251
|
Skene NG, Bryois J, Bakken TE, Breen G, Crowley JJ, Gaspar HA, Giusti-Rodriguez P, Hodge RD, Miller JA, Muñoz-Manchado AB, O'Donovan MC, Owen MJ, Pardiñas AF, Ryge J, Walters JTR, Linnarsson S, Lein ES, Sullivan PF, Hjerling-Leffler J. Genetic identification of brain cell types underlying schizophrenia. Nat Genet 2018; 50:825-833. [PMID: 29785013 PMCID: PMC6477180 DOI: 10.1038/s41588-018-0129-5] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
With few exceptions, the marked advances in knowledge about the genetic basis of schizophrenia have not converged on findings that can be confidently used for precise experimental modeling. By applying knowledge of the cellular taxonomy of the brain from single-cell RNA sequencing, we evaluated whether the genomic loci implicated in schizophrenia map onto specific brain cell types. We found that the common-variant genomic results consistently mapped to pyramidal cells, medium spiny neurons (MSNs) and certain interneurons, but far less consistently to embryonic, progenitor or glial cells. These enrichments were due to sets of genes that were specifically expressed in each of these cell types. We also found that many of the diverse gene sets previously associated with schizophrenia (genes involved in synaptic function, those encoding mRNAs that interact with FMRP, antipsychotic targets, etc.) generally implicated the same brain cell types. Our results suggest a parsimonious explanation: the common-variant genetic results for schizophrenia point at a limited set of neurons, and the gene sets point to the same cells. The genetic risk associated with MSNs did not overlap with that of glutamatergic pyramidal cells and interneurons, suggesting that different cell types have biologically distinct roles in schizophrenia.
Collapse
Affiliation(s)
- Nathan G Skene
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- UCL Institute of Neurology, Queen Square, London, UK
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Gerome Breen
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, UK
- National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Héléna A Gaspar
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, UK
- National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | | | | | | | - Ana B Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jesper Ryge
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
252
|
Han X, Chen S, Flynn E, Wu S, Wintner D, Shen Y. Distinct epigenomic patterns are associated with haploinsufficiency and predict risk genes of developmental disorders. Nat Commun 2018; 9:2138. [PMID: 29849042 PMCID: PMC5976622 DOI: 10.1038/s41467-018-04552-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/08/2018] [Indexed: 12/21/2022] Open
Abstract
Haploinsufficiency is a major mechanism of genetic risk in developmental disorders. Accurate prediction of haploinsufficient genes is essential for prioritizing and interpreting deleterious variants in genetic studies. Current methods based on mutation intolerance in population data suffer from inadequate power for genes with short transcripts. Here we show haploinsufficiency is strongly associated with epigenomic patterns, and develop a computational method (Episcore) to predict haploinsufficiency leveraging epigenomic data from a broad range of tissue and cell types by machine learning methods. Based on data from recent exome sequencing studies on developmental disorders, Episcore achieves better performance in prioritizing likely-gene-disrupting (LGD) de novo variants than current methods. We further show that Episcore is less-biased by gene size, and complementary to mutation intolerance metrics for prioritizing LGD variants. Our approach enables new applications of epigenomic data and facilitates discovery and interpretation of novel risk variants implicated in developmental disorders. Predicting haploinsufficient genes helps to understand the genetic risk underlying developmental disorders. Here, the authors develop a Random Forest-based method that uses epigenomic data to predict haploinsufficiency, Episcore, which is complementary to methods based on mutation intolerance scores.
Collapse
Affiliation(s)
- Xinwei Han
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,Department of Pediatrics, Columbia University, New York, NY, 10032, USA.,Constellation Pharmaceuticals, 215 First Street, Cambridge, MA, 02142, USA
| | - Siying Chen
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,The Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, 10032, USA
| | - Elise Flynn
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,The Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, 10032, USA
| | - Shuang Wu
- Department of Biostatistics, Columbia University, New York, NY, 10032, USA
| | - Dana Wintner
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA. .,Department of Biomedical Informatics, Columbia University, New York, NY, 10032, USA. .,JP Sulzberger Columbia Genome Center, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
253
|
Shu L, Blencowe M, Yang X. Translating GWAS Findings to Novel Therapeutic Targets for Coronary Artery Disease. Front Cardiovasc Med 2018; 5:56. [PMID: 29900175 PMCID: PMC5989327 DOI: 10.3389/fcvm.2018.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
The success of genome-wide association studies (GWAS) has significantly advanced our understanding of the etiology of coronary artery disease (CAD) and opens new opportunities to reinvigorate the stalling CAD drug development. However, there exists remarkable disconnection between the CAD GWAS findings and commercialized drugs. While this could implicate major untapped translational and therapeutic potentials in CAD GWAS, it also brings forward extensive technical challenges. In this review we summarize the motivation to leverage GWAS for drug discovery, outline the critical bottlenecks in the field, and highlight several promising strategies such as functional genomics and network-based approaches to enhance the translational value of CAD GWAS findings in driving novel therapeutics
Collapse
Affiliation(s)
- Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States.,Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
254
|
Nievergelt CM, Ashley-Koch AE, Dalvie S, Hauser MA, Morey RA, Smith AK, Uddin M. Genomic Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biol Psychiatry 2018; 83:831-839. [PMID: 29555185 PMCID: PMC5915904 DOI: 10.1016/j.biopsych.2018.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/18/2017] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
Posttraumatic stress disorder (PTSD) after exposure to a traumatic event is a highly prevalent psychiatric disorder. Heritability estimates from twin studies as well as from recent molecular data (single nucleotide polymorphism-based heritability) indicate moderate to high heritability, yet robust genetic variants for PTSD have not yet been identified and the genetic architecture of this polygenic disorder remains largely unknown. To date, fewer than 10 large-scale genome-wide association studies of PTSD have been published, with findings that highlight the unique challenges for PTSD genomics, including a complex diagnostic entity with contingency of PTSD diagnosis on trauma exposure and the large genetic diversity of the study populations. The Psychiatric Genomics Consortium PTSD group has brought together more than 200 scientists with the goal to increase sample size for genome-wide association studies and other genomic analyses to sufficient numbers where robust discoveries of molecular signatures can be achieved. The sample currently includes more than 32,000 PTSD cases and 100,000 trauma-exposed control subjects, and collection is ongoing. The first results found a significant shared genetic risk of PTSD with other psychiatric disorders and sex-biased heritability estimates with higher heritability in female individuals compared with male individuals. This review describes the scope and current focus of the Psychiatric Genomics Consortium PTSD group and its expansion from the initial genome-wide association study group to nine working groups, including epigenetics, gene expression, imaging, and integrative systems biology. We further briefly outline recent findings and future directions of "omics"-based studies of PTSD, with the ultimate goal of elucidating the molecular architecture of this complex disorder to improve prevention and intervention strategies.
Collapse
Affiliation(s)
- Caroline M. Nievergelt
- University of California San Diego, Department of Psychiatry and Department of Family Medicine and Public Health,Veterans Affairs San Diego Healthcare System and Veterans Affairs Center of Excellence for Stress and Mental Health
| | | | - Shareefa Dalvie
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa, 7925
| | - Michael A. Hauser
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Rajendra A. Morey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham NC 27710, Durham VA Medical Center, Durham, NC 27705
| | - Alicia K. Smith
- Emory University, Department of Gynecology and Obstetrics,Emory University, Department of Psychiatry & Behavioral Sciences
| | - Monica Uddin
- University of Illinois Urbana-Champaign, Carl R. Woese Institute for Genomic Biology,University of Illinois Urbana-Champaign, Department of Psychology
| |
Collapse
|
255
|
Manoli DS, Tollkuhn J. Gene regulatory mechanisms underlying sex differences in brain development and psychiatric disease. Ann N Y Acad Sci 2018; 1420:26-45. [PMID: 29363776 PMCID: PMC5991992 DOI: 10.1111/nyas.13564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The sexual differentiation of the mammalian nervous system requires the precise coordination of the temporal and spatial regulation of gene expression in diverse cell types. Sex hormones act at multiple developmental time points to specify sex-typical differentiation during embryonic and early development and to coordinate subsequent responses to gonadal hormones later in life by establishing sex-typical patterns of epigenetic modifications across the genome. Thus, mutations associated with neuropsychiatric conditions may result in sexually dimorphic symptoms by acting on different neural substrates or chromatin landscapes in males and females. Finally, as stress hormone signaling may directly alter the molecular machinery that interacts with sex hormone receptors to regulate gene expression, the contribution of chronic stress to the pathogenesis or presentation of mental illness may be additionally different between the sexes. Here, we review the mechanisms that contribute to sexual differentiation in the mammalian nervous system and consider some of the implications of these processes for sex differences in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Devanand S. Manoli
- Department of Psychiatry and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
256
|
Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, Adams MJ, Agerbo E, Air TM, Andlauer TMF, Bacanu SA, Bækvad-Hansen M, Beekman AFT, Bigdeli TB, Binder EB, Blackwood DRH, Bryois J, Buttenschøn HN, Bybjerg-Grauholm J, Cai N, Castelao E, Christensen JH, Clarke TK, Coleman JIR, Colodro-Conde L, Couvy-Duchesne B, Craddock N, Crawford GE, Crowley CA, Dashti HS, Davies G, Deary IJ, Degenhardt F, Derks EM, Direk N, Dolan CV, Dunn EC, Eley TC, Eriksson N, Escott-Price V, Kiadeh FHF, Finucane HK, Forstner AJ, Frank J, Gaspar HA, Gill M, Giusti-Rodríguez P, Goes FS, Gordon SD, Grove J, Hall LS, Hannon E, Hansen CS, Hansen TF, Herms S, Hickie IB, Hoffmann P, Homuth G, Horn C, Hottenga JJ, Hougaard DM, Hu M, Hyde CL, Ising M, Jansen R, Jin F, Jorgenson E, Knowles JA, Kohane IS, Kraft J, Kretzschmar WW, Krogh J, Kutalik Z, Lane JM, Li Y, Li Y, Lind PA, Liu X, Lu L, MacIntyre DJ, MacKinnon DF, Maier RM, Maier W, Marchini J, Mbarek H, McGrath P, McGuffin P, Medland SE, Mehta D, Middeldorp CM, Mihailov E, Milaneschi Y, Milani L, Mill J, Mondimore FM, Montgomery GW, Mostafavi S, Mullins N, Nauck M, Ng B, et alWray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, Adams MJ, Agerbo E, Air TM, Andlauer TMF, Bacanu SA, Bækvad-Hansen M, Beekman AFT, Bigdeli TB, Binder EB, Blackwood DRH, Bryois J, Buttenschøn HN, Bybjerg-Grauholm J, Cai N, Castelao E, Christensen JH, Clarke TK, Coleman JIR, Colodro-Conde L, Couvy-Duchesne B, Craddock N, Crawford GE, Crowley CA, Dashti HS, Davies G, Deary IJ, Degenhardt F, Derks EM, Direk N, Dolan CV, Dunn EC, Eley TC, Eriksson N, Escott-Price V, Kiadeh FHF, Finucane HK, Forstner AJ, Frank J, Gaspar HA, Gill M, Giusti-Rodríguez P, Goes FS, Gordon SD, Grove J, Hall LS, Hannon E, Hansen CS, Hansen TF, Herms S, Hickie IB, Hoffmann P, Homuth G, Horn C, Hottenga JJ, Hougaard DM, Hu M, Hyde CL, Ising M, Jansen R, Jin F, Jorgenson E, Knowles JA, Kohane IS, Kraft J, Kretzschmar WW, Krogh J, Kutalik Z, Lane JM, Li Y, Li Y, Lind PA, Liu X, Lu L, MacIntyre DJ, MacKinnon DF, Maier RM, Maier W, Marchini J, Mbarek H, McGrath P, McGuffin P, Medland SE, Mehta D, Middeldorp CM, Mihailov E, Milaneschi Y, Milani L, Mill J, Mondimore FM, Montgomery GW, Mostafavi S, Mullins N, Nauck M, Ng B, Nivard MG, Nyholt DR, O'Reilly PF, Oskarsson H, Owen MJ, Painter JN, Pedersen CB, Pedersen MG, Peterson RE, Pettersson E, Peyrot WJ, Pistis G, Posthuma D, Purcell SM, Quiroz JA, Qvist P, Rice JP, Riley BP, Rivera M, Saeed Mirza S, Saxena R, Schoevers R, Schulte EC, Shen L, Shi J, Shyn SI, Sigurdsson E, Sinnamon GBC, Smit JH, Smith DJ, Stefansson H, Steinberg S, Stockmeier CA, Streit F, Strohmaier J, Tansey KE, Teismann H, Teumer A, Thompson W, Thomson PA, Thorgeirsson TE, Tian C, Traylor M, Treutlein J, Trubetskoy V, Uitterlinden AG, Umbricht D, Van der Auwera S, van Hemert AM, Viktorin A, Visscher PM, Wang Y, Webb BT, Weinsheimer SM, Wellmann J, Willemsen G, Witt SH, Wu Y, Xi HS, Yang J, Zhang F, Arolt V, Baune BT, Berger K, Boomsma DI, Cichon S, Dannlowski U, de Geus ECJ, DePaulo JR, Domenici E, Domschke K, Esko T, Grabe HJ, Hamilton SP, Hayward C, Heath AC, Hinds DA, Kendler KS, Kloiber S, Lewis G, Li QS, Lucae S, Madden PFA, Magnusson PK, Martin NG, McIntosh AM, Metspalu A, Mors O, Mortensen PB, Müller-Myhsok B, Nordentoft M, Nöthen MM, O'Donovan MC, Paciga SA, Pedersen NL, Penninx BWJH, Perlis RH, Porteous DJ, Potash JB, Preisig M, Rietschel M, Schaefer C, Schulze TG, Smoller JW, Stefansson K, Tiemeier H, Uher R, Völzke H, Weissman MM, Werge T, Winslow AR, Lewis CM, Levinson DF, Breen G, Børglum AD, Sullivan PF. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet 2018; 50:668-681. [PMID: 29700475 PMCID: PMC5934326 DOI: 10.1038/s41588-018-0090-3] [Show More Authors] [Citation(s) in RCA: 1947] [Impact Index Per Article: 278.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.
