251
|
Abstract
PURPOSE OF REVIEW Cell senescence is implicated in numerous age-related conditions. Antiageing therapies and nutritional approaches have been researched for purposes of removing senescent cells (senolytics) to treat or prevent age-related diseases, such as cognitive impairment and Alzheimer's disease. In this updated review, we examined the evidence from the last 18 months regarding nutrition senolytics, with a focus on cognitive ageing among older adults. RECENT FINDINGS Overall, 19 systematic reviews and 17 intervention studies were included. Studies failed to provide evidence of nutritional senolytic agents or senescence-associated secretory phenotype (SASP) suppressors, for oral supplements providing beneficial effects on cognitive ageing among older adults. The protective role of food sources such as berries and nuts, and dietary patterns of Mediterranean diet and Mediterranean-DASH diet Intervention for Neurodegenerative Delay diet against cognitive decline or risk of dementia have been mostly supported by recent studies. SUMMARY The present review gathered additional evidence for both oral supplements and foods/diets rich in nutritional senolytic agents or SASP suppressors on cognitive health among older adults. In pursuing antiageing strategies, the importance of whole foods and healthy diets should not be overlooked, future studies are warranted on long-term effects and cytotoxicity of nutritional senolytics.
Collapse
Affiliation(s)
- Xi Chen
- Dementia Centre for Research Collaboration
| | - Henry Brodaty
- Dementia Centre for Research Collaboration
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales
| | - Fiona O'Leary
- Discipline of Nutrition and Dietetics, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
252
|
Daly RM, Iuliano S, Fyfe JJ, Scott D, Kirk B, Thompson MQ, Dent E, Fetterplace K, Wright ORL, Lynch GS, Zanker J, Yu S, Kurrle S, Visvanathan R, Maier AB. Screening, Diagnosis and Management of Sarcopenia and Frailty in Hospitalized Older Adults: Recommendations from the Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Expert Working Group. J Nutr Health Aging 2022; 26:637-651. [PMID: 35718874 DOI: 10.1007/s12603-022-1801-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sarcopenia and frailty are highly prevalent conditions in older hospitalized patients, which are associated with a myriad of adverse clinical outcomes. This paper, prepared by a multidisciplinary expert working group from the Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR), provides an up-to-date overview of current evidence and recommendations based on a narrative review of the literature for the screening, diagnosis, and management of sarcopenia and frailty in older patients within the hospital setting. It also includes suggestions on potential pathways to implement change to encourage widespread adoption of these evidence-informed recommendations within hospital settings. The expert working group concluded there was insufficient evidence to support any specific screening tool for sarcopenia and recommends an assessment of probable sarcopenia/sarcopenia using established criteria for all older (≥65 years) hospitalized patients or in younger patients with conditions (e.g., comorbidities) that may increase their risk of sarcopenia. Diagnosis of probable sarcopenia should be based on an assessment of low muscle strength (grip strength or five times sit-to-stand) with sarcopenia diagnosis including low muscle mass quantified from dual energy X-ray absorptiometry, bioelectrical impedance analysis or in the absence of diagnostic devices, calf circumference as a proxy measure. Severe sarcopenia is represented by the addition of impaired physical performance (slow gait speed). All patients with probable sarcopenia or sarcopenia should be investigated for causes (e.g., chronic/acute disease or malnutrition), and treated accordingly. For frailty, it is recommended that all hospitalized patients aged 70 years and older be screened using a validated tool [Clinical Frailty Scale (CFS), Hospital Frailty Risk Score, the FRAIL scale or the Frailty Index]. Patients screened as positive for frailty should undergo further clinical assessment using the Frailty Phenotype, Frailty Index or information collected from a Comprehensive Geriatric Assessment (CGA). All patients identified as frail should receive follow up by a health practitioner(s) for an individualized care plan. To treat older hospitalized patients with probable sarcopenia, sarcopenia, or frailty, it is recommended that a structured and supervised multi-component exercise program incorporating elements of resistance (muscle strengthening), challenging balance, and functional mobility training be prescribed as early as possible combined with nutritional support to optimize energy and protein intake and correct any deficiencies. There is insufficient evidence to recommend pharmacological agents for the treatment of sarcopenia or frailty. Finally, to facilitate integration of these recommendations into hospital settings organization-wide approaches are needed, with the Spread and Sustain framework recommended to facilitate organizational culture change, with the help of 'champions' to drive these changes. A multidisciplinary team approach incorporating awareness and education initiatives for healthcare professionals is recommended to ensure that screening, diagnosis and management approaches for sarcopenia and frailty are embedded and sustained within hospital settings. Finally, patients and caregivers' education should be integrated into the care pathway to facilitate adherence to prescribed management approaches for sarcopenia and frailty.
Collapse
Affiliation(s)
- R M Daly
- Professor Robin M. Daly, Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, Melbourne, Victoria, Australia 3125, Phone: +61 3 9244 6040, , ORCID ID: 0000-0002-9897-1598
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Sea cucumber enzymatic hydrolysates relieve osteoporosis through OPG/RANK/RANKL system in ovariectomized rats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
254
|
Medenica S, Abazovic D, Ljubić A, Vukovic J, Begovic A, Cucinella G, Zaami S, Gullo G. The Role of Cell and Gene Therapies in the Treatment of Infertility in Patients with Thyroid Autoimmunity. Int J Endocrinol 2022; 2022:4842316. [PMID: 36081621 PMCID: PMC9448571 DOI: 10.1155/2022/4842316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/03/2022] [Indexed: 12/02/2022] Open
Abstract
There is a rising incidence of infertility worldwide, and many couples experience difficulties conceiving nowadays. Thyroid autoimmunity (TAI) is recognized as one of the major female infertility causes related to a diminished ovarian reserve and potentially impaired oocyte maturation and embryo development, causing adverse pregnancy outcomes. Growing evidence has highlighted its impact on spontaneously achieved pregnancy and pregnancy achieved by in vitro fertilization. Despite the influence of thyroid hormones on the male reproductive system, there is insufficient data on the association between TAI and male infertility. In past years, significant progress has been achieved in cell and gene therapies as emerging treatment options for infertility. Cell therapies utilize living cells to restore healthy tissue microenvironment and homeostasis and usually involve platelet-rich plasma and various stem cells. Using stem cells as therapeutic agents has many advantages, including simple sampling, abundant sources, poor immunogenicity, and elimination of ethical concerns. Mesenchymal Stem Cells (MSCs) represent a heterogeneous fraction of self-renewal, multipotent non-hematopoietic stem cells that display profound immunomodulatory and immunosuppressive features and promising therapeutic effects. Infertility has a genetic component in about half of all cases, although most of its genetic causes are still unknown. Hence, it is essential to identify genes involved in meiosis, DNA repair, ovarian development, steroidogenesis, and folliculogenesis, as well as those involved in spermatogenesis in order to develop potential gene therapies for infertility. Despite advances in therapy approaches such as biological agents, autoimmune disorders remain impossible to cure. Recent research demonstrates the remarkable therapeutic effectiveness of MSCs in a wide array of autoimmune diseases. TAI is one of many autoimmune disorders that can benefit from the use of MSCs, which can be derived from bone marrow and adipose tissue. Cell and gene therapies hold great potential for treating autoimmune conditions, although further research is still needed.
