251
|
Proteomic approaches for the profiling of ubiquitylation events and their applications in drug discovery. J Proteomics 2020; 231:103996. [PMID: 33017648 DOI: 10.1016/j.jprot.2020.103996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/27/2020] [Accepted: 09/27/2020] [Indexed: 01/23/2023]
Abstract
Protein ubiquitylation regulates almost all aspects of the biological processes including gene expression, DNA repair, cell proliferation and apoptosis in eukaryotic cells. Dysregulation of protein ubiquitylation caused by abnormal expression of enzymes in the ubiquitin system results in the onset of many diseases including cancer, neurodegenerative diseases, and metabolic syndromes. Therefore, targeting the ubiquitin system becomes a promising research area in drug discovery. Identification of protein ubiquitylation sites is critical for revealing the key ubiquitylation events associated with diseases and specific signaling pathways and for elucidating the biological functions of the specific ubiquitylation events. Many approaches that enrich for the ubiquitylated proteins and ubiquitylated peptides at the protein and peptide levels have been developed to facilitate their identification by MS. In this paper, we will review the proteomic approaches available for the identification of ubiquitylation events at the proteome scale and discuss their advantages and limitations. We will also brief the application of the profiling of ubiquitylation events in drug target discovery and in target validation for proteolysis-targeting chimera (PROTAC). Possible future research directions in this field will also be discussed. SIGNIFICANCE: Ubiquitylation plays critical roles in regulating many biological processes in eukaryotic cells. Identification of ubiquitylation sites can provide the essential information for the functional study of the specific modified substrates. Since ubiquitylated proteins have much lower abundance than non-ubiquitylated proteins, enrichment of ubiquitylated proteins or peptides is critical for their identification by MS. This review focuses on different enrichment approaches that facilitate their isolation and identification by MS and discusses the advantages and drawbacks of these approaches. The application of the profiling of ubiquitylation events in drug target discovery and future research directions will be beneficial to the research community.
Collapse
|
252
|
Syafruddin SE, Mohtar MA, Wan Mohamad Nazarie WF, Low TY. Two Sides of the Same Coin: The Roles of KLF6 in Physiology and Pathophysiology. Biomolecules 2020; 10:biom10101378. [PMID: 32998281 PMCID: PMC7601070 DOI: 10.3390/biom10101378] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factors (KLFs) family of proteins control several key biological processes that include proliferation, differentiation, metabolism, apoptosis and inflammation. Dysregulation of KLF functions have been shown to disrupt cellular homeostasis and contribute to disease development. KLF6 is a relevant example; a range of functional and expression assays suggested that the dysregulation of KLF6 contributes to the onset of cancer, inflammation-associated diseases as well as cardiovascular diseases. KLF6 expression is either suppressed or elevated depending on the disease, and this is largely due to alternative splicing events producing KLF6 isoforms with specialised functions. Hence, the aim of this review is to discuss the known aspects of KLF6 biology that covers the gene and protein architecture, gene regulation, post-translational modifications and functions of KLF6 in health and diseases. We put special emphasis on the equivocal roles of its full-length and spliced variants. We also deliberate on the therapeutic strategies of KLF6 and its associated signalling pathways. Finally, we provide compelling basic and clinical questions to enhance the knowledge and research on elucidating the roles of KLF6 in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Saiful E. Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
- Correspondence: ; Tel.: +60-3-9145-9040
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| | - Wan Fahmi Wan Mohamad Nazarie
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| |
Collapse
|
253
|
Janda E, Nepveu F, Calamini B, Ferry G, Boutin JA. Molecular Pharmacology of NRH:Quinone Oxidoreductase 2: A Detoxifying Enzyme Acting as an Undercover Toxifying Enzyme. Mol Pharmacol 2020; 98:620-633. [DOI: 10.1124/molpharm.120.000105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
|
254
|
Monday HR, Bourdenx M, Jordan BA, Castillo PE. CB 1-receptor-mediated inhibitory LTD triggers presynaptic remodeling via protein synthesis and ubiquitination. eLife 2020; 9:54812. [PMID: 32902378 PMCID: PMC7521925 DOI: 10.7554/elife.54812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/08/2020] [Indexed: 01/03/2023] Open
Abstract
Long-lasting forms of postsynaptic plasticity commonly involve protein synthesis-dependent structural changes of dendritic spines. However, the relationship between protein synthesis and presynaptic structural plasticity remains unclear. Here, we investigated structural changes in cannabinoid-receptor 1 (CB1)-mediated long-term depression of inhibitory transmission (iLTD), a form of presynaptic plasticity that involves a protein-synthesis-dependent long-lasting reduction in GABA release. We found that CB1-iLTD in acute rat hippocampal slices was associated with protein synthesis-dependent presynaptic structural changes. Using proteomics, we determined that CB1 activation in hippocampal neurons resulted in increased ribosomal proteins and initiation factors, but decreased levels of proteins involved in regulation of the actin cytoskeleton, such as ARPC2 and WASF1/WAVE1, and presynaptic release. Moreover, while CB1-iLTD increased ubiquitin/proteasome activity, ubiquitination but not proteasomal degradation was critical for structural and functional presynaptic CB1-iLTD. Thus, CB1-iLTD relies on both protein synthesis and ubiquitination to elicit structural changes that underlie long-term reduction of GABA release.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, United States.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, United States