Collapse
Affiliation(s)
- Naomi R Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia.
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Stephan Ripke
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
| | - Manuel Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maciej Trzaskowski
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Enda M Byrne
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Abdel Abdellaoui
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Esben Agerbo
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Tracy M Air
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia
| | - Till M F Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Bækvad-Hansen
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Aartjan F T Beekman
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Tim B Bigdeli
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute for Psychiatric and Behavior Genetics, Richmond, VA, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henriette N Buttenschøn
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Jonas Bybjerg-Grauholm
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Na Cai
- Statistical Genomics and Systems Genetics, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
- Human Genetics, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Enrique Castelao
- Department of Psychiatry, University Hospital of Lausanne, Prilly, Switzerland
| | - Jane Hvarregaard Christensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Jonathan I R Coleman
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Lucía Colodro-Conde
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Baptiste Couvy-Duchesne
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Nick Craddock
- Psychological Medicine, Cardiff University, Cardiff, UK
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Cheynna A Crowley
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hassan S Dashti
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gail Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
| | - Eske M Derks
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nese Direk
- Psychiatry, Dokuz Eylul University School of Medicine, Izmir, Turkey
- Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Erin C Dunn
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Thalia C Eley
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | | | | | | | - Hilary K Finucane
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Héléna A Gaspar
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Michael Gill
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | | | - Fernando S Goes
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Scott D Gordon
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Lynsey S Hall
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Christine Søholm Hansen
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas F Hansen
- Danish Headache Centre, Department of Neurology, Rigshospitalet, Glostrup, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Psychiatric Research, Copenhagen, Denmark
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Carsten Horn
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Jouke-Jan Hottenga
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - David M Hougaard
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ming Hu
- Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Craig L Hyde
- Statistics, Pfizer Global Research and Development, Groton, CT, USA
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Rick Jansen
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Fulai Jin
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - James A Knowles
- Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Isaac S Kohane
- Informatics Program, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Julia Kraft
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
| | | | - Jesper Krogh
- Department of Endocrinology at Herlev University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine (IUMSP), University Hospital of Lausanne, Lausanne, Switzerland
| | - Jacqueline M Lane
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yihan Li
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yun Li
- Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Penelope A Lind
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Xiaoxiao Liu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Leina Lu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Donald J MacIntyre
- Mental Health, NHS 24, Glasgow, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Dean F MacKinnon
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Robert M Maier
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Wolfgang Maier
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | | | - Hamdi Mbarek
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick McGrath
- Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Peter McGuffin
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Sarah E Medland
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Divya Mehta
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Christel M Middeldorp
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, South Brisbane, Queensland, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | | | - Yuri Milaneschi
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Lili Milani
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | | | - Francis M Mondimore
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Grant W Montgomery
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Sara Mostafavi
- Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Niamh Mullins
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Matthias Nauck
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, University Medicine, University Medicine Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Bernard Ng
- Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel G Nivard
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dale R Nyholt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Paul F O'Reilly
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | | | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jodie N Painter
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Carsten Bøcker Pedersen
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Marianne Giørtz Pedersen
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Roseann E Peterson
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Erik Pettersson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Wouter J Peyrot
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Giorgio Pistis
- Department of Psychiatry, University Hospital of Lausanne, Prilly, Switzerland
| | - Danielle Posthuma
- Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Clinical Genetics, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Shaun M Purcell
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Per Qvist
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - John P Rice
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Brien P Riley
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Margarita Rivera
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- Department of Biochemistry and Molecular Biology II, Institute of Neurosciences, Center for Biomedical Research, University of Granada, Granada, Spain
| | | | - Richa Saxena
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Robert Schoevers
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eva C Schulte
- Department of Psychiatry and Psychotherapy, Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany
| | - Ling Shen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Stanley I Shyn
- Behavioral Health Services, Kaiser Permanente Washington, Seattle, WA, USA
| | - Engilbert Sigurdsson
- Faculty of Medicine, Department of Psychiatry, University of Iceland, Reykjavik, Iceland
| | - Grant B C Sinnamon
- School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Johannes H Smit
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Daniel J Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | | | | | - Craig A Stockmeier
- Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katherine E Tansey
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Henning Teismann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Wesley Thompson
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
- KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Pippa A Thomson
- Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Chao Tian
- Research, 23andMe, Inc., Mountain View, CA, USA
| | - Matthew Traylor
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vassily Trubetskoy
- Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
| | | | - Daniel Umbricht
- Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Albert M van Hemert
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Yunpeng Wang
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
- KG Jebsen Centre for Psychosis Research, Norway Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Bradley T Webb
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shantel Marie Weinsheimer
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
| | - Jürgen Wellmann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Gonneke Willemsen
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yang Wu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Hualin S Xi
- Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, USA
| | - Jian Yang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Futao Zhang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Munster, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Juelich, Juelich, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Munster, Germany
| | - E C J de Geus
- Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Institute, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - J Raymond DePaulo
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Enrico Domenici
- Centre for Integrative Biology, Università degli Studi di Trento, Trento, Italy
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tõnu Esko
- Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Steven P Hamilton
- Psychiatry, Kaiser Permanente Northern California, San Francisco, CA, USA
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | | | - Kenneth S Kendler
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Stefan Kloiber
- Max Planck Institute of Psychiatry, Munich, Germany
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, USA
| | | | - Pamela F A Madden
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Patrik K Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Nicholas G Martin
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ole Mors
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, Denmark
| | - Preben Bo Mortensen
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Merete Nordentoft
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Sara A Paciga
- Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton, CT, USA
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
| | - Roy H Perlis
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David J Porteous
- Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Martin Preisig
- Department of Psychiatry, University Hospital of Lausanne, Prilly, Switzerland
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Catherine Schaefer
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Thomas G Schulze
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Institute of Psychiatric Phenomics and Genomics (IPPG), Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany
- Human Genetics Branch, NIMH Division of Intramural Research Programs, Bethesda, MD, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jordan W Smoller
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Henning Tiemeier
- Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Child and Adolescent Psychiatry, Erasmus MC, Rotterdam, The Netherlands
- Psychiatry, Erasmus MC, Rotterdam, The Netherlands
| | - Rudolf Uher
- Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Myrna M Weissman
- Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Thomas Werge
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ashley R Winslow
- Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Cambridge, MA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cathryn M Lewis
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Douglas F Levinson
- Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Gerome Breen
- MRC Social Genetic and Developmental Psychiatry Centre, King's College London, London, UK
- NIHR BRC for Mental Health, King's College London, London, UK
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
- iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
257
|
An analytical framework for whole-genome sequence association studies and its implications for autism spectrum disorder. Nat Genet 2018; 50:727-736. [PMID: 29700473 DOI: 10.1038/s41588-018-0107-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/06/2018] [Indexed: 11/08/2022]
Abstract
Genomic association studies of common or rare protein-coding variation have established robust statistical approaches to account for multiple testing. Here we present a comparable framework to evaluate rare and de novo noncoding single-nucleotide variants, insertion/deletions, and all classes of structural variation from whole-genome sequencing (WGS). Integrating genomic annotations at the level of nucleotides, genes, and regulatory regions, we define 51,801 annotation categories. Analyses of 519 autism spectrum disorder families did not identify association with any categories after correction for 4,123 effective tests. Without appropriate correction, biologically plausible associations are observed in both cases and controls. Despite excluding previously identified gene-disrupting mutations, coding regions still exhibited the strongest associations. Thus, in autism, the contribution of de novo noncoding variation is probably modest in comparison to that of de novo coding variants. Robust results from future WGS studies will require large cohorts and comprehensive analytical strategies that consider the substantial multiple-testing burden.
