251
|
Metabolites: deciphering the molecular language between DCs and their environment. Semin Immunopathol 2016; 39:177-198. [PMID: 27921148 DOI: 10.1007/s00281-016-0609-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) determine the outcome of the immune response based on signals they receive from the environment. Presentation of antigen under various contexts can lead to activation and differentiation of T cells for immunity or dampening of immune responses by establishing tolerance, primarily through the priming of regulatory T cells. Infections, inflammation and normal cellular interactions shape DC responses through direct contact or via cytokine signaling. Although it is widely accepted that DCs sense microbial components through pattern recognition receptors (PRRs), increasing evidence advocates for the existence of a set of signals that can profoundly shape DC function via PRR-independent pathways. This diverse group of host- or commensal-derived metabolites represents a newly appreciated code from which DCs can interpret environmental cues. In this review, we discuss the existing information on the effect of some of the most studied metabolites on DC function, together with the implications this may have in immune-mediated diseases.
Collapse
|
252
|
Lee CH, Chen JS, Chiu HC, Hong CH, Liu CY, Ta YC, Wang LF. Differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses to single epicutaneous immunization. J Dermatol Sci 2016; 84:248-257. [DOI: 10.1016/j.jdermsci.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/01/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
|
253
|
Hervé PL, Descamps D, Deloizy C, Dhelft V, Laubreton D, Bouguyon E, Boukadiri A, Dubuquoy C, Larcher T, Benhamou PH, Eléouët JF, Bertho N, Mondoulet L, Riffault S. Non-invasive epicutaneous vaccine against Respiratory Syncytial Virus: Preclinical proof of concept. J Control Release 2016; 243:146-159. [DOI: 10.1016/j.jconrel.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 11/29/2022]
|
254
|
Worbs T, Hammerschmidt SI, Förster R. Dendritic cell migration in health and disease. Nat Rev Immunol 2016; 17:30-48. [PMID: 27890914 DOI: 10.1038/nri.2016.116] [Citation(s) in RCA: 525] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are potent and versatile antigen-presenting cells, and their ability to migrate is key for the initiation of protective pro-inflammatory as well as tolerogenic immune responses. Recent comprehensive studies have highlighted the importance of DC migration in the maintenance of immune surveillance and tissue homeostasis, and also in the pathogenesis of a range of diseases. In this Review, we summarize the anatomical, cellular and molecular factors that regulate the migration of different DC subsets in health and disease. In particular, we focus on new insights concerning the role of migratory DCs in the pathogenesis of diseases of the skin, intestine, lung, and brain, as well as in autoimmunity and atherosclerosis.
Collapse
Affiliation(s)
- Tim Worbs
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Swantje I Hammerschmidt
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
255
|
Devi KSP, Anandasabapathy N. The origin of DCs and capacity for immunologic tolerance in central and peripheral tissues. Semin Immunopathol 2016; 39:137-152. [PMID: 27888331 DOI: 10.1007/s00281-016-0602-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are specialized immune sentinels that play key role in maintaining immune homeostasis by efficiently regulating the delicate balance between protective immunity and tolerance to self. Although DCs respond to maturation signals present in the surrounding milieu, multiple layers of suppression also co-exist that reduce the infringement of tolerance against self-antigens. These tolerance inducing properties of DCs are governed by their origin and a range of other factors including distribution, cytokines, growth factors, and transcriptional programing, that collectively impart suppressive functions to these cells. DCs directing tolerance secrete anti-inflammatory cytokines and induce naïve T cells or B cells to differentiate into regulatory T cells (Tregs) or B cells. In this review, we provide a detailed outlook on the molecular mechanisms that induce functional specialization to govern central or peripheral tolerance. The tolerance-inducing nature of DCs can be exploited to overcome autoimmunity and rejection in graft transplantation.
Collapse
Affiliation(s)
- K Sanjana P Devi
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
256
|
Bin L, Leung DYM. Genetic and epigenetic studies of atopic dermatitis. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2016; 12:52. [PMID: 27777593 PMCID: PMC5069938 DOI: 10.1186/s13223-016-0158-5] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory disease caused by the complex interaction of genetic, immune and environmental factors. There have many recent discoveries involving the genetic and epigenetic studies of AD. METHODS A retrospective PubMed search was carried out from June 2009 to June 2016 using the terms "atopic dermatitis", "association", "eczema", "gene", "polymorphism", "mutation", "variant", "genome wide association study", "microarray" "gene profiling", "RNA sequencing", "epigenetics" and "microRNA". A total of 132 publications in English were identified. RESULTS To elucidate the genetic factors for AD pathogenesis, candidate gene association studies, genome-wide association studies (GWAS) and transcriptomic profiling assays have been performed in this period. Epigenetic mechanisms for AD development, including genomic DNA modification and microRNA posttranscriptional regulation, have been explored. To date, candidate gene association studies indicate that filaggrin (FLG) null gene mutations are the most significant known risk factor for AD, and genes in the type 2 T helper lymphocyte (Th2) signaling pathways are the second replicated genetic risk factor for AD. GWAS studies identified 34 risk loci for AD, these loci also suggest that genes in immune responses and epidermal skin barrier functions are associated with AD. Additionally, gene profiling assays demonstrated AD is associated with decreased gene expression of epidermal differentiation complex genes and elevated Th2 and Th17 genes. Hypomethylation of TSLP and FCER1G in AD were reported; and miR-155, which target the immune suppressor CTLA-4, was found to be significantly over-expressed in infiltrating T cells in AD skin lesions. CONCLUSIONS The results suggest that two major biologic pathways are responsible for AD etiology: skin epithelial function and innate/adaptive immune responses. The dysfunctional epidermal barrier and immune responses reciprocally affect each other, and thereby drive development of AD.
Collapse
Affiliation(s)
- Lianghua Bin
- The Department of Dermatology, the First Affiliated Hospital, Jinan University, Guangzhou, China
- Biomedical Translational Research Institute, Jinan University, Guangzhou, China
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Room K926i, Denver, CO 80206 USA
| | - Donald Y. M. Leung
- Department of Pediatrics, National Jewish Health, 1400 Jackson Street, Room K926i, Denver, CO 80206 USA
- Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Clinical Specialty in Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
257
|
Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep 2016; 6:33564. [PMID: 27658623 PMCID: PMC5034244 DOI: 10.1038/srep33564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022] Open
Abstract
The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization.
Collapse
|
258
|
The Role of Phagocytes and NETs in Dermatophytosis. Mycopathologia 2016; 182:263-272. [PMID: 27659806 DOI: 10.1007/s11046-016-0069-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/15/2016] [Indexed: 02/03/2023]
Abstract
Innate immunity is the host first line of defense against pathogens. However, only in recent years, we are beginning to better understand the ways it operates. A key player is this branch of the immune response that are the phagocytes, as macrophages, dendritic cells and neutrophils. These cells act as sentinels, employing specialized receptors in the sensing of invaders and host injury, and readily responding to them by production of inflammatory mediators. They afford protection not only by ingesting and destroying pathogens, but also by providing a suitable biochemical environment that shapes the adaptive response. In this review, we aim to present a broad perspective about the role of phagocytes in dermatophytosis, focusing on the mechanisms possibly involved in protective and non-protective responses. A full understanding of how phagocytes fit in the pathogenesis of these infections may open the venue for the development of new and more effective therapeutic approaches.