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, United States
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
255
|
Lauinger L, Flick K, Yen JL, Mathur R, Kaiser P. Cdc48 cofactor Shp1 regulates signal-induced SCF Met30 disassembly. Proc Natl Acad Sci U S A 2020; 117:21319-21327. [PMID: 32817489 PMCID: PMC7474596 DOI: 10.1073/pnas.1922891117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Organisms can adapt to a broad spectrum of sudden and dramatic changes in their environment. These abrupt changes are often perceived as stress and trigger responses that facilitate survival and eventual adaptation. The ubiquitin-proteasome system (UPS) is involved in most cellular processes. Unsurprisingly, components of the UPS also play crucial roles during various stress response programs. The budding yeast SCFMet30 complex is an essential cullin-RING ubiquitin ligase that connects metabolic and heavy metal stress to cell cycle regulation. Cadmium exposure results in the active dissociation of the F-box protein Met30 from the core ligase, leading to SCFMet30 inactivation. Consequently, SCFMet30 substrate ubiquitylation is blocked and triggers a downstream cascade to activate a specific transcriptional stress response program. Signal-induced dissociation is initiated by autoubiquitylation of Met30 and serves as a recruitment signal for the AAA-ATPase Cdc48/p97, which actively disassembles the complex. Here we show that the UBX cofactor Shp1/p47 is an additional key element for SCFMet30 disassembly during heavy metal stress. Although the cofactor can directly interact with the ATPase, Cdc48 and Shp1 are recruited independently to SCFMet30 during cadmium stress. An intact UBX domain is crucial for effective SCFMet30 disassembly, and a concentration threshold of Shp1 recruited to SCFMet30 needs to be exceeded to initiate Met30 dissociation. The latter is likely related to Shp1-mediated control of Cdc48 ATPase activity. This study identifies Shp1 as the crucial Cdc48 cofactor for signal-induced selective disassembly of a multisubunit protein complex to modulate activity.
Collapse
Affiliation(s)
- Linda Lauinger
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Karin Flick
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - James L Yen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Radhika Mathur
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700
| |
Collapse
|
256
|
Li X, Zhang C, Zhao T, Su Z, Li M, Hu J, Wen J, Shen J, Wang C, Pan J, Mu X, Ling T, Li Y, Wen H, Zhang X, You Q. Lysine-222 succinylation reduces lysosomal degradation of lactate dehydrogenase a and is increased in gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:172. [PMID: 32859246 PMCID: PMC7455916 DOI: 10.1186/s13046-020-01681-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/17/2020] [Indexed: 01/07/2023]
Abstract
Background Lysine succinylation is an emerging posttranslational modification that has garnered increased attention recently, but its role in gastric cancer (GC) remains underexplored. Methods Proteomic quantification of lysine succinylation was performed in human GC tissues and adjacent normal tissues by mass spectrometry. The mRNA and protein levels of lactate dehydrogenase A (LDHA) in GC and adjacent normal tissues were analyzed by qRT-PCR and western blot, respectively. The expression of K222-succinylated LDHA was measured in GC tissue microarray by the K222 succinylation-specific antibody. The interaction between LDHA and sequestosome 1 (SQSTM1) was measured by co-immunoprecipitation (co-IP) and proximity ligation assay (PLA). The binding of carnitine palmitoyltransferase 1A (CPT1A) to LDHA was determined by co-IP. The effect of K222-succinylated LDHA on tumor growth and metastasis was evaluated by in vitro and in vivo experiments. Results Altogether, 503 lysine succinylation sites in 303 proteins were identified. Lactate dehydrogenase A (LDHA), the key enzyme in Warburg effect, was found highly succinylated at K222 in GC. Intriguingly, this modification did not affect LDHA ubiquitination, but reduced the binding of ubiquitinated LDHA to SQSTM1, thereby decreasing its lysosomal degradation. We demonstrated that CPT1A functions as a lysine succinyltransferase that interacts with and succinylates LDHA. Moreover, high K222-succinylation of LDHA was associated with poor prognosis in patients with GC. Finally, overexpression of a succinylation-mimic mutant of LDHA promoted cell proliferation, invasion, and migration. Conclusions Our data revealed a novel lysosomal pathway of LDHA degradation, which is mediated by the binding of K63-ubiquitinated LDHA to SQSTM1. Strikingly, CPT1A succinylates LDHA on K222, which thereby reduces the binding and inhibits the degradation of LDHA, as well as promotes GC invasion and proliferation. This study thus uncovers a new role of lysine succinylation and the mechanism underlying LDHA upregulation in GC.