Collapse
Affiliation(s)
- Sanja Medenica
- Department of Endocrinology, Internal Medicine Clinic, Clinical Center of Montenegro, School of Medicine, University of Montenegro, Podgorica, Montenegro
| | | | - Aleksandar Ljubić
- Biocell Hospital, Belgrade, Serbia
- Special Gynecology Hospital with Maternity Ward Jevremova, Belgrade, Serbia
- Libertas International University, Dubrovnik, Croatia
| | | | | | - Gaspare Cucinella
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF UNIT, University of Palermo, Palermo, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Giuseppe Gullo
- Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, IVF UNIT, University of Palermo, Palermo, Italy
| |
Collapse
|
255
|
Tseng CH. The Effect of Metformin on Male Reproductive Function and Prostate: An Updated Review. World J Mens Health 2022; 40:11-29. [PMID: 33831975 PMCID: PMC8761231 DOI: 10.5534/wjmh.210001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/02/2022] Open
Abstract
Metformin is the first-line oral antidiabetic drug that shows multiple pleiotropic effects of anti-inflamation, anti-cancer, anti-aging, anti-microbia, anti-atherosclerosis, and immune modulation. Metformin's effects on men's related health are reviewed here, focusing on reproductive health under subtitles of erectile dysfunction (ED), steroidogenesis and spermatogenesis; and on prostate-related health under subtitles of prostate specific antigen (PSA), prostatitis, benign prostate hyperplasia (BPH), and prostate cancer (PCa). Updated literature suggests a potential role of metformin on arteriogenic ED but controversial and contradictory effects (either protective or harmful) on testicular functions of testosterone synthesis and spermatogenesis. With regards to prostate-related health, metformin use may be associated with lower levels of PSA in humans, but its clinical implications require more research. Although there is a lack of research on metform's effect on prostatitis, it may have potential benefits through its anti-microbial and anti-inflammatory properties. Metformin may reduce the risk of BPH by inhibiting the insulin-like growth factor 1 pathway and some but not all studies suggest a protective role of metformin on the risk of PCa. Many clinical trials are being conducted to investigate the use of metformin as an adjuvant therapy for PCa but results currently available are not conclusive. While some trials suggest a benefit in reducing the metastasis and recurrence of PCa, others do not show any benefit. More research works are warranted to illuminate the potential usefulness of metformin in the promotion of men's health.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Division of Environmental Health and Occupational Medicine of the National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
256
|
Yang R, Zhang J, Li J, Qin R, Chen J, Wang R, Goltzman D, Miao D. Inhibition of Nrf2 degradation alleviates age-related osteoporosis induced by 1,25-Dihydroxyvitamin D deficiency. Free Radic Biol Med 2022; 178:246-261. [PMID: 34890768 DOI: 10.1016/j.freeradbiomed.2021.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that 1,25(OH)2D plays an anti-osteoporosis role by an anti-aging mechanism. Oxidative stress is a key mediator of aging and bone loss; however, whether 1,25(OH)2D can exert its anti-osteoporosis effect by inhibiting oxidative stress is unclear. In this study, osteoporosis and the bone aging phenotype induced by 1,25(OH)2D deficiency in male mice were significantly rescued in vivo upon the supplementation of oltipraz, an inhibitor of Nrf2 degradation. Increased oxidative stress, cellular senescence and reduced osteogenesis of BM-MSCs from VDR knockout mice were also significantly rescued when the cells were pre-treated with oltipraz. We found that 1,25(OH)2D3 promoted Nrf2 accumulation by inhibiting its ubiquitin-proteasome degradation, thus facilitating Nrf2 activation of its transcriptional targets. Mechanistically, 1,25(OH)2D3 enhances VDR-mediated recruitment of Ezh2 and facilitation of H3K27me3 action at the promoter region of Keap1, thus transcriptionally repressing Keap1. To further validate that the Nrf2-Keap1 pathway serves as the key mediator in the anabolic effect of 1,25(OH)2D3 on bone, Nrf2-/- mice, or hBM-MSCs with shRNA-mediated Nrf2-knockdown, were treated with 1,25(OH)2D3; we found that Nrf2 knockout largely blocked the bone anabolic effect of 1,25(OH)2D3 in vivo and ex vivo, and Nrf2 knockdown in hBM-MSCs markedly blocked the role of 1,25(OH)2D3 in inhibiting oxidative stress and promoting osteogenic differentiation and bone formation. This study provides insight into the mechanism whereby 1,25(OH)2D3 postpones age-related osteoporosis via VDR-mediated activation of Nrf2-antioxidant signaling and inhibition of oxidative stress, and thus provides evidence for oltipraz as a potential reagent for clinical prevention and treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Renlei Yang
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jiao Zhang
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ran Qin
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jie Chen
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dengshun Miao
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
257
|
Bhusal A, Rahman MH, Suk K. Hypothalamic inflammation in metabolic disorders and aging. Cell Mol Life Sci 2021; 79:32. [PMID: 34910246 PMCID: PMC11071926 DOI: 10.1007/s00018-021-04019-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022]
Abstract
The hypothalamus is a critical brain region for the regulation of energy homeostasis. Over the years, studies on energy metabolism primarily focused on the neuronal component of the hypothalamus. Studies have recently uncovered the vital role of glial cells as an additional player in energy balance regulation. However, their inflammatory activation under metabolic stress condition contributes to various metabolic diseases. The recruitment of monocytes and macrophages in the hypothalamus helps sustain such inflammation and worsens the disease state. Neurons were found to actively participate in hypothalamic inflammatory response by transmitting signals to the surrounding non-neuronal cells. This activation of different cell types in the hypothalamus leads to chronic, low-grade inflammation, impairing energy balance and contributing to defective feeding habits, thermogenesis, and insulin and leptin signaling, eventually leading to metabolic disorders (i.e., diabetes, obesity, and hypertension). The hypothalamus is also responsible for the causation of systemic aging under metabolic stress. A better understanding of the multiple factors contributing to hypothalamic inflammation, the role of the different hypothalamic cells, and their crosstalks may help identify new therapeutic targets. In this review, we focus on the role of glial cells in establishing a cause-effect relationship between hypothalamic inflammation and the development of metabolic diseases. We also cover the role of other cell types and discuss the possibilities and challenges of targeting hypothalamic inflammation as a valid therapeutic approach.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Division of Endocrinology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
258
|
Ni YQ, Liu YS. New Insights into the Roles and Mechanisms of Spermidine in Aging and Age-Related Diseases. Aging Dis 2021; 12:1948-1963. [PMID: 34881079 PMCID: PMC8612618 DOI: 10.14336/ad.2021.0603] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
High incidences of morbidity and mortality associated with age-related diseases among the elderly population are a socio-economic challenge. Aging is an irreversible and inevitable process that is a risk factor for pathological progression of diverse age-related diseases. Spermidine, a natural polyamine, plays a critical role in molecular and cellular interactions involved in various physiological and functional processes. Spermidine has been shown to modulate aging, suppress the occurrence and severity of age-related diseases, and prolong lifespan. However, the precise mechanisms through which spermidine exerts its anti-aging effects have not been established. In this review, we elucidate on the mechanisms and roles underlying the beneficial effects of spermidine in aging from a molecular and cellular perspective. Moreover, we provide new insights into the promising potential diagnostic and therapeutic applications of spermidine in aging and age-related diseases.
Collapse
Affiliation(s)
- Yu-Qing Ni
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| | - You-Shuo Liu
- 1Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,2Institute of Aging and Age-related Disease Research, Central South University, Changsha, Hunan, China
| |
Collapse
|
259
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
260
|
Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep 2021; 11:23237. [PMID: 34853352 PMCID: PMC8636588 DOI: 10.1038/s41598-021-02544-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of adipose tissue with aging and the accumulation of senescent cells has been implicated in the pathophysiology of chronic diseases. Recently interventions capable of reducing the burden of senescent cells and in particular the identification of a new class of drugs termed senolytics have been object of extensive investigation. We used an in vitro model of induced senescence by treating both pre-adipocytes as well as mature adipocytes with hydrogen peroxide (H2O2) at a sub-lethal concentration for 3 h for three consecutive days, and hereafter with 20 uM quercetin at a dose that in preliminary experiments resulted to be senolytic without cytotoxicity. H2O2 treated pre-adipocytes and adipocytes showed typical senescence-associated features including increased beta-galactosidase activity (SA-ß-gal) and p21, activation of ROS and increased expression of pro-inflammatory cytokines. The treatment with quercetin in senescent pre-adipocytes and adipocytes was associated to a significant decrease in the number of the SA-β-gal positive cells along with the suppression of ROS and of inflammatory cytokines. Besides, quercetin treatment decreased miR-155-5p expression in both models, with down-regulation of p65 and a trend toward an up-regulation of SIRT-1 in complete cell extracts. The senolytic compound quercetin could affect AT ageing by reducing senescence, induced in our in vitro model by oxidative stress. The downregulation of miRNA-155-5p, possibly through the modulation of NF-κB and SIRT-1, could have a key role in the effects of quercetin on both pre-adipocytes and adipocytes.
Collapse
|
261
|
Lu S, Louphrasitthiphol P, Goradia N, Lambert JP, Schmidt J, Chauhan J, Rughani MG, Larue L, Wilmanns M, Goding CR. TBX2 controls a proproliferative gene expression program in melanoma. Genes Dev 2021; 35:1657-1677. [PMID: 34819350 PMCID: PMC8653791 DOI: 10.1101/gad.348746.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Senescence shapes embryonic development, plays a key role in aging, and is a critical barrier to cancer initiation, yet how senescence is regulated remains incompletely understood. TBX2 is an antisenescence T-box family transcription repressor implicated in embryonic development and cancer. However, the repertoire of TBX2 target genes, its cooperating partners, and how TBX2 promotes proliferation and senescence bypass are poorly understood. Here, using melanoma as a model, we show that TBX2 lies downstream from PI3K signaling and that TBX2 binds and is required for expression of E2F1, a key antisenescence cell cycle regulator. Remarkably, TBX2 binding in vivo is associated with CACGTG E-boxes, present in genes down-regulated by TBX2 depletion, more frequently than the consensus T-element DNA binding motif that is restricted to Tbx2 repressed genes. TBX2 is revealed to interact with a wide range of transcription factors and cofactors, including key components of the BCOR/PRC1.1 complex that are recruited by TBX2 to the E2F1 locus. Our results provide key insights into how PI3K signaling modulates TBX2 function in cancer to drive proliferation.
Collapse
Affiliation(s)
- Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.,Department of Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nishit Goradia
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec City, Québec G1R 3S3, Canada; CHU de Québec Research Center, Centre Hospitalier de l'Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Johannes Schmidt
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Milap G Rughani
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Lionel Larue
- Institut Curie, PSL Research University, U1021, Institut National de la Santé et de la Recherche Médicale, Normal and Pathological Development of Melanocytes, 91405 Orsay Cedex, France.,Université Paris-Sud, Université Paris-Saclay, UMR 3347 Centre National de la Recherche Scientifique, 91405 Orsay Cedex, France.,Equipe Labellisée Ligue Contre le Cancer, 91405 Orsay Cedex, France
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, 22607 Hamburg, Germany.,University Hamburg Clinical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
262
|
Xu Q, Fu Q, Li Z, Liu H, Wang Y, Lin X, He R, Zhang X, Ju Z, Campisi J, Kirkland JL, Sun Y. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat Metab 2021; 3:1706-1726. [PMID: 34873338 PMCID: PMC8688144 DOI: 10.1038/s42255-021-00491-8] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Ageing-associated functional decline of organs and increased risk for age-related chronic pathologies is driven in part by the accumulation of senescent cells, which develop the senescence-associated secretory phenotype (SASP). Here we show that procyanidin C1 (PCC1), a polyphenolic component of grape seed extract (GSE), increases the healthspan and lifespan of mice through its action on senescent cells. By screening a library of natural products, we find that GSE, and PCC1 as one of its active components, have specific effects on senescent cells. At low concentrations, PCC1 appears to inhibit SASP formation, whereas it selectively kills senescent cells at higher concentrations, possibly by promoting production of reactive oxygen species and mitochondrial dysfunction. In rodent models, PCC1 depletes senescent cells in a treatment-damaged tumour microenvironment and enhances therapeutic efficacy when co-administered with chemotherapy. Intermittent administration of PCC1 to either irradiated, senescent cell-implanted or naturally aged old mice alleviates physical dysfunction and prolongs survival. We identify PCC1 as a natural senotherapeutic agent with in vivo activity and high potential for further development as a clinical intervention to delay, alleviate or prevent age-related pathologies.