Collapse
|
259
|
Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species. Immunity 2016; 45:669-684. [PMID: 27637149 PMCID: PMC5040826 DOI: 10.1016/j.immuni.2016.08.015] [Citation(s) in RCA: 606] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients. A conserved gating strategy aligns dendritic cells (DCs) in mouse and human tissues Unsupervised computational analysis of flow cytometry data outperforms manual analysis Mass cytometry reveals heterogeneity of DC subsets across mouse and human tissues DC activation upon inflammation tracked by automated analysis of mass cytometry
Collapse
|
260
|
Dasoveanu DC, Shipman WD, Chia JJ, Chyou S, Lu TT. Regulation of Lymph Node Vascular-Stromal Compartment by Dendritic Cells. Trends Immunol 2016; 37:764-777. [PMID: 27638128 DOI: 10.1016/j.it.2016.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 12/24/2022]
Abstract
During normal and pathologic immune responses, lymph nodes can swell considerably. The lymph node vascular-stromal compartment supports and regulates the developing immune responses and undergoes dynamic expansion and remodeling. Recent studies have shown that dendritic cells (DCs), best known for their antigen presentation roles, can directly regulate the vascular-stromal compartment, pointing to a new perspective on DCs as facilitators of lymphoid tissue function. Here, we review the phases of lymph node vascular-stromal growth and remodeling during immune responses, discuss the roles of DCs, and discuss how this understanding can potentially be used for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Dragos C Dasoveanu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Physiology, Biophysics and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - William D Shipman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Jennifer J Chia
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Susan Chyou
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
261
|
Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting of skin: a state-of-the-art review on modelling, materials, and processes. Biofabrication 2016; 8:032001. [DOI: 10.1088/1758-5090/8/3/032001] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
262
|
Neeland MR, Shi W, Collignon C, Taubenheim N, Meeusen ENT, Didierlaurent AM, de Veer MJ. The Lymphatic Immune Response Induced by the Adjuvant AS01: A Comparison of Intramuscular and Subcutaneous Immunization Routes. THE JOURNAL OF IMMUNOLOGY 2016; 197:2704-14. [PMID: 27549170 DOI: 10.4049/jimmunol.1600817] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Abstract
The liposome-based adjuvant AS01 incorporates two immune stimulants, 3-O-desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01 is under investigation for use in several vaccines in clinical development. i.m. injection of AS01 enhances immune cell activation and dendritic cell (DC) Ag presentation in the local muscle-draining lymph node. However, cellular and Ag trafficking in the lymphatic vessels that connect an i.m. injection site with the local lymph node has not been investigated. The objectives of this study were: 1) to quantify the in vivo cellular immune response induced by AS01 in an outbred ovine model, 2) to develop a lymphatic cannulation model that directly collects lymphatic fluid draining the muscle, and 3) to investigate the function of immune cells entering and exiting the lymphatic compartments after s.c. or i.m. vaccination with AS01 administered with hepatitis B surface Ag (HBsAg). We show that HBsAg-AS01 induces a distinct immunogenic cellular signature within the blood and draining lymphatics following both immunization routes. We reveal that MHCII(high) migratory DCs, neutrophils, and monocytes can acquire Ag within muscle and s.c. afferent lymph, and that HBsAg-AS01 uniquely induces the selective migration of Ag-positive neutrophils, monocytes, and an MHCII(high) DC-like cell type out of the lymph node via the efferent lymphatics that may enhance Ag-specific immunity. We report the characterization of the immune response in the lymphatic network after i.m. and s.c. injection of a clinically relevant vaccine, all in real time using a dose and volume comparable with that administered in humans.
Collapse
Affiliation(s)
- Melanie R Neeland
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| | - Wei Shi
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| | | | - Nadine Taubenheim
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| | - Els N T Meeusen
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| | | | - Michael J de Veer
- Biotechnology Research Laboratories, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; and
| |
Collapse
|
263
|
Bittner-Eddy PD, Fischer LA, Kaplan DH, Thieu K, Costalonga M. Mucosal Langerhans Cells Promote Differentiation of Th17 Cells in a Murine Model of Periodontitis but Are Not Required for Porphyromonas gingivalis-Driven Alveolar Bone Destruction. THE JOURNAL OF IMMUNOLOGY 2016; 197:1435-46. [PMID: 27402698 DOI: 10.4049/jimmunol.1502693] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/07/2016] [Indexed: 11/19/2022]
Abstract
Periodontitis is a chronic oral inflammatory disease affecting one in five individuals that can lead to tooth loss. CD4(+) Th cells activated by a microbial biofilm are thought to contribute to the destruction of alveolar bone surrounding teeth by influencing osteoclastogenesis through IL-17A and receptor activator for NF-κB ligand effects. The relative roles of mucosal Ag presentation cells in directing Th cell immune responses against oral pathogens and their contribution to destruction of alveolar bone remain unknown. We tested the contribution of mucosal Langerhans cells (LCs) to alveolar bone homeostasis in mice following oral colonization with a well-characterized human periodontal pathogen, Porphyromonas gingivalis We found that oral mucosal LCs did not protect from or exacerbate crestal alveolar bone destruction but were responsible for promoting differentiation of Th17 cells specific to P. gingivalis. In mice lacking LCs the Th17 response was suppressed and a Th1 response predominated. Bypassing LCs with systemic immunization of P. gingivalis resulted in a predominantly P. gingivalis-specific Th1 response regardless of whether LCs were present. Interestingly, we find that in vivo clonal expansion of P. gingivalis-specific Th cells and induced regulatory T cells does not depend on mucosal LCs. Furthermore, destruction of crestal alveolar bone induced by P. gingivalis colonization occurred regardless of the presence of mucosal LCs or P. gingivalis-specific Th17 cells. Our data indicate that both LCs and Th17 cells are redundant in contributing to alveolar bone destruction in a murine model of periodontitis.
Collapse
Affiliation(s)
- Peter D Bittner-Eddy
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis MN 55455; and
| | - Lori A Fischer
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis MN 55455; and
| | - Daniel H Kaplan
- Department of Dermatology, Medical School, University of Minnesota, Minneapolis MN 55455
| | - Kathleen Thieu
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis MN 55455; and
| | - Massimo Costalonga
- Division of Periodontology, Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis MN 55455; and
| |
Collapse
|
264
|
Chng KR, Tay ASL, Li C, Ng AHQ, Wang J, Suri BK, Matta SA, McGovern N, Janela B, Wong XFCC, Sio YY, Au BV, Wilm A, De Sessions PF, Lim TC, Tang MBY, Ginhoux F, Connolly JE, Lane EB, Chew FT, Common JEA, Nagarajan N. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 2016; 1:16106. [PMID: 27562258 DOI: 10.1038/nmicrobiol.2016.106] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
Abstract
Whole metagenome analysis has the potential to reveal functional triggers of skin diseases, but issues of cost, robustness and sampling efficacy have limited its application. Here, we have established an alternative, clinically practical and robust metagenomic analysis protocol and applied it to 80 skin microbiome samples epidemiologically stratified for atopic dermatitis (AD). We have identified distinct non-flare, baseline skin microbiome signatures enriched for Streptococcus and Gemella but depleted for Dermacoccus in AD-prone versus normal healthy skin. Bacterial challenge assays using keratinocytes and monocyte-derived dendritic cells established distinct IL-1-mediated, innate and Th1-mediated adaptive immune responses with Staphylococcus aureus and Staphylococcus epidermidis. Bacterial differences were complemented by perturbations in the eukaryotic community and functional shifts in the microbiome-wide gene repertoire, which could exacerbate a dry and alkaline phenotype primed for pathogen growth and inflammation in AD-susceptible skin. These findings provide insights into how the skin microbial community, skin surface microenvironment and immune system cross-modulate each other, escalating the destructive feedback cycle between them that leads to AD flare.
Collapse
Affiliation(s)
- Kern Rei Chng
- Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Chenhao Li
- Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Jingjing Wang
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore.,Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China.,Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, USA
| | - Bani Kaur Suri
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Sri Anusha Matta
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Naomi McGovern
- Singapore Immunology Network, Singapore 138648, Singapore
| | | | | | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Bijin Veonice Au
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Andreas Wilm
- Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Thiam Chye Lim
- Division of Plastic, Reconstructive &Aesthetic Surgery, National University Health System, Singapore 119074, Singapore
| | | | | | - John E Connolly
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore.,Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, USA.,Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore
| | | | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | |
Collapse
|
265
|
Bedoui S, Heath WR, Mueller SN. CD
4
+
T‐cell help amplifies innate signals for primary
CD
8
+
T‐cell immunity. Immunol Rev 2016; 272:52-64. [DOI: 10.1111/imr.12426] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sammy Bedoui
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
| | - William R. Heath
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Melbourne Parkville Vic. Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Melbourne Parkville Vic. Australia
| |
Collapse
|
266
|
|
267
|
Amit I, Winter DR, Jung S. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat Immunol 2016; 17:18-25. [PMID: 26681458 DOI: 10.1038/ni.3325] [Citation(s) in RCA: 273] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.
Collapse
Affiliation(s)
- Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah R Winter
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
268
|
Geraghty NJ, Watson D, Adhikary SR, Sluyter R. P2X7 receptor in skin biology and diseases. World J Dermatol 2016; 5:72-83. [DOI: 10.5314/wjd.v5.i2.72] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor is a trimeric ligand-gated cation channel present on immune and other cells. Activation of this receptor by its natural ligand extracellular adenosine triphosphate results in a variety of downstream responses, including the release of pro-inflammatory mediators and cell death. In normal skin, P2X7 is present on keratinocytes, Langerhans cells and fibroblasts, while the presence of this receptor on other cutaneous cells is mainly inferred from studies of equivalent cell types present in other tissues. Mast cells in normal skin however express negligible amounts of P2X7, which can be upregulated in cutaneous disease. This review discusses the potential significance of P2X7 in skin biology, and the role of this receptor in inflammatory skin disorders such as irritant and chronic dermatitis, psoriasis, graft-versus-host disease, as well is in wound healing, transplantation and skin cancer.