Collapse
Affiliation(s)
- Xiang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.,Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Zhang
- Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Ting Zhao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhongping Su
- Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Mengjing Li
- Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, 169610, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Jianfei Wen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jiajia Shen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chao Wang
- Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Jinshun Pan
- Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xianmin Mu
- Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Tao Ling
- Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yingchang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Wen
- Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, 510182, China
| | - Qiang You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Department of Biotherapy, Department of Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China. .,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
257
|
Scumaci D, Olivo E, Fiumara CV, La Chimia M, De Angelis MT, Mauro S, Costa G, Ambrosio FA, Alcaro S, Agosti V, Costanzo FS, Cuda G. DJ-1 Proteoforms in Breast Cancer Cells: The Escape of Metabolic Epigenetic Misregulation. Cells 2020; 9:cells9091968. [PMID: 32858971 PMCID: PMC7563694 DOI: 10.3390/cells9091968] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/22/2022] Open
Abstract
Enhanced glycolysis is a hallmark of breast cancer. In cancer cells, the high glycolytic flux induces carbonyl stress, a damaging condition in which the increase of reactive carbonyl species makes DNA, proteins, and lipids more susceptible to glycation. Together with glucose, methylglyoxal (MGO), a byproduct of glycolysis, is considered the main glycating agent. MGO is highly diffusible, enters the nucleus, and can react with easily accessible lysine- and arginine-rich tails of histones. Glycation adducts on histones undergo oxidization and further rearrange to form stable species known as advanced glycation end-products (AGEs). This modification alters nucleosomes stability and chromatin architecture deconstructing the histone code. Formation of AGEs has been associated with cancer, diabetes, and several age-related diseases. Recently, DJ-1, a cancer-associated protein that protects cells from oxidative stress, has been described as a deglycase enzyme. Although its role in cell survival results still controversial, in several human tumors, its expression, localization, oxidation, and phosphorylation were found altered. This work aimed to explore the molecular mechanism that triggers the peculiar cellular compartmentalization and the specific post-translational modifications (PTM) that, occurring in breast cancer cells, influences the DJ-1 dual role. Using a proteomic approach, we identified on DJ-1 a novel threonine phosphorylation (T125) that was found, by the in-silico tool scansite 4, as part of a putative Akt consensus. Notably, this threonine is in addition to histidine 126, a key residue involved in the formation of catalytic triade (glu18-Cys106-His126) inside the glioxalase active site of DJ. Interestingly, we found that pharmacological modulation of Akt pathway induces a functional tuning of DJ-1 proteoforms, as well as their shuttle from cytosol to nucleus, pointing out that pathway as critical in the development of DJ-1 pro-tumorigenic abilities. Deglycase activity of DJ-1 on histones proteins, investigated by coupling 2D tau gel with LC-MS/MS and 2D-TAU (Triton-Acid-Urea)-Western blot, was found correlated with its phosphorylation status that, in turn, depends from Akt activation. In normal conditions, DJ-1 acts as a redox-sensitive chaperone and as an oxidative stress sensor. In cancer cells, glycolytic rewiring, inducing increased reactive oxygen species (ROS) levels, enhances AGEs products. Alongside, the moderate increase of ROS enhances Akt signaling that induces DJ-1-phosphorylation. When phosphorylated DJ-1 increases its glyoxalase activity, the level of AGEs on histones decreases. Therefore, phospho-DJ-1 prevents glycation-induced histones misregulation and its Akt-related hyperactivity represents a way to preserve the epigenome landscape sustaining proliferation of cancer cells. Together, these results shed light on an interesting mechanism that cancer cells might execute to escape the metabolic induced epigenetic misregulation that otherwise could impair their malignant proliferative potential.
Collapse
Affiliation(s)
- Domenica Scumaci
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
- Correspondence:
| | - Erika Olivo
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| | - Claudia Vincenza Fiumara
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| | - Marina La Chimia
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| | - Maria Teresa De Angelis
- Stem Cell Laboratory, Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University Magna Graeciaof Catanzaro, S. Venuta University Campus, 88100 Catanzaro, Italy;
| | - Sabrina Mauro
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| | - Giosuè Costa
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
- Net4Science Academic Spin-Off, University Magna Græcia of Catanzaro, Campus S. Venuta, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
| | - Stefano Alcaro
- Department of Health Sciences, University Magna Græcia of Catanzaro, Campus S. Venuta, 88100 Catanzaro, Italy; (G.C.); (F.A.A.); (S.A.)
- Net4Science Academic Spin-Off, University Magna Græcia of Catanzaro, Campus S. Venuta, Viale Europa, 88100 Catanzaro, Italy
| | - Valter Agosti
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, CIS for Genomics and Molecular Pathology, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (V.A.); (F.S.C.)
| | - Francesco Saverio Costanzo
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, CIS for Genomics and Molecular Pathology, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy; (V.A.); (F.S.C.)
| | - Giovanni Cuda
- Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Græcia Universityof Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy; (E.O.); (C.V.F.); (M.L.C.); (S.M.); (G.C.)
