncytia, a consequence of cell-cell fusion. Differences in SARS-CoV-2 spike variant-induced syncytia formation modify chromatin accessibility, cellular senescence, and inflammatory cytokine release via TP53. Our findings suggest that differences in syncytia formation alter senescence-associated inflammation, which varies among SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jonathan D Lee
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Bridget L Menasche
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Maria Mavrikaki
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Madison M Uyemura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Su Min Hong
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Nina Kozlova
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Wei
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mia M Alfajaro
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Arne Müller
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Tanvi Saxena
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan R Posey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Priscilla Cheung
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Taru Muranen
- Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frank J Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
274
|
Do K, Mehta S, Wagner R, Bhuming D, Rajczewski AT, Skubitz APN, Johnson JE, Griffin TJ, Jagtap PD. A novel clinical metaproteomics workflow enables bioinformatic analysis of host-microbe dynamics in disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568121. [PMID: 38045370 PMCID: PMC10690215 DOI: 10.1101/2023.11.21.568121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Clinical metaproteomics has the potential to offer insights into the host-microbiome interactions underlying diseases. However, the field faces challenges in characterizing microbial proteins found in clinical samples, which are usually present at low abundance relative to the host proteins. As a solution, we have developed an integrated workflow coupling mass spectrometry-based analysis with customized bioinformatic identification, quantification and prioritization of microbial and host proteins, enabling targeted assay development to investigate host-microbe dynamics in disease. The bioinformatics tools are implemented in the Galaxy ecosystem, offering the development and dissemination of complex bioinformatic workflows. The modular workflow integrates MetaNovo (to generate a reduced protein database), SearchGUI/PeptideShaker and MaxQuant (to generate peptide-spectral matches (PSMs) and quantification), PepQuery2 (to verify the quality of PSMs), and Unipept and MSstatsTMT (for taxonomy and functional annotation). We have utilized this workflow in diverse clinical samples, from the characterization of nasopharyngeal swab samples to bronchoalveolar lavage fluid. Here, we demonstrate its effectiveness via analysis of residual fluid from cervical swabs. The complete workflow, including training data and documentation, is available via the Galaxy Training Network, empowering non-expert researchers to utilize these powerful tools in their clinical studies.
Collapse
|
275
|
Alvarez-Buylla A, Fischer MT, Moya Garzon MD, Rangel AE, Tapia EE, Tanzo JT, Soh HT, Coloma LA, Long JZ, O'Connell LA. Binding and sequestration of poison frog alkaloids by a plasma globulin. eLife 2023; 12:e85096. [PMID: 38206862 PMCID: PMC10783871 DOI: 10.7554/elife.85096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Alkaloids are important bioactive molecules throughout the natural world, and in many animals they serve as a source of chemical defense against predation. Dendrobatid poison frogs bioaccumulate alkaloids from their diet to make themselves toxic or unpalatable to predators. Despite the proposed roles of plasma proteins as mediators of alkaloid trafficking and bioavailability, the responsible proteins have not been identified. We use chemical approaches to show that a ~50 kDa plasma protein is the principal alkaloid-binding molecule in blood of poison frogs. Proteomic and biochemical studies establish this plasma protein to be a liver-derived alkaloid-binding globulin (ABG) that is a member of the serine-protease inhibitor (serpin) family. In addition to alkaloid-binding activity, ABG sequesters and regulates the bioavailability of 'free' plasma alkaloids in vitro. Unexpectedly, ABG is not related to saxiphilin, albumin, or other known vitamin carriers, but instead exhibits sequence and structural homology to mammalian hormone carriers and amphibian biliverdin-binding proteins. ABG represents a new small molecule binding functionality in serpin proteins, a novel mechanism of plasma alkaloid transport in poison frogs, and more broadly points toward serpins acting as tunable scaffolds for small molecule binding and transport across different organisms.
Collapse
Affiliation(s)
| | | | - Maria Dolores Moya Garzon
- Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Wu Tsai Institute for Neuroscience, Stanford UniversityStanfordUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
| | - Alexandra E Rangel
- Wu Tsai Human Performance Alliance, Stanford UniversityStanfordUnited States
| | - Elicio E Tapia
- Department of Radiology, Stanford UniversityStanfordUnited States
| | - Julia T Tanzo
- Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Wu Tsai Institute for Neuroscience, Stanford UniversityStanfordUnited States
| | - H Tom Soh
- Wu Tsai Human Performance Alliance, Stanford UniversityStanfordUnited States
- Center for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity ChangeHamburgGermany
- Department of Electrical Engineering, Stanford UniversityStanfordUnited States
| | | | - Jonathan Z Long
- Sarafan ChEM-H, Stanford UniversityStanfordUnited States
- Wu Tsai Institute for Neuroscience, Stanford UniversityStanfordUnited States
- Department of Pathology, Stanford UniversityStanfordUnited States
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación JambatuSan RafaelEcuador
| | - Lauren A O'Connell
- Department of Biology, Stanford UniversityStanfordUnited States
- Wu Tsai Institute for Neuroscience, Stanford UniversityStanfordUnited States
- Stanford Diabetes Research Center, Stanford UniversityStanfordUnited States
| |
Collapse
|
276
|
Berkane R, Ho-Xuan H, Glogger M, Sanz-Martinez P, Brunello L, Glaesner T, Kuncha SK, Holzhüter K, Cano-Franco S, Buonomo V, Cabrerizo-Poveda P, Balakrishnan A, Tascher G, Husnjak K, Juretschke T, Misra M, González A, Dötsch V, Grumati P, Heilemann M, Stolz A. The function of ER-phagy receptors is regulated through phosphorylation-dependent ubiquitination pathways. Nat Commun 2023; 14:8364. [PMID: 38102139 PMCID: PMC10724265 DOI: 10.1038/s41467-023-44101-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective autophagy of the endoplasmic reticulum (ER), known as ER-phagy, is an important regulator of ER remodeling and essential to maintain cellular homeostasis during environmental changes. We recently showed that members of the FAM134 family play a critical role during stress-induced ER-phagy. However, the mechanisms on how they are activated remain largely unknown. In this study, we analyze phosphorylation of FAM134 as a trigger of FAM134-driven ER-phagy upon mTOR (mechanistic target of rapamycin) inhibition. An unbiased screen of kinase inhibitors reveals CK2 to be essential for FAM134B- and FAM134C-driven ER-phagy after mTOR inhibition. Furthermore, we provide evidence that ER-phagy receptors are regulated by ubiquitination events and that treatment with E1 inhibitor suppresses Torin1-induced ER-phagy flux. Using super-resolution microscopy, we show that CK2 activity is essential for the formation of high-density FAM134B and FAM134C clusters. In addition, dense clustering of FAM134B and FAM134C requires phosphorylation-dependent ubiquitination of FAM134B and FAM134C. Treatment with the CK2 inhibitor SGC-CK2-1 or mutation of FAM134B and FAM134C phosphosites prevents ubiquitination of FAM134 proteins, formation of high-density clusters, as well as Torin1-induced ER-phagy flux. Therefore, we propose that CK2-dependent phosphorylation of ER-phagy receptors precedes ubiquitin-dependent activation of ER-phagy flux.