Collapse
|
269
|
Chen K, Wang JM, Yuan R, Yi X, Li L, Gong W, Yang T, Li L, Su S. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction. Int Immunopharmacol 2016; 34:1-15. [PMID: 26906720 PMCID: PMC4818737 DOI: 10.1016/j.intimp.2016.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/05/2016] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) control immune responses and are central to the development of immune memory and tolerance. DCs initiate and orchestrate immune responses in a manner that depends on signals they receive from microbes and cellular environment. Although DCs consist mainly of bone marrow-derived and resident populations, a third tissue-derived population resides the spleen and lymph nodes (LNs), different subsets of tissue-derived DCs have been identified in the blood, spleen, lymph nodes, skin, lung, liver, gut and kidney to maintain the tolerance and control immune responses. Tissue-resident DCs express different receptors for microbe-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs), which were activated to promote the production of pro- or anti-inflammatory cytokines. Malfunction of DCs contributes to diseases such as autoimmunity, allergy, and cancer. It is therefore important to update the knowledge about resident DC subsets and diseases associated with DC malfunction.
Collapse
Affiliation(s)
- Keqiang Chen
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Ruoxi Yuan
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Xiang Yi
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Liangzhu Li
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Wanghua Gong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liwu Li
- Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0910, USA
| | - Shaobo Su
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
270
|
Porta C, Riboldi E, Ippolito A, Sica A. Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol 2016; 27:237-48. [PMID: 26561250 DOI: 10.1016/j.smim.2015.10.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022]
Abstract
Macrophages are unique cells for origin, heterogeneity and plasticity. At steady state most of macrophages are derived from fetal sources and maintained in adulthood through self-renewing. Despite sharing common progenitors, a remarkable heterogeneity characterized tissue-resident macrophages indicating that local signals educate them to express organ-specific functions. Macrophages are extremely plastic: chromatin landscape and transcriptional programs can be dynamically re-shaped in response to microenvironmental changes. Owing to their ductility, macrophages are crucial orchestrators of both initiation and resolution of immune responses and key supporters of tissue development and functions in homeostatic and pathological conditions. Herein, we describe current understanding of heterogeneity and plasticity of macrophages using the M1-M2 dichotomy as operationally useful simplification of polarized activation. We focused on the complex network of signaling cascades, metabolic pathways, transcription factors, and epigenetic changes that control macrophage activation. In particular, this network was addressed in sepsis, as a paradigm of a pathological condition determining dynamic macrophage reprogramming.
Collapse
Affiliation(s)
- Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.
| | - Elena Riboldi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.
| | - Alessandro Ippolito
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy.
| | - Antonio Sica
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
271
|
Broggi A, Cigni C, Zanoni I, Granucci F. Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions. J Vis Exp 2016:e52589. [PMID: 27166881 DOI: 10.3791/52589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The skin is a barrier organ that interacts with the external environment. Being continuously exposed to potential microbial invasion, the dermis and epidermis home a variety of immune cells in both homeostatic and inflammatory conditions. Tools to obtain skin cell release for cytofluorimetric analyses are, therefore, very useful in order to study the complex network of immune cells residing in the skin and their response to microbial stimuli. Here, we describe an efficient methodology for the digestion of mouse skin to rapidly and efficiently obtain single-cell suspensions. This protocol allows maintenance of maximum cell viability without compromising surface antigen expression. We also describe how to take and digest skin samples from different anatomical locations, such as the ear, trunk, tail, and footpad. The obtained suspensions are then stained and analyzed by flow cytometry to discriminate between different leukocyte populations.
Collapse
Affiliation(s)
- Achille Broggi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca; Boston Children's Hospital, Division of Gastroenterology, Harvard Medical School
| | - Clara Cigni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca
| | - Ivan Zanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca; Boston Children's Hospital, Division of Gastroenterology, Harvard Medical School; Humanitas Clinical and Research Center;
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca; Humanitas Clinical and Research Center;
| |
Collapse
|
272
|
Ordovas-Montanes J, Rakoff-Nahoum S, Huang S, Riol-Blanco L, Barreiro O, von Andrian UH. The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends Immunol 2016; 36:578-604. [PMID: 26431937 DOI: 10.1016/j.it.2015.08.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
The nervous system and the immune system are the principal sensory interfaces between the internal and external environment. They are responsible for recognizing, integrating, and responding to varied stimuli, and have the capacity to form memories of these encounters leading to learned or 'adaptive' future responses. We review current understanding of the cross-regulation between these systems. The autonomic and somatosensory nervous systems regulate both the development and deployment of immune cells, with broad functions that impact on hematopoiesis as well as on priming, migration, and cytokine production. In turn, specific immune cell subsets contribute to homeostatic neural circuits such as those controlling metabolism, hypertension, and the inflammatory reflex. We examine the contribution of the somatosensory system to autoimmune, autoinflammatory, allergic, and infectious processes in barrier tissues and, in this context, discuss opportunities for therapeutic manipulation of neuro-immune interactions.
Collapse
Affiliation(s)
- Jose Ordovas-Montanes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Siyi Huang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga Barreiro
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
273
|
Beals CR, Railkar RA, Schaeffer AK, Levin Y, Kochba E, Meyer BK, Evans RK, Sheldon EA, Lasseter K, Lang N, Weinberg A, Canniff J, Levin MJ. Immune response and reactogenicity of intradermal administration versus subcutaneous administration of varicella-zoster virus vaccine: an exploratory, randomised, partly blinded trial. THE LANCET. INFECTIOUS DISEASES 2016; 16:915-22. [PMID: 27061887 DOI: 10.1016/s1473-3099(16)00133-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 02/15/2016] [Accepted: 02/26/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The licensed live, attenuated varicella-zoster virus vaccine prevents herpes zoster in adults older than 50 years. We aimed to determine whether intradermal administration of zoster vaccine could enhance vaccine immunogenicity compared with conventional needle subcutaneous administration. METHODS In this randomised, dose-ranging study, adults aged 50 years or older who had a history of varicella or who had resided in a country with endemic varicella-zoster virus infection for 30 years or more were eligible. Participants received the approved full or a 1/3 dose of zoster vaccine given subcutaneously or one of four intradermal doses (full, 1/3, 1/10, or 1/27 dose) using the MicronJet600 device. The two subcutaneous doses and the four intradermal doses were randomised (1·5:1:1:1:1:1) by computer generated sequence with randomisation stratified by age (50-59 years or 60 years or older). The primary immunogenicity endpoint was the change from baseline in IgG antibody to varicella-zoster virus-specific glycoproteins (gpELISA) measured at 6 weeks. All patients were included in the primary and safety analyses. This study is registered with ClinicalTrials.gov, number NCT01385566. FINDINGS Between Sept 2, 2011, and Jan 13, 2012, 224 participants were enrolled from three clinics in the USA and 223 were randomly assigned: 52 to receive the full dose subcutaneous zoster vaccine, 34 to receive the 1/3 dose subcutaneous zoster vaccine, 34 to receive the full dose intradermal zoster vaccine, 35 to receive the 1/3 dose intradermal zoster vaccine, 34 to receive the 1/10 dose intradermal zoster vaccine, and 34 to receive the 1/27 dose intradermal zoster vaccine. Full dose zoster vaccine given subcutaneously resulted in a gpELISA geometric mean fold-rise (GMFR) of 1·74 (90% CI 1·48-2·04) at 6 weeks post-vaccination compared with intradermal administration which resulted in a significantly higher gpELISA GMFR of 3·25 (2·68-3·94; p<0·0001), which also remained high at 18 months. An apparent dose-response relation was observed with intradermal administration (1/3 dose subcutaneous GMFR 1·64 [90% CI 1·36-1·99], 1/3 dose intradermal 2·58 (2·13-3·13), 1/10 dose intradermal 2·22 [1·83-2·69], and 1/27 dose intradermal 1·64 [1·35-2·00]). Each partial dose of zoster vaccine given intradermaly had a gpELISA GMFR comparable to that of full dose zoster vaccine given subcutaneously. Transient erythema and induration were more common after intradermal administration (31% erythema for full subcutaneous dose and 77% for intradermal dose). INTERPRETATION Intradermal zoster vaccine showed a greater increase in varicella-zoster virus gpELISA antibody compared with subcutaneous zoster vaccine at comparable doses. Larger and longer studies of intradermal administration of live, attenuated zoster vaccine are needed to provide convincing evidence of improved cell mediated immunity. FUNDING Merck & Co Inc.