| |
Collapse
|
258
|
Zmuda F, Chamberlain LH. Regulatory effects of post-translational modifications on zDHHC S-acyltransferases. J Biol Chem 2020; 295:14640-14652. [PMID: 32817054 PMCID: PMC7586229 DOI: 10.1074/jbc.rev120.014717] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/15/2020] [Indexed: 01/09/2023] Open
Abstract
The human zDHHC S-acyltransferase family comprises 23 enzymes that mediate the S-acylation of a multitude of cellular proteins, including channels, receptors, transporters, signaling molecules, scaffolds, and chaperones. This reversible post-transitional modification (PTM) involves the attachment of a fatty acyl chain, usually derived from palmitoyl-CoA, to specific cysteine residues on target proteins, which affects their stability, localization, and function. These outcomes are essential to control many processes, including synaptic transmission and plasticity, cell growth and differentiation, and infectivity of viruses and other pathogens. Given the physiological importance of S-acylation, it is unsurprising that perturbations in this process, including mutations in ZDHHC genes, have been linked to different neurological pathologies and cancers, and there is growing interest in zDHHC enzymes as novel drug targets. Although zDHHC enzymes control a diverse array of cellular processes and are associated with major disorders, our understanding of these enzymes is surprisingly incomplete, particularly with regard to the regulatory mechanisms controlling these enzymes. However, there is growing evidence highlighting the role of different PTMs in this process. In this review, we discuss how PTMs, including phosphorylation, S-acylation, and ubiquitination, affect the stability, localization, and function of zDHHC enzymes and speculate on possible effects of PTMs that have emerged from larger screening studies. Developing a better understanding of the regulatory effects of PTMs on zDHHC enzymes will provide new insight into the intracellular dynamics of S-acylation and may also highlight novel approaches to modulate S-acylation for clinical gain.
Collapse
Affiliation(s)
- Filip Zmuda
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom.
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
259
|
Abstract
Fodrin and its erythroid cell-specific isoform spectrin are actin-associated fibrous proteins that play crucial roles in the maintenance of structural integrity in mammalian cells, which is necessary for proper cell function. Normal cell morphology is altered in diseases such as various cancers and certain neuronal disorders. Fodrin and spectrin are two-chain (αβ) molecules that are encoded by paralogous genes and share many features but also demonstrate certain differences. Fodrin (in humans, typically a heterodimer of the products of the SPTAN1 and SPTBN1 genes) is expressed in nearly all cell types and is especially abundant in neuronal tissues, whereas spectrin (in humans, a heterodimer of the products of the SPTA1 and SPTB1 genes) is expressed almost exclusively in erythrocytes. To fulfill a role in such a variety of different cell types, it was anticipated that fodrin would need to be a more versatile scaffold than spectrin. Indeed, as summarized here, domains unique to fodrin and its regulation by Ca2+, calmodulin, and a variety of posttranslational modifications (PTMs) endow fodrin with additional specific functions. However, how fodrin structural variations and misregulated PTMs may contribute to the etiology of various cancers and neurodegenerative diseases needs to be further investigated.
Collapse
|
260
|
HM1.24/BST-2 is constitutively poly-ubiquitinated at the N-terminal amino acid in the cytoplasmic domain. Biochem Biophys Rep 2020; 23:100784. [PMID: 32715103 PMCID: PMC7374192 DOI: 10.1016/j.bbrep.2020.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
HM1.24 (also known as BST-2, CD317, and Tetherin) is a type II single-pass transmembrane glycoprotein, which traverses membranes using an N-terminal transmembrane helix and is anchored in membrane lipid rafts via a C-terminal glycosylphosphatidylinositol (GPI). HM1.24 plays a role in diverse cellular functions, including cell signaling, immune modulation, and malignancy. In addition, it also functions as an interferon-induced cellular antiviral restriction factor that inhibits the replication and release of diverse enveloped viruses, and which is counteracted by Vpu, an HIV-1 accessory protein. Vpu induces down-regulation and ubiquitin conjugation to the cytoplasmic domain of HM1.24. However, evidence for ubiquitination site(s) of HM1.24 remains controversial. We demonstrated that HM1.24 is constitutively poly-ubiquitinated at the N-terminal cytoplasmic domain, and that the mutation of all potential ubiquitination sites, including serine, threonine, cysteine, and lysine in the cytoplasmic domain of HM1.24, does not affect the ubiquitination of HM1.24. We further demonstrated that although a GPI anchor is necessary and sufficient for HM1.24 antiviral activities and virion-trapping, the deleted mutant of GPI does not influence the ubiquitination of HM1.24. These results suggest that the lipid raft localization of HM1.24 is not a prerequisite for the ubiquitination. Collectively, our findings demonstrate that the ubiquitination of HM1.24 occurs at the N-terminal amino acid in the cytoplasmic domain and indicate that the constitutive ubiquitination machinery of HM1.24 may differ from the Vpu-induced machinery.