Collapse
Affiliation(s)
- Rayene Berkane
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Hung Ho-Xuan
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Marius Glogger
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Pablo Sanz-Martinez
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Lorène Brunello
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Tristan Glaesner
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Santosh Kumar Kuncha
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Katharina Holzhüter
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Sara Cano-Franco
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Paloma Cabrerizo-Poveda
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Ashwin Balakrishnan
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | | | - Mohit Misra
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Alexis González
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany
| | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Alexandra Stolz
- Institute of Biochemistry II (IBC2), Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
277
|
Fisher AL, Wang CY, Xu Y, Phillips S, Paulo JA, Małachowska B, Xiao X, Fendler W, Mancias JD, Babitt JL. Quantitative proteomics and RNA-sequencing of mouse liver endothelial cells identify novel regulators of BMP6 by iron. iScience 2023; 26:108555. [PMID: 38125029 PMCID: PMC10730383 DOI: 10.1016/j.isci.2023.108555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Hepcidin is the master hormone governing systemic iron homeostasis. Iron regulates hepcidin by activating bone morphogenetic protein (BMP)6 expression in liver endothelial cells (LECs), but the mechanisms are incompletely understood. To address this, we performed proteomics and RNA-sequencing on LECs from iron-adequate and iron-loaded mice. Gene set enrichment analysis identified transcription factors activated by high iron, including Nrf-2, which was previously reported to contribute to BMP6 regulation, and c-Jun. Jun (encoding c-Jun) knockdown blocked Bmp6 but not Nrf-2 pathway induction by iron in LEC cultures. Chromatin immunoprecipitation of mouse livers showed iron-dependent c-Jun binding to predicted sites in Bmp6 regulatory regions. Finally, c-Jun inhibitor blunted induction of Bmp6 and hepcidin, but not Nrf-2 activity, in iron-loaded mice. However, Bmp6 and iron parameters were unchanged in endothelial Jun knockout mice. Our data suggest that c-Jun participates in iron-mediated BMP6 regulation independent of Nrf-2, though the mechanisms may be redundant and/or multifactorial.
Collapse
Affiliation(s)
- Allison L. Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Beata Małachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Albert Einstein College of Medicine, NYC, NY, USA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph D. Mancias
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jodie L. Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
278
|
Luo Q, Raulston EG, Prado MA, Wu X, Gritsman K, Yan K, Booth CAG, Xu R, van Galen P, Doench JG, Shimony S, Long HW, Neuberg DS, Paulo JA, Lane AA. Targetable leukemia dependency on noncanonical PI3Kγ signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571909. [PMID: 38328043 PMCID: PMC10849582 DOI: 10.1101/2023.12.15.571909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Phosphoinositide 3-kinase gamma (PI3Kγ) is implicated as a target to repolarize tumor-associated macrophages and promote anti-tumor immune responses in solid cancers. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid, and dendritic lineages. This dependency is characterized by innate inflammatory signaling and activation of phosphoinositide 3-kinase regulatory subunit 5 ( PIK3R5 ), which encodes a regulatory subunit of PI3Kγ and stabilizes the active enzymatic complex. Mechanistically, we identify p21 (RAC1) activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency independently of Akt kinase. PI3Kγ inhibition dephosphorylates PAK1, activates a transcriptional network of NFκB-related tumor suppressor genes, and impairs mitochondrial oxidative phosphorylation. We find that treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukemias with activated PIK3R5 , either at baseline or by exogenous inflammatory stimulation. Notably, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukemia xenografts with low baseline PIK3R5 expression, as residual leukemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Taken together, our study reveals a targetable dependency on PI3Kγ/PAK1 signaling that is amenable to near-term evaluation in patients with acute leukemia.
Collapse
|
279
|
D’Alessandro G, Morales-Juarez DA, Richards SL, Nitiss KC, Serrano-Benitez A, Wang J, Thomas JC, Gupta V, Voigt A, Belotserkovskaya R, Goh CG, Bowden AR, Galanty Y, Beli P, Nitiss JL, Zagnoli-Vieira G, Jackson SP. RAD54L2 counters TOP2-DNA adducts to promote genome stability. SCIENCE ADVANCES 2023; 9:eadl2108. [PMID: 38055822 PMCID: PMC10699776 DOI: 10.1126/sciadv.adl2108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
The catalytic cycle of topoisomerase 2 (TOP2) enzymes proceeds via a transient DNA double-strand break (DSB) intermediate termed the TOP2 cleavage complex (TOP2cc), in which the TOP2 protein is covalently bound to DNA. Anticancer agents such as etoposide operate by stabilizing TOP2ccs, ultimately generating genotoxic TOP2-DNA protein cross-links that require processing and repair. Here, we identify RAD54 like 2 (RAD54L2) as a factor promoting TOP2cc resolution. We demonstrate that RAD54L2 acts through a novel mechanism together with zinc finger protein associated with tyrosyl-DNA phosphodiesterase 2 (TDP2) and TOP2 (ZATT/ZNF451) and independent of TDP2. Our work suggests a model wherein RAD54L2 recognizes sumoylated TOP2 and, using its ATPase activity, promotes TOP2cc resolution and prevents DSB exposure. These findings suggest RAD54L2-mediated TOP2cc resolution as a potential mechanism for cancer therapy resistance and highlight RAD54L2 as an attractive candidate for drug discovery.