Collapse
Affiliation(s)
- Qixia Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Fu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China
| | - Zi Li
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hanxin Liu
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ruikun He
- Science & Technology Centre, By-Health Corp. Ltd., Guangzhou, China
| | - Xuguang Zhang
- Science & Technology Centre, By-Health Corp. Ltd., Guangzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumour, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, China.
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA.
| |
Collapse
|
263
|
|
264
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
265
|
Khosla S, Samakkarnthai P, Monroe DG, Farr JN. Update on the pathogenesis and treatment of skeletal fragility in type 2 diabetes mellitus. Nat Rev Endocrinol 2021; 17:685-697. [PMID: 34518671 PMCID: PMC8605611 DOI: 10.1038/s41574-021-00555-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Fracture risk is increased in patients with type 2 diabetes mellitus (T2DM). In addition, these patients sustain fractures despite having higher levels of areal bone mineral density, as measured by dual-energy X-ray absorptiometry, than individuals without T2DM. Thus, additional factors such as alterations in bone quality could have important roles in mediating skeletal fragility in patients with T2DM. Although the pathogenesis of increased fracture risk in T2DM is multifactorial, impairments in bone material properties and increases in cortical porosity have emerged as two key skeletal abnormalities that contribute to skeletal fragility in patients with T2DM. In addition, indices of bone formation are uniformly reduced in patients with T2DM, with evidence from mouse studies published over the past few years linking this abnormality to accelerated skeletal ageing, specifically cellular senescence. In this Review, we highlight the latest advances in our understanding of the mechanisms of skeletal fragility in patients with T2DM and suggest potential novel therapeutic approaches to address this problem.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Parinya Samakkarnthai
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
- Division of Endocrinology, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - David G Monroe
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Division of Endocrinology and Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
266
|
Kim MN, Moon JH, Cho YM. Sodium-glucose cotransporter-2 inhibition reduces cellular senescence in the diabetic kidney by promoting ketone body-induced NRF2 activation. Diabetes Obes Metab 2021; 23:2561-2571. [PMID: 34318973 DOI: 10.1111/dom.14503] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/07/2021] [Accepted: 07/25/2021] [Indexed: 01/10/2023]
Abstract
AIMS To evaluate whether sodium-glucose cotransporter-2 (SGLT2) inhibition reduces cellular senescence in the kidney and to investigate the molecular pathways involved in the renoprotective effect. MATERIALS AND METHODS Dapagliflozin (1 mg/kg), glimepiride (2.5 mg/kg) or vehicle was administered daily via oral gavage for 8 weeks in db/db mice. Expression levels of ageing marker genes (p21, p16, and p53) and oxidative stress were measured in the kidney using real-time RT-PCR, immunohistochemistry, and Western blot analysis. For in vitro analysis, HK-2 cells, a human renal tubular epithelial cell line, were pretreated with H2 O2 to induce cellular senescence, and the levels of ageing markers were measured after treatment with β-hydroxybutyrate (β-HB) or NRF2-specific siRNA. RESULTS Expression levels of ageing marker genes (p21, p16 and p53) and senescence-associated secretory phenotypes of the kidney were increased in the vehicle-treated db/db (db/db + vehicle) group compared with the db/+ group, and this increase was markedly reversed in the dapagliflozin-treated db/db (db/db + SGLT2 inhibitor) group, but not in the glimepiride-treated db/db (db/db + sulphonylurea [SU]) group. In the kidneys of mice in the db/db + SGLT2 inhibitor group, oxidative stress and DNA damage were also reduced compared with those of mice in the db/db + vehicle and db/db + SU groups. Dapagliflozin increased plasma β-HB, which reduced H2 O2 -induced DNA damage and senescence in HK-2 cells. β-HB-induced NRF2 nuclear translocation mediated anti-senescent effects by inducing antioxidant pathways. CONCLUSIONS Dapagliflozin prevented the progression of diabetic kidney disease by inhibiting cellular senescence and oxidative stress via ketone-induced NRF2 activation.
Collapse
Affiliation(s)
- Mi Na Kim
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Joon Ho Moon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Young Min Cho
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Institute on Aging, Seoul National University, Seoul, South Korea
| |
Collapse
|
267
|
Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacol Res 2021; 177:105961. [PMID: 34718135 DOI: 10.1016/j.phrs.2021.105961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Senescence suppresses tumor growth, while also developing a tumorigenic state in the nearby cells that is mediated by senescence-associated secretory phenotypes (SASPs). The dual function of cellular senescence stresses the need for identifying multi-targeted agents directed towards the promotion of cell senescence in cancer cells and suppression of the secretion of pro-tumorigenic signaling mediators in neighboring cells. Natural secondary metabolites have shown favorable anticancer responses in recent decades, as some have been found to target the senescence-associated mediators and pathways. Furthermore, phenolic compounds and polyphenols, terpenes and terpenoids, alkaloids, and sulfur-containing compounds have shown to be promising anticancer agents through the regulation of paracrine and autocrine pathways. Plant secondary metabolites are potential regulators of SASPs factors that suppress tumor growth through paracrine mediators, including growth factors, cytokines, extracellular matrix components/enzymes, and proteases. On the other hand, ataxia-telangiectasia mutated, ataxia-telangiectasia and Rad3-related, extracellular signal-regulated kinase/mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, nuclear factor-κB, Janus kinase/signal transducer and activator of transcription, and receptor tyrosine kinase-associated mediators are main targets of candidate phytochemicals in the autocrine senescence pathway. Such a regulatory role of phytochemicals on senescence-associated pathways are associated with cell cycle arrest and the attenuation of apoptotic/inflammatory/oxidative stress pathways. The current systematic review highlights the critical roles of natural secondary metabolites in the attenuation of autocrine and paracrine cellular senescence pathways, while also elucidating the chemopreventive and chemotherapeutic capabilities of these compounds. Additionally, we discuss current challenges, limitations, and future research indications.
Collapse
|
268
|
Saul D, Monroe DG, Rowsey JL, Kosinsky RL, Vos SJ, Doolittle ML, Farr JN, Khosla S. Modulation of fracture healing by the transient accumulation of senescent cells. eLife 2021; 10:69958. [PMID: 34617510 PMCID: PMC8526061 DOI: 10.7554/elife.69958] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
Senescent cells have detrimental effects across tissues with aging but may have beneficial effects on tissue repair, specifically on skin wound healing. However, the potential role of senescent cells in fracture healing has not been defined. Here, we performed an in silico analysis of public mRNAseq data and found that senescence and senescence-associated secretory phenotype (SASP) markers increased during fracture healing. We next directly established that the expression of senescence biomarkers increased markedly during murine fracture healing. We also identified cells in the fracture callus that displayed hallmarks of senescence, including distension of satellite heterochromatin and telomeric DNA damage; the specific identity of these cells, however, requires further characterization. Then, using a genetic mouse model (Cdkn2aLUC) containing a Cdkn2aInk4a-driven luciferase reporter, we demonstrated transient in vivo senescent cell accumulation during callus formation. Finally, we intermittently treated young adult mice following fracture with drugs that selectively eliminate senescent cells (‘senolytics’, Dasatinib plus Quercetin), and showed that this regimen both decreased senescence and SASP markers in the fracture callus and significantly accelerated the time course of fracture healing. Our findings thus demonstrate that senescent cells accumulate transiently in the murine fracture callus and, in contrast to the skin, their clearance does not impair but rather improves fracture healing.
Collapse
Affiliation(s)
- Dominik Saul
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany
| | - David G Monroe
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| | - Jennifer L Rowsey
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, United States
| | - Stephanie J Vos
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Madison L Doolittle
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| | - Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, United States.,Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States.,Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, Goettingen, Germany.,Division of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, United States
| |
Collapse
|
269
|
Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab 2021; 33:1957-1973.e6. [PMID: 34614408 DOI: 10.1016/j.cmet.2021.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 08/14/2021] [Indexed: 01/18/2023]
Abstract
Skeletal aging is characterized by low bone turnover and marrow fat accumulation. However, the underlying mechanism for this imbalance is unclear. Here, we show that during aging in rats and mice proinflammatory and senescent subtypes of immune cells, including macrophages and neutrophils, accumulate in the bone marrow and secrete abundant grancalcin. The injection of recombinant grancalcin into young mice was sufficient to induce premature skeletal aging. In contrast, genetic deletion of Gca in neutrophils and macrophages delayed skeletal aging. Mechanistically, we found that grancalcin binds to the plexin-b2 receptor and partially inactivates its downstream signaling pathways, thus repressing osteogenesis and promoting adipogenesis of bone marrow mesenchymal stromal cells. Heterozygous genetic deletion of Plexnb2 in skeletal stem cells abrogated the improved bone phenotype of Gca-knockout mice. Finally, we developed a grancalcin-neutralizing antibody and showed that its treatment of older mice improved bone health. Together, our data suggest that grancalcin could be a potential target for the treatment of age-related osteoporosis.
Collapse
|
270
|
Gasek NS, Kuchel GA, Kirkland JL, Xu M. Strategies for Targeting Senescent Cells in Human Disease. NATURE AGING 2021; 1:870-879. [PMID: 34841261 PMCID: PMC8612694 DOI: 10.1038/s43587-021-00121-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022]
Abstract
Cellular senescence represents a distinct cell fate characterized by replicative arrest in response to a host of extrinsic and intrinsic stresses. Senescence provides programming during development and wound healing, while limiting tumorigenesis. However, pathologic accumulation of senescent cells is implicated in a range of diseases and age-associated morbidities across organ systems. Senescent cells produce distinct paracrine and endocrine signals, causing local tissue dysfunction and exerting deleterious systemic effects. Senescent cell removal by apoptosis-inducing "senolytic" agents or therapies that inhibit the senescence-associated secretory phenotype, SASP inhibitors, have demonstrated benefit in both pre-clinical and clinical models of geriatric decline and chronic diseases, suggesting senescent cells represent a pharmacologic target for alleviating effects of fundamental aging processes. However, senescent cell populations are heterogeneous in form, function, tissue distribution, and even differ among species, possibly explaining issues of bench-to-bedside translation in current clinical trials. Here, we review features of senescent cells and strategies for targeting them, including immunologic approaches, as well as key intracellular signaling pathways. Additionally, we survey current senolytic therapies in human trials. Collectively, there is demand for research to develop targeted senotherapeutics that address the needs of the aging and chronically-ill.