Collapse
Affiliation(s)
| | | | | | - Yotam Levin
- NanoPass Technologies Ltd, Nes Ziona, Israel
| | | | | | | | | | | | - Nancy Lang
- Pediatric Infectious Diseases, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Adriana Weinberg
- Pediatric Infectious Diseases, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer Canniff
- Pediatric Infectious Diseases, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Myron J Levin
- Pediatric Infectious Diseases, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
274
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
275
|
Carpentier S, Vu Manh TP, Chelbi R, Henri S, Malissen B, Haniffa M, Ginhoux F, Dalod M. Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells. J Immunol Methods 2016; 432:35-49. [PMID: 26966045 PMCID: PMC4859332 DOI: 10.1016/j.jim.2016.02.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 02/25/2016] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) are mononuclear phagocytes which exhibit a branching (dendritic) morphology and excel at naïve T cell activation. DC encompass several subsets initially identified by their expression of cell surface molecules and later shown to possess distinct functions. DC subset differentiation is orchestrated by transcription factors, growth factors and cytokines. Identifying DC subsets is challenging as very few cell surface molecules are uniquely expressed on any one of these cell populations. There is no standard consensus to identify mononuclear phagocyte subsets; varying antigens are employed depending on the tissue and animal species studied and between laboratories. This has led to confusion in how to accurately define and classify DCs across tissues and between species. Here we report a comparative genomics strategy that enables universal definition of DC and other mononuclear phagocyte subsets across species. We performed a meta-analysis of several public datasets of human and mouse mononuclear phagocyte subsets isolated from blood, spleen, skin or cutaneous lymph nodes, including by using a novel and user friendly software, BubbleGUM, which generates and integrates gene signatures for high throughput gene set enrichment analysis. This analysis demonstrates the equivalence between human and mouse skin XCR1(+) DCs, and between mouse and human Langerhans cells.
Collapse
Affiliation(s)
- Sabrina Carpentier
- Mi-mAbs (C/O Centre d'Immunologie de Marseille-Luminy), F-13009 Marseille, France
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France
| | - Rabie Chelbi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France
| | - Muzlifah Haniffa
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France.
| |
Collapse
|
276
|
Constantino J, Gomes C, Falcão A, Cruz MT, Neves BM. Antitumor dendritic cell-based vaccines: lessons from 20 years of clinical trials and future perspectives. Transl Res 2016; 168:74-95. [PMID: 26297944 DOI: 10.1016/j.trsl.2015.07.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/25/2015] [Accepted: 07/28/2015] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are versatile elements of the immune system and are best known for their unparalleled ability to initiate and modulate adaptive immune responses. During the past few decades, DCs have been the subject of numerous studies seeking new immunotherapeutic strategies against cancer. Despite the initial enthusiasm, disappointing results from early studies raised some doubts regarding the true clinical value of these approaches. However, our expanding knowledge of DC immunobiology and the definition of the optimal characteristics for antitumor immune responses have allowed a more rational development of DC-based immunotherapies in recent years. Here, after a brief overview of DC immunobiology, we sought to systematize the knowledge provided by 20 years of clinical trials, with a special emphasis on the diversity of approaches used to manipulate DCs and their consequent impact on vaccine effectiveness. We also address how new therapeutic concepts, namely the combination of DC vaccines with other anticancer therapies, are being implemented and are leveraging clinical outcomes. Finally, optimization strategies, new insights, and future perspectives on the field are also highlighted.
Collapse
Affiliation(s)
- João Constantino
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Faculty of Medicine, Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI) and Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Bruno M Neves
- Faculty of Pharmacy and Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; Department of Chemistry and QOPNA, Mass Spectrometry Centre, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
277
|
Corliss BA, Azimi MS, Munson J, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 2016; 23:95-121. [PMID: 26614117 PMCID: PMC4744134 DOI: 10.1111/micc.12259] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g., cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field's understanding of this important cell type in health and disease.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Mohammad S. Azimi
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| | - Jenny Munson
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Shayn M. Peirce
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Walter Lee Murfee
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| |
Collapse
|
278
|
Didovic S, Opitz FV, Holzmann B, Förster I, Weighardt H. Requirement of MyD88 signaling in keratinocytes for Langerhans cell migration and initiation of atopic dermatitis-like symptoms in mice. Eur J Immunol 2016; 46:981-92. [DOI: 10.1002/eji.201545710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/20/2015] [Accepted: 12/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Sonja Didovic
- Immunology and Environment; Life and Medical Sciences (LIMES) Institute; University of Bonn; Bonn Germany
- IUF Leibniz Research Institute for Environmental Medicine; Düsseldorf Germany
| | - Friederike V. Opitz
- Immunology and Environment; Life and Medical Sciences (LIMES) Institute; University of Bonn; Bonn Germany
- IUF Leibniz Research Institute for Environmental Medicine; Düsseldorf Germany
| | - Bernhard Holzmann
- Department of Surgery; Technische Universität München; Munich Germany
| | - Irmgard Förster
- Immunology and Environment; Life and Medical Sciences (LIMES) Institute; University of Bonn; Bonn Germany
| | - Heike Weighardt
- Immunology and Environment; Life and Medical Sciences (LIMES) Institute; University of Bonn; Bonn Germany
- IUF Leibniz Research Institute for Environmental Medicine; Düsseldorf Germany
| |
Collapse
|
279
|
Abstract
The improvement of dendritic cell subset isolation from tissues and the use of appropriate surface markers allowed to decipher their heterogeneity but also allowed to unravel some specific functions that are valuable for vaccine design as well as for a better understanding of the in situ pathophysiology upon infection. Here, we describe the procedures to extract those cells from the skin and to analyze them by flow cytometry using a combination of appropriate surface markers allowing further transcriptomic analysis and functional assays.
Collapse
|
280
|
Abstract
Macrophages are myeloid immune cells that are strategically positioned throughout the body tissues, where they ingest and degrade dead cells, debris, and foreign material and orchestrate inflammatory processes. Here we review two major recent paradigm shifts in our understanding of tissue macrophage biology. The first is the realization that most tissue-resident macrophages are established prenatally and maintained through adulthood by longevity and self-renewal. Their generation and maintenance are thus independent from ongoing hematopoiesis, although the cells can be complemented by adult monocyte-derived macrophages. Second, aside from being immune sentinels, tissue macrophages form integral components of their host tissue. This entails their specialization in response to local environmental cues to contribute to the development and specific function of their tissue of residence. Factors that govern tissue macrophage specialization are emerging. Moreover, tissue specialization is reflected in discrete gene expression profiles of macrophages, as well as epigenetic signatures reporting actual and potential enhancer usage.
Collapse
Affiliation(s)
- Chen Varol
- The Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 64239, Israel
| | | | | |
Collapse
|
281
|
Joncker NT, Bettini S, Boulet D, Guiraud M, Guerder S. The site of tumor development determines immunogenicity via temporal mobilization of antigen-laden dendritic cells in draining lymph nodes. Eur J Immunol 2015; 46:609-18. [PMID: 26626316 DOI: 10.1002/eji.201545797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/27/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023]
Abstract
The elimination of solid tumors largely depends on effective T-cell priming by dendritic cells (DCs). For decades, studies focusing on antitumoral immune responses have been performed with tumors transplanted subcutaneously (s.c.). These studies however do not take into account the heterogeneous tissue distribution and functionality of the different DC subsets. Given the crucial role of DCs in inducing protective immune response, we postulated that the anatomic location of tumor development may greatly impact tumor immunogenicity. We therefore implanted tumor cells either in the DC-rich dermis environment or in the s.c. tissue that mainly contains macrophages and monocytes. We showed that intradermal (i.d.), but not s.c. tumors are rapidly rejected in a T-cell-dependent manner and induce protective T-cell responses. The rejection of i.d. tumors correlates with rapid recruitment of dermal DCs presenting the tumor antigen to both CD4 and CD8 T cells in the draining lymph nodes (dLNs). The same DC subsets were mobilized upon s.c. tumor transplantation but with delayed kinetics. Altogether, our results show that the anatomical site of tumor development influences tumor immunogenicity, notably by controlling the kinetics of DC mobilization in the draining LNs.