Collapse
Affiliation(s)
- Giuseppina D’Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Sean L. Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Juanjuan Wang
- Institute of Molecular Biology (IMB), Chromatin Biology & Proteomics, Mainz, Germany
| | - John C. Thomas
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Andrea Voigt
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Rimma Belotserkovskaya
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Chen Gang Goh
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Anne Ramsay Bowden
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Yaron Galanty
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petra Beli
- Institute of Molecular Biology (IMB), Chromatin Biology & Proteomics, Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
| | | | - Guido Zagnoli-Vieira
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P. Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
280
|
Suryo Rahmanto A, Blum CJ, Scalera C, Heidelberger JB, Mesitov M, Horn-Ghetko D, Gräf JF, Mikicic I, Hobrecht R, Orekhova A, Ostermaier M, Ebersberger S, Möckel MM, Krapoth N, Da Silva Fernandes N, Mizi A, Zhu Y, Chen JX, Choudhary C, Papantonis A, Ulrich HD, Schulman BA, König J, Beli P. K6-linked ubiquitylation marks formaldehyde-induced RNA-protein crosslinks for resolution. Mol Cell 2023; 83:4272-4289.e10. [PMID: 37951215 DOI: 10.1016/j.molcel.2023.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
Reactive aldehydes are produced by normal cellular metabolism or after alcohol consumption, and they accumulate in human tissues if aldehyde clearance mechanisms are impaired. Their toxicity has been attributed to the damage they cause to genomic DNA and the subsequent inhibition of transcription and replication. However, whether interference with other cellular processes contributes to aldehyde toxicity has not been investigated. We demonstrate that formaldehyde induces RNA-protein crosslinks (RPCs) that stall the ribosome and inhibit translation in human cells. RPCs in the messenger RNA (mRNA) are recognized by the translating ribosomes, marked by atypical K6-linked ubiquitylation catalyzed by the RING-in-between-RING (RBR) E3 ligase RNF14, and subsequently resolved by the ubiquitin- and ATP-dependent unfoldase VCP. Our findings uncover an evolutionary conserved formaldehyde-induced stress response pathway that protects cells against RPC accumulation in the cytoplasm, and they suggest that RPCs contribute to the cellular and tissue toxicity of reactive aldehydes.
Collapse
Affiliation(s)
- Aldwin Suryo Rahmanto
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | | | | | | | | | - Daniel Horn-Ghetko
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Justus F Gräf
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Ivan Mikicic
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Anna Orekhova
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | | | | | - Nils Krapoth
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | | | - Athanasia Mizi
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Yajie Zhu
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, 55128 Mainz, Germany.
| |
Collapse
|
281
|
Hein JB, Nguyen HT, Garvanska DH, Nasa I, Kruse T, Feng Y, Lopez Mendez B, Davey N, Kettenbach AN, Fordyce PM, Nilsson J. Phosphatase specificity principles uncovered by MRBLE:Dephos and global substrate identification. Mol Syst Biol 2023; 19:e11782. [PMID: 37916966 PMCID: PMC10698503 DOI: 10.15252/msb.202311782] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
Phosphoprotein phosphatases (PPPs) regulate major signaling pathways, but the determinants of phosphatase specificity are poorly understood. This is because methods to investigate this at scale are lacking. Here, we develop a novel in vitro assay, MRBLE:Dephos, that allows multiplexing of dephosphorylation reactions to determine phosphatase preferences. Using MRBLE:Dephos, we establish amino acid preferences of the residues surrounding the dephosphorylation site for PP1 and PP2A-B55, which reveals common and unique preferences. To compare the MRBLE:Dephos results to cellular substrates, we focused on mitotic exit that requires extensive dephosphorylation by PP1 and PP2A-B55. We use specific inhibition of PP1 and PP2A-B55 in mitotic exit lysates coupled with phosphoproteomics to identify more than 2,000 regulated sites. Importantly, the sites dephosphorylated during mitotic exit reveal key signatures that are consistent with MRBLE:Dephos. Furthermore, integration of our phosphoproteomic data with mitotic interactomes of PP1 and PP2A-B55 provides insight into how binding of phosphatases to substrates shapes dephosphorylation. Collectively, we develop novel approaches to investigate protein phosphatases that provide insight into mitotic exit regulation.
Collapse
Affiliation(s)
- Jamin B Hein
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of BioengineeringStanford UniversityStanfordCAUSA
| | - Hieu T Nguyen
- Biochemistry and Cell BiologyGeisel School of Medicine at Dartmouth CollegeHanoverNHUSA
| | - Dimitriya H Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Isha Nasa
- Department of BioengineeringStanford UniversityStanfordCAUSA
| | - Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yinnian Feng
- Department of GeneticsStanford UniversityStanfordCAUSA
| | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Norman Davey
- Division of Cancer BiologyThe Institute of Cancer ResearchLondonUK
| | - Arminja N Kettenbach
- Biochemistry and Cell BiologyGeisel School of Medicine at Dartmouth CollegeHanoverNHUSA
| | - Polly M Fordyce
- Department of BioengineeringStanford UniversityStanfordCAUSA
- Department of GeneticsStanford UniversityStanfordCAUSA
- Sarafan ChEM‐HStanford UniversityStanfordCAUSA
- Chan Zuckerberg BiohubSan FranciscoCAUSA
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
282
|
Luo D, Ebadi A, Emery K, He Y, Noble WS, Keich U. Competition-based control of the false discovery proportion. Biometrics 2023; 79:3472-3484. [PMID: 36652258 DOI: 10.1111/biom.13830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Recently, Barber and Candès laid the theoretical foundation for a general framework for false discovery rate (FDR) control based on the notion of "knockoffs." A closely related FDR control methodology has long been employed in the analysis of mass spectrometry data, referred to there as "target-decoy competition" (TDC). However, any approach that aims to control the FDR, which is defined as the expected value of the false discovery proportion (FDP), suffers from a problem. Specifically, even when successfully controlling the FDR at level α, the FDP in the list of discoveries can significantly exceed α. We offer FDP-SD, a new procedure that rigorously controls the FDP in the knockoff/TDC competition setup by guaranteeing that the FDP is bounded by α at a desired confidence level. Compared with the recently published framework of Katsevich and Ramdas, FDP-SD generally delivers more power and often substantially so in simulated and real data.