Collapse
Affiliation(s)
- Nathan S. Gasek
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| | | | | | - Ming Xu
- UConn Center on Aging, UConn Health, Farmington, CT
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT
| |
Collapse
|
271
|
Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M, Moshage H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech Ageing Dev 2021; 199:111572. [PMID: 34536446 DOI: 10.1016/j.mad.2021.111572] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Myofibroblasts play an important role in fibrogenesis. Hepatic stellate cells are the main precursors of myofibroblasts. Cellular senescence is the terminal cell fate in which proliferating cells undergo irreversible cell cycle arrest. Senescent hepatic stellate cells were identified in liver fibrosis. Senescent hepatic stellate cells display decreased collagen production and proliferation. Therefore, induction of senescence could be a protective mechanism against progression of liver fibrosis and the concept of therapy-induced senescence has been proposed to treat liver fibrosis. In this review, characteristics of senescent hepatic stellate cells and the essential signaling pathways involved in senescence are reviewed. Furthermore, the potential impact of senescent hepatic stellate cells on other liver cell types are discussed. Senescent cells are cleared by the immune system. The persistence of senescent cells can remodel the microenvironment and interact with inflammatory cells to induce aging-related dysfunction. Therefore, senolytics, a class of compounds that selectively induce death of senescent cells, were introduced as treatment to remove senescent cells and consequently decrease the disadvantageous effects of persisting senescent cells. The effects of senescent hepatic stellate cells in liver fibrosis need further investigation.
Collapse
Affiliation(s)
- Mengfan Zhang
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra Serna-Salas
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Turtushikh Damba
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Michaela Borghesan
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
272
|
Tripathi U, Nchioua R, Prata LGPL, Zhu Y, Gerdes EOW, Giorgadze N, Pirtskhalava T, Parker E, Xue A, Espindola-Netto JM, Stenger S, Robbins PD, Niedernhofer LJ, Dickinson SL, Allison DB, Kirchhoff F, Sparrer KMJ, Tchkonia T, Kirkland JL. SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging (Albany NY) 2021; 13:21838-21854. [PMID: 34531331 PMCID: PMC8507266 DOI: 10.18632/aging.203560] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Senescent cells, which arise due to damage-associated signals, are apoptosis-resistant and can express a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP). We recently reported that a component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface protein, S1, can amplify the SASP of senescent cultured human cells and that a related mouse β-coronavirus, mouse hepatitis virus (MHV), increases SASP factors and senescent cell burden in infected mice. Here, we show that SARS-CoV-2 induces senescence in human non-senescent cells and exacerbates the SASP in human senescent cells through Toll-like receptor-3 (TLR-3). TLR-3, which senses viral RNA, was increased in human senescent compared to non-senescent cells. Notably, genetically or pharmacologically inhibiting TLR-3 prevented senescence induction and SASP amplification by SARS-CoV-2 or Spike pseudotyped virus. While an artificial TLR-3 agonist alone was not sufficient to induce senescence, it amplified the SASP in senescent human cells. Consistent with these findings, lung p16INK4a+ senescent cell burden was higher in patients who died from acute SARS-CoV-2 infection than other causes. Our results suggest that induction of cellular senescence and SASP amplification through TLR-3 contribute to SARS-CoV-2 morbidity, indicating that clinical trials of senolytics and/or SASP/TLR-3 inhibitors for alleviating acute and long-term SARS-CoV-2 sequelae are warranted.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik Parker
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Ailing Xue
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm 89081, Germany
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephanie L. Dickinson
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - David B. Allison
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, IN 47405, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, MN 55905, USA
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
273
|
Rapid changes of miRNAs-20, -30, -410, -515, -134, and -183 and telomerase with psychological activity: A one year study on the relaxation response and epistemological considerations. J Tradit Complement Med 2021; 11:409-418. [PMID: 34522635 PMCID: PMC8427477 DOI: 10.1016/j.jtcme.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background and aim Mental stress represents a pivotal factor in cardiovascular diseases. The mechanism by which stress produces its deleterious effects is still under study, but one of the most explored pathways is inflammation-aging and cell senescence. In this scenario, circulating microRNAs appear to be regulatory elements of the telomerase activity and alternative splicing within the nuclear factor kappa-light-chain-enhancer (NF-κB) network. Anti-stress techniques appeared to be able to slow down the inflammatory and aging processes. As we recently verified, the practice of the relaxation response (RR) counteracted psychological stress and determined favorable changes of the NF-κB, p53, and toll-like receptor-4 (TLR-4) gene expression and in neurotransmitters, hormones, cytokines, and inflammatory circulating microRNAs. We aimed to verify a possible change in the serum levels of six other micro-RNAs of cardiovascular interest, involved in cell senescence and in the NF-κB network (miRNAs -20, -30, -410, -515, -134, and -183), and tested the activity of telomerase in peripheral blood mononuclear cells (PBMCs). Experimental procedure We measured the aforementioned molecules in the serum of patients with ischemic heart disease (and healthy controls) immediately before and after a relaxation response session, three times (after the baseline), in one year of follow-up. Results According to our data, the miRNA-20 and -30 levels and PBMCs-telomerase activity increased during the RR while the -410 and -515 levels decreased. During the RR sessions, both miRNA-134 and -183 decreased. Conclusion The mediators considered in this exploratory work appeared to vary rapidly with the psychological activity (in particular when focused on relaxation techniques) showing that psychological activity should be part of the future research on epigenetics. Epistemological perspectives are also discussed.
Collapse
|
274
|
Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res 2021; 9:41. [PMID: 34508069 PMCID: PMC8433460 DOI: 10.1038/s41413-021-00164-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
Emerging insights into cellular senescence highlight the relevance of senescence in musculoskeletal disorders, which represent the leading global cause of disability. Cellular senescence was initially described by Hayflick et al. in 1961 as an irreversible nondividing state in in vitro cell culture studies. We now know that cellular senescence can occur in vivo in response to various stressors as a heterogeneous and tissue-specific cell state with a secretome phenotype acquired after the initial growth arrest. In the past two decades, compelling evidence from preclinical models and human data show an accumulation of senescent cells in many components of the musculoskeletal system. Cellular senescence is therefore a defining feature of age-related musculoskeletal disorders, and targeted elimination of these cells has emerged recently as a promising therapeutic approach to ameliorate tissue damage and promote repair and regeneration of the skeleton and skeletal muscles. In this review, we summarize evidence of the role of senescent cells in the maintenance of bone homeostasis during childhood and their contribution to the pathogenesis of chronic musculoskeletal disorders, including osteoporosis, osteoarthritis, and sarcopenia. We highlight the diversity of the senescent cells in the microenvironment of bone, joint, and skeletal muscle tissue, as well as the mechanisms by which these senescent cells are involved in musculoskeletal diseases. In addition, we discuss how identifying and targeting senescent cells might positively affect pathologic progression and musculoskeletal system regeneration.
Collapse
|
275
|
Doolittle ML, Monroe DG, Farr JN, Khosla S. The role of senolytics in osteoporosis and other skeletal pathologies. Mech Ageing Dev 2021; 199:111565. [PMID: 34499959 DOI: 10.1016/j.mad.2021.111565] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
Abstract
The skeletal system undergoes irreversible structural deterioration with aging, leading to increased fracture risk and detrimental changes in mobility, posture, and gait. This state of low bone mass and microarchitectural changes, diagnosed as osteoporosis, affects millions of individuals worldwide and has high clinical and economic burdens. Recently, pre-clinical studies have linked the onset of age-related bone loss with an accumulation of senescent cells in the bone microenvironment. These senescent cells appear to be causal to age-related bone loss, as targeted clearance of these cells leads to improved bone mass and microarchitecture in old mice. Additionally, other pathologies leading to bone loss that result from DNA damage, such as cancer treatments, have shown improvements after clearance of senescent cells. The development of new therapies that clear senescent cells, termed "senolytics", is currently underway and may allow for the modulation of bone loss that results from states of high senescent cell burden, such as aging.
Collapse
Affiliation(s)
- Madison L Doolittle
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - David G Monroe
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Joshua N Farr
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States
| | - Sundeep Khosla
- Kogod Center on Aging and Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
276
|
Zhang XX, He SH, Liang X, Li W, Li TF, Li DF. Aging, Cell Senescence, the Pathogenesis and Targeted Therapies of Osteoarthritis. Front Pharmacol 2021; 12:728100. [PMID: 34497523 PMCID: PMC8419276 DOI: 10.3389/fphar.2021.728100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, debilitating joint disease characterized by progressive destruction of articular cartilage. For a long time, OA has been considered as a degenerative disease, while recent observations indicate the mechanisms responsible for the pathogenesis of OA are multifaceted. Aging is a key factor in its development. Current treatments are palliative and no disease modifying anti-osteoarthritis drugs (DMOADs) are available. In addition to articular cartilage degradation, cellular senescence, synovial inflammation, and epigenetic alterations may all have a role in its formation. Accumulating data demonstrate a clear relationship between the senescence of articular chondrocytes and OA formation and progression. Inhibition of cell senescence may help identify new agents with the properties of DMOADs. Several anti-cellular senescence strategies have been proposed and these include sirtuin-activating compounds (STACs), senolytics, and senomorphics drugs. These agents may selectively remove senescent cells or ameliorate their harmful effects. The results from preclinical experiments and clinical trials are inspiring. However, more studies are warranted to confirm their efficacy, safety profiles and adverse effects of these agents.