Collapse
|
261
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
262
|
Dirac-Svejstrup AB, Walker J, Faull P, Encheva V, Akimov V, Puglia M, Perkins D, Kümper S, Hunjan SS, Blagoev B, Snijders AP, Powell DJ, Svejstrup JQ. DDI2 Is a Ubiquitin-Directed Endoprotease Responsible for Cleavage of Transcription Factor NRF1. Mol Cell 2020; 79:332-341.e7. [PMID: 32521225 PMCID: PMC7369636 DOI: 10.1016/j.molcel.2020.05.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
The Ddi1/DDI2 proteins are ubiquitin shuttling factors, implicated in a variety of cellular functions. In addition to ubiquitin-binding and ubiquitin-like domains, they contain a conserved region with similarity to retroviral proteases, but whether and how DDI2 functions as a protease has remained unknown. Here, we show that DDI2 knockout cells are sensitive to proteasome inhibition and accumulate high-molecular weight, ubiquitylated proteins that are poorly degraded by the proteasome. These proteins are targets for the protease activity of purified DDI2. No evidence for DDI2 acting as a de-ubiquitylating enzyme was uncovered, which could suggest that it cleaves the ubiquitylated protein itself. In support of this idea, cleavage of transcription factor NRF1 is known to require DDI2 activity in vivo. We show that DDI2 is indeed capable of cleaving NRF1 in vitro but only when NRF1 protein is highly poly-ubiquitylated. Together, these data suggest that DDI2 is a ubiquitin-directed endoprotease.
Collapse
Affiliation(s)
- A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jane Walker
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter Faull
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vesela Encheva
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - David Perkins
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sandra Kümper
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Suchete S Hunjan
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David J Powell
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
263
|
Kralovicova J, Borovska I, Kubickova M, Lukavsky PJ, Vorechovsky I. Cancer-Associated Substitutions in RNA Recognition Motifs of PUF60 and U2AF65 Reveal Residues Required for Correct Folding and 3' Splice-Site Selection. Cancers (Basel) 2020; 12:cancers12071865. [PMID: 32664474 PMCID: PMC7408900 DOI: 10.3390/cancers12071865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
U2AF65 (U2AF2) and PUF60 (PUF60) are splicing factors important for recruitment of the U2 small nuclear ribonucleoprotein to lariat branch points and selection of 3′ splice sites (3′ss). Both proteins preferentially bind uridine-rich sequences upstream of 3′ss via their RNA recognition motifs (RRMs). Here, we examined 36 RRM substitutions reported in cancer patients to identify variants that alter 3′ss selection, RNA binding and protein properties. Employing PUF60- and U2AF65-dependent 3′ss previously identified by RNA-seq of depleted cells, we found that 43% (10/23) and 15% (2/13) of independent RRM mutations in U2AF65 and PUF60, respectively, conferred splicing defects. At least three RRM mutations increased skipping of internal U2AF2 (~9%, 2/23) or PUF60 (~8%, 1/13) exons, indicating that cancer-associated RRM mutations can have both cis- and trans-acting effects on splicing. We also report residues required for correct folding/stability of each protein and map functional RRM substitutions on to existing high-resolution structures of U2AF65 and PUF60. These results identify new RRM residues critical for 3′ss selection and provide relatively simple tools to detect clonal RRM mutations that enhance the mRNA isoform diversity.
Collapse
Affiliation(s)
- Jana Kralovicova
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Ivana Borovska
- Institute of Molecular Physiology and Genetics, Center of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Monika Kubickova
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Peter J. Lukavsky
- CEITEC, Masaryk University, 625 00 Brno, Czech Republic; (M.K.); (P.J.L.)
| | - Igor Vorechovsky
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- Correspondence: ; Tel.: +44-2381-206425; Fax: +44-2381-204264
| |
Collapse
|
264
|
Zafar M, Hazeslip L, Chauhan MZ, Byrd AK. The Expression of Human DNA Helicase B Is Affected by G-Quadruplexes in the Promoter. Biochemistry 2020; 59:2401-2409. [PMID: 32478505 PMCID: PMC7346868 DOI: 10.1021/acs.biochem.0c00218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/26/2020] [Indexed: 12/25/2022]
Abstract
G-Quadruplexes are secondary structures that can form in guanine-rich DNA and RNA that have been implicated in regulating multiple biological processes, including transcription. G-Quadruplex-forming sequences are prevalent in promoter regions of proto-oncogenes and DNA repair proteins. HELB is a human helicase involved in DNA replication and repair with 12 runs of three to four guanines in the proximal promoter. This sequence has the potential to form three canonical three-tetrad G-quadruplexes. Our results show that although all three G-quadruplexes can form, a structure containing two noncanonical G-quadruplexes with longer loops containing runs of three to four guanines is the most prevalent. These HELB G-quadruplexes are stable under physiological conditions. In cells, stabilization of the G-quadruplexes results in a decrease in the level of HELB expression, suggesting that the G-quadruplexes in the HELB promoter serve as transcriptional repressors.