Collapse
Affiliation(s)
- Dong Luo
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia
| | - Arya Ebadi
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia
| | - Kristen Emery
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia
| | - Yilun He
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia
| | | | - Uri Keich
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia
| |
Collapse
|
283
|
Matovinovic F, Novak R, Hrkac S, Salai G, Mocibob M, Pranjic M, Košec A, Bedekovic V, Grgurevic L. In search of new stratification strategies: tissue proteomic profiling of papillary thyroid microcarcinoma in patients with localized disease and lateral neck metastases. J Cancer Res Clin Oncol 2023; 149:17405-17417. [PMID: 37861757 DOI: 10.1007/s00432-023-05452-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION Papillary thyroid carcinomas (PTC) are the most common thyroid malignancies that are often diagnosed as microcarcinomas when the tumor is less than one centimetre in diameter. Currently, there are no valid stratification strategies that would reliably assess the risk of lateral neck metastases and optimize surgical treatment. MATERIALS AND METHODS Aiming to find potential tissue biomarkers of metastatic potential, we conducted a cross-sectional proteomic pilot study on formalin-fixed paraffin-embedded tissues of metastatic (N = 10) and non-metastatic (N = 10) papillary thyroid microcarcinoma patients. Samples were analysed individually using liquid chromatography/mass spectrometry, and the differentially expressed proteins (DEP) were functionally annotated. RESULTS We identified five overexpressed DEPs in the metastatic group (EPB41L2, CSE1L, GLIPR2, FGA and FGG) with a known association to tumour biology. Using bioinformatic-based tools, we found markedly different profiles of significantly enriched biological processes between the two groups. CONCLUSIONS The identified DEPs might have a role as potential tissue biomarkers for PTC metastases. However, further prospective research is needed to confirm our findings.
Collapse
Affiliation(s)
- Filip Matovinovic
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
| | - Rudjer Novak
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Stela Hrkac
- Department of Clinical Immunology, Allergology and Rheumatology, University Hospital Dubrava, 10000, Zagreb, Croatia
| | - Grgur Salai
- Department of Pulmonology, University Hospital Dubrava, 10000, Zagreb, Croatia
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marija Pranjic
- Department of Chemistry, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Andro Košec
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Vladimir Bedekovic
- Department of Otorhinolaryngology and Head and Neck Surgery, Sestre Milosrdnice University Hospital Center, 10000, Zagreb, Croatia
| | - Lovorka Grgurevic
- Center for Translational and Clinical Research, Department of Proteomics, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
- Department of Anatomy, "Drago Perovic", School of Medicine, University of Zagreb, 10000, Zagreb, Croatia.
| |
Collapse
|
284
|
Chen XZ, Bai RX, Qin FY, Peng HJ, Ren JF, Hu L, Li YD, He C. Phosphoproteomic Analysis Reveals the Predominating Cellular Processes and the Involved Key Phosphoproteins Essential for the Proliferation of Toxoplasma gondii. Acta Parasitol 2023; 68:820-831. [PMID: 37821727 DOI: 10.1007/s11686-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE To explore the essential roles of phosphorylation in mediating the proliferation of T. gondii in its cell lytic life. METHODS We profiled the phosphoproteome data of T. gondii residing in HFF cells for 2 h and 6 h, representing the early- and late-stages of proliferation (ESP and LSP) within its first generation of division. RESULTS We identified 70 phosphoproteins, among which 8 phosphoproteins were quantified with the phosphorylation level significantly regulated. While only two of the eight phosphoproteins, GRA7 and TGGT1_242070, were significantly down-regulated at the transcriptional level in the group of LSP vs. ESP. Moreover, GO terms correlated with host membrane component were significantly enriched in the category of cellular component, suggesting phosphoprotein played important roles in acquiring essential substance from host cell via manipulating host membrane. Further GO analysis in the categories of molecular function and biological process and pathway analysis revealed that the cellular processes of glucose and lipid metabolism were regulated by T. gondii phosphoproteins such as PMCAA1, LIPIN, Pyk1 and ALD. Additionally, several phosphoproteins were enriched at the central nodes in the protein-protein interaction network, which may have essential roles in T. gondii proliferation including GAP45, MLC1, fructose-1,6-bisphosphate aldolase, GRAs and so on. CONCLUSION This study revealed the main cellular processes and key phosphoproteins crucial for the intracellular proliferation of T. gondii, which would provide clues to explore the roles of phosphorylation in regulating the development of tachyzoites and new insight into the mechanism of T. gondii development in vitro.
Collapse
Affiliation(s)
- Xin-Zhu Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Rui-Xue Bai
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Fei-Yu Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Hong-Juan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jin-Feng Ren
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Yu-di Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - Cheng He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
285
|
Schutzer SE, Liu T, Tsai CF, Petyuk VA, Schepmoes AA, Wang YT, Weitz KK, Bergquist J, Smith RD, Natelson BH. Myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia are indistinguishable by their cerebrospinal fluid proteomes. Ann Med 2023; 55:2208372. [PMID: 37722890 PMCID: PMC10512920 DOI: 10.1080/07853890.2023.2208372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/24/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and fibromyalgia have overlapping neurologic symptoms particularly disabling fatigue. This has given rise to the question whether they are distinct central nervous system (CNS) entities or is one an extension of the other. MATERIAL AND METHODS To investigate this, we used unbiased quantitative mass spectrometry-based proteomics to examine the most proximal fluid to the brain, cerebrospinal fluid (CSF). This was to ascertain if the proteome profile of one was the same or different from the other. We examined two separate groups of ME/CFS, one with (n = 15) and one without (n = 15) fibromyalgia. RESULTS We quantified a total of 2083 proteins using immunoaffinity depletion, tandem mass tag isobaric labelling and offline two-dimensional liquid chromatography coupled to tandem mass spectrometry, including 1789 that were quantified in all the CSF samples. ANOVA analysis did not yield any proteins with an adjusted p value <.05. CONCLUSION This supports the notion that ME/CFS and fibromyalgia as currently defined are not distinct entities.Key messageME/CFS and fibromyalgia as currently defined are not distinct entities.Unbiased quantitative mass spectrometry-based proteomics can be used to discover cerebrospinal fluid proteins that are biomarkers for a condition such as we are studying.