Collapse
Affiliation(s)
- Xin-Xin Zhang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hao He
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dai-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Magnetic Resonance Imaging, Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
277
|
Tripathi U, Misra A, Tchkonia T, Kirkland JL. Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. Mech Ageing Dev 2021; 198:111548. [PMID: 34352325 PMCID: PMC8373827 DOI: 10.1016/j.mad.2021.111548] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/13/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022]
Abstract
Cellular senescence, first observed and defined through cell culture studies, is a cell fate associated with essentially permanent cell cycle arrest and that can be triggered by a variety of inducers. Emerging evidence suggests senescence is a dynamic process with diverse functional characteristics. Depending on the tissue, type of inducer, and time since induction, senescent cells can promote tissue repair and re-modeling, prevent tumor development, or contribute to age-related disorders and chronic diseases, including cancers. Senescent cell characteristics appear to depend on multiple factors and be influenced by the milieu and other senescent cells locally and at a distance. We review diverse phenotypes of senescent cells originating from different cell types, senescence inducers over time since induction of senescence, and across conditions and diseases. This background is essential to inform further understanding about senescent cell subtypes and will point towards rational senescence-modulating strategies for achieving therapeutic benefit.
Collapse
Affiliation(s)
- Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Avanish Misra
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
278
|
Xu L, Wang Y, Wang J, Zhai J, Ren L, Zhu G. Radiation-Induced Osteocyte Senescence Alters Bone Marrow Mesenchymal Stem Cell Differentiation Potential via Paracrine Signaling. Int J Mol Sci 2021; 22:ijms22179323. [PMID: 34502232 PMCID: PMC8430495 DOI: 10.3390/ijms22179323] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence and its senescence-associated secretory phenotype (SASP) are widely regarded as promising therapeutic targets for aging-related diseases, such as osteoporosis. However, the expression pattern of cellular senescence and multiple SASP secretion remains unclear, thus leaving a large gap in the knowledge for a desirable intervention targeting cellular senescence. Therefore, there is a critical need to understand the molecular mechanism of SASP secretion in the bone microenvironment that can ameliorate aging-related degenerative pathologies including osteoporosis. In this study, osteocyte-like cells (MLO-Y4) were induced to cellular senescence by 2 Gy γ-rays; then, senescence phenotype changes and adverse effects of SASP on bone marrow mesenchymal stem cell (BMSC) differentiation potential were investigated. The results revealed that 2 Gy irradiation could hinder cell viability, shorten cell dendrites, and induce cellular senescence, as evidenced by the higher expression of senescence markers p16 and p21 and the elevated formation of senescence-associated heterochromatin foci (SAHF), which was accompanied by the enhanced secretion of SASP markers such as IL-1α, IL-6, MMP-3, IGFBP-6, resistin, and adiponectin. When 0.8 μM JAK1 inhibitors were added to block SASP secretion, the higher expression of SASP was blunted, but the inhibition in osteogenic and adipogenic differentiation potential of BMSCs co-cultured with irradiated MLO-Y4 cell conditioned medium (CM- 2 Gy) was alleviated. These results suggest that senescent osteocytes can perturb BMSCs’ differential potential via the paracrine signaling of SASP, which was also demonstrated by in vivo experiments. In conclusion, we identified the SASP factor partially responsible for the degenerative differentiation of BMSCs, which allowed us to hypothesize that senescent osteocytes and their SASPs may contribute to radiation-induced bone loss.
Collapse
|
279
|
Haghi-Aminjan H, Baeeri M, Khalid M, Rahimifard M, Mahdizadeh E, Hooshangi Shayesteh MR, Abdollahi M. Senolytic Effect of Cerium Oxide Nanoparticles (CeO2 NPs) by Attenuating p38/NF-кB, and p53/p21 Signaling Pathways. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
280
|
Li M, Zhao J, Tang Q, Zhang Q, Wang Y, Zhang J, Hao Y, Bai X, Lu Z. Lamivudine improves cognitive decline in SAMP8 mice: Integrating in vivo pharmacological evaluation and network pharmacology. J Cell Mol Med 2021; 25:8490-8503. [PMID: 34374199 PMCID: PMC8419189 DOI: 10.1111/jcmm.16811] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The reverse transcriptase inhibitors such as lamivudine (3TC) play important roles in anti‐ageing, but their effects on neurodegenerative diseases caused by ageing are not clear, especially on the functions of the nervous system such as cognition. In this study, we administered 3TC to senescence‐accelerated mouse prone 8 (SAMP8) mice by gastric perfusion (100 mg/kg) for 4 weeks. Our results showed that 3TC significantly improved the ageing status of SAMP8 mice, especially the decline of cognitive ability evaluated by the Morris water maze test. To further investigate the molecular mechanisms of improving the ageing status of SAMP8 mice by 3TC, the qPCR and tissue staining methods were used to study the brain tissues (i.e., hippocampus and cortex) of mice, while the network pharmacology analysis was applied to investigate the potential targets of 3TC. The results showed that the mRNA levels of genes related to long interspersed element‐1, type 1 interferon response, the senescence‐associated secretion phenotype and the Alzheimer's disease in the hippocampus and cortex of SAMP8 mice were increased due to senescence, but this trend was reversed partially by 3TC. Results of histological studies showed that 3TC reduced the death of hippocampal neurons, while the results of network pharmacology analysis indicated that 3TC may exert its influence through multiple pathways, including the oestrogen signalling and the PI3K/Akt and neuroactive ligand‐receptor interaction signalling pathways, which we have verified through in vitro experiments. These findings provide evidence for the therapeutic potential of 3TC in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Zhao
- Department of Radiology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Tang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingchen Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Bai
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
281
|
Lian WS, Wu RW, Chen YS, Ko JY, Wang SY, Jahr H, Wang FS. MicroRNA-29a Mitigates Osteoblast Senescence and Counteracts Bone Loss through Oxidation Resistance-1 Control of FoxO3 Methylation. Antioxidants (Basel) 2021; 10:antiox10081248. [PMID: 34439496 PMCID: PMC8389244 DOI: 10.3390/antiox10081248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/20/2022] Open
Abstract
Senescent osteoblast overburden accelerates bone mass loss. Little is understood about microRNA control of oxidative stress and osteoblast senescence in osteoporosis. We revealed an association between microRNA-29a (miR-29a) loss, oxidative stress marker 8-hydroxydeoxyguanosine (8-OHdG), DNA hypermethylation marker 5-methylcystosine (5mC), and osteoblast senescence in human osteoporosis. miR-29a knockout mice showed low bone mass, sparse trabecular microstructure, and osteoblast senescence. miR-29a deletion exacerbated bone loss in old mice. Old miR-29a transgenic mice showed fewer osteoporosis signs, less 5mC, and less 8-OHdG formation than age-matched wild-type mice. miR-29a overexpression reversed age-induced senescence and osteogenesis loss in bone-marrow stromal cells. miR-29a promoted transcriptomic landscapes of redox reaction and forkhead box O (FoxO) pathways, preserving oxidation resistance protein-1 (Oxr1) and FoxO3 in old mice. In vitro, miR-29a interrupted DNA methyltransferase 3b (Dnmt3b)-mediated FoxO3 promoter methylation and senescence-associated β-galactosidase activity in aged osteoblasts. Dnmt3b inhibitor 5'-azacytosine, antioxidant N-acetylcysteine, or Oxr1 recombinant protein attenuated loss in miR-29a and FoxO3 to mitigate oxidative stress, senescence, and mineralization matrix underproduction. Taken together, miR-29a promotes Oxr1, compromising oxidative stress and FoxO3 loss to delay osteoblast aging and bone loss. This study sheds light on a new antioxidation mechanism by which miR-29a protects against osteoblast aging and highlights the remedial effects of miR-29a on osteoporosis.
Collapse
Affiliation(s)
- Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (R.-W.W.); (J.-Y.K.)
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
| | - Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany;
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (S.-Y.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Correspondence: ; Tel.: +886-7-731-7123
| |
Collapse
|
282
|
Palmieri M, Almeida M, Nookaew I, Gomez‐Acevedo H, Joseph TE, Que X, Tsimikas S, Sun X, Manolagas SC, Witztum JL, Ambrogini E. Neutralization of oxidized phospholipids attenuates age-associated bone loss in mice. Aging Cell 2021; 20:e13442. [PMID: 34278710 PMCID: PMC8373359 DOI: 10.1111/acel.13442] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
Oxidized phospholipids (OxPLs) are pro‐inflammatory molecules that affect bone remodeling under physiological conditions. Transgenic expression of a single‐chain variable fragment (scFv) of the antigen‐binding domain of E06, an IgM natural antibody that recognizes the phosphocholine (PC) moiety of OxPLs, increases trabecular and cortical bone in adult male and female mice by increasing bone formation. OxPLs increase with age, while natural antibodies decrease. Age‐related bone loss is associated with increased oxidative stress and lipid peroxidation and is characterized by a decline in osteoblast number and bone formation, raising the possibility that increased OxPLs, together with the decline of natural antibodies, contribute to age‐related bone loss. We show here that transgenic expression of E06‐scFv attenuated the age‐associated loss of spinal, femoral, and total bone mineral density in both female and male mice aged up to 22 and 24 months, respectively. E06‐scFv attenuated the age‐associated decline in trabecular bone, but not cortical bone, and this effect was associated with an increase in osteoblasts and a decrease in osteoclasts. Furthermore, RNA‐seq analysis showed that E06‐scFv increased Wnt10b expression in vertebral bone in aged mice, indicating that blocking OxPLs increases Wnt signaling. Unlike age‐related bone loss, E06‐scFv did not attenuate the bone loss caused by estrogen deficiency or unloading in adult mice. These results demonstrate that OxPLs contribute to age‐associated bone loss. Neutralization of OxPLs, therefore, is a promising therapeutic target for senile osteoporosis, as well as atherosclerosis and non‐alcoholic steatohepatitis (NASH), two other conditions shown to be attenuated by E06‐scFv in mice.