Collapse
|
258
|
Gusev A, Mancuso N, Won H, Kousi M, Finucane HK, Reshef Y, Song L, Safi A, McCarroll S, Neale BM, Ophoff RA, O'Donovan MC, Crawford GE, Geschwind DH, Katsanis N, Sullivan PF, Pasaniuc B, Price AL. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights. Nat Genet 2018; 50:538-548. [PMID: 29632383 PMCID: PMC5942893 DOI: 10.1038/s41588-018-0092-1] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/09/2018] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies (GWAS) have identified over 100 risk loci for schizophrenia, but the causal mechanisms remain largely unknown. We performed a transcriptome-wide association study (TWAS) integrating a schizophrenia GWAS of 79,845 individuals from the Psychiatric Genomics Consortium with expression data from brain, blood, and adipose tissues across 3,693 primarily control individuals. We identified 157 TWAS-significant genes, of which 35 did not overlap a known GWAS locus. Of these 157 genes, 42 were associated with specific chromatin features measured in independent samples, thus highlighting potential regulatory targets for follow-up. Suppression of one identified susceptibility gene, mapk3, in zebrafish showed a significant effect on neurodevelopmental phenotypes. Expression and splicing from the brain captured most of the TWAS effect across all genes. This large-scale connection of associations to target genes, tissues, and regulatory features is an essential step in moving toward a mechanistic understanding of GWAS.
Collapse
Affiliation(s)
- Alexander Gusev
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Nicholas Mancuso
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hyejung Won
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Hilary K Finucane
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yakir Reshef
- Department of Computer Science, Harvard University, Cambridge, MA, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | - Steven McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roel A Ophoff
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael C O'Donovan
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, NC, USA
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, CA, USA
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, USA
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bogdan Pasaniuc
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, CA, USA.
| | - Alkes L Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
259
|
Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, Gazal S, Loh PR, Lareau C, Shoresh N, Genovese G, Saunders A, Macosko E, Pollack S, Perry JRB, Buenrostro JD, Bernstein BE, Raychaudhuri S, McCarroll S, Neale BM, Price AL. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet 2018; 50:621-629. [PMID: 29632380 PMCID: PMC5896795 DOI: 10.1038/s41588-018-0081-4] [Citation(s) in RCA: 659] [Impact Index Per Article: 94.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
We introduce an approach to identify disease-relevant tissues and cell types by analyzing gene expression data together with genome-wide association study (GWAS) summary statistics. Our approach uses stratified linkage disequilibrium (LD) score regression to test whether disease heritability is enriched in regions surrounding genes with the highest specific expression in a given tissue. We applied our approach to gene expression data from several sources together with GWAS summary statistics for 48 diseases and traits (average N = 169,331) and found significant tissue-specific enrichments (false discovery rate (FDR) < 5%) for 34 traits. In our analysis of multiple tissues, we detected a broad range of enrichments that recapitulated known biology. In our brain-specific analysis, significant enrichments included an enrichment of inhibitory over excitatory neurons for bipolar disorder, and excitatory over inhibitory neurons for schizophrenia and body mass index. Our results demonstrate that our polygenic approach is a powerful way to leverage gene expression data for interpreting GWAS signals.
Collapse
Affiliation(s)
- Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Yakir A Reshef
- Department of Computer Science, Harvard University, Cambridge, MA, USA
| | - Verneri Anttila
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kamil Slowikowski
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Gusev
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Andrea Byrnes
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven Gazal
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Po-Ru Loh
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Caleb Lareau
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Arpiar Saunders
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Evan Macosko
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Samuela Pollack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - John R B Perry
- Medical Research Council (MRC) Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason D Buenrostro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Bradley E Bernstein
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Partners Center for Personalized Genetic Medicine, Boston, MA, USA
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Steven McCarroll
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Benjamin M Neale
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
260
|
Keil JM, Qalieh A, Kwan KY. Brain Transcriptome Databases: A User's Guide. J Neurosci 2018; 38:2399-2412. [PMID: 29437890 PMCID: PMC5858588 DOI: 10.1523/jneurosci.1930-17.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Transcriptional programs instruct the generation and maintenance of diverse subtypes of neural cells, establishment of distinct brain regions, formation and function of neural circuits, and ultimately behavior. Spatiotemporal and cell type-specific analyses of the transcriptome, the sum total of all RNA transcripts in a cell or an organ, can provide insights into the role of genes in brain development and function, and their potential contribution to disorders of the brain. In the previous decade, advances in sequencing technology and funding from the National Institutes of Health and private foundations for large-scale genomics projects have led to a growing collection of brain transcriptome databases. These valuable resources provide rich and high-quality datasets with spatiotemporal, cell type-specific, and single-cell precision. Most importantly, many of these databases are publicly available via user-friendly web interface, making the information accessible to individual scientists without the need for advanced computational expertise. Here, we highlight key publicly available brain transcriptome databases, summarize the tissue sources and methods used to generate the data, and discuss their utility for neuroscience research.
Collapse
Affiliation(s)
- Jason M Keil
- Molecular and Behavioral Neuroscience Institute
- Department of Human Genetics, and
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Adel Qalieh
- Molecular and Behavioral Neuroscience Institute
- Department of Human Genetics, and
| | - Kenneth Y Kwan
- Molecular and Behavioral Neuroscience Institute,
- Department of Human Genetics, and
| |
Collapse
|
261
|
Pimenova AA, Raj T, Goate AM. Untangling Genetic Risk for Alzheimer's Disease. Biol Psychiatry 2018; 83:300-310. [PMID: 28666525 PMCID: PMC5699970 DOI: 10.1016/j.biopsych.2017.05.014] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a genetically heterogeneous neurodegenerative disorder caused by fully penetrant single gene mutations in a minority of cases, while the majority of cases are sporadic or show modest familial clustering. These cases are of late onset and likely result from the interaction of many genes and the environment. More than 30 loci have been implicated in AD by a combination of linkage, genome-wide association, and whole genome/exome sequencing. We have learned from these studies that perturbations in endolysosomal, lipid metabolism, and immune response pathways substantially contribute to sporadic AD pathogenesis. We review here current knowledge about functions of AD susceptibility genes, highlighting cells of the myeloid lineage as drivers of at least part of the genetic component in late-onset AD. Although targeted resequencing utilized for the identification of causal variants has discovered coding mutations in some AD-associated genes, a lot of risk variants lie in noncoding regions. Here we discuss the use of functional genomics approaches that integrate transcriptomic, epigenetic, and endophenotype traits with systems biology to annotate genetic variants, and to facilitate discovery of AD risk genes. Further validation in cell culture and mouse models will be necessary to establish causality for these genes. This knowledge will allow mechanism-based design of novel therapeutic interventions in AD and promises coherent implementation of treatment in a personalized manner.
Collapse
Affiliation(s)
- Anna A Pimenova
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
262
|
Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, Schork AJ, Appadurai V, Buil A, Werge TM, Liu C, White KP, CommonMind Consortium, PsychENCODE Consortium, iPSYCH-BROAD Working Group, Horvath S, Geschwind DH. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 2018; 359:693-697. [PMID: 29439242 PMCID: PMC5898828 DOI: 10.1126/science.aad6469] [Citation(s) in RCA: 709] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/21/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022]
Abstract
The predisposition to neuropsychiatric disease involves a complex, polygenic, and pleiotropic genetic architecture. However, little is known about how genetic variants impart brain dysfunction or pathology. We used transcriptomic profiling as a quantitative readout of molecular brain-based phenotypes across five major psychiatric disorders-autism, schizophrenia, bipolar disorder, depression, and alcoholism-compared with matched controls. We identified patterns of shared and distinct gene-expression perturbations across these conditions. The degree of sharing of transcriptional dysregulation is related to polygenic (single-nucleotide polymorphism-based) overlap across disorders, suggesting a substantial causal genetic component. This comprehensive systems-level view of the neurobiological architecture of major neuropsychiatric illness demonstrates pathways of molecular convergence and specificity.
Collapse
Affiliation(s)
- Michael J. Gandal
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Jillian R. Haney
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Neelroop N. Parikshak
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Virpi Leppa
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Gokul Ramaswami
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Chris Hartl
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Andrew J. Schork
- Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Vivek Appadurai
- Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Alfonso Buil
- Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark
| | - Thomas M. Werge
- Institute of Biological Psychiatry, Mental Health Services Copenhagen, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60607, USA
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Kevin P. White
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
- Tempus Labs, 600 W. Chicago Ave., Chicago IL 60654
| | | | | | | | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Daniel H. Geschwind
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, 695 Charles E. Young Drive South, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
263
|
Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:38-49. [PMID: 29017764 DOI: 10.1016/j.pnpbp.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022]
Abstract
Antipsychotic response in schizophrenia is a complex, multifactorial trait influenced by pharmacogenetic factors. With genetic studies thus far providing little biological insight or clinical utility, the field of pharmacoepigenomics has emerged to tackle the so-called "missing heritability" of drug response in disease. Research on psychiatric disorders has only recently started to assess the link between epigenetic alterations and treatment outcomes. DNA methylation, the best characterised epigenetic mechanism to date, is discussed here in the context of schizophrenia and antipsychotic treatment outcomes. The majority of published studies have assessed the influence of antipsychotics on methylation levels in specific neurotransmitter-associated candidate genes or at the genome-wide level. While these studies illustrate the epigenetic modifications associated with antipsychotics, very few have assessed clinical outcomes and the potential of differential DNA methylation profiles as predictors of antipsychotic response. Results from other psychiatric disorder studies, such as depression and bipolar disorder, provide insight into what may be achieved by schizophrenia pharmacoepigenomics. Other aspects that should be addressed in future research include methodological challenges, such as tissue specificity, and the influence of genetic variation on differential methylation patterns.