Collapse
Affiliation(s)
- Nathalie T Joncker
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sarah Bettini
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Delphine Boulet
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Martine Guiraud
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sylvie Guerder
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France.,INSERM, U1043, Toulouse, France.,CNRS, UMR5282, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
282
|
Da Silva DM, Woodham AW, Naylor PH, Egan JE, Berinstein NL, Kast WM. Immunostimulatory Activity of the Cytokine-Based Biologic, IRX-2, on Human Papillomavirus-Exposed Langerhans Cells. J Interferon Cytokine Res 2015; 36:291-301. [PMID: 26653678 PMCID: PMC4854212 DOI: 10.1089/jir.2015.0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8+ T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers.
Collapse
Affiliation(s)
- Diane M Da Silva
- 1 Department of Obstetrics & Gynecology, University of Southern California , Los Angeles, California.,2 Norris Comprehensive Cancer Center, University of Southern California , Los Angeles, California
| | - Andrew W Woodham
- 3 Department of Molecular Microbiology & Immunology, University of Southern California , Los Angeles, California
| | - Paul H Naylor
- 4 Department of Internal Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | | | | | - W Martin Kast
- 1 Department of Obstetrics & Gynecology, University of Southern California , Los Angeles, California.,2 Norris Comprehensive Cancer Center, University of Southern California , Los Angeles, California.,3 Department of Molecular Microbiology & Immunology, University of Southern California , Los Angeles, California
| |
Collapse
|
283
|
Da Silva DM, Woodham AW, Rijkee LK, Skeate JG, Taylor JR, Koopman ME, Brand HE, Wong MK, McKee GM, Salazar AM, Kast WM. Human papillomavirus-exposed Langerhans cells are activated by stabilized Poly-I:C. PAPILLOMAVIRUS RESEARCH 2015; 1:12-21. [PMID: 26665182 PMCID: PMC4671084 DOI: 10.1016/j.pvr.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human papillomaviruses (HPV) establish persistent infections because of evolved immune evasion mechanisms, particularly HPV-mediated suppression of the immune functions of Langerhans cells (LC), the antigen presenting cells of the epithelium. Polyinosinic-polycytidilic acid (Poly-I:C) is broadly immunostimulatory with the ability to enhance APC expression of costimulatory molecules and inflammatory cytokines resulting in T cell activation. Here we investigated the activation of primary human LC derived from peripheral blood monocytes after exposure to HPV16 virus like particles followed by treatment with stabilized Poly-I:C compounds (s-Poly-I:C), and their subsequent induction of HPV16-specific T cells. Our results indicate that HPV16 particles alone were incapable of inducing LC activation as demonstrated by the lack of costimulatory molecules, inflammatory cytokines, chemokine-directed migration, and HPV16-specific CD8+ T cells in vitro. Conversely, s-Poly-I:C caused significant upregulation of costimulatory molecules and induction of chemokine-directed migration of LC that were pre-exposed to HPV16. In HLA-A*0201-positive donors, s-Poly-I:C treatment was able to induce CD8+ T cell immune responses against HPV16-derived peptides. Thus, s-Poly-I:C compounds are attractive for translation into therapeutics in which they could potentially mediate clearance of persistent HPV infection.
Collapse
Affiliation(s)
- Diane M Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California, USA
| | - Andrew W Woodham
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, USA
| | - Laurie K Rijkee
- Groningen International Program of Science in Medicine, University of Groningen, Groningen, The Netherlands
| | - Joseph G Skeate
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Julia R Taylor
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, USA
| | - Maaike E Koopman
- Groningen International Program of Science in Medicine, University of Groningen, Groningen, The Netherlands
| | - Heike E Brand
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Michael K Wong
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | - W Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California, USA.,Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
284
|
DC-SIGN as an attachment factor mediates Japanese encephalitis virus infection of human dendritic cells via interaction with a single high-mannose residue of viral E glycoprotein. Virology 2015; 488:108-19. [PMID: 26629951 DOI: 10.1016/j.virol.2015.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
The skin-resident dendritic cells (DCs) are thought to be the first defender to encounter incoming viruses and likely play a role in Japanese encephalitis virus (JEV) early infection. In the current study, following the demonstration of JEV productive infection in DCs, we revealed that the interaction between JEV envelope glycoprotein (E glycoprotein) and DC-SIGN was important for such infection as evidenced by antibody neutralization and siRNA knockdown experiments. Moreover, the high-mannose N-linked glycan at N154 of E glycoprotein was shown to be crucial for JEV binding to DC-SIGN and subsequent internalization, while mutation of DC-SIGN internalization motif did not affect JEV uptake and internalization. These data together suggest that DC-SIGN functions as an attachment factor rather than an entry receptor for JEV. Our findings highlight the potential significance of DC-SIGN in JEV early infection, providing a basis for further understanding how JEV exploits DC-SIGN to gain access to dendritic cells.
Collapse
|
285
|
Kelly G, Hughes R, McGarry T, van den Born M, Adamzik K, Fitzgerald R, Lawlor C, Tobin AM, Sweeney CM, Kirby B. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. Br J Dermatol 2015; 173:1431-9. [PMID: 26282467 DOI: 10.1111/bjd.14075] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND There is a dearth of information on the precise pathogenesis of hidradenitis suppurativa (HS), but immune dysregulation is implicated. OBJECTIVES To determine the nature of the immune response in HS. METHODS Skin biopsies - lesional, perilesional (2 cm away) and uninvolved (10 cm away) - were obtained from patients with HS and healthy controls. The expression of various cytokines was determined by enzyme-linked immunosorbent assay, flow cytometry and real-time polymerase chain reaction. RESULTS The expression of the inflammatory cytokines interleukin (IL)-17, IL-1β and tumour necrosis factor-α was enhanced in lesional skin of patients with HS. In addition, IL17A and IL1B mRNA were enhanced in clinically normal perilesional skin. CD4(+) T cells produced IL-17 in HS, while CD11c(+) CD1a(-) CD14(+) cells were sources of IL-1β. Activated caspase-1 was detected in HS skin and was associated with enhanced expression of NLRP3 and IL18. Inhibition of caspase-1 decreased IL-1β and IL-18 production, suggesting that the caspase-1 pathway participates in IL-1β and IL-18 expression in HS. Abnormal cytokine expression was detected in perilesional and uninvolved skin, which may suggest that subclinical inflammation is present in HS skin prior to the formation of an active lesion. CONCLUSIONS This study demonstrates that CD4(+) T cells produce IL-17 in HS and that the IL-17 pathway may be important in HS pathogenesis. CD11c(+) CD1a(-) CD14(+) cells are a source of IL-1β in HS, the production of which was shown to be mediated, in part, via a caspase-1-dependent pathway. These results suggest that IL-17 and the caspase-1-associated cytokines IL-1β and IL-18 may play a role in the pathogenesis of HS.
Collapse
Affiliation(s)
- G Kelly
- Dermatology Research, Education and Research Centre, St Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - R Hughes
- Dermatology Research, Education and Research Centre, St Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - T McGarry
- Department of Rheumatology, St Vincent's University Hospital, University College Dublin, Dublin 4, Ireland.,The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - M van den Born
- Dermatology Research, Education and Research Centre, St Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - K Adamzik
- Department of Dermatology, St Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - R Fitzgerald
- Department of Dermatology, Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | - C Lawlor
- Department of Plastic Surgery, St Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - A M Tobin
- Department of Dermatology, Adelaide and Meath Hospital, Tallaght, Dublin, Ireland
| | - C M Sweeney
- Dermatology Research, Education and Research Centre, St Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - B Kirby
- Department of Dermatology, St Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
286
|
Yazdi AS, Röcken M, Ghoreschi K. Cutaneous immunology: basics and new concepts. Semin Immunopathol 2015; 38:3-10. [PMID: 26563284 DOI: 10.1007/s00281-015-0545-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
As one of the largest organs, the skin forms a mechanical and immunological barrier to the environment. The skin immune system harbors cells of the innate immune system and cells of the adaptive immune system. Signals of the innate immune system typically initiate skin immune responses, while cells and cytokines of the adaptive immune system perpetuate the inflammation. Skin immune responses ensure effective host defense against pathogens but can also cause inflammatory skin diseases. An extensive crosstalk between the different cell types of the immune system, tissue cells, and pathogens is responsible for the complexity of skin immune reactions. Here we summarize the major cellular and molecular components of the innate and adaptive skin immune system.