Collapse
Affiliation(s)
- Michela Palmieri
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Intawat Nookaew
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Horacio Gomez‐Acevedo
- Department of Biomedical Informatics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Teenamol E. Joseph
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Xuchu Que
- Division of Endocrinology and Metabolism Department of Medicine University of California San Diego La Jolla CA USA
| | - Sotirios Tsimikas
- Department of Medicine Division of Cardiology University of California San Diego La Jolla CA USA
| | - Xiaoli Sun
- Division of Endocrinology and Metabolism Department of Medicine University of California San Diego La Jolla CA USA
| | - Stavros C. Manolagas
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Joseph L. Witztum
- Division of Endocrinology and Metabolism Department of Medicine University of California San Diego La Jolla CA USA
| | - Elena Ambrogini
- Division of Endocrinology and Metabolism Center for Osteoporosis and Metabolic Bone Diseases and Center for Musculoskeletal Disease Research University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System Little Rock AR USA
| |
Collapse
|
283
|
Parvizi M, Franchi F, Arendt BK, Ebtehaj S, Rodriguez-Porcel M, Lanza IR. Senolytic agents lessen the severity of abdominal aortic aneurysm in aged mice. Exp Gerontol 2021; 151:111416. [PMID: 34022272 PMCID: PMC11443445 DOI: 10.1016/j.exger.2021.111416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for abdominal aortic aneurysm (AAA), for which treatment options are limited to surgical intervention for large AAA and watchful waiting for small aneurysms. However, the factors that regulate the expansion of aneurysms are unclear. Development of new therapeutic strategies to prevent or treat small aneurysms awaits a more thorough understanding of the etiology of AAA formation and progression with aging. A variety of structural and functional changes have been reported in aging vasculature, but emerging evidence implicates senescent cells in the formation of AAA through their paracrine effects on vascular wall cell populations. Here we show that aging is associated with transcriptional changes in abdominal aortic tissue consistent with loss of smooth muscle cells, leukocyte adhesion, inflammation, and accumulation of senescent cells in the vascular wall and surrounding perivascular adipose tissue. Furthermore, aged mice demonstrated anatomical and histopathological features of AAA development in response to administration of angiotensin II over 28 days. Importantly, in our study we sought to determine if reducing senescent cells could lessen the severity of AAA in aged mice. We find that pretreatment of aged mice with oral senolytic agents (dasatinib + quercetin) reduced senescent cell abundance in the arterial walls and surrounding tissues and lessened the severity of AAA in response to angiotensin II administration. These data provide important preliminary evidence supporting a role of senescent cells in age-related AAA formation and progression and suggest that strategies to reduce senescent cell burden hold promise to lessen AAA severity.
Collapse
Affiliation(s)
- Mojtaba Parvizi
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Federico Franchi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Bonnie K Arendt
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Sanam Ebtehaj
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | | | - Ian R Lanza
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
284
|
De Ycaza AEE, Søndergaard E, Morgan-Bathke M, Leon BGC, Lytle KA, Ramos P, Kirkland JL, Tchkonia T, Jensen MD. Senescent cells in human adipose tissue: A cross-sectional study. Obesity (Silver Spring) 2021; 29:1320-1327. [PMID: 34114359 PMCID: PMC8859802 DOI: 10.1002/oby.23202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Adipose tissue (AT) senescence is associated with AT dysfunction in rodents, but little is known about human AT senescence. The study goal was to define the distribution of senescent cells in two subcutaneous depots and understand relationships with adiposity and inflammation. METHODS Sixty-three volunteers (48 females) underwent abdominal and femoral subcutaneous fat biopsies. Fat cell size, senescent cells using senescence-associated β-galactosidase staining per 100 nucleated cells (percentage), and mRNA expression of four cytokines were measured. RESULTS There was a larger proportion of senescent cells in femoral than abdominal subcutaneous AT (mean difference 1.6% [95% CI: 0.98%-2.3%], p < 0.001), and the percentage of femoral AT senescent cells was greater in women than men (median 3.9% vs. 2.1%, p < 0.01). There was a positive correlation between senescence and fat cell size in abdominal (rs = 0.44, p < 0.001) and femoral (rs = 0.35, p = 0.007) AT depots. Abdominal AT tumor necrosis factor alpha (rs = 0.49, p < 0.01) and interleukin-1β (rs = 0.44, p = 0.01) expression was positively correlated with abdominal, but not femoral, AT senescence. CONCLUSIONS In human subcutaneous AT, there are more senescent cells in femoral than abdominal depots; abdominal AT senescent cells are more associated with inflammatory signals than femoral AT senescent cells.
Collapse
Affiliation(s)
- Ana Elena Espinosa De Ycaza
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
- Facultad de Medicina, Universidad de Panamá, Panama City, Republic of Panama
- Panamanian Institute of Biological Research, Panama City, Republic of Panama
| | - Esben Søndergaard
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
- Steno Diabetes Center Aarhus, Aarhus, Denmark
- The Danish Diabetes Academy, Odense, Denmark
| | - Maria Morgan-Bathke
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
- Nutrition and Dietetics, Viterbo University, La Crosse, WI, USA
| | - Barbara Gisella Carranza Leon
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelli A. Lytle
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
| | - Paola Ramos
- Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
| | - James L. Kirkland
- Robert & Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert & Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
285
|
Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci 2021; 22:ijms22158149. [PMID: 34360912 PMCID: PMC8347619 DOI: 10.3390/ijms22158149] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.
Collapse
Affiliation(s)
- Angel Cayo
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Raúl Segovia
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Whitney Venturini
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Nelson Brown
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Correspondence:
| |
Collapse
|
286
|
Scheller EL, McGee-Lawrence ME, Lecka-Czernik B. Report From the 6 th International Meeting on Bone Marrow Adiposity (BMA2020). Front Endocrinol (Lausanne) 2021; 12:712088. [PMID: 34335478 PMCID: PMC8323480 DOI: 10.3389/fendo.2021.712088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
The 6th International Meeting on Bone Marrow Adiposity (BMA) entitled "Marrow Adiposity: Bone, Aging, and Beyond" (BMA2020) was held virtually on September 9th and 10th, 2020. The mission of this meeting was to facilitate communication and collaboration among scientists from around the world who are interested in different aspects of bone marrow adiposity in health and disease. The BMA2020 meeting brought together 198 attendees from diverse research and clinical backgrounds spanning fields including bone biology, endocrinology, stem cell biology, metabolism, oncology, aging, and hematopoiesis. The congress featured an invited keynote address by Ormond MacDougald and ten invited speakers, in addition to 20 short talks, 35 posters, and several training and networking sessions. This report summarizes and highlights the scientific content of the meeting and the progress of the working groups of the BMA society (http://bma-society.org/).
Collapse
Affiliation(s)
- Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, Saint Louis, MO, United States
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Beata Lecka-Czernik
- Departments of Orthopaedic Surgery, Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, United States
| |
Collapse
|
287
|
The Olfactory System as Marker of Neurodegeneration in Aging, Neurological and Neuropsychiatric Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136976. [PMID: 34209997 PMCID: PMC8297221 DOI: 10.3390/ijerph18136976] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Research studies that focus on understanding the onset of neurodegenerative pathology and therapeutic interventions to inhibit its causative factors, have shown a crucial role of olfactory bulb neurons as they transmit and propagate nerve impulses to higher cortical and limbic structures. In rodent models, removal of the olfactory bulb results in pathology of the frontal cortex that shows striking similarity with frontal cortex features of patients diagnosed with neurodegenerative disorders. Widely different approaches involving behavioral symptom analysis, histopathological and molecular alterations, genetic and environmental influences, along with age-related alterations in cellular pathways, indicate a strong correlation of olfactory dysfunction and neurodegeneration. Indeed, declining olfactory acuity and olfactory deficits emerge either as the very first symptoms or as prodromal symptoms of progressing neurodegeneration of classical conditions. Olfactory dysfunction has been associated with most neurodegenerative, neuropsychiatric, and communication disorders. Evidence revealing the dual molecular function of the olfactory receptor neurons at dendritic and axonal ends indicates the significance of olfactory processing pathways that come under environmental pressure right from the onset. Here, we review findings that olfactory bulb neuronal processing serves as a marker of neuropsychiatric and neurodegenerative disorders.
Collapse
|
288
|
Li L, Li Y, Luo J, Jiang Y, Zhao Z, Chen Y, Huang Q, Zhang L, Wu T, Pang J. Resveratrol, a novel inhibitor of GLUT9, ameliorates liver and kidney injuries in a D-galactose-induced ageing mouse model via the regulation of uric acid metabolism. Food Funct 2021; 12:8274-8287. [PMID: 34180933 DOI: 10.1039/d1fo00538c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural ageing and induce liver and kidney injury. Previous studies showed that d-gal increased uric acid (UA) levels in mice. The increase in UA levels caused inflammation, accelerated oxidative stress, and aggravated liver and kidney injury. Oxidative stress and inflammation play vital roles in the ageing process. Therefore, reducing the levels of UA in ageing mice improved liver and kidney injury. Glucose transporter 9 (GLUT9) is responsible for the reabsorption of UA in the body, and its inhibition helps downregulate UA levels. The present study investigated the UA-lowering activity of the GLUT9 inhibitor resveratrol (RSV) using the patch clamping technique established in our laboratory in vitro. This research is the first study to demonstrate that RSV effectively inhibits UA uptake via GLUT9 (IC50 = 68.77 μM) in vitro. An in vivo study was also performed to investigate the possible protective effect of RSV on d-gal-induced liver and kidney injury. RSV significantly reduced serum UA levels via the downregulation of GLUT9 mRNA and protein expression and promoted the excretion of excess UA through urine. Biochemical analysis showed that RSV significantly downregulated abnormal increases in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN) and creatinine (CRE) caused by long-term d-gal treatment, which effectively improved pathological damage, increased superoxide dismutase (SOD) activity and decreased the content of malondialdehyde (MDA) in the liver and kidneys. RSV also downregulated the expression of the inflammatory cytokines, interleukin IL-6, IL-1β and tumor necrosis factor (TNF)-α in the liver and kidneys of ageing mice. Our findings provide new insights into the treatment strategies for ageing-induced liver and kidney injury and reveal a new mechanism of RSV-induced reduction in UA levels in ageing individuals.