Collapse
Affiliation(s)
- Maroof
Khan Zafar
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Lindsey Hazeslip
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Muhammad Zain Chauhan
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Alicia K. Byrd
- Department
of Biochemistry and Molecular Biology, University
of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Winthrop
P. Rockefeller Cancer Institute, Little Rock, Arkansas 72205, United States
| |
Collapse
|
265
|
Danielsson F, Mahdessian D, Axelsson U, Sullivan D, Uhlén M, Andersen JS, Thul PJ, Lundberg E. Spatial Characterization of the Human Centrosome Proteome Opens Up New Horizons for a Small but Versatile Organelle. Proteomics 2020; 20:e1900361. [PMID: 32558245 DOI: 10.1002/pmic.201900361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/29/2020] [Indexed: 12/27/2022]
Abstract
After a century of research, the human centrosome continues to fascinate. Based on immunofluorescence and confocal microscopy, an extensive inventory of the protein components of the human centrosome, and the centriolar satellites, with the important contribution of over 300 novel proteins localizing to these compartments is presented. A network of candidate centrosome proteins involved in ubiquitination, including six interaction partners of the Kelch-like protein 21, and an additional network of protein phosphatases, together supporting the suggested role of the centrosome as an interactive hub for cell signaling, is identified. Analysis of multi-localization across cellular organelles analyzed within the Human Protein Atlas (HPA) project shows how multi-localizing proteins are particularly overrepresented in centriolar satellites, supporting the dynamic nature and wide range of functions for this compartment. In summary, the spatial dissection of the human centrosome and centriolar satellites described here provides a comprehensive knowledgebase for further exploration of their proteomes.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, 17121, Sweden
| | - Diana Mahdessian
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, 17121, Sweden
| | - Ulrika Axelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, 17121, Sweden
| | - Devin Sullivan
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, 17121, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, 17121, Sweden.,Department of Protein Science, KTH - Royal Institute of Technology, Stockholm, 106 91, Sweden
| | - Jens S Andersen
- Center for Experimental Bioinformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, 5230, Denmark
| | - Peter J Thul
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, 17121, Sweden
| | - Emma Lundberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH - Royal Institute of Technology, Solna, 17121, Sweden
| |
Collapse
|
266
|
Bozal-Basterra L, Gonzalez-Santamarta M, Muratore V, Bermejo-Arteagabeitia A, Da Fonseca C, Barroso-Gomila O, Azkargorta M, Iloro I, Pampliega O, Andrade R, Martín-Martín N, Branon TC, Ting AY, Rodríguez JA, Carracedo A, Elortza F, Sutherland JD, Barrio R. LUZP1, a novel regulator of primary cilia and the actin cytoskeleton, is a contributing factor in Townes-Brocks Syndrome. eLife 2020; 9:e55957. [PMID: 32553112 PMCID: PMC7363444 DOI: 10.7554/elife.55957] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are sensory organelles crucial for cell signaling during development and organ homeostasis. Cilia arise from centrosomes and their formation and function is governed by numerous factors. Through our studies on Townes-Brocks Syndrome (TBS), a rare disease linked to abnormal cilia formation in human fibroblasts, we uncovered the leucine-zipper protein LUZP1 as an interactor of truncated SALL1, a dominantly-acting protein causing the disease. Using TurboID proximity labeling and pulldowns, we show that LUZP1 associates with factors linked to centrosome and actin filaments. Here, we show that LUZP1 is a cilia regulator. It localizes around the centrioles and to actin cytoskeleton. Loss of LUZP1 reduces F-actin levels, facilitates ciliogenesis and alters Sonic Hedgehog signaling, pointing to a key role in cytoskeleton-cilia interdependency. Truncated SALL1 increases the ubiquitin proteasome-mediated degradation of LUZP1. Together with other factors, alterations in LUZP1 may be contributing to TBS etiology.
Collapse
Affiliation(s)
- Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - María Gonzalez-Santamarta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Veronica Muratore
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Aitor Bermejo-Arteagabeitia
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Carolina Da Fonseca
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
- CIBERehd, Instituto de Salud Carlos IIIMadridSpain
- ProteoRed-ISCIII, Instituto de Salud Carlos IIIMadridSpain
| | - Ibon Iloro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
- CIBERehd, Instituto de Salud Carlos IIIMadridSpain
- ProteoRed-ISCIII, Instituto de Salud Carlos IIIMadridSpain
| | - Olatz Pampliega
- Department of Neurosciences, University of the Basque Country, Achucarro Basque Center for Neuroscience-UPV/EHULeioaSpain
| | - Ricardo Andrade
- Analytical & High Resolution Biomedical Microscopy Core Facility, University of the Basque Country (UPV/EHU)LeioaSpain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Tess C Branon
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
- Departments of Genetics, Chemistry and Biology, Stanford UniversityStanfordUnited States
| | - Alice Y Ting
- Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
- Departments of Genetics, Chemistry and Biology, Stanford UniversityStanfordUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Jose A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU)LeioaSpain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
- CIBERONC, Instituto de Salud Carlos IIIMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU)BilbaoSpain
| | - Felix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
- CIBERehd, Instituto de Salud Carlos IIIMadridSpain
- ProteoRed-ISCIII, Instituto de Salud Carlos IIIMadridSpain
| | - James D Sutherland
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology ParkDerioSpain
| |
Collapse
|
267
|