Collapse
Affiliation(s)
- Ellen S Ovenden
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nathaniel W McGregor
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Robin A Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg 7505, South Africa
| | - Louise Warnich
- Department of Genetics, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
264
|
Rhie SK, Schreiner S, Farnham PJ. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq). Methods Mol Biol 2018; 1766:209-229. [PMID: 29605855 DOI: 10.1007/978-1-4939-7768-0_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
NOMe-seq (nucleosome occupancy and methylome sequencing) identifies nucleosome-depleted regions that correspond to promoters, enhancers, and insulators. The NOMe-seq method is based on the treatment of chromatin with the M.CviPI methyltransferase, which methylates GpC dinucleotides that are not protected by nucleosomes or other proteins that are tightly bound to the chromatin (GpCm does not occur in the human genome and therefore there is no endogenous background of GpCm). Following bisulfite treatment of the M.CviPI-methylated chromatin (which converts unmethylated Cs to Ts and thus allows the distinction of GpC from GpCm) and subsequent genomic sequencing, nucleosome-depleted regions can be ascertained on a genome-wide scale. The bisulfite treatment also allows the distinction of CpG from CmpG (most endogenous methylation occurs at CpG dinucleotides) and thus the endogenous methylation status of the genome can also be obtained in the same sequencing reaction. Importantly, open chromatin is expected to have high levels of GpCm but low levels of CmpG; thus, each of the two separate methylation analyses serve as independent (but opposite) measures which provide matching chromatin designations for each regulatory element.NOMe-seq has advantages over ChIP-seq for identification of regulatory elements because it is not reliant upon knowing the exact modifications on the surrounding nucleosomes. Also, NOMe-seq has advantages over DHS (DNase hypersensitive site)-seq, FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements)-seq, and ATAC (Assay for Transposase-Accessible Chromatin)-seq because it also gives positioning information for several nucleosomes on either side of each open regulatory element. Here, we provide a detailed protocol for NOMe-seq that begins with the isolation of chromatin, followed by methylation of GpCs with M.CviPI and treatment with bisulfite, and ending with the creation of next generation sequencing libraries. We also include sequencing QC analysis metrics and bioinformatics steps that can be used to identify nucleosome-depleted regions throughout the genome.
Collapse
Affiliation(s)
- Suhn Kyong Rhie
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shannon Schreiner
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
265
|
Sullivan PF, Agrawal A, Bulik CM, Andreassen OA, Børglum AD, Breen G, Cichon S, Edenberg HJ, Faraone SV, Gelernter J, Mathews CA, Nievergelt CM, Smoller JW, O’Donovan MC, for the Psychiatric Genomics Consortium. Psychiatric Genomics: An Update and an Agenda. Am J Psychiatry 2018; 175:15-27. [PMID: 28969442 PMCID: PMC5756100 DOI: 10.1176/appi.ajp.2017.17030283] [Citation(s) in RCA: 405] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Psychiatric Genomics Consortium (PGC) is the largest consortium in the history of psychiatry. This global effort is dedicated to rapid progress and open science, and in the past decade it has delivered an increasing flow of new knowledge about the fundamental basis of common psychiatric disorders. The PGC has recently commenced a program of research designed to deliver "actionable" findings-genomic results that 1) reveal fundamental biology, 2) inform clinical practice, and 3) deliver new therapeutic targets. The central idea of the PGC is to convert the family history risk factor into biologically, clinically, and therapeutically meaningful insights. The emerging findings suggest that we are entering a phase of accelerated genetic discovery for multiple psychiatric disorders. These findings are likely to elucidate the genetic portions of these truly complex traits, and this knowledge can then be mined for its relevance for improved therapeutics and its impact on psychiatric practice within a precision medicine framework. [AJP at 175: Remembering Our Past As We Envision Our Future November 1946: The Genetic Theory of Schizophrenia Franz Kallmann's influential twin study of schizophrenia in 691 twin pairs was the largest in the field for nearly four decades. (Am J Psychiatry 1946; 103:309-322 )].
Collapse
Affiliation(s)
- Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Arpana Agrawal
- Washington University School of Medicine, Department of Psychiatry, St Louis, MO 63110, USA
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ole A Andreassen
- NORMENT KG Jebsen Centre, University of Oslo and Oslo University Hospital, 0407 Oslo, Norway
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark; Department of Biomedicine - Human Genetics, Aarhus University, Aarhus, Denmark
| | - Gerome Breen
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, MRC Social, Genetic and Developmental Psychiatry (SGDP) Centre, London, UK; National Institute for Health Research Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - Sven Cichon
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Human Genetics, University of Bonn, Bonn, Germany; Department of Genomics, Life and Brain Center, Bonn, Germany; Institute of Neuroscience and Medicine (INM-1), Juelich, Germany
| | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse NY, USA; K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT, 06516, USA
| | - Carol A Mathews
- Department of Psychiatry and UF Genetics Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael C O’Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | |
Collapse
|
266
|
Senthil G, Dutka T, Bingaman L, Lehner T. Genomic resources for the study of neuropsychiatric disorders. Mol Psychiatry 2017; 22:1659-1663. [PMID: 28322284 DOI: 10.1038/mp.2017.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 12/30/2022]
Abstract
The National Institute of Mental Health (NIMH) has made sustained investments in the development of genomic resources over the last two decades. These investments have led to the development of the largest biorepository for psychiatric genetics as a centralized national resource. In the realm of genomic resources, NIMH has been supporting large team science (TS) consortia focused on gene discovery, fine mapping of loci, and functional genomics using state-of-the-art technologies. The scientific output from these efforts has not only begun to transform our understanding of the genetic architecture of neuropsychiatric disorders, but it has also led to a broader cultural change among the investigator community towards deeper collaborations and broad pre-publication sharing of data and resources. The NIMH supported efforts have led to a vast increase in the amount of genetic and genomic resources available to the mental health research community. Here we provide an account of the existing resources and estimates of the scale and scope of what will be available in the near future. All biosamples and data described are intended for broad sharing with researchers worldwide, as allowed by the subject consent and applicable laws.
Collapse
Affiliation(s)
- G Senthil
- Office of Genomics Research Coordination, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - T Dutka
- Office of Genomics Research Coordination, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - L Bingaman
- Office of Genomics Research Coordination, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - T Lehner
- Office of Genomics Research Coordination, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
267
|
Carlyle BC, Kitchen RR, Kanyo JE, Voss EZ, Pletikos M, Sousa AMM, Lam TT, Gerstein MB, Sestan N, Nairn AC. A multiregional proteomic survey of the postnatal human brain. Nat Neurosci 2017; 20:1787-1795. [PMID: 29184206 PMCID: PMC5894337 DOI: 10.1038/s41593-017-0011-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/27/2017] [Indexed: 12/13/2022]
Abstract
Detailed observations of transcriptional, translational and post-translational events in the human brain are essential to improving our understanding of its development, function and vulnerability to disease. Here, we exploited label-free quantitative tandem mass-spectrometry to create an in-depth proteomic survey of regions of the postnatal human brain, ranging in age from early infancy to adulthood. Integration of protein data with existing matched whole-transcriptome sequencing (RNA-seq) from the BrainSpan project revealed varied patterns of protein-RNA relationships, with generally increased magnitudes of protein abundance differences between brain regions compared to RNA. Many of the differences amplified in protein data were reflective of cytoarchitectural and functional variation between brain regions. Comparing structurally similar cortical regions revealed significant differences in the abundances of receptor-associated and resident plasma membrane proteins that were not readily observed in the RNA expression data.
Collapse
Affiliation(s)
- Becky C Carlyle
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Robert R Kitchen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Jean E Kanyo
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Edward Z Voss
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Mihovil Pletikos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT, USA
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Departments of Genetics and Psychiatry, Section of Comparative Medicine, and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA.
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
268
|
Sanders SJ, Neale BM, Huang H, Werling DM, An JY, Dong S, Abecasis G, Arguello PA, Blangero J, Boehnke M, Daly MJ, Eggan K, Geschwind DH, Glahn DC, Goldstein DB, Gur RE, Handsaker RE, McCarroll SA, Ophoff RA, Palotie A, Pato CN, Sabatti C, State MW, Willsey AJ, Hyman SE, Addington AM, Lehner T, Freimer NB. Whole genome sequencing in psychiatric disorders: the WGSPD consortium. Nat Neurosci 2017; 20:1661-1668. [PMID: 29184211 PMCID: PMC7785336 DOI: 10.1038/s41593-017-0017-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As technology advances, whole genome sequencing (WGS) is likely to supersede other genotyping technologies. The rate of this change depends on its relative cost and utility. Variants identified uniquely through WGS may reveal novel biological pathways underlying complex disorders and provide high-resolution insight into when, where, and in which cell type these pathways are affected. Alternatively, cheaper and less computationally intensive approaches may yield equivalent insights. Understanding the role of rare variants in the noncoding gene-regulating genome, through pilot WGS projects, will be critical to determine which of these two extremes best represents reality. With large cohorts, well-defined risk loci, and a compelling need to understand the underlying biology, psychiatric disorders have a role to play in this preliminary WGS assessment. The WGSPD consortium will integrate data for 18,000 individuals with psychiatric disorders, beginning with autism spectrum disorder, schizophrenia, bipolar disorder, and major depressive disorder, along with over 150,000 controls.
Collapse
Affiliation(s)
- Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Donna M Werling
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joon-Yong An
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Shan Dong
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Goncalo Abecasis
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, School of Medicine, Brownsville, TX, USA
| | - Michael Boehnke
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, Hammer Health Sciences, New York, NY, USA
| | - Raquel E Gur
- Department of Psychiatry, Neuropsychiatry Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Roel A Ophoff
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Aarno Palotie
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Carlos N Pato
- Department of Psychiatry, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chiara Sabatti
- Department of Health Research and Policy, Division of Biostatistics, Stanford University, Stanford, CA, USA
| | - Matthew W State
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Steven E Hyman
- Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Anjene M Addington
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Thomas Lehner
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - Nelson B Freimer
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
269
|
Genome-wide mapping of genetic determinants influencing DNA methylation and gene expression in human hippocampus. Nat Commun 2017; 8:1511. [PMID: 29142228 PMCID: PMC5688097 DOI: 10.1038/s41467-017-01818-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence emphasizes the strong impact of regulatory genomic elements in neurodevelopmental processes and the complex pathways of brain disorders. The present genome-wide quantitative trait loci analyses explore the cis-regulatory effects of single-nucleotide polymorphisms (SNPs) on DNA methylation (meQTL) and gene expression (eQTL) in 110 human hippocampal biopsies. We identify cis-meQTLs at 14,118 CpG methylation sites and cis-eQTLs for 302 3'-mRNA transcripts of 288 genes. Hippocampal cis-meQTL-CpGs are enriched in flanking regions of active promoters, CpG island shores, binding sites of the transcription factor CTCF and brain eQTLs. Cis-acting SNPs of hippocampal meQTLs and eQTLs significantly overlap schizophrenia-associated SNPs. Correlations of CpG methylation and RNA expression are found for 34 genes. Our comprehensive maps of cis-acting hippocampal meQTLs and eQTLs provide a link between disease-associated SNPs and the regulatory genome that will improve the functional interpretation of non-coding genetic variants in the molecular genetic dissection of brain disorders.