Collapse
Affiliation(s)
| | - Tao Liu
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chia-Feng Tsai
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vladislav A. Petyuk
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A. Schepmoes
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yi-Ting Wang
- Analytical Chemistry and Neurochemistry in Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Karl K. Weitz
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry in Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Richard D. Smith
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Benjamin H. Natelson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
286
|
Wacholder A, Carvunis AR. Biological factors and statistical limitations prevent detection of most noncanonical proteins by mass spectrometry. PLoS Biol 2023; 21:e3002409. [PMID: 38048358 PMCID: PMC10721188 DOI: 10.1371/journal.pbio.3002409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/14/2023] [Accepted: 10/30/2023] [Indexed: 12/06/2023] Open
Abstract
Ribosome profiling experiments indicate pervasive translation of short open reading frames (ORFs) outside of annotated protein-coding genes. However, shotgun mass spectrometry (MS) experiments typically detect only a small fraction of the predicted protein products of this noncanonical translation. The rarity of detection could indicate that most predicted noncanonical proteins are rapidly degraded and not present in the cell; alternatively, it could reflect technical limitations. Here, we leveraged recent advances in ribosome profiling and MS to investigate the factors limiting detection of noncanonical proteins in yeast. We show that the low detection rate of noncanonical ORF products can largely be explained by small size and low translation levels and does not indicate that they are unstable or biologically insignificant. In particular, proteins encoded by evolutionarily young genes, including those with well-characterized biological roles, are too short and too lowly expressed to be detected by shotgun MS at current detection sensitivities. Additionally, we find that decoy biases can give misleading estimates of noncanonical protein false discovery rates, potentially leading to false detections. After accounting for these issues, we found strong evidence for 4 noncanonical proteins in MS data, which were also supported by evolution and translation data. These results illustrate the power of MS to validate unannotated genes predicted by ribosome profiling, but also its substantial limitations in finding many biologically relevant lowly expressed proteins.
Collapse
Affiliation(s)
- Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anne-Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
287
|
Bowen ER, DiGiacomo P, Fraser HP, Guttenplan K, Smith BAH, Heberling ML, Vidano L, Shah N, Shamloo M, Wilson JL, Grimes KV. Beta-2 adrenergic receptor agonism alters astrocyte phagocytic activity and has potential applications to psychiatric disease. DISCOVER MENTAL HEALTH 2023; 3:27. [PMID: 38036718 PMCID: PMC10689618 DOI: 10.1007/s44192-023-00050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Schizophrenia is a debilitating condition necessitating more efficacious therapies. Previous studies suggested that schizophrenia development is associated with aberrant synaptic pruning by glial cells. We pursued an interdisciplinary approach to understand whether therapeutic reduction in glial cell-specifically astrocytic-phagocytosis might benefit neuropsychiatric patients. We discovered that beta-2 adrenergic receptor (ADRB2) agonists reduced phagocytosis using a high-throughput, phenotypic screen of over 3200 compounds in primary human fetal astrocytes. We used protein interaction pathways analysis to associate ADRB2, to schizophrenia and endocytosis. We demonstrated that patients with a pediatric exposure to salmeterol, an ADRB2 agonist, had reduced in-patient psychiatry visits using a novel observational study in the electronic health record. We used a mouse model of inflammatory neurodegenerative disease and measured changes in proteins associated with endocytosis and vesicle-mediated transport after ADRB2 agonism. These results provide substantial rationale for clinical consideration of ADRB2 agonists as possible therapies for patients with schizophrenia.
Collapse
Affiliation(s)
- Ellen R Bowen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Weill Cornell Medicine, New York, NY, USA
- University of Michigan Medical School, Ann Arbor, MI, USA
| | - Phillip DiGiacomo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah P Fraser
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Guttenplan
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Benjamin A H Smith
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marlene L Heberling
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Vidano
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Nigam Shah
- Center for Biomedical Informatics Research, Stanford School of Medicine, Stanford, CA, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer L Wilson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.
| | - Kevin V Grimes
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
288
|
Mitchell W, Goeminne LJ, Tyshkovskiy A, Zhang S, Chen JY, Paulo JA, Pierce KA, Choy AH, Clish CB, Gygi SP, Gladyshev VN. Multi-omics characterization of partial chemical reprogramming reveals evidence of cell rejuvenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.546730. [PMID: 37425825 PMCID: PMC10327104 DOI: 10.1101/2023.06.30.546730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.
Collapse
Affiliation(s)
- Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Ludger J.E. Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Sirui Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Julie Y. Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 United States
| | - Kerry A. Pierce
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Angelina H. Choy
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 01241 United States
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115 United States
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 United States
| |
Collapse
|
289
|
Lin W, Mousavi F, Blum BC, Heckendorf CF, Moore J, Lampl N, McComb M, Kotelnikov S, Yin W, Rabhi N, Layne MD, Kozakov D, Chitalia VC, Emili A. Integrated metabolomics and proteomics reveal biomarkers associated with hemodialysis in end-stage kidney disease. Front Pharmacol 2023; 14:1243505. [PMID: 38089059 PMCID: PMC10715419 DOI: 10.3389/fphar.2023.1243505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/13/2023] [Indexed: 02/25/2024] Open
Abstract
Background: We hypothesize that the poor survival outcomes of end-stage kidney disease (ESKD) patients undergoing hemodialysis are associated with a low filtering efficiency and selectivity. The current gold standard criteria using single or several markers show an inability to predict or disclose the treatment effect and disease progression accurately. Methods: We performed an integrated mass spectrometry-based metabolomic and proteomic workflow capable of detecting and quantifying circulating small molecules and proteins in the serum of ESKD patients. Markers linked to cardiovascular disease (CVD) were validated on human induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Results: We identified dozens of elevated molecules in the serum of patients compared with healthy controls. Surprisingly, many metabolites, including lipids, remained at an elevated blood concentration despite dialysis. These molecules and their associated physical interaction networks are correlated with clinical complications in chronic kidney disease. This study confirmed two uremic toxins associated with CVD, a major risk for patients with ESKD. Conclusion: The retained molecules and metabolite-protein interaction network address a knowledge gap of candidate uremic toxins associated with clinical complications in patients undergoing dialysis, providing mechanistic insights and potential drug discovery strategies for ESKD.