Collapse
Affiliation(s)
- Amir S Yazdi
- Department of Dermatology, University Medical Center, Eberhard Karls University, Tübingen, Germany
| | - Martin Röcken
- Department of Dermatology, University Medical Center, Eberhard Karls University, Tübingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, University Medical Center, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
287
|
Abstract
PURPOSE OF REVIEW In this review of the literature from 2014 through mid-2015, we examine new data that shed light on how macrophages and other innate immune cells and signals contribute to inflammation, vascular dysfunction, and fibrosis in scleroderma. RECENT FINDINGS Recent human studies have focused on changes early in scleroderma, and linked macrophages to inflammation in skin and progression of lung disease. Plasmacytoid dendritic cells have been implicated in vascular dysfunction. In mice, several factors have been identified that influence macrophage activation and experimental fibrosis. However, emerging data also suggest that myeloid cells can have differential effects in fibrosis. Sustained signaling through different toll-like receptors can lead to inflammation or fibrosis, and these signals can influence both immune and nonimmune cells. SUMMARY There are many types of innate immune cells that can potentially contribute to scleroderma and will be worth exploring in detail. Experimentally dissecting the roles of macrophages based on ontogeny and activation state, and the innate signaling pathways in the tissue microenvironment, may also lead to better understanding of scleroderma pathogenesis.
Collapse
Affiliation(s)
- Jennifer J Chia
- aWeill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program bImmunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences cAutoimmunity and Inflammation Program dAutoimmunity and Inflammation Program and Department of Pediatric Rheumatology, Hospital for Special Surgery eDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| | | |
Collapse
|
288
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
289
|
Leleux J, Atalis A, Roy K. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J Control Release 2015; 219:610-621. [PMID: 26489733 DOI: 10.1016/j.jconrel.2015.09.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
Abstract
While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity. It is now well recognized that DCs can be separated into many subgroups, each of which has a unique function. Better understanding of how various DC subsets, in lymphoid organs and in the periphery, can be targeted through controlled delivery; and how these subsets modulate and control the resulting immune response could greatly enhance our ability to develop new, effective vaccines against complex diseases. In this review, we provide an overview of DC subset biology and discuss current immunotherapeutic strategies that utilize DC targeting to modulate and control immune responses.
Collapse
Affiliation(s)
- Jardin Leleux
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Alexandra Atalis
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Krishnendu Roy
- The Wallace H. Coulter Dept. of Biomedical Engineering at Georgia Tech and Emory University and The Center for Immunoengineering at Georgia Tech, The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
290
|
Tussiwand R, Gautier EL. Transcriptional Regulation of Mononuclear Phagocyte Development. Front Immunol 2015; 6:533. [PMID: 26539196 PMCID: PMC4609886 DOI: 10.3389/fimmu.2015.00533] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/02/2015] [Indexed: 12/23/2022] Open
Abstract
Mononuclear phagocytes (MP) are a quite unique subset of hematopoietic cells, which comprise dendritic cells (DC), monocytes as well as monocyte-derived and tissue-resident macrophages. These cells are extremely diverse with regard to their origin, their phenotype as well as their function. Developmentally, DC and monocytes are constantly replenished from a bone marrow hematopoietic progenitor. The ontogeny of macrophages is more complex and is temporally linked and specified by the organ where they reside, occurring early during embryonic or perinatal life. The functional heterogeneity of MPs is certainly a consequence of the tissue of residence and also reflects the diverse ontogeny of the subsets. In this review, we will highlight the developmental pathways of murine MP, with a particular emphasis on the transcriptional factors that regulate their development and function. Finally, we will discuss and point out open questions in the field.
Collapse
Affiliation(s)
- Roxane Tussiwand
- Department of Biomedicine, University of Basel , Basel , Switzerland
| | - Emmanuel L Gautier
- INSERM UMR_S 1166, Sorbonne Universités, UPMC Univ Paris 06, Pitié-Salpêtrière Hospital , Paris , France
| |
Collapse
|
291
|
Paternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, Curtin JA, Bønnelykke K, Tian C, Takahashi A, Esparza-Gordillo J, Alves AC, Thyssen JP, den Dekker HT, Ferreira MA, Altmaier E, Sleiman PM, Xiao FL, Gonzalez JR, Marenholz I, Kalb B, Yanes MP, Xu CJ, Carstensen L, Groen-Blokhuis MM, Venturini C, Pennell CE, Barton SJ, Levin AM, Curjuric I, Bustamante M, Kreiner-Møller E, Lockett GA, Bacelis J, Bunyavanich S, Myers RA, Matanovic A, Kumar A, Tung JY, Hirota T, Kubo M, McArdle WL, Henderson AJ, Kemp JP, Zheng J, Smith GD, Rüschendorf F, Bauerfeind A, Lee-Kirsch MA, Arnold A, Homuth G, Schmidt CO, Mangold E, Cichon S, Keil T, Rodríguez E, Peters A, Franke A, Lieb W, Novak N, Fölster-Holst R, Horikoshi M, Pekkanen J, Sebert S, Husemoen LL, Grarup N, de Jongste JC, Rivadeneira F, Hofman A, Jaddoe VW, Pasmans SG, Elbert NJ, Uitterlinden AG, Marks GB, Thompson PJ, Matheson MC, Robertson CF, Ried JS, Li J, Zuo XB, Zheng XD, Yin XY, Sun LD, McAleer MA, O'Regan GM, Fahy CM, Campbell LE, Macek M, Kurek M, Hu D, Eng C, Postma DS, Feenstra B, Geller F, Hottenga JJ, Middeldorp CM, Hysi P, Bataille V, Spector T, Tiesler CM, Thiering E, Pahukasahasram B, Yang JJ, Imboden M, Huntsman S, Vilor-Tejedor N, Relton CL, Myhre R, Nystad W, Custovic A, Weiss ST, Meyers DA, Söderhäll C, Melén E, Ober C, Raby BA, Simpson A, Jacobsson B, Holloway JW, Bisgaard H, Sunyer J, Hensch NMP, Williams LK, Godfrey KM, Wang CA, Boomsma DI, Melbye M, Koppelman GH, Jarvis D, McLean WI, Irvine AD, Zhang XJ, Hakonarson H, Gieger C, Burchard EG, Martin NG, Duijts L, Linneberg A, Jarvelin MR, Noethen MM, Lau S, Hübner N, Lee YA, Tamari M, Hinds DA, Glass D, Brown SJ, Heinrich J, Evans DM, Weidinger S. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet 2015; 47:1449-1456. [PMID: 26482879 PMCID: PMC4753676 DOI: 10.1038/ng.3424] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022]
Abstract
Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified 10 novel risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with novel secondary signals at 4 of these). Notably, the new loci include candidate genes with roles in regulation of innate host defenses and T-cell function, underscoring the important contribution of (auto-)immune mechanisms to atopic dermatitis pathogenesis.