Sap KA, Reits EA. Strategies to Investigate Ubiquitination in Huntington's Disease. Front Chem 2020; 8:485. [PMID: 32596207 PMCID: PMC7300180 DOI: 10.3389/fchem.2020.00485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Many neurodegenerative disorders including Huntington's Disease are hallmarked by intracellular protein aggregates that are decorated by ubiquitin and different ubiquitin ligases and deubiquitinating enzymes. The protein aggregates observed in Huntington's Disease are caused by a polyglutamine expansion in the N-terminus of the huntingtin protein (Htt). Improving the degradation of mutant Htt via the Ubiquitin Proteasome System prior to aggregation would be a therapeutic strategy to delay or prevent the onset of Huntington's Disease for which there is currently no cure. Here we examine the current approaches used to study the ubiquitination of both soluble Htt as well as insolubilized Htt present in aggregates, and we describe what is known about involved (de)ubiquitinating enzymes. Furthermore, we discuss novel methodologies to study the dynamics of Htt ubiquitination in living cells using fluorescent ubiquitin probes, to identify and quantify Htt ubiquitination by mass spectrometry-based approaches, and various approaches to identify involved ubiquitinating enzymes.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
268
|
Backe SJ, Sager RA, Woodford MR, Makedon AM, Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J Biol Chem 2020; 295:11099-11117. [PMID: 32527727 DOI: 10.1074/jbc.rev120.011833] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Cells have a remarkable ability to synthesize large amounts of protein in a very short period of time. Under these conditions, many hydrophobic surfaces on proteins may be transiently exposed, and the likelihood of deleterious interactions is quite high. To counter this threat to cell viability, molecular chaperones have evolved to help nascent polypeptides fold correctly and multimeric protein complexes assemble productively, while minimizing the danger of protein aggregation. Heat shock protein 90 (Hsp90) is an evolutionarily conserved molecular chaperone that is involved in the stability and activation of at least 300 proteins, also known as clients, under normal cellular conditions. The Hsp90 clients participate in the full breadth of cellular processes, including cell growth and cell cycle control, signal transduction, DNA repair, transcription, and many others. Hsp90 chaperone function is coupled to its ability to bind and hydrolyze ATP, which is tightly regulated both by co-chaperone proteins and post-translational modifications (PTMs). Many reported PTMs of Hsp90 alter chaperone function and consequently affect myriad cellular processes. Here, we review the contributions of PTMs, such as phosphorylation, acetylation, SUMOylation, methylation, O-GlcNAcylation, ubiquitination, and others, toward regulation of Hsp90 function. We also discuss how the Hsp90 modification state affects cellular sensitivity to Hsp90-targeted therapeutics that specifically bind and inhibit its chaperone activity. The ultimate challenge is to decipher the comprehensive and combinatorial array of PTMs that modulate Hsp90 chaperone function, a phenomenon termed the "chaperone code."
Collapse
Affiliation(s)
- Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA.,College of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA .,Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.,Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
269
|
Sabbir MG. CAMKK2-CAMK4 signaling regulates transferrin trafficking, turnover, and iron homeostasis. Cell Commun Signal 2020; 18:80. [PMID: 32460794 PMCID: PMC7251913 DOI: 10.1186/s12964-020-00575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Circulatory iron is a hazardous biometal. Therefore, iron is transported in a redox-safe state by a serum glycoprotein - transferrin (TF). Different organs acquire iron from the systemic circulation through a tightly regulated mechanism at the blood-tissue interface which involves receptor-mediated internalization of TF. Thus, abnormal TF trafficking may lead to iron dyshomeostasis associated with several diseases including neurodegeneration. Iron -induced toxicity can cause neuronal damage to iron-sensitive brain regions. Recently, it was discovered that CAMKK2, a calcium (Ca2+)/calmodulin-activated kinase, controls receptor-mediated TF trafficking in mouse tissues, specifically in the brain. The biological function of CAMKK2 is mediated through multiple downstream effectors. Both CAMKK2 and one of its downstream kinase, CAMK4, exhibit overlapping expression in mouse brain. The role of CAMK4 in vesicular transport has been reported and loss of CAMKK2 or CAMK4 leads to cognitive defects in mouse. Therefore, it was hypothesized that CAMKK2-CAMK4 signaling regulates receptor-mediated TF trafficking and iron homeostasis which may be responsible for the neuronal malfunction observed in CAMKK2- or CAMK4-deficient mice. Methods CAMK4−/− mouse was used to study tissue-specific turnover of TF, TF-receptor (TFRC) and iron. CRISPR/Cas9-based CAMKK2 and/or CAMK4 deleted human embryonic kidney-derived HEK293 cell clones were used to study the molecular defects in receptor-mediated TF trafficking. Further, a “zero functional G protein” condition in HEK293 cell was exploited to study CAMKK2-CAMK4 signaling-mediated regulation of intracellular Ca2+ homeostasis which was linked to calcium signaling during TF trafficking. Results Loss of CAMK4 leads to abnormal post-translational modifications (PTMs) and turnover of TF in mouse cerebellum and liver which was associated with iron dyshomeostasis in these tissues. The HEK293 cell-based study revealed that the absence of CAMKK2-CAMK4 signaling altered intracellular Ca2+ homeostasis and lead to abnormal calcium signaling during TF trafficking. Also, CAMKK2-CAMK4 signaling deficiency affected the molecular interaction of TF and TF-receptor-associated protein complexes which indicated a potential failure in the recruitment of interacting proteins due to differential PTMs in TF. Conclusion Overall, this study established a novel mechanistic link between intracellular Ca2+ level, receptor-mediated TF trafficking, and iron homeostasis, all regulated by CAMKK2-CAMK4 signaling. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Mohammad Golam Sabbir
- Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Room R2034 - 351 Taché Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Alzo Biosciences Inc., San Diego, CA, USA.