Collapse
|
270
|
Blacker CJ, Lewis CP, Frye MA, Veldic M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res 2017; 257:327-337. [PMID: 28800512 DOI: 10.1016/j.psychres.2017.07.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 01/03/2023]
Abstract
Glutamatergic dysregulation is implicated in the neuropathology of bipolar disorder (BD). There is increasing interest in investigating the role of metabotropic glutamate receptors (mGluRs) in BD and as a target for treatment intervention. Bipolar mGluR studies (published January 1992-April 2016) were identified via PubMed, Embase, Web of Science, and Scopus. Full-text screening, data extraction, and quality appraisal were conducted in duplicate, with strict inclusion and exclusion criteria. The initial literature search for mGluRs in BD, including non-bipolar mood disorders and primary psychotic disorders, identified 1544 articles. 61 abstracts were selected for relevance, 16 articles met full inclusion criteria, and three additional articles were found via citations. Despite limited literature, studies demonstrated: single nucleotide polymorphisms (SNPs) associated with BD, including a GRM3 SNP associated with greater likelihood of psychosis (rs6465084), mRNA binding protein Fragile X Mental Retardation Protein associated with altered mGluR1/5 activity in BD populations, and lithium decreasing mGluR5 expression and mGluR-mediated intracellular calcium signaling. Limited research has been performed on the role of mGluRs in BD, but results highlight the importance of ongoing study. Future directions for research of mGluRs in BD include GRM polymorphisms, epigenetic regulation, intracellular proteins, and pharmacologic interactions.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
271
|
Challenges and opportunities for the development of new antipsychotic drugs. Biochem Pharmacol 2017; 143:10-24. [DOI: 10.1016/j.bcp.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
272
|
|
273
|
Qi Y, Zheng Y, Li Z, Xiong L. Progress in Genetic Studies of Tourette's Syndrome. Brain Sci 2017; 7:E134. [PMID: 29053637 PMCID: PMC5664061 DOI: 10.3390/brainsci7100134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022] Open
Abstract
Tourette's Syndrome (TS) is a complex disorder characterized by repetitive, sudden, and involuntary movements or vocalizations, called tics. Tics usually appear in childhood, and their severity varies over time. In addition to frequent tics, people with TS are at risk for associated problems including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, depression, and problems with sleep. TS occurs in most populations and ethnic groups worldwide, and it is more common in males than in females. Previous family and twin studies have shown that the majority of cases of TS are inherited. TS was previously thought to have an autosomal dominant pattern of inheritance. However, several decades of research have shown that this is unlikely the case. Instead TS most likely results from a variety of genetic and environmental factors, not changes in a single gene. In the past decade, there has been a rapid development of innovative genetic technologies and methodologies, as well as significant progresses in genetic studies of psychiatric disorders. In this review, we will briefly summarize previous genetic epidemiological studies of TS and related disorders. We will also review previous genetic studies based on genome-wide linkage analyses and candidate gene association studies to comment on problems of previous methodological and strategic issues. Our main purpose for this review will be to summarize the new genetic discoveries of TS based on novel genetic methods and strategies, such as genome-wide association studies (GWASs), whole exome sequencing (WES) and whole genome sequencing (WGS). We will also compare the new genetic discoveries of TS with other major psychiatric disorders in order to understand the current status of TS genetics and its relationship with other psychiatric disorders.
Collapse
Affiliation(s)
- Yanjie Qi
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| | - Yi Zheng
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Zhanjiang Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
- Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing 100088, China.
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montreal, QC H1N 3V2, Canada.
- Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
274
|
Lee PJ, Choudhary MNK, Wang T. Online resources for studies of genome biology and epigenetics. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
275
|
Viana J, Hannon E, Dempster E, Pidsley R, Macdonald R, Knox O, Spiers H, Troakes C, Al-Saraj S, Turecki G, Schalkwyk LC, Mill J. Schizophrenia-associated methylomic variation: molecular signatures of disease and polygenic risk burden across multiple brain regions. Hum Mol Genet 2017; 26:210-225. [PMID: 28011714 PMCID: PMC5351932 DOI: 10.1093/hmg/ddw373] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/26/2016] [Indexed: 01/29/2023] Open
Abstract
Genetic association studies provide evidence for a substantial polygenic component to schizophrenia, although the neurobiological mechanisms underlying the disorder remain largely undefined. Building on recent studies supporting a role for developmentally regulated epigenetic variation in the molecular aetiology of schizophrenia, this study aimed to identify epigenetic variation associated with both a diagnosis of schizophrenia and elevated polygenic risk burden for the disease across multiple brain regions. Genome-wide DNA methylation was quantified in 262 post-mortem brain samples, representing tissue from four brain regions (prefrontal cortex, striatum, hippocampus and cerebellum) from 41 schizophrenia patients and 47 controls. We identified multiple disease-associated and polygenic risk score-associated differentially methylated positions and regions, which are not enriched in genomic regions identified in genetic studies of schizophrenia and do not reflect direct genetic effects on DNA methylation. Our study represents the first analysis of epigenetic variation associated with schizophrenia across multiple brain regions and highlights the utility of polygenic risk scores for identifying molecular pathways associated with aetiological variation in complex disease.
Collapse
Affiliation(s)
- Joana Viana
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Emma Dempster
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Ruth Pidsley
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Ruby Macdonald
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Olivia Knox
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Helen Spiers
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Claire Troakes
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Safa Al-Saraj
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gustavo Turecki
- Douglas Mental Health Institute, McGill University, Montreal, QC, Canada and
| | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK.,Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
276
|
Javidfar B, Park R, Kassim BS, Bicks LK, Akbarian S. The epigenomics of schizophrenia, in the mouse. Am J Med Genet B Neuropsychiatr Genet 2017; 174:631-640. [PMID: 28699694 PMCID: PMC5573750 DOI: 10.1002/ajmg.b.32566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/04/2017] [Accepted: 06/12/2017] [Indexed: 01/02/2023]
Abstract
Large-scale consortia including the Psychiatric Genomics Consortium, the Common Minds Consortium, BrainSeq and PsychENCODE, and many other studies taken together provide increasingly detailed insights into the genetic and epigenetic risk architectures of schizophrenia (SCZ) and offer vast amounts of molecular information, but with largely unexplored therapeutic potential. Here we discuss how epigenomic studies in human brain could guide animal work to test the impact of disease-associated alterations in chromatin structure and function on cognition and behavior. For example, transcription factors such as MYOCYTE-SPECIFIC ENHANCER FACTOR 2C (MEF2C), or multiple regulators of the open chromatin mark, methyl-histone H3-lysine 4, are associated with the genetic risk architectures of common psychiatric disease and alterations in chromatin structure and function in diseased brain tissue. Importantly, these molecules also affect cognition and behavior in genetically engineered mice, including virus-mediated expression changes in prefrontal cortex (PFC) and other key nodes in the circuitry underlying psychosis. Therefore, preclinical and small laboratory animal work could target genomic sequences affected by chromatin alterations in SCZ. To this end, in vivo editing of enhancer and other regulatory non-coding DNA by RNA-guided nucleases including CRISPR-Cas, and designer transcription factors, could be expected to deliver pipelines for novel therapeutic approaches aimed at improving cognitive dysfunction and other core symptoms of SCZ.
Collapse
Affiliation(s)
| | | | | | - Lucy K. Bicks
- Department of Psychiatry; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York
| | - Schahram Akbarian
- Department of Psychiatry; Friedman Brain Institute; Icahn School of Medicine at Mount Sinai; New York New York
| |
Collapse
|
277
|
Vermunt MW, Creyghton MP. Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration. Curr Neurol Neurosci Rep 2017; 16:94. [PMID: 27628759 PMCID: PMC5023742 DOI: 10.1007/s11910-016-0689-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Driven by the development of numerous techniques, many of these elements are now identified in multiple tissues and cell types, and their characteristics as well as importance in development and disease are becoming increasingly clear. Here, we provide an overview of the insights that were gained from the analysis of noncoding gene regulatory elements in the brain and describe their potential contribution to cell type specialization, brain function and neurodegenerative disease.
Collapse
Affiliation(s)
- Marit W Vermunt
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Menno P Creyghton
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| |
Collapse
|
278
|
Roeh S, Weber P, Rex-Haffner M, Deussing JM, Binder EB, Jakovcevski M. Sequencing on the SOLiD 5500xl System - in-depth characterization of the GC bias. Nucleus 2017; 8:370-380. [PMID: 28448740 DOI: 10.1080/19491034.2017.1320461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Different types of sequencing biases have been described and subsequently improved for a variety of sequencing systems, mostly focusing on the widely used Illumina systems. Similar studies are missing for the SOLiD 5500xl system, a sequencer which produced many data sets available to researchers today. Describing and understanding the bias is important to accurately interpret and integrate these published data in various ongoing research projects. We report a particularly strong GC bias for this sequencing system when analyzing a defined gDNA mix of 5 microbes with a wide range of different GC contents (20-72%) when comparing to the expected distribution and Illumina MiSeq data from the same DNA pool. Since we observed this bias already under PCR-free conditions, changing the PCR conditions during library preparation - a common strategy to handle bias in the Illumina system - was not relevant. Source of the bias appeared to be an uneven heat distribution during the SOLiD emulsion PCR (ePCR) - for enrichment of libraries prior loading - since ePCR in either small pouches or in 96-well plates improved the GC bias. Sequencing of chromatin immunoprecipitated DNA (ChIP-seq) is a common approach in epigenetics. ChIP-seq of the mixed source histone mark H3K9ac (acetyl Histone H3 lysine 9), typically found on promoter regions and on gene bodies, including CpG islands, performed on a SOLiD 5500xl machine, resulted in major loss of reads at GC rich loci (GC content ≥ 62%), not explained by low sequencing depth. This was improved with adaptations of the ePCR.
Collapse
Affiliation(s)
- Simone Roeh
- a Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Munich , Germany
| | - Peter Weber
- a Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Munich , Germany
| | - Monika Rex-Haffner
- a Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Munich , Germany
| | - Jan M Deussing
- b Department of Stress Neurobiology and Neurogenetics , Munich , Germany
| | - Elisabeth B Binder
- a Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Munich , Germany.,c Department of Psychiatry and Behavioral Sciences , Emory University School of Medicine , Atlanta , GA , USA
| | - Mira Jakovcevski
- a Department of Translational Research in Psychiatry , Max Planck Institute of Psychiatry , Munich , Germany.,b Department of Stress Neurobiology and Neurogenetics , Munich , Germany
| |
Collapse
|
279
|
Breen G, Li Q, Roth BL, O'Donnell P, Didriksen M, Dolmetsch R, O'Reilly PF, Gaspar HA, Manji H, Huebel C, Kelsoe JR, Malhotra D, Bertolino A, Posthuma D, Sklar P, Kapur S, Sullivan PF, Collier DA, Edenberg HJ. Translating genome-wide association findings into new therapeutics for psychiatry. Nat Neurosci 2017; 19:1392-1396. [PMID: 27786187 DOI: 10.1038/nn.4411] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) in psychiatry, once they reach sufficient sample size and power, have been enormously successful. The Psychiatric Genomics Consortium (PGC) aims for mega-analyses with sample sizes that will grow to >1 million individuals in the next 5 years. This should lead to hundreds of new findings for common genetic variants across nine psychiatric disorders studied by the PGC. The new targets discovered by GWAS have the potential to restart largely stalled psychiatric drug development pipelines, and the translation of GWAS findings into the clinic is a key aim of the recently funded phase 3 of the PGC. This is not without considerable technical challenges. These approaches complement the other main aim of GWAS studies, risk prediction approaches for improving detection, differential diagnosis, and clinical trial design. This paper outlines the motivations, technical and analytical issues, and the plans for translating PGC phase 3 findings into new therapeutics.