Collapse
Affiliation(s)
- Weiwei Lin
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Fatemeh Mousavi
- Center for Network Systems Biology, Boston University, Boston, MA, United States
| | - Benjamin C. Blum
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Christian F. Heckendorf
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Jarrod Moore
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Noah Lampl
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Mark McComb
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Sergei Kotelnikov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Matthew D. Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Vipul C. Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Veterans Affairs Boston Healthcare System, Boston, MA, United States
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
290
|
Rebak AS, Hendriks IA, Nielsen ML. Characterizing citrullination by mass spectrometry-based proteomics. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220237. [PMID: 37778389 PMCID: PMC10542455 DOI: 10.1098/rstb.2022.0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 10/03/2023] Open
Abstract
Citrullination is an important post-translational modification (PTM) of arginine, known to play a role in autoimmune disorders, innate immunity response and maintenance of stem cell potency. However, citrullination remains poorly characterized and not as comprehensively understood compared to other PTMs, such as phosphorylation and ubiquitylation. High-resolution mass spectrometry (MS)-based proteomics offers a valuable approach for studying citrullination in an unbiased manner, allowing confident identification of citrullination modification sites and distinction from deamidation events on asparagine and glutamine. MS efforts have already provided valuable insights into peptidyl arginine deaminase targeting along with site-specific information of citrullination in for example synovial fluids derived from rheumatoid arthritis patients. Still, there is unrealized potential for the wider citrullination field by applying MS-based mass spectrometry approaches for proteome-wide investigations. Here we will outline contemporary methods and current challenges for studying citrullination by MS, and discuss how the development of neoteric citrullination-specific proteomics approaches still may improve our understanding of citrullination networks. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- A. S. Rebak
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - I. A. Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - M. L. Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
291
|
Hoyer MJ, Capitanio C, Smith IR, Paoli JC, Bieber A, Jiang Y, Paulo JA, Gonzalez-Lozano MA, Baumeister W, Wilfling F, Schulman BA, Harper JW. Combinatorial selective ER-phagy remodels the ER during neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546565. [PMID: 37425907 PMCID: PMC10326971 DOI: 10.1101/2023.06.26.546565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis: a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodeling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of ER and the role of individual ER-phagy receptors is limited. Here, we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodeling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodeling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodeling and versatile genetic toolkit provides a quantitative framework for understanding contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.
Collapse
|
292
|
Yu NJ, Dai W, Li A, He M, Kleiner RE. Cell type-specific translational regulation by human DUS enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565399. [PMID: 37965204 PMCID: PMC10635104 DOI: 10.1101/2023.11.03.565399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dihydrouridine is an abundant and conserved modified nucleoside present on tRNA, but characterization and functional studies of modification sites and associated DUS writer enzymes in mammals is lacking. Here we use a chemical probing strategy, RNABPP-PS, to identify 5-chlorouridine as an activity-based probe for human DUS enzymes. We map D modifications using RNA-protein crosslinking and chemical transformation and mutational profiling to reveal D modification sites on human tRNAs. Further, we knock out individual DUS genes in two human cell lines to investigate regulation of tRNA expression levels and codon-specific translation. We show that whereas D modifications are present across most tRNA species, loss of D only perturbs the translational function of a subset of tRNAs in a cell type-specific manner. Our work provides powerful chemical strategies for investigating D and DUS enzymes in diverse biological systems and provides insight into the role of a ubiquitous tRNA modification in translational regulation.
Collapse
|
293
|
Heo L, Han Y, Cho Y, Choi J, Lee J, Han SW. A putative glucose 6-phosphate isomerase has pleiotropic functions on virulence and other mechanisms in Acidovorax citrulli. FRONTIERS IN PLANT SCIENCE 2023; 14:1275438. [PMID: 38023913 PMCID: PMC10664246 DOI: 10.3389/fpls.2023.1275438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Acidovorax citrulli (Ac) is a causal agent of watermelon bacterial fruit blotch (BFB) disease. Because resistance cultivars/lines have not yet been developed, it is imperative to elucidate Ac's virulence factors and their mechanisms to develop resistant cultivars/lines in different crops, including watermelon. The glucose-6-phosphate isomerase (GPI) is a reversible enzyme in both glycolysis and gluconeogenesis pathways in living organisms. However, the functions of GPI are not characterized in Ac. In this study, we determined the roles of GpiAc (GPI in Ac) by proteomic and phenotypic analyses of the mutant lacking GPI. The mutant displayed significantly reduced virulence to watermelon in two different virulence assays. The mutant's growth patterns were comparable to the wild-type strain in rich medium and M9 with glucose but not with fructose. The comparative proteome analysis markedly identified proteins related to virulence, motility, and cell wall/membrane/envelope. In the mutant, biofilm formation and twitching halo production were reduced. We further demonstrated that the mutant was less tolerant to osmotic stress and lysozyme treatment than the wild-type strain. Interestingly, the tolerance to alkali conditions was remarkably enhanced in the mutant. These results reveal that GpiAc is involved not only in virulence and glycolysis/gluconeogenesis but also in biofilm formation, twitching motility, and tolerance to diverse external stresses suggesting the pleiotropic roles of GpiAc in Ac. Our study provides fundamental and valuable information on the functions of previously uncharacterized glucose 6-phosphate isomerase and its virulence mechanism in Ac.