Collapse
Affiliation(s)
- Lavinia Paternoster
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Waage
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hansjörg Baurecht
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Melanie Hotze
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David P Strachan
- Population Health Research Institute, St George's, University of London, London, UK
| | - John A Curtin
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Klaus Bønnelykke
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Chao Tian
- 23andMe, Inc., Mountain View, CA, USA
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Jorge Esparza-Gordillo
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermatology and Allergology, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Herman T den Dekker
- Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands
| | | | - Elisabeth Altmaier
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Patrick Ma Sleiman
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Feng Li Xiao
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Juan R Gonzalez
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
| | - Ingo Marenholz
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Kalb
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Pediatric Pneumology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Pino Yanes
- Department of Medicine, University of California, San Francisco, CA, USA.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | - Cheng-Jian Xu
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Lisbeth Carstensen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Maria M Groen-Blokhuis
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
| | - Cristina Venturini
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Craig E Pennell
- School of Women's and Infants' Health, The University of Western Australia (UWA), Perth, Australia
| | - Sheila J Barton
- Medical Research Council (MRC) Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Ivan Curjuric
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Mariona Bustamante
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Centre for Genomic Regulation (CRG), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Eskil Kreiner-Møller
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Gabrielle A Lockett
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonas Bacelis
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hosptial, Gothenburg, Sweden
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel A Myers
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Anja Matanovic
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ashish Kumar
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Tomomitsu Hirota
- Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - A J Henderson
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - John P Kemp
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK.,University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Jie Zheng
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Anja Bauerfeind
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Min Ae Lee-Kirsch
- Klinik für Kinder- und Jugendmedizin, Technical University Dresden, Dresden, Germany
| | - Andreas Arnold
- Clinic and Polyclinic of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Carsten O Schmidt
- Institute for Community Medicine, Study of Health in Pomerania/KEF, University Medicine Greifswald, Greifswald, Germany
| | | | - Sven Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Division of Medical Genetics, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organisation of the Brain, Genomic Imaging, Research Centre Jülich, Jülich, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Elke Rodríguez
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Deutsches Forschungszentrum für Herz-Kreislauferkrankungen (DZHK) (German Research Centre for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Natalija Novak
- Department of Dermatology and Allergy, University of Bonn Medical Center, Bonn, Germany
| | - Regina Fölster-Holst
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Momoko Horikoshi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Juha Pekkanen
- Unit of Living Environment and Health, National Institute for Health and Welfare, Kuopio, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Sylvain Sebert
- Center for Life-course and Systems Epidemiology, Faculty of Medicine, University of Oulu, Finland.,Biocenter Oulu, University of Oulu, Finland
| | - Lise L Husemoen
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark
| | - Niels Grarup
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands.,Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Vincent Wv Jaddoe
- Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands
| | | | - Niels J Elbert
- The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands.,Department of Dermatology, Erasmus MC, Rotterdam, the Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands
| | - Guy B Marks
- Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Philip J Thompson
- Lung Institute of Western Australia, QE II Medical Centre Nedlands , Western Australia, Australia.,School of Medicine and Pharmacology, University of Western Australia, Perth, Australia
| | - Melanie C Matheson
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | | | | | - Janina S Ried
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jin Li
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, PA, USA
| | - Xian Bo Zuo
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Dong Zheng
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Xian Yong Yin
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Liang Dan Sun
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Maeve A McAleer
- National Children's Research Centre, Crumlin, Dublin, Ireland.,Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | | | | - Linda E Campbell
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Milan Macek
- Department of Biology and Medical Genetics, University Hospital Motol and 2nd Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Michael Kurek
- Department of Clinical Allergology, Pomeranian, Pomeranian Medical University, Szczecin, Poland
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Jouke Jan Hottenga
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
| | - Christel M Middeldorp
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands
| | - Pirro Hysi
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Veronique Bataille
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Tim Spector
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Carla Mt Tiesler
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Division of Metabolic Diseases and Nutritional Medicine, Munich, Germany
| | - Elisabeth Thiering
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Ludwig-Maximilians-University of Munich, Dr. von Hauner Children's Hospital, Division of Metabolic Diseases and Nutritional Medicine, Munich, Germany
| | - Badri Pahukasahasram
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA
| | - James J Yang
- School of Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Medea Imboden
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Natàlia Vilor-Tejedor
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Caroline L Relton
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ronny Myhre
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Wenche Nystad
- Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Adnan Custovic
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deborah A Meyers
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine (CIMED), Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, Stockholm, Sweden
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Angela Simpson
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, The University of Manchester and University Hospital of South Manchester National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hosptial, Gothenburg, Sweden.,Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hans Bisgaard
- Copenhagen Prospective Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Pompeu Fabra University (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.,Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Nicole M Probst Hensch
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - L Keoki Williams
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, MI, USA.,Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Keith M Godfrey
- Medical Research Council (MRC) Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service (NHS) Foundation Trust, Southampton, UK
| | - Carol A Wang
- School of Women's and Infants' Health, The University of Western Australia (UWA), Perth, Australia
| | - Dorret I Boomsma
- Dept Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, the Netherlands.,Institute for Health and Care Research (EMGO), VU University, Amsterdam, the Netherlands
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Deborah Jarvis
- Respiratory Epidemiology, Occupational Medicine and Public Health; National Heart and Lung Institute; Imperial College; London, UK.,Medical Research Council-Public Health England Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Wh Irwin McLean
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Alan D Irvine
- National Children's Research Centre, Crumlin, Dublin, Ireland.,Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Xue Jun Zhang
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children's Hospital of Philadelphia, PA, USA.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | | | - Liesbeth Duijts
- Department of Pediatrics, Erasmus MC, Rotterdam, the Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, the Netherlands
| | - Allan Linneberg
- Research Centre for Prevention and Health, Capital Region of Denmark, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
| | - Marjo-Riitta Jarvelin
- Biocenter Oulu, University of Oulu, Finland.,Department of Epidemiology and Biostatistics, Medical Research Council (MRC) Health Protection Agency (HPE) Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.,Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Markus M Noethen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Susanne Lau
- Pediatric Pneumology and Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Hübner
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Young-Ae Lee
- Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Clinic for Pediatric Allergy, Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mayumi Tamari
- Laboratory for Respiratory and Allergic Diseases, Center for Integrative Medical Sciences, Institute of Physical and Chemical Research (RIKEN), Yokohama, Japan
| | | | - Daniel Glass
- KCL Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Sara J Brown
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK.,Department of Dermatology, Ninewells Hospital and Medical School, Dundee, UK
| | - Joachim Heinrich
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - David M Evans
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK.,School of Social and Community Medicine, University of Bristol, Bristol, UK.,University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, Australia.,These authors jointly directed this work
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,These authors jointly directed this work
| |
Collapse
|
292
|
Terhorst D, Chelbi R, Wohn C, Malosse C, Tamoutounour S, Jorquera A, Bajenoff M, Dalod M, Malissen B, Henri S. Dynamics and Transcriptomics of Skin Dendritic Cells and Macrophages in an Imiquimod-Induced, Biphasic Mouse Model of Psoriasis. THE JOURNAL OF IMMUNOLOGY 2015; 195:4953-61. [DOI: 10.4049/jimmunol.1500551] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023]
|
293
|
Ono S, Kabashima K. Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). ALLERGO JOURNAL 2015. [DOI: 10.1007/s15007-015-0911-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
294
|
PI3-Kinase-γ Has a Distinct and Essential Role in Lung-Specific Dendritic Cell Development. Immunity 2015; 43:674-89. [DOI: 10.1016/j.immuni.2015.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 04/21/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022]
|
295
|
Li X, Liu X, Zhao Y, Zhong R, Song A, Sun L. Effect of thymosin α₁ on the phenotypic and functional maturation of dendritic cells from children with acute lymphoblastic leukemia. Mol Med Rep 2015; 12:6093-7. [PMID: 26239360 DOI: 10.3892/mmr.2015.4153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/15/2015] [Indexed: 11/06/2022] Open
Abstract
To determine the effect of thymosin α1 (Tα1) on the phenotypic and functional maturation of HL‑60 cells, freeze‑thaw antigen‑loaded dendritic cells (DCs) were derived from peripheral blood mononuclear cells (PBMCs) of children with acute lymphoblastic leukemia (ALL). The DCs were generated from the PBMC samples that were collected from the PB of 10 consecutive ALL children. On day 3 of culturing, the cells in the antigen + no Tα1 (AN) and antigen + Tα1 (AT) groups were incubated with 100 µl lysates obtained from freeze‑thaw cycling. After 5 days of incubation, the AT group was administered with 100 ng/ml Tα1. On day 8, the DCs were stained with fluorescein isothiocyanate‑conjugated cluster of differentiation (CD)1a, CD83 and HLA‑DR antibodies and analyzed by flow cytometry. In addition, the killing activity of cytotoxic T lymphocytes (CTLs) from the different groups on wild‑type leukemia cells was measured. The DCs in the AT group exhibited more apparent, characteristic dendritic morphologies than the control and AN group DCs. Furthermore, the lowest expression level of CD1a, and the highest expression of CD83 and HLA‑DR were observed in the AT group when compared with the AN and control groups (P<0.05). The lactate dehydrogenase release assay demonstrated that the killing rate of CTL in the AT group was significantly higher than that in the control and AN groups (P<0.01). Thus, Tα1 may markedly promote the phenotypic and functional maturation of DCs, and may serve as a suitable immunomodulator of DC‑based immunotherapy for treatment of hematological malignancies.