Collapse
Affiliation(s)
- Gerome Breen
- MRC Social, Genetic &Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London, UK.,UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, UK
| | - Qingqin Li
- Neuroscience Therapeutic Area, Janssen Research &Development, LLC, Titusville, New Jersey, USA
| | - Bryan L Roth
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP), School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Michael Didriksen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Valby, Denmark
| | - Ricardo Dolmetsch
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Paul F O'Reilly
- MRC Social, Genetic &Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London, UK
| | - Héléna A Gaspar
- MRC Social, Genetic &Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London, UK.,UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, UK
| | - Husseini Manji
- Neuroscience Therapeutic Area, Janssen Research &Development, LLC, Titusville, New Jersey, USA
| | - Christopher Huebel
- MRC Social, Genetic &Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London, UK.,UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, UK
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, and Veterans Affairs San Diego Healthcare System, La Jolla, California, USA
| | - Dheeraj Malhotra
- Neuroscience Discovery and Translational Area, Pharma Research &Early Development, F. Hoffmann - La Roche, Basel, Switzerland
| | - Alessandro Bertolino
- Institute of Psychiatry, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Centre for Neurogenomics and Cognitive Research/VU University Amsterdam, Amsterdam, the Netherlands.,Department of Clinical Genetics, VU University Medical Centre Amsterdam, Neuroscience Campus Amsterdam, Amsterdam, the Netherlands
| | - Pamela Sklar
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shitij Kapur
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David A Collier
- MRC Social, Genetic &Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &Neuroscience, King's College London, London, UK.,UK National Institute for Health Research (NIHR) Biomedical Research Centre for Mental Health, South London and Maudsley Hospital, London, UK.,Discovery Neuroscience Research, Eli Lilly and Company Ltd, Windlesham, Surrey, UK
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
280
|
Huisman SM, van Lew B, Mahfouz A, Pezzotti N, Höllt T, Michielsen L, Vilanova A, Reinders MJ, Lelieveldt BP. BrainScope: interactive visual exploration of the spatial and temporal human brain transcriptome. Nucleic Acids Res 2017; 45:e83. [PMID: 28132031 PMCID: PMC5449549 DOI: 10.1093/nar/gkx046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 01/26/2023] Open
Abstract
Spatial and temporal brain transcriptomics has recently emerged as an invaluable data source for molecular neuroscience. The complexity of such data poses considerable challenges for analysis and visualization. We present BrainScope: a web portal for fast, interactive visual exploration of the Allen Atlases of the adult and developing human brain transcriptome. Through a novel methodology to explore high-dimensional data (dual t-SNE), BrainScope enables the linked, all-in-one visualization of genes and samples across the whole brain and genome, and across developmental stages. We show that densities in t-SNE scatter plots of the spatial samples coincide with anatomical regions, and that densities in t-SNE scatter plots of the genes represent gene co-expression modules that are significantly enriched for biological functions. We also show that the topography of the gene t-SNE maps reflect brain region-specific gene functions, enabling hypothesis and data driven research. We demonstrate the discovery potential of BrainScope through three examples: (i) analysis of cell type specific gene sets, (ii) analysis of a set of stable gene co-expression modules across the adult human donors and (iii) analysis of the evolution of co-expression of oligodendrocyte specific genes over developmental stages. BrainScope is publicly accessible at www.brainscope.nl.
Collapse
Affiliation(s)
- Sjoerd M.H. Huisman
- Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
- Division of Image Processing, Dept of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Baldur van Lew
- Division of Image Processing, Dept of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Computer Graphics and Visualisation, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
- Division of Image Processing, Dept of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Nicola Pezzotti
- Division of Image Processing, Dept of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Computer Graphics and Visualisation, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Thomas Höllt
- Computer Graphics and Visualisation, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Lieke Michielsen
- Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Anna Vilanova
- Computer Graphics and Visualisation, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Marcel J.T. Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Boudewijn P.F. Lelieveldt
- Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
- Division of Image Processing, Dept of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
281
|
Cha Y, Erez T, Reynolds IJ, Kumar D, Ross J, Koytiger G, Kusko R, Zeskind B, Risso S, Kagan E, Papapetropoulos S, Grossman I, Laifenfeld D. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol 2017; 175:168-180. [PMID: 28369768 DOI: 10.1111/bph.13798] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 02/01/2023] Open
Abstract
Drug repurposing holds the potential to bring medications with known safety profiles to new patient populations. Numerous examples exist for the identification of new indications for existing molecules, most stemming from serendipitous findings or focused recent efforts specifically limited to the mode of action of a specific drug. In recent years, the need for new approaches to drug research and development, combined with the advent of big data repositories and associated analytical methods, has generated interest in developing systematic approaches to drug repurposing. A variety of innovative computational methods to enable systematic repurposing screens, experimental as well as through in silico approaches, have emerged. An efficient drug repurposing pipeline requires the combination of access to molecular data, appropriate analytical expertise to enable robust insights, expertise and experimental set-up for validation and clinical development know-how. In this review, we describe some of the main approaches to systematic repurposing and discuss the various players in this field and the need for strategic collaborations to increase the likelihood of success in bringing existing molecules to new indications, as well as the current advantages, considerations and challenges in repurposing as a drug development strategy pursued by pharmaceutical companies. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Y Cha
- Immuneering Corporation, Cambridge, MA, USA
| | - T Erez
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - I J Reynolds
- Global Research and Development, Teva Pharmaceutical Industries, West Chester, PA, USA
| | - D Kumar
- Immuneering Corporation, Cambridge, MA, USA
| | - J Ross
- Immuneering Corporation, Cambridge, MA, USA
| | - G Koytiger
- Immuneering Corporation, Cambridge, MA, USA
| | - R Kusko
- Immuneering Corporation, Cambridge, MA, USA
| | - B Zeskind
- Immuneering Corporation, Cambridge, MA, USA
| | - S Risso
- Global Research and Development, Teva Pharmaceutical Industries, West Chester, PA, USA
| | - E Kagan
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - S Papapetropoulos
- Global Research and Development, Teva Pharmaceutical Industries, Frazer, PA, USA
| | - I Grossman
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| | - D Laifenfeld
- Global Research and Development, Teva Pharmaceutical Industries, Netanya, Israel
| |
Collapse
|
282
|
Mahfouz A, Huisman SMH, Lelieveldt BPF, Reinders MJT. Brain transcriptome atlases: a computational perspective. Brain Struct Funct 2017; 222:1557-1580. [PMID: 27909802 PMCID: PMC5406417 DOI: 10.1007/s00429-016-1338-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/15/2016] [Indexed: 01/31/2023]
Abstract
The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases allow researchers to probe the molecular mechanisms which define neuronal identities, neuroanatomy, and patterns of connectivity. Despite the immense effort put into generating such atlases, to answer fundamental questions in neuroscience, an even greater effort is needed to develop methods to probe the resulting high-dimensional multivariate data. We provide a comprehensive overview of the various computational methods used to analyze brain transcriptome atlases.
Collapse
Affiliation(s)
- Ahmed Mahfouz
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands.
| | - Sjoerd M H Huisman
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Boudewijn P F Lelieveldt
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
283
|
Histone Acetylome-wide Association Study of Autism Spectrum Disorder. Cell 2017; 167:1385-1397.e11. [PMID: 27863250 DOI: 10.1016/j.cell.2016.10.031] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 07/14/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
The association of histone modification changes with autism spectrum disorder (ASD) has not been systematically examined. We conducted a histone acetylome-wide association study (HAWAS) by performing H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq) on 257 postmortem samples from ASD and matched control brains. Despite etiological heterogeneity, ≥68% of syndromic and idiopathic ASD cases shared a common acetylome signature at >5,000 cis-regulatory elements in prefrontal and temporal cortex. Similarly, multiple genes associated with rare genetic mutations in ASD showed common "epimutations." Acetylome aberrations in ASD were not attributable to genetic differentiation at cis-SNPs and highlighted genes involved in synaptic transmission, ion transport, epilepsy, behavioral abnormality, chemokinesis, histone deacetylation, and immunity. By correlating histone acetylation with genotype, we discovered >2,000 histone acetylation quantitative trait loci (haQTLs) in human brain regions, including four candidate causal variants for psychiatric diseases. Due to the relative stability of histone modifications postmortem, we anticipate that the HAWAS approach will be applicable to multiple diseases.
Collapse
|
284
|
Xiao X, Chang H, Li M. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies. Mol Psychiatry 2017; 22:497-511. [PMID: 28044063 PMCID: PMC5378805 DOI: 10.1038/mp.2016.241] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022]
Abstract
Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders.
Collapse
Affiliation(s)
- X Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - H Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - M Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
285
|
Gagliano SA. It's All in the Brain: A Review of Available Functional Genomic Annotations. Biol Psychiatry 2017; 81:478-483. [PMID: 27788914 DOI: 10.1016/j.biopsych.2016.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
What makes the molecular study of psychiatric and other neurological conditions particularly challenging compared with other complex traits is the difficulty of accessing the relevant tissue. The Encyclopedia of DNA Elements (ENCODE) project was one of the earliest producers of brain-derived epigenetic functional genomic data, albeit initially from only two cancerous brain cell lines for a limited number of epigenetic marks. It has only been in very recent years that such data from human brain tissue have been made available from various sources. Yet, these data are scattered throughout the literature with no central organization. This review summarizes the availability and accessibility of brain epigenetic and functional genomic data as a single resource to allow investigators to easily access available brain annotations and thus incorporate this wealth of information into their research to make important advances in the field of neuroscience.
Collapse
Affiliation(s)
- Sarah A Gagliano
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, Canada; Department of Medical & Molecular Genetics, Guy's Hospital, King's College London, London, United Kingdom.
| |
Collapse
|
286
|
Chen KW, Chen L. Epigenetic Regulation of BDNF Gene during Development and Diseases. Int J Mol Sci 2017; 18:ijms18030571. [PMID: 28272318 PMCID: PMC5372587 DOI: 10.3390/ijms18030571] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is required for the development of the nervous system, proper cognitive function and memory formation. While aberrant expression of BDNF has been implicated in neurological disorders, the transcriptional regulation of BDNF remains to be elucidated. In response to different stimuli, BDNF expression can be initiated from different promoters. Several studies have suggested that the expression of BDNF is regulated by promoter methylation. An emerging theme points to the possibility that histone modifications at the BDNF promoters may link to the neurological pathology. Thus, understanding the epigenetic regulation at the BDNF promoters will shed light on future therapies for neurological disorders. The present review summarizes the current knowledge of histone modifications of the BDNF gene in neuronal diseases, as well as the developmental regulation of the BDNF gene based on data from the Encyclopedia of DNA Elements (ENCODE).