Collapse
Affiliation(s)
| | | | | | | | | | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
294
|
Abstract
The growing complexity and volume of proteomics data necessitate the development of efficient software tools for peptide identification and quantification from mass spectra. Given their central role in proteomics, it is imperative that these tools are auditable and extensible─requirements that are best fulfilled by open-source and permissively licensed software. This work presents Sage, a high-performance, open-source, and freely available proteomics pipeline. Scalable and cloud-ready, Sage matches the performance of state-of-the-art software tools while running an order of magnitude faster.
Collapse
Affiliation(s)
- Michael R Lazear
- Belharra Therapeutics, 3985 Sorrento Valley Boulevard Suite C, San Diego, California 92121, United States
| |
Collapse
|
295
|
Hu Z, Zhang M, Fan J, Hu J, Lin G, Piao S, Liu P, Liu J, Fu S, Sun W, Gygi SP, Zhang J, Zhou C. High-Level Secretion of Pregnancy Zone Protein Is a Novel Biomarker of DNA Damage-Induced Senescence and Promotes Spontaneous Senescence. J Proteome Res 2023; 22:3570-3579. [PMID: 37831546 DOI: 10.1021/acs.jproteome.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Identification of unique and specific biomarkers to better detect and quantify senescent cells remains challenging. By a global proteomic profiling of senescent human skin BJ fibroblasts induced by ionizing radiation (IR), the cellular level of pregnancy zone protein (PZP), a presumable pan-protease inhibitor never been linked to cellular senescence before, was found to be decreased by more than 10-fold, while the level of PZP in the conditioned medium was increased concomitantly. This observation was confirmed in a variety of senescent cells induced by IR or DNA-damaging drugs, indicating that high-level secretion of PZP is a novel senescence-associated secretory phenotype. RT-PCR examination verified that the transcription of the PZP gene is enhanced in various cells at senescence or upregulated following DNA damage treatment in a p53-independent manner. Moreover, pretreatment with late pregnancy serum containing a high level of PZP led to inhibition of doxorubicin-induced senescence in A549 cells, and depletion of PZP in the pregnancy serum could enhance such inhibition. Finally, the addition of immuno-precipitated PZP complexes into tissue culture attenuated the growth of A549 cells and promoted the spontaneous senescence. Therefore, we revealed that high-level secretion of PZP is a novel and unique feature associated with DNA damage-induced senescence, and secreted PZP is a positive regulator of cellular senescence, particularly during the late stage of gestation.
Collapse
Affiliation(s)
- Ziqi Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Mingzhu Zhang
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jiankun Fan
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jiandong Hu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Guochao Lin
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Shengwen Piao
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Peng Liu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
| | - Jichao Liu
- The 2th Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Songbin Fu
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| | - Wenjing Sun
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinwei Zhang
- The 2th Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Chunshui Zhou
- The Laboratory of Medical Genetics, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin150081, China
| |
Collapse
|
296
|
Kitata RB, Yang JC, Chen YJ. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. MASS SPECTROMETRY REVIEWS 2023; 42:2324-2348. [PMID: 35645145 DOI: 10.1002/mas.21781] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 06/15/2023]
Abstract
The data-independent acquisition mass spectrometry (DIA-MS) has rapidly evolved as a powerful alternative for highly reproducible proteome profiling with a unique strength of generating permanent digital maps for retrospective analysis of biological systems. Recent advancements in data analysis software tools for the complex DIA-MS/MS spectra coupled to fast MS scanning speed and high mass accuracy have greatly expanded the sensitivity and coverage of DIA-based proteomics profiling. Here, we review the evolution of the DIA-MS techniques, from earlier proof-of-principle of parallel fragmentation of all-ions or ions in selected m/z range, the sequential window acquisition of all theoretical mass spectra (SWATH-MS) to latest innovations, recent development in computation algorithms for data informatics, and auxiliary tools and advanced instrumentation to enhance the performance of DIA-MS. We further summarize recent applications of DIA-MS and experimentally-derived as well as in silico spectra library resources for large-scale profiling to facilitate biomarker discovery and drug development in human diseases with emphasis on the proteomic profiling coverage. Toward next-generation DIA-MS for clinical proteomics, we outline the challenges in processing multi-dimensional DIA data set and large-scale clinical proteomics, and continuing need in higher profiling coverage and sensitivity.
Collapse
Affiliation(s)
| | - Jhih-Ci Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
297
|
Mulholland PJ, Berto S, Wilmarth PA, McMahan C, Ball LE, Woodward JJ. Adaptor protein complex 2 in the orbitofrontal cortex predicts alcohol use disorder. Mol Psychiatry 2023; 28:4766-4776. [PMID: 37679472 PMCID: PMC10918038 DOI: 10.1038/s41380-023-02236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Alcohol use disorder (AUD) is a life-threatening disease characterized by compulsive drinking, cognitive deficits, and social impairment that continue despite negative consequences. The inability of individuals with AUD to regulate drinking may involve functional deficits in cortical areas that normally balance actions that have aspects of both reward and risk. Among these, the orbitofrontal cortex (OFC) is critically involved in goal-directed behavior and is thought to maintain a representation of reward value that guides decision making. In the present study, we analyzed post-mortem OFC brain samples collected from age- and sex-matched control subjects and those with AUD using proteomics, bioinformatics, machine learning, and reverse genetics approaches. Of the 4,500+ total unique proteins identified in the proteomics screen, there were 47 proteins that differed significantly by sex that were enriched in processes regulating extracellular matrix and axonal structure. Gene ontology enrichment analysis revealed that proteins differentially expressed in AUD cases were involved in synaptic and mitochondrial function, as well as transmembrane transporter activity. Alcohol-sensitive OFC proteins also mapped to abnormal social behaviors and social interactions. Machine learning analysis of the post-mortem OFC proteome revealed dysregulation of presynaptic (e.g., AP2A1) and mitochondrial proteins that predicted the occurrence and severity of AUD. Using a reverse genetics approach to validate a target protein, we found that prefrontal Ap2a1 expression significantly correlated with voluntary alcohol drinking in male and female genetically diverse mouse strains. Moreover, recombinant inbred strains that inherited the C57BL/6J allele at the Ap2a1 interval consumed higher amounts of alcohol than those that inherited the DBA/2J allele. Together, these findings highlight the impact of excessive alcohol consumption on the human OFC proteome and identify important cross-species cortical mechanisms and proteins that control drinking in individuals with AUD.