Collapse
Affiliation(s)
- Lu Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yongmei Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Jian Luo
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yanqing Jiang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Yanyu Chen
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Qinghua Huang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Leqi Zhang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
289
|
Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct Target Ther 2021; 6:245. [PMID: 34176928 PMCID: PMC8236488 DOI: 10.1038/s41392-021-00646-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Remarkable progress in ageing research has been achieved over the past decades. General perceptions and experimental evidence pinpoint that the decline of physical function often initiates by cell senescence and organ ageing. Epigenetic dynamics and immunometabolic reprogramming link to the alterations of cellular response to intrinsic and extrinsic stimuli, representing current hotspots as they not only (re-)shape the individual cell identity, but also involve in cell fate decision. This review focuses on the present findings and emerging concepts in epigenetic, inflammatory, and metabolic regulations and the consequences of the ageing process. Potential therapeutic interventions targeting cell senescence and regulatory mechanisms, using state-of-the-art techniques are also discussed.
Collapse
|
290
|
Koo S, Won M, Li H, Kim WY, Li M, Yan C, Sharma A, Guo Z, Zhu WH, Sessler JL, Lee JY, Kim JS. Harnessing α-l-fucosidase for in vivo cellular senescence imaging. Chem Sci 2021; 12:10054-10062. [PMID: 34377399 PMCID: PMC8317655 DOI: 10.1039/d1sc02259h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/24/2021] [Indexed: 01/10/2023] Open
Abstract
Precise detection of cellular senescence may allow its role in biological systems to be evaluated more effectively, while supporting studies of therapeutic candidates designed to evade its detrimental effect on physical function. We report here studies of α-l-fucosidase (α-fuc) as a biomarker for cellular senescence and the development of an α-fuc-responsive aggregation induced emission (AIE) probe, termed QM-NHαfuc designed to complement more conventional probes based on β-galactosidase (β-gal). Using QM-NHαfuc, the onset of replicative-, reactive oxygen species (ROS)-, ultraviolet A (UVA)-, and drug-induced senescence could be probed effectively. QM-NHαfuc also proved capable of identifying senescent cells lacking β-gal expression. The non-invasive real-time senescence tracking provided by QM-NHαfuc was validated in an in vivo senescence model. The results presented in this study lead us to suggest that the QM-NHαfuc could emerge as a useful tool for investigating senescence processes in biological systems. Evidence of close association of α-fuc with senescence induction highlights the potential of α-fuc as a novel biomarker for cellular senescence. Here, an α-fuc-responsive AIE probe (QM-NHαfuc) allows for the identification of senescent cell in vivo.![]()
Collapse
Affiliation(s)
- Seyoung Koo
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Miae Won
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Won Young Kim
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Mingle Li
- Department of Chemistry, Korea University Seoul 02841 Korea
| | - Chenxu Yan
- Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237 China
| | - Amit Sharma
- CSIR-Central Scientific Instruments Organisation Sector-30C Chandigarh 160030 India
| | - Zhiqian Guo
- Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Institute of Fine Chemicals, East China University of Science and Technology Shanghai 200237 China
| | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin Austin Texas 78712-1224 USA
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University Seoul 02841 Korea
| |
Collapse
|
291
|
Chen H, Liu O, Chen S, Zhou Y. Aging and Mesenchymal Stem Cells: Therapeutic Opportunities and Challenges in the Older Group. Gerontology 2021; 68:339-352. [PMID: 34161948 DOI: 10.1159/000516668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
With aging, a portion of cells, including mesenchymal stem cells (MSCs), become senescent, and these senescent cells accumulate and promote various age-related diseases. Therefore, the older age group has become a major population for MSC therapy, which is aimed at improving tissue regeneration and function of the aged body. However, the application of MSC therapy is often unsatisfying in the aged group. One reasonable conjecture for this correlation is that aging microenvironment reduces the number and function of MSCs. Cellular senescence also plays an important role in MSC function impairment. Thus, it is necessary to explore the relationship between senescence and MSCs for improving the application of MSCs in the elderly. Here, we present the influence of aging on MSCs and the characteristics and functional changes of senescent MSCs. Furthermore, current therapeutic strategies for improving MSC therapy in the elderly group are also discussed.
Collapse
Affiliation(s)
- Huan Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Sijia Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| | - Yueying Zhou
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, and Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|
292
|
Sun X, Feinberg MW. Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic Opportunities. Front Physiol 2021; 12:693067. [PMID: 34220553 PMCID: PMC8242592 DOI: 10.3389/fphys.2021.693067] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable form of cell cycle arrest in response to various stressors. While it serves as an endogenous pro-resolving mechanism, detrimental effects ensue when it is dysregulated. In this review, we introduce recent advances for cellular senescence and inflammaging, the underlying mechanisms for the reduction of nicotinamide adenine dinucleotide in tissues during aging, new knowledge learned from p16 reporter mice, and the development of machine learning algorithms in cellular senescence. We focus on pathobiological insights underlying cellular senescence of the vascular endothelium, a critical interface between blood and all tissues. Common causes and hallmarks of endothelial senescence are highlighted as well as recent advances in endothelial senescence. The regulation of cellular senescence involves multiple mechanistic layers involving chromatin, DNA, RNA, and protein levels. New targets are discussed including the roles of long noncoding RNAs in regulating endothelial cellular senescence. Emerging small molecules are highlighted that have anti-aging or anti-senescence effects in age-related diseases and impact homeostatic control of the vascular endothelium. Lastly, challenges and future directions are discussed including heterogeneity of endothelial cells and endothelial senescence, senescent markers and detection of senescent endothelial cells, evolutionary differences for immune surveillance in mice and humans, and long noncoding RNAs as therapeutic targets in attenuating cellular senescence. Accumulating studies indicate that cellular senescence is reversible. A better understanding of endothelial cellular senescence through lifestyle and pharmacological interventions holds promise to foster a new frontier in the management of cardiovascular disease risk.
Collapse
Affiliation(s)
- Xinghui Sun
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, United States
- Nebraska Center for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska–Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Mark W. Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
293
|
Go S, Kang M, Kwon SP, Jung M, Jeon OH, Kim B. The Senolytic Drug JQ1 Removes Senescent Cells via Ferroptosis. Tissue Eng Regen Med 2021; 18:841-850. [PMID: 34003467 PMCID: PMC8440740 DOI: 10.1007/s13770-021-00346-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ferroptosis is an iron-dependent, non-apoptotic programmed cell death. Cellular senescence contributes to aging and various age-related diseases through the expression of a senescence-associated secretory phenotype (SASP). Senescent cells are often resistant to ferroptosis via increased ferritin and impaired ferritinophagy. In this study, we investigated whether treatment with JQ1 could remove senescent cells by inducing ferroptosis. METHODS Senescence of human dermal fibroblasts was induced in vitro by treating the cells with bleomycin. The senolytic effects of JQ1 were evaluated using a SA-β gal assay, annexin V analysis, cell counting kit-8 assay, and qRT-PCR. Ferroptosis following JQ1 treatment was evaluated with qRT-PCR and BODIPY staining. RESULTS At a certain range of JQ1 concentrations, JQ1 treatment reduced the viability of bleomycin-treated cells (senescent cells) but did not reduce that of untreated cells (non-senescent cells), indicating that JQ1 treatment can selectively eliminate senescent cells. JQ1 treatment also decreased SASP expression only in senescent cells. Subsequently, JQ1 treatment reduced the expression of ferroptosis-resistance genes in senescent cells. JQ1 treatment induced lipid peroxidation in senescent cells but not in non-senescent cells. CONCLUSION The data indicate that JQ1 can eliminate senescent cells via ferroptosis. This study suggests ferroptosis as a new mechanism of senolytic therapy.
Collapse
Affiliation(s)
- Seokhyeong Go
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ok Hee Jeon
- Department of Biomedical Sciences, BK21 Graduate Program, Korea University of College of Medicine, Seoul, 02841, Republic of Korea.
| | - Byung‐Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826 Republic of Korea ,School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826 Republic of Korea ,Institute of Chemical Processes, Institute of Engineering Research, and BioMAX, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
294
|
Hägg S, Jylhävä J. Sex differences in biological aging with a focus on human studies. eLife 2021; 10:e63425. [PMID: 33982659 PMCID: PMC8118651 DOI: 10.7554/elife.63425] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Aging is a complex biological process characterized by hallmark features accumulating over the life course, shaping the individual's aging trajectory and subsequent disease risks. There is substantial individual variability in the aging process between men and women. In general, women live longer than men, consistent with lower biological ages as assessed by molecular biomarkers, but there is a paradox. Women are frailer and have worse health at the end of life, while men still perform better in physical function examinations. Moreover, many age-related diseases show sex-specific patterns. In this review, we aim to summarize the current knowledge on sexual dimorphism in human studies, with support from animal research, on biological aging and illnesses. We also attempt to place it in the context of the theories of aging, as well as discuss the explanations for the sex differences, for example, the sex-chromosome linked mechanisms and hormonally driven differences.