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Linyi Chen
- Institute of Molecular Medicine and Department of Medical Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
287
|
|
288
|
Kundakovic M, Jiang Y, Kavanagh DH, Dincer A, Brown L, Pothula V, Zharovsky E, Park R, Jacobov R, Magro I, Kassim B, Wiseman J, Dang K, Sieberts SK, Roussos P, Fromer M, Harris B, Lipska BK, Peters MA, Sklar P, Akbarian S. Practical Guidelines for High-Resolution Epigenomic Profiling of Nucleosomal Histones in Postmortem Human Brain Tissue. Biol Psychiatry 2017; 81:162-170. [PMID: 27113501 PMCID: PMC5017897 DOI: 10.1016/j.biopsych.2016.03.1048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND The nervous system may include more than 100 residue-specific posttranslational modifications of histones forming the nucleosome core that are often regulated in cell-type-specific manner. On a genome-wide scale, some of the histone posttranslational modification landscapes show significant overlap with the genetic risk architecture for several psychiatric disorders, fueling PsychENCODE and other large-scale efforts to comprehensively map neuronal and nonneuronal epigenomes in hundreds of specimens. However, practical guidelines for efficient generation of histone chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) datasets from postmortem brains are needed. METHODS Protocols and quality controls are given for the following: 1) extraction, purification, and NeuN neuronal marker immunotagging of nuclei from adult human cerebral cortex; 2) fluorescence-activated nuclei sorting; 3) preparation of chromatin by micrococcal nuclease digest; 4) ChIP for open chromatin-associated histone methylation and acetylation; and 5) generation and sequencing of ChIP-seq libraries. RESULTS We present a ChIP-seq pipeline for epigenome mapping in the neuronal and nonneuronal nuclei from the postmortem brain. This includes a stepwise system of quality controls and user-friendly data presentation platforms. CONCLUSIONS Our practical guidelines will be useful for projects aimed at histone posttranslational modification mapping in chromatin extracted from hundreds of postmortem brain samples in cell-type-specific manner.
Collapse
Affiliation(s)
- Marija Kundakovic
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yan Jiang
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - David H Kavanagh
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aslihan Dincer
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leanne Brown
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venu Pothula
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elizabeth Zharovsky
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Royce Park
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rivka Jacobov
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Isabelle Magro
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bibi Kassim
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jennifer Wiseman
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Panos Roussos
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Menachem Fromer
- Friedman Brain Institute, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brent Harris
- Department of Neurology, Georgetown University Medical Center, Washington, DC; Human Brain Collection Core, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Barbara K Lipska
- Human Brain Collection Core, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | | | - Pamela Sklar
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Schahram Akbarian
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
289
|
DeWitt JJ, Hecht PM, Grepo N, Wilkinson B, Evgrafov OV, Morris KV, Knowles JA, Campbell DB. Transcriptional Gene Silencing of the Autism-Associated Long Noncoding RNA MSNP1AS in Human Neural Progenitor Cells. Dev Neurosci 2016; 38:375-383. [PMID: 28030860 DOI: 10.1159/000453258] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/08/2016] [Indexed: 12/21/2022] Open
Abstract
The long noncoding RNA MSNP1AS (moesin pseudogene 1, antisense) is a functional element that was previously associated with autism spectrum disorder (ASD) with genome-wide significance. Expression of MSNP1AS was increased 12-fold in the cerebral cortex of individuals with ASD and 22-fold in individuals with a genome-wide significantly associated ASD genetic marker on chromosome 5p14.1. Overexpression of MSNP1AS in human neuronal cells caused decreased expression of moesin protein, which is involved in neuronal process stability. In this study, we hypothesize that MSNP1AS knockdown impacts global transcriptome levels. We transfected the human neural progenitor cell line SK- N-SH with constructs that caused a 50% suppression of MSNP1AS expression. After 24 h, cells were harvested for total RNA isolation. Strand-specific RNA sequencing analysis indicated altered expression of 1,352 genes, including altered expression of 318 genes following correction for multiple comparisons. Expression of the OAS2 gene was increased >150-fold, a result that was validated by quantitative PCR. Gene ontology analysis of the 318 genes with altered expression following correction for multiple comparisons indicated that upregulated genes were significantly enriched for genes involved in immune response, and downregulated genes were significantly enriched for genes involved in chromatin remodeling. These data indicate multiple transcriptional and translational functions of MSNP1AS that impact ASD-relevant biological processes. Chromatin remodeling and immune response are biological processes implicated by genes with rare mutations associated with ASD. Our data suggest that the functional elements implicated by association of common genetic variants impact the same biological processes, suggesting a possible shared common molecular pathway of ASD.
Collapse
Affiliation(s)
- Jessica J DeWitt
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
290
|
Gokoolparsadh A, Sutton GJ, Charamko A, Green NFO, Pardy CJ, Voineagu I. Searching for convergent pathways in autism spectrum disorders: insights from human brain transcriptome studies. Cell Mol Life Sci 2016; 73:4517-4530. [PMID: 27405608 PMCID: PMC11108267 DOI: 10.1007/s00018-016-2304-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/16/2016] [Accepted: 07/05/2016] [Indexed: 01/07/2023]
Abstract
Autism spectrum disorder (ASD) is one of the most heritable neuropsychiatric conditions. The complex genetic landscape of the disorder includes both common and rare variants at hundreds of genetic loci. This marked heterogeneity has thus far hampered efforts to develop genetic diagnostic panels and targeted pharmacological therapies. Here, we give an overview of the current literature on the genetic basis of ASD, and review recent human brain transcriptome studies and their role in identifying convergent pathways downstream of the heterogeneous genetic variants. We also discuss emerging evidence on the involvement of non-coding genomic regions and non-coding RNAs in ASD.
Collapse
Affiliation(s)
- Akira Gokoolparsadh
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Gavin J Sutton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Alexiy Charamko
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Nicole F Oldham Green
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Christopher J Pardy
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia.
| |
Collapse
|
291
|
Gagliano SA, Pouget JG, Hardy J, Knight J, Barnes MR, Ryten M, Weale ME. Genomics implicates adaptive and innate immunity in Alzheimer's and Parkinson's diseases. Ann Clin Transl Neurol 2016; 3:924-933. [PMID: 28097204 PMCID: PMC5224821 DOI: 10.1002/acn3.369] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/08/2016] [Accepted: 09/27/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES We assessed the current genetic evidence for the involvement of various cell types and tissue types in the etiology of neurodegenerative diseases, especially in relation to the neuroinflammatory hypothesis of neurodegenerative diseases. METHODS We obtained large-scale genome-wide association study (GWAS) summary statistics from Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). We used multiple sclerosis (MS), an autoimmune disease of the central nervous system, as a positive control. We applied stratified LD score regression to determine if functional marks for cell type and tissue activity, and gene-set lists were enriched for genetic heritability. We compared our results to those from two gene-set enrichment methods (Ingenuity Pathway Analysis and enrichr). RESULTS There were no significant heritability enrichments for annotations marking genes active within brain regions, but there were significant heritability enrichments for annotations marking genes active within cell types that form part of both the innate and adaptive immune systems. We found this for MS (as expected) and also for AD and PD. The strongest signals were from the adaptive immune system (e.g., T cells) for PD, and from both the adaptive (e.g., T cells) and innate (e.g., CD14: a marker for monocytes, and CD15: a marker for neutrophils) immune systems for AD. Annotations from the liver were also significant for AD. Pathway analysis provided complementary results. INTERPRETATION For AD and PD, we found significant enrichment of heritability in annotations marking gene activity in immune cells.
Collapse
Affiliation(s)
- Sarah A. Gagliano
- Department of Medical & Molecular GeneticsGuy's HospitalKing's College London8th FloorTower WingLondonSE1 9RTUnited Kingdom
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental Health250 College StreetTorontoOntarioM5T 1R8Canada
- Institute of Medical ScienceUniversity of Toronto1 King's College CircleRoom 2374TorontoOntarioM5S 1A8Canada
| | - Jennie G. Pouget
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental Health250 College StreetTorontoOntarioM5T 1R8Canada
- Institute of Medical ScienceUniversity of Toronto1 King's College CircleRoom 2374TorontoOntarioM5S 1A8Canada
- Department of PsychiatryUniversity of Toronto250 College Street8th FloorTorontoOntarioM5T 1R8Canada
| | - John Hardy
- Institute of NeurologyUniversity College LondonQueen SquareLondonWC1N 3BGUnited Kingdom
| | - Jo Knight
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental Health250 College StreetTorontoOntarioM5T 1R8Canada
- Institute of Medical ScienceUniversity of Toronto1 King's College CircleRoom 2374TorontoOntarioM5S 1A8Canada
- Department of PsychiatryUniversity of Toronto250 College Street8th FloorTorontoOntarioM5T 1R8Canada
- Data Science Institute and Faculty of Health and MedicineFurness CollegeLancaster UniversityLancasterLA1 4YGUnited Kingdom
| | - Michael R. Barnes
- William Harvey Research InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUnited Kingdom
| | - Mina Ryten
- Institute of NeurologyUniversity College LondonQueen SquareLondonWC1N 3BGUnited Kingdom
| | - Michael E. Weale
- Department of Medical & Molecular GeneticsGuy's HospitalKing's College London8th FloorTower WingLondonSE1 9RTUnited Kingdom
| |
Collapse
|
292
|
Ricq EL, Hooker JM, Haggarty SJ. Toward development of epigenetic drugs for central nervous system disorders: Modulating neuroplasticity via H3K4 methylation. Psychiatry Clin Neurosci 2016; 70:536-550. [PMID: 27485392 PMCID: PMC5764164 DOI: 10.1111/pcn.12426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2016] [Indexed: 12/19/2022]
Abstract
The mammalian brain dynamically activates or silences gene programs in response to environmental input and developmental cues. This neuroplasticity is controlled by signaling pathways that modify the activity, localization, and/or expression of transcriptional-regulatory enzymes in combination with alterations in chromatin structure in the nucleus. Consistent with this key neurobiological role, disruptions in the fine-tuning of epigenetic and transcriptional regulation have emerged as a recurrent theme in studies of the genetics of neurodevelopmental and neuropsychiatric disorders. Furthermore, environmental factors have been implicated in the increased risk of heterogeneous, multifactorial, neuropsychiatric disorders via epigenetic mechanisms. Aberrant epigenetic regulation of gene expression thus provides an attractive unifying model for understanding the complex risk architecture of mental illness. Here, we review emerging genetic evidence implicating dysregulation of histone lysine methylation in neuropsychiatric disease and outline advancements in small-molecule probes targeting this chromatin modification. The emerging field of neuroepigenetic research is poised to provide insight into the biochemical basis of genetic risk for diverse neuropsychiatric disorders and to develop the highly selective chemical tools and imaging agents necessary to dissect dynamic transcriptional-regulatory mechanisms in the nervous system. On the basis of these findings, continued advances may lead to the validation of novel, disease-modifying therapeutic targets for a range of disorders with aberrant chromatin-mediated neuroplasticity.