Collapse
Affiliation(s)
- Xuerong Li
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaodan Liu
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanxia Zhao
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ren Zhong
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Aiqin Song
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lirong Sun
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
296
|
Mokuda S, Miyazaki T, Ubara Y, Kanno M, Sugiyama E, Takasugi K, Masumoto J. CD1a+ survivin+ dendritic cell infiltration in dermal lesions of systemic sclerosis. Arthritis Res Ther 2015; 17:275. [PMID: 26419626 PMCID: PMC4588499 DOI: 10.1186/s13075-015-0785-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Proto-oncogene survivin is a member of the inhibitor of apoptosis (IAP) family of proteins. The presence of serous antibodies against survivin in patients with systemic sclerosis has been previously reported; however, there are few reports regarding the pathophysiological relationship between survivin and systemic sclerosis. We herein investigated the expression and function of survivin in SSc patients. METHODS We performed immunohistochemistry analyses to determine the expression of XIAP, cIAP and survivin in skin lesions from patients with SSc and non-SSc. The expression levels of survivin in peripheral blood mononuclear cells (PBMCs) obtained from SSc patients and healthy controls were evaluated using RT-PCR and flow cytometry. Additionally, the function of survivin was verified with overexpression experiments using monocyte-derived dendritic cells (Mo-DCs). RESULTS The expression patterns of both XIAP and cIAP were similar, while only the survivin expression differed between the SSc and non-SSc skin lesions. Survivin-overexpressing cells were detected in the SSc dermis frequently. The positive rate of survivin in SSc dermis (64.3%, 9/14) was higher than that in non-SSc dermis (11.2%, 1/9). Furthermore, survivin+ cells expressed CD1a, one of the DC markers. Real-time PCR and FACS analyses revealed that the survivin-WT (wild type) expression levels in PBMCs, in particular CD14+ monocytes, from SSc patients were higher than that from healthy controls. Additionally, the overexpression experiments showed that survivin-WT-overexpressing CD1a+ Mo-DCs have the characteristics of promoting cell cycle progression and decreasing apoptotic cells. CONCLUSIONS These findings suggest that dermal survivin+ CD1a+ cell infiltration may be a potential biomarker of SSc skin lesions. PBMCs and monocytes from SSc patients also overexpressed survivin; therefore, dermal survivin+ DC may be derived from peripheral blood monocytes. Additionally, survivin may be involved in dermal CD1a+ DC proliferation through cell cycle activation and resistance to apoptosis. Survivin may be an important molecule for the pathogenesis of SSc.
Collapse
Affiliation(s)
- Sho Mokuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan. .,Department of Pathology, Ehime University Proteo-Science Centre and Graduate School of Medicine, Shizukawa, Toon, Ehime, 791-0295, Japan. .,Department of Internal Medicine, Center for Rheumatic Diseases, Dohgo Spa Hospital, 21-21 Otsu Dohgo-Himezuka, Matsuyama, Ehime, 790-0858, Japan. .,Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Tatsuhiko Miyazaki
- Department of Pathology, Ehime University Proteo-Science Centre and Graduate School of Medicine, Shizukawa, Toon, Ehime, 791-0295, Japan.
| | - Yoshifumi Ubara
- Nephrology Center and the Okinaka Memorial Institute for Medical Research, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo, 105-8470, Japan.
| | - Masamoto Kanno
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Kiyoshi Takasugi
- Department of Internal Medicine, Center for Rheumatic Diseases, Dohgo Spa Hospital, 21-21 Otsu Dohgo-Himezuka, Matsuyama, Ehime, 790-0858, Japan.
| | - Junya Masumoto
- Department of Pathology, Ehime University Proteo-Science Centre and Graduate School of Medicine, Shizukawa, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
297
|
Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b+ dendritic cells. Proc Natl Acad Sci U S A 2015; 112:12782-7. [PMID: 26417101 DOI: 10.1073/pnas.1513532112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intranasal (i.n.) infections preferentially generate Th17 cells. We explored the basis for this anatomic preference by tracking polyclonal CD4(+) T cells specific for an MHC class II-bound peptide from the mucosal pathogen Streptococcus pyogenes. S. pyogenes MHC class II-bound peptide-specific CD4(+) T cells were first activated in the cervical lymph nodes following i.n. inoculation and then differentiated into Th17 cells. S. pyogenes-induced Th17 formation depended on TGF-β1 from dendritic cells and IL-6 from a CD301b(+) dendritic cell subset located in the cervical lymph nodes but not the spleen. Thus, the tendency of i.n. infection to induce Th17 cells is related to cytokine production by specialized dendritic cells that drain this site.
Collapse
|
298
|
Novel insights into the role of immune cells in skin and inducible skin-associated lymphoid tissue (iSALT). ACTA ACUST UNITED AC 2015; 24:170-179. [PMID: 27069837 PMCID: PMC4792357 DOI: 10.1007/s40629-015-0065-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 12/22/2022]
Abstract
The skin is equipped with serial barriers that provide rapid and efficient protection against external intruders. Beneath the epidermal physical barriers of the stratum corneum and the tight junctions, the integrated immune systems in both the epidermis and the dermis act in a coordinated manner to protect the host. This “immunological” barrier is composed of various cells, including skin-resident cells, such as keratinocytes, dendritic cells, tissue-resident macrophages, resident memory T cells, mast cells, and innate lymphoid cells. Additionally, infiltrating memory T cells, monocytes, neutrophils, basophils, and eosinophils are recruited in support of the host immunity. In addition to discussing the role of each of these cellular populations, we describe the concept of skin associated lymphoid tissue (SALT), which reminds us that the skin is an important component of the lymphatic system. We further describe the newly discovered phenomenon of multiple cell gathering under skin inflammation, which can be referred to as inducible SALT (iSALT). iSALT contributes to our understanding of SALT by highlighting the importance of direct cell-cell interaction in skin immunity.
Collapse
|
299
|
Da Silva DM, Woodham AW, Skeate JG, Rijkee LK, Taylor JR, Brand HE, Muderspach LI, Roman LD, Yessaian AA, Pham HQ, Matsuo K, Lin YG, McKee GM, Salazar AM, Kast WM. Langerhans cells from women with cervical precancerous lesions become functionally responsive against human papillomavirus after activation with stabilized Poly-I:C. Clin Immunol 2015; 161:197-208. [PMID: 26360252 DOI: 10.1016/j.clim.2015.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/15/2022]
Abstract
Human papillomavirus (HPV)-mediated suppression of Langerhans cell (LC) function can lead to persistent infection and development of cervical intraepithelial neoplasia (CIN). Women with HPV-induced high-grade CIN2/3 have not mounted an effective immune response against HPV, yet it is unknown if LC-mediated T cell activation from such women is functionally impaired against HPV. We investigated the functional activation of in vitro generated LC and their ability to induce HPV16-specific T cells from CIN2/3 patients after exposure to HPV16 followed by treatment with stabilized Poly-I:C (s-Poly-I:C). LC from patients exposed to HPV16 demonstrated a lack of costimulatory molecule expression, inflammatory cytokine secretion, and chemokine-directed migration. Conversely, s-Poly-I:C caused significant phenotypic and functional activation of HPV16-exposed LC, which resulted in de novo generation of HPV16-specific CD8(+) T cells. Our results highlight that LC of women with a history of persistent HPV infection can present HPV antigens and are capable of inducing an adaptive T cell immune response when given the proper stimulus, suggesting that s-Poly-I:C compounds may be attractive immunomodulators for LC-mediated clearance of persistent HPV infection.
Collapse
Affiliation(s)
- Diane M Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA.
| | - Andrew W Woodham
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Joseph G Skeate
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Laurie K Rijkee
- Groningen International Program of Science in Medicine, University of Groningen, Groningen, The Netherlands
| | - Julia R Taylor
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Heike E Brand
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Laila I Muderspach
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Lynda D Roman
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Annie A Yessaian
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Huyen Q Pham
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Koji Matsuo
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | - Yvonne G Lin
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
| | | | | | - W Martin Kast
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA; Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA; Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
300
|
Guo H, Cheng Y, Shapiro J, McElwee K. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol 2015; 11:1335-51. [PMID: 26548356 DOI: 10.1586/1744666x.2015.1085306] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alopecia areata (AA) development is associated with both innate and adaptive immune cell activation, migration to peri- and intra-follicular regions, and hair follicle disruption. Both CD4(+) and CD8(+) lymphocytes are abundant in AA lesions; however, CD8(+) cytotoxic T lymphocytes are more likely to enter inside hair follicles, circumstantially suggesting that they have a significant role to play in AA development. Several rodent models recapitulate important features of the human autoimmune disease and demonstrate that CD8(+) cytotoxic T lymphocytes are fundamentally required for AA induction and perpetuation. However, the initiating events, the self-antigens involved, and the molecular signaling pathways, all need further exploration. Studying CD8(+) cytotoxic T lymphocytes and their fate decisions in AA development may reveal new and improved treatment approaches.
Collapse
Affiliation(s)
- Hongwei Guo
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,b 2 Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Yabin Cheng
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
| | - Jerry Shapiro
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,c 3 Department of Dermatology, New York University, Langone Medical Center, New York, USA
| | - Kevin McElwee
- a 1 Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada.,d 4 Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|