Collapse
Affiliation(s)
- Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and Biostatistics, Karolinska InstitutetStockholmSweden
| |
Collapse
|
295
|
Suzuki K, Amrenova A, Mitsutake N. Recent advances in radiobiology with respect to pleiotropic aspects of tissue reaction. JOURNAL OF RADIATION RESEARCH 2021; 62:i30-i35. [PMID: 33978178 PMCID: PMC8114206 DOI: 10.1093/jrr/rraa086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Indexed: 06/12/2023]
Abstract
DNA double-strand breaks (DSBs) induced by ionizing radiation are the major cause of cell death, leading to tissue/organ injuries, which is a fundamental mechanism underlying the development of tissue reaction. Since unscheduled senescence, predominantly induced among epithelial tissues/organs, is one of the major modes of cell death in response to radiation exposure, its role in tissue reaction has been extensively studied, and it has become clear that senescence-mediated secretion of soluble factors is an indispensable component of the manifestation of tissue reaction. Recently, an unexpected link between cytoplasmic DSBs and innate immunity was discovered. The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) results in the stimulation of the cGAS-stimulator of interferon genes (STING) pathway, which has been shown to regulate the transactivation of a variety of secretory factors that are the same as those secreted from senescent cells. Furthermore, it has been proven that cGAS-STING pathway also mediates execution of the senescence process by itself. Hence, an autocrine/paracrine feedback loop has been discussed in previous literature in relation to its effect on the tissue microenvironment. As the tissue microenvironment plays a crucial role in cancer development, tissue reaction could be involved in the late health effects caused by radiation exposure. In this paper, the novel findings in radiation biology, which should provide a better understanding of the mechanisms underlying radiation-induced carcinogenesis, are overviewed.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Aidana Amrenova
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
296
|
Meijnikman AS, Herrema H, Scheithauer TPM, Kroon J, Nieuwdorp M, Groen AK. Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Rep 2021; 3:100301. [PMID: 34113839 PMCID: PMC8170167 DOI: 10.1016/j.jhepr.2021.100301] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest that has important physiological functions. However, cellular senescence is also a hallmark of ageing and has been associated with several pathological conditions. A wide range of factors including genotoxic stress, mitogens and inflammatory cytokines can induce senescence. Phenotypically, senescent cells are characterised by short telomeres, an enlarged nuclear area and damaged genomic and mitochondrial DNA. Secretion of proinflammatory proteins, also known as the senescence-associated secretory phenotype, is a characteristic of senescent cells that is thought to be the main contributor to their disease-inducing properties. In the past decade, the role of cellular senescence in the development of non-alcoholic fatty liver disease (NAFLD) and its progression towards non-alcoholic steatohepatitis (NASH) has garnered significant interest. Until recently, it was suggested that hepatocyte cellular senescence is a mere consequence of the metabolic dysregulation and inflammatory phenomena in fatty liver disease. However, recent work in rodents has suggested that senescence may be a causal factor in NAFLD development. Although causality is yet to be established in humans, current evidence suggests that targeting senescent cells has therapeutic potential for NAFLD. We aim to provide insights into the quality of the evidence supporting a causal role of cellular senescence in the development of NAFLD in rodents and humans. We will elaborate on key cellular and molecular features of senescence and discuss the efficacy and safety of novel senolytic drugs for the treatment or prevention of NAFLD.
Collapse
Key Words
- ATM, ataxia telangiectasia mutated
- C/EBPα, CCAAT- enhancer-binding protein
- CDK, cyclin dependent kinase
- DDR, DNA damage response
- FFAs, free fatty acids
- HCC, hepatocellular carcinoma
- IL-, interleukin
- KC, Kupffer cell
- LSEC, liver sinusoidal endothelial cell
- MCP1/CCL2, monocyte chemoattractant protein-1
- MiDAS, mitochondrial dysfunction-associated senescence
- NAFL, non-alcoholic fatty liver
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- ROS, reactive oxygen species
- Rb, retinoblastoma factor
- SA-β gal, senescence-associated beta-galactosidase
- SASP, senescence-associated secretory phenotype
- SCAP, senescence-associated antiapoptotic pathways
- TGFβ, transforming growth factor-β
- TNFα, tumour necrosis factor-α
- cellular senescence
- non-alcoholic fatty liver disease
- non-alcoholic steatohepatitis
- obesity
- qPCR, quantitative PCR
- senolytics
Collapse
Affiliation(s)
- Abraham Stijn Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | | | - Jeffrey Kroon
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Albert Kornelis Groen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
- Corresponding author. Address: Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Meibergdreef 9 room G-146, 1105AZ Amsterdam, Netherlands
| |
Collapse
|
297
|
Zhang B, Long Q, Wu S, Xu Q, Song S, Han L, Qian M, Ren X, Liu H, Jiang J, Guo J, Zhang X, Chang X, Fu Q, Lam EWF, Campisi J, Kirkland JL, Sun Y. KDM4 Orchestrates Epigenomic Remodeling of Senescent Cells and Potentiates the Senescence-Associated Secretory Phenotype. NATURE AGING 2021; 1:454-472. [PMID: 34263179 PMCID: PMC8277122 DOI: 10.1038/s43587-021-00063-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/02/2021] [Indexed: 11/08/2022]
Abstract
Cellular senescence restrains the expansion of neoplastic cells through several layers of regulation. We report that the histone H3-specific demethylase KDM4 is expressed as human stromal cells undergo senescence. In clinical oncology, upregulated KDM4 and diminished H3K9/H3K36 methylation correlate with poorer survival of prostate cancer patients post-chemotherapy. Global chromatin accessibility mapping via ATAC-seq, and expression profiling through RNA-seq, reveal global changes of chromatin openness and spatiotemporal reprogramming of the transcriptomic landscape, which underlie the senescence-associated secretory phenotype (SASP). Selective targeting of KDM4 dampens the SASP of senescent stromal cells, promotes cancer cell apoptosis in the treatment-damaged tumor microenvironment (TME), and prolongs survival of experimental animals. Our study supports dynamic changes of H3K9/H3K36 methylation during senescence, identifies an unusually permissive chromatin state, and unmasks KDM4 as a key SASP modulator. KDM4 targeting presents a novel therapeutic avenue to manipulate cellular senescence and limit its contribution to age-related pathologies including cancer.
Collapse
Affiliation(s)
- Boyi Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanshan Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qixia Xu
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuling Song
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liu Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hanxin Liu
- Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Jing Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Chang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Qiang Fu
- Department of Pharmacology, Binzhou Medical University, Yantai, China.
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Pharmacology, Binzhou Medical University, Yantai, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, USA.
| |
Collapse
|
298
|
DePianto DJ, Heiden JAV, Morshead KB, Sun KH, Modrusan Z, Teng G, Wolters PJ, Arron JR. Molecular mapping of interstitial lung disease reveals a phenotypically distinct senescent basal epithelial cell population. JCI Insight 2021; 6:143626. [PMID: 33705361 PMCID: PMC8119199 DOI: 10.1172/jci.insight.143626] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Compromised regenerative capacity of lung epithelial cells can lead to cellular senescence, which may precipitate fibrosis. While increased markers of senescence have been reported in idiopathic pulmonary fibrosis (IPF), the origin and identity of these senescent cells remain unclear, and tools to characterize context-specific cellular senescence in human lung are lacking. We observed that the senescent marker p16 is predominantly localized to bronchiolized epithelial structures in scarred regions of IPF and systemic sclerosis-associated interstitial lung disease (SSc-ILD) lung tissue, overlapping with the basal epithelial markers Keratin 5 and Keratin 17. Using in vitro models, we derived transcriptional signatures of senescence programming specific to different types of lung epithelial cells and interrogated these signatures in a single-cell RNA-Seq data set derived from control, IPF, and SSc-ILD lung tissue. We identified a population of basal epithelial cells defined by, and enriched for, markers of cellular senescence and identified candidate markers specific to senescent basal epithelial cells in ILD that can enable future functional studies. Notably, gene expression of these cells significantly overlaps with terminally differentiating cells in stratified epithelia, where it is driven by p53 activation as part of the senescence program.
Collapse
Affiliation(s)
| | | | | | - Kai-Hui Sun
- Department of Molecular Biology, Genentech Inc., San Francisco, California, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., San Francisco, California, USA
| | | | - Paul J. Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | | |
Collapse
|
299
|
Frost ER, Taylor G, Baker MA, Lovell-Badge R, Sutherland JM. Establishing and maintaining fertility: the importance of cell cycle arrest. Genes Dev 2021; 35:619-634. [PMID: 33888561 PMCID: PMC8091977 DOI: 10.1101/gad.348151.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this review, Frost et al. summarize the current knowledge on the Cip/Kip family of cyclin-dependent kinase inhibitors in mouse gonad development and highlight new roles for cell cycle inhibitors in controlling and maintaining female fertility. Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.
Collapse
Affiliation(s)
- Emily R Frost
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia.,Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Güneş Taylor
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Mark A Baker
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jessie M Sutherland
- Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, New South Wales 2305, Australia
| |
Collapse
|
300
|
Carreno G, Guiho R, Martinez‐Barbera JP. Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathol Appl Neurobiol 2021; 47:359-378. [PMID: 33378554 PMCID: PMC8603933 DOI: 10.1111/nan.12689] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023]
Abstract
The study of cell senescence is a burgeoning field. Senescent cells can modify the cellular microenvironment through the secretion of a plethora of biologically active products referred to as the senescence-associated secretory phenotype (SASP). The consequences of these paracrine signals can be either beneficial for tissue homeostasis, if senescent cells are properly cleared and SASP activation is transient, or result in organ dysfunction, when senescent cells accumulate within the tissues and SASP activation is persistent. Several studies have provided evidence for the role of senescence and SASP in promoting age-related diseases or driving organismal ageing. The hype about senescence has been further amplified by the fact that a group of drugs, named senolytics, have been used to successfully ameliorate the burden of age-related diseases and increase health and life span in mice. Ablation of senescent cells in the brain prevents disease progression and improves cognition in murine models of neurodegenerative conditions. The role of senescence in cancer has been more thoroughly investigated, and it is now accepted that senescence is a double-edged sword that can paradoxically prevent or promote tumourigenesis in a context-dependent manner. In addition, senescence induction followed by senolytic treatment is starting to emerge as a novel therapeutic avenue that could improve current anti-cancer therapies and reduce tumour recurrence. In this review, we discuss recent findings supporting the role of cell senescence in the pathogenesis of neurodegenerative diseases and in brain tumours. A better understanding of senescence is likely to result in the development of novel and efficacious anti-senescence therapies against these brain pathologies.
Collapse
Affiliation(s)
- Gabriela Carreno
- Developmental Biology and Cancer ProgrammeBirth Defects Research CentreInstitute of Child Health Great Ormond Street HospitalUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Romain Guiho
- Developmental Biology and Cancer ProgrammeBirth Defects Research CentreInstitute of Child Health Great Ormond Street HospitalUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| | - Juan Pedro Martinez‐Barbera
- Developmental Biology and Cancer ProgrammeBirth Defects Research CentreInstitute of Child Health Great Ormond Street HospitalUniversity College London30 Guilford StreetLondonWC1N 1EHUK
| |
Collapse
|