Collapse
Affiliation(s)
- Emily L. Ricq
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jacob M. Hooker
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Human Genetic Research, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
293
|
Fullard JF, Halene TB, Giambartolomei C, Haroutunian V, Akbarian S, Roussos P. Understanding the genetic liability to schizophrenia through the neuroepigenome. Schizophr Res 2016; 177:115-124. [PMID: 26827128 PMCID: PMC4963306 DOI: 10.1016/j.schres.2016.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
The Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-SCZ) recently identified 108 loci associated with increased risk for schizophrenia (SCZ). The vast majority of these variants reside within non-coding sequences of the genome and are predicted to exert their effects by affecting the mechanism of action of cis regulatory elements (CREs), such as promoters and enhancers. Although a number of large-scale collaborative efforts (e.g. ENCODE) have achieved a comprehensive mapping of CREs in human cell lines or tissue homogenates, it is becoming increasingly evident that many risk-associated variants are enriched for expression Quantitative Trait Loci (eQTLs) and CREs in specific tissues or cells. As such, data derived from previous research endeavors may not capture fully cell-type and/or region specific changes associated with brain diseases. Coupling recent technological advances in genomics with cell-type specific methodologies, we are presented with an unprecedented opportunity to better understand the genetics of normal brain development and function and, in turn, the molecular basis of neuropsychiatric disorders. In this review, we will outline ongoing efforts towards this goal and will discuss approaches with the potential to shed light on the mechanism(s) of action of cell-type specific cis regulatory elements and their putative roles in disease, with particular emphasis on understanding the manner in which the epigenome and CREs influence the etiology of SCZ.
Collapse
Affiliation(s)
- John F. Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tobias B. Halene
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
294
|
Gandal MJ, Leppa V, Won H, Parikshak NN, Geschwind DH. The road to precision psychiatry: translating genetics into disease mechanisms. Nat Neurosci 2016; 19:1397-1407. [DOI: 10.1038/nn.4409] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022]
|
295
|
Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci 2016; 17:681-691. [PMID: 27708356 DOI: 10.1038/nrn.2016.124] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonrandom chromosomal conformations, including promoter-enhancer loopings that bypass kilobases or megabases of linear genome, provide a crucial layer of transcriptional regulation and move vast amounts of non-coding sequence into the physical proximity of genes that are important for neurodevelopment, cognition and behaviour. Activity-regulated changes in the neuronal '3D genome' could govern transcriptional mechanisms associated with learning and plasticity, and loop-bound intergenic and intronic non-coding sequences have been implicated in psychiatric and adult-onset neurodegenerative disease. Recent studies have begun to clarify the roles of spatial genome organization in normal and abnormal cognition.
Collapse
Affiliation(s)
- Prashanth Rajarajan
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| | - Sergio Espeso Gil
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, Barcelona 08002, Spain
| | - Kristen J Brennand
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| | - Schahram Akbarian
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 New York, USA
| |
Collapse
|
296
|
DeWitt JJ, Grepo N, Wilkinson B, Evgrafov OV, Knowles JA, Campbell DB. Impact of the Autism-Associated Long Noncoding RNA MSNP1AS on Neuronal Architecture and Gene Expression in Human Neural Progenitor Cells. Genes (Basel) 2016; 7:genes7100076. [PMID: 27690106 PMCID: PMC5083915 DOI: 10.3390/genes7100076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/08/2016] [Accepted: 09/23/2016] [Indexed: 01/26/2023] Open
Abstract
We previously identified the long noncoding RNA (lncRNA) MSNP1AS (moesin pseudogene 1, antisense) as a functional element revealed by genome wide significant association with autism spectrum disorder (ASD). MSNP1AS expression was increased in the postmortem cerebral cortex of individuals with ASD and particularly in individuals with the ASD-associated genetic markers on chromosome 5p14.1. Here, we mimicked the overexpression of MSNP1AS observed in postmortem ASD cerebral cortex in human neural progenitor cell lines to determine the impact on neurite complexity and gene expression. ReNcell CX and SK-N-SH were transfected with an overexpression vector containing full-length MSNP1AS. Neuronal complexity was determined by the number and length of neuronal processes. Gene expression was determined by strand-specific RNA sequencing. MSNP1AS overexpression decreased neurite number and neurite length in both human neural progenitor cell lines. RNA sequencing revealed changes in gene expression in proteins involved in two biological processes: protein synthesis and chromatin remodeling. These data indicate that overexpression of the ASD-associated lncRNA MSNP1AS alters the number and length of neuronal processes. The mechanisms by which MSNP1AS overexpression impacts neuronal differentiation may involve protein synthesis and chromatin structure. These same biological processes are also implicated by rare mutations associated with ASD, suggesting convergent mechanisms.
Collapse
Affiliation(s)
- Jessica J DeWitt
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Nicole Grepo
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Oleg V Evgrafov
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - James A Knowles
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Daniel B Campbell
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
297
|
Abstract
PURPOSE OF REVIEW The following review provides some description of the movement in cross-disorder psychiatric genomics toward addressing both comorbidity and polygenicity. RECENT FINDINGS We attempt to show how dimensional approaches to the phenotype have led to further addressing the problem of comorbidity of psychiatric diagnoses. And we also attempt to show how a dimensional approach to the genome, with different statistical methods from traditional genome-wide association analyses, has begun to resolve the problem of massive polygenicity. SUMMARY Cross-disorder research, of any area in psychiatry, arguably has the most potential to inform clinical diagnosis, early detection and prevention strategies, and pharmacological treatment research. Future research might leverage what we now know to inform developmental studies of risk and resilience.
Collapse
Affiliation(s)
- Anna R Docherty
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Arden A Moscati
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Ayman H Fanous
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Washington Veterans Affairs Healthcare System, Washington D.C., USA; Georgetown University School of Medicine, Washington D.C., USA
| |
Collapse
|
298
|
Gaiteri C, Mostafavi S, Honey CJ, De Jager PL, Bennett DA. Genetic variants in Alzheimer disease - molecular and brain network approaches. Nat Rev Neurol 2016; 12:413-27. [PMID: 27282653 PMCID: PMC5017598 DOI: 10.1038/nrneurol.2016.84] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models.
Collapse
Affiliation(s)
- Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S Paulina Street, Chicago, Illinois 60612, USA
| | - Sara Mostafavi
- Department of Statistics, and Medical Genetics; Centre for Molecular and Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada
| | - Christopher J Honey
- Department of Psychology, University of Toronto, 100 St. George Street, 4th Floor Sidney Smith Hall, Toronto, Ontario M5S 3G3, Canada
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 75 Francis Street, Boston MA 02115, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S Paulina Street, Chicago, Illinois 60612, USA
| |
Collapse
|
299
|
Starnawska A, Demontis D, McQuillin A, O’Brien NL, Staunstrup NH, Mors O, Nielsen AL, Børglum AD, Nyegaard M. Hypomethylation of FAM63B in bipolar disorder patients. Clin Epigenetics 2016; 8:52. [PMID: 27175219 PMCID: PMC4865008 DOI: 10.1186/s13148-016-0221-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/04/2016] [Indexed: 01/07/2023] Open
Abstract
Bipolar disorder (BD) and schizophrenia (SZ) are known to share common genetic and psychosocial risk factors. A recent epigenome-wide association study performed on blood samples from SZ patients found significant hypomethylation of FAM63B in exon 9. Here, we used iPLEX-based methylation analysis to investigate two CpG sites in FAM63B in blood samples from 459 BD cases and 268 controls. Both sites were significantly hypomethylated in BD cases (lowest p value = 3.94 × 10(-8)). The methylation levels at the two sites were correlated, and no strong correlation was found with nearby single nucleotide polymorphisms (SNPs), suggesting that methylation differences at these sites are not readably picked up by genome-wide association studies. Overall, FAM63B hypomethylation was found in BD patients, thus replicating the initial finding in SZ patients. This study suggests that FAM63B is a shared epigenetic risk gene for the two disorders.
Collapse
Affiliation(s)
- Anna Starnawska
- />Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, DK- 8000 Aarhus C, Denmark
- />The Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- />Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Ditte Demontis
- />Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, DK- 8000 Aarhus C, Denmark
- />The Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- />Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Andrew McQuillin
- />Molecular Psychiatry Laboratory, Division of Psychiatry, Rockefeller Building, University College London, London, UK
| | - Niamh L. O’Brien
- />Molecular Psychiatry Laboratory, Division of Psychiatry, Rockefeller Building, University College London, London, UK
| | - Nicklas H. Staunstrup
- />Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, DK- 8000 Aarhus C, Denmark
- />The Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- />Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- />Translational Neuropsychiatry Unit, Aarhus University Hospital, Risskov, Denmark
| | - Ole Mors
- />The Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- />Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Anders L. Nielsen
- />Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, DK- 8000 Aarhus C, Denmark
- />The Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- />Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- />Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, DK- 8000 Aarhus C, Denmark
- />The Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- />Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| | - Mette Nyegaard
- />Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, DK- 8000 Aarhus C, Denmark
- />The Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- />Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
| |
Collapse
|
300
|
Gagliano S, Ptak C, Mak D, Shamsi M, Oh G, Knight J, Boutros P, Petronis A. Allele-Skewed DNA Modification in the Brain: Relevance to a Schizophrenia GWAS. Am J Hum Genet 2016; 98:956-962. [PMID: 27087318 DOI: 10.1016/j.ajhg.2016.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/07/2016] [Indexed: 11/24/2022] Open
Abstract
Numerous recent studies have suggested that phenotypic effects of DNA sequence variants can be mediated or modulated by their epigenetic marks, such as allele-skewed DNA modification (ASM). Using Affymetrix SNP microarrays, we performed a comprehensive search of ASM effects in human post-mortem brain and sperm samples (total n = 256) from individuals with major psychosis and control individuals. Depending on the phenotypic category of the brain samples, 1.4%-7.5% of interrogated SNPs exhibited ASM effects. Next, we investigated ASM in the context of genetic studies of schizophrenia and detected that brain ASM SNPs were significantly overrepresented among sub-threshold SNPs from a schizophrenia genome-wide association study (GWAS). Brain ASM SNPs showed a much stronger enrichment in a schizophrenia GWAS than in 17 large GWASs of non-psychiatric diseases and traits, arguing that ASM effects are at least partially tissue specific. Studies of germline and control brain ASM SNPs supported a causal association between ASM and schizophrenia. Finally, significantly higher proportions of ASM SNPs than of non-ASM SNPs were detected at loci exhibiting epigenetic signatures of enhancers and promoters, and they were overrepresented within transcription factor binding regions and DNase I hypersensitive sites. All of these findings collectively indicate that ASM SNPs should be prioritized in follow-up GWASs.
Collapse
|