Collapse
Affiliation(s)
- Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Stefano Berto
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Christopher McMahan
- School of Mathematical and Statistical Sciences, Clemson-MUSC Artificial Intelligence Hub, Clemson University, Clemson, SC, 29634-0975, USA
| | - Lauren E Ball
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
298
|
Hay BN, Akinlaja MO, Baker TC, Houfani AA, Stacey RG, Foster LJ. Integration of data-independent acquisition (DIA) with co-fractionation mass spectrometry (CF-MS) to enhance interactome mapping capabilities. Proteomics 2023; 23:e2200278. [PMID: 37144656 DOI: 10.1002/pmic.202200278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Proteomics technologies are continually advancing, providing opportunities to develop stronger and more robust protein interaction networks (PINs). In part, this is due to the ever-growing number of high-throughput proteomics methods that are available. This review discusses how data-independent acquisition (DIA) and co-fractionation mass spectrometry (CF-MS) can be integrated to enhance interactome mapping abilities. Furthermore, integrating these two techniques can improve data quality and network generation through extended protein coverage, less missing data, and reduced noise. CF-DIA-MS shows promise in expanding our knowledge of interactomes, notably for non-model organisms (NMOs). CF-MS is a valuable technique on its own, but upon the integration of DIA, the potential to develop robust PINs increases, offering a unique approach for researchers to gain an in-depth understanding into the dynamics of numerous biological processes.
Collapse
Affiliation(s)
- Brenna N Hay
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Mopelola O Akinlaja
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Teesha C Baker
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Aicha Asma Houfani
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - R Greg Stacey
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J Foster
- Michael Smith Laboratories and Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
299
|
Deleeuw V, Carlson E, Renard M, Zientek KD, Wilmarth PA, Reddy AP, Manalo EC, Tufa SF, Keene DR, Olbinado M, Stampanoni M, Kanki S, Yanagisawa H, Mosquera LM, Sips P, De Backer J, Sakai LY. Unraveling the role of TGFβ signaling in thoracic aortic aneurysm and dissection using Fbn1 mutant mouse models. Matrix Biol 2023; 123:17-33. [PMID: 37683955 DOI: 10.1016/j.matbio.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Although abnormal TGFβ signaling is observed in several heritable forms of thoracic aortic aneurysms and dissections including Marfan syndrome, its precise role in aortic disease progression is still disputed. Using a mouse genetic approach and quantitative isobaric labeling proteomics, we sought to elucidate the role of TGFβ signaling in three Fbn1 mutant mouse models representing a range of aortic disease from microdissection (without aneurysm) to aneurysm (without rupture) to aneurysm and rupture. Results indicated that reduced TGFβ signaling and increased mast cell proteases were associated with microdissection. In contrast, increased abundance of extracellular matrix proteins, which could be reporters for positive TGFβ signaling, were associated with aneurysm. Marked reductions in collagens and fibrillins, and increased TGFβ signaling, were associated with aortic rupture. Our data indicate that TGFβ signaling performs context-dependent roles in the pathogenesis of thoracic aortic disease.
Collapse
Affiliation(s)
- Violette Deleeuw
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent B-9000, Belgium
| | - Eric Carlson
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Marjolijn Renard
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent B-9000, Belgium; Shriners Children's Hospital, 3101 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Keith D Zientek
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, OR 97239, United States
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, OR 97239, United States
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, OR 97239, United States
| | - Elise C Manalo
- Shriners Children's Hospital, 3101 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Sara F Tufa
- Shriners Children's Hospital, 3101 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Douglas R Keene
- Shriners Children's Hospital, 3101 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Margie Olbinado
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen 5232, Switzerland
| | - Sachiko Kanki
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-0801 Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, The University of Tsukuba, Tsukuba, Ibaraki 305-8577 Japan
| | - Laura Muiño Mosquera
- Department of Pediatrics, Division of Pediatric Cardiology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent B-9000, Belgium
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Corneel Heymanslaan 10, Ghent B-9000, Belgium
| | - Julie De Backer
- Department of Cardiology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent B-9000, Belgium
| | - Lynn Y Sakai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
300
|
Adhikary U, Paulo JA, Godes M, Roychoudhury S, Prew MS, Ben-Nun Y, Yu EW, Budhraja A, Opferman JT, Chowdhury D, Gygi SP, Walensky LD. Targeting MCL-1 triggers DNA damage and an anti-proliferative response independent from apoptosis induction. Cell Rep 2023; 42:113176. [PMID: 37773750 PMCID: PMC10787359 DOI: 10.1016/j.celrep.2023.113176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023] Open
Abstract
MCL-1 is a high-priority target due to its dominant role in the pathogenesis and chemoresistance of cancer, yet clinical trials of MCL-1 inhibitors are revealing toxic side effects. MCL-1 biology is complex, extending beyond apoptotic regulation and confounded by its multiple isoforms, its domains of unresolved structure and function, and challenges in distinguishing noncanonical activities from the apoptotic response. We find that, in the presence or absence of an intact mitochondrial apoptotic pathway, genetic deletion or pharmacologic targeting of MCL-1 induces DNA damage and retards cell proliferation. Indeed, the cancer cell susceptibility profile of MCL-1 inhibitors better matches that of anti-proliferative than pro-apoptotic drugs, expanding their potential therapeutic applications, including synergistic combinations, but heightening therapeutic window concerns. Proteomic profiling provides a resource for mechanistic dissection and reveals the minichromosome maintenance DNA helicase as an interacting nuclear protein complex that links MCL-1 to the regulation of DNA integrity and cell-cycle progression.
Collapse
Affiliation(s)
- Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Godes
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Michelle S Prew
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yael Ben-Nun
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ellen W Yu
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Amit Budhraja
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|