| |
Collapse
|
270
|
Dejene EA, Li Y, Showkatian Z, Ling H, Seto E. Regulation of poly(a)-specific ribonuclease activity by reversible lysine acetylation. J Biol Chem 2020; 295:10255-10270. [PMID: 32457045 DOI: 10.1074/jbc.ra120.012552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/20/2020] [Indexed: 12/26/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is a 3'-exoribonuclease that plays an important role in regulating the stability and maturation of RNAs. Recently, PARN has been found to regulate the maturation of the human telomerase RNA component (hTR), a noncoding RNA required for telomere elongation. Specifically, PARN cleaves the 3'-end of immature, polyadenylated hTR to form the mature, nonpolyadenylated template. Despite PARN's critical role in mediating telomere maintenance, little is known about how PARN's function is regulated by post-translational modifications. In this study, using shRNA- and CRISPR/Cas9-mediated gene silencing and knockout approaches, along with 3'-exoribonuclease activity assays and additional biochemical methods, we examined whether PARN is post-translationally modified by acetylation and what effect acetylation has on PARN's activity. We found PARN is primarily acetylated by the acetyltransferase p300 at Lys-566 and deacetylated by sirtuin1 (SIRT1). We also revealed how acetylation of PARN can decrease its enzymatic activity both in vitro, using a synthetic RNA probe, and in vivo, by quantifying endogenous levels of adenylated hTR. Furthermore, we also found that SIRT1 can regulate levels of adenylated hTR through PARN. The findings of our study uncover a mechanism by which PARN acetylation and deacetylation regulate its enzymatic activity as well as levels of mature hTR. Thus, PARN's acetylation status may play a role in regulating telomere length.
Collapse
Affiliation(s)
- Eden A Dejene
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Yixuan Li
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Zahra Showkatian
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Hongbo Ling
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA.,George Washington University Cancer Center, Washington, D.C., USA
| | - Edward Seto
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, D.C., USA .,George Washington University Cancer Center, Washington, D.C., USA
| |
Collapse
|
271
|
Hazeslip L, Zafar MK, Chauhan MZ, Byrd AK. Genome Maintenance by DNA Helicase B. Genes (Basel) 2020; 11:E578. [PMID: 32455610 PMCID: PMC7290933 DOI: 10.3390/genes11050578] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/25/2022] Open
Abstract
DNA Helicase B (HELB) is a conserved helicase in higher eukaryotes with roles in the initiation of DNA replication and in the DNA damage and replication stress responses. HELB is a predominately nuclear protein in G1 phase where it is involved in initiation of DNA replication through interactions with DNA topoisomerase 2-binding protein 1 (TOPBP1), cell division control protein 45 (CDC45), and DNA polymerase α-primase. HELB also inhibits homologous recombination by reducing long-range end resection. After phosphorylation by cyclin-dependent kinase 2 (CDK2) at the G1 to S transition, HELB is predominately localized to the cytosol. However, this cytosolic localization in S phase is not exclusive. HELB has been reported to localize to chromatin in response to replication stress and to localize to the common fragile sites 16D (FRA16D) and 3B (FRA3B) and the rare fragile site XA (FRAXA) in S phase. In addition, HELB is phosphorylated in response to ionizing radiation and has been shown to localize to chromatin in response to various types of DNA damage, suggesting it has a role in the DNA damage response.
Collapse
Affiliation(s)
- Lindsey Hazeslip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Muhammad Zain Chauhan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
| | - Alicia K. Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (L.H.); (M.K.Z.); (M.Z.C.)
- Winthrop P. Rockefeller Cancer Institute, Little Rock, AR 72205, USA
| |
Collapse
|
272
|
Mass Spectrometry Technologies for Deciphering the Ubiquitin Code. Trends Biochem Sci 2020; 45:820-821. [PMID: 32423745 DOI: 10.1016/j.tibs.2020.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 12/24/2022]
|
273
|
Carusone TM, Cardiero G, Cerreta M, Mandrich L, Moran O, Porzio E, Catara G, Lacerra G, Manco G. WTAP and BIRC3 are involved in the posttranscriptional mechanisms that impact on the expression and activity of the human lactonase PON2. Cell Death Dis 2020; 11:324. [PMID: 32382056 PMCID: PMC7206036 DOI: 10.1038/s41419-020-2504-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
The activity of human paraoxonase 2 (PON2) is rapidly reduced in cells incubated with the bacterial quorormone 3-Oxo-dodecanoyl Homoserine Lactone (3OC12HSL), an observation that led to hypothesize a fast PON2 post-translational modification (PTM). Recently, we detected a 3OC12HSL-induced PTM in a cell-free system in which a crude extract from 3OC12HSL-treated HeLa cells was able to inactivate and ubiquitinate at position 144 a recombinant PON2. Here we show the occurrence of this and new PTMs on PON2 in HeLa cells. PTMs were found to gather nearby the two SNPs, A148G, and S311C, that are related to type-2 diabetes and its complications. Furthermore, we detected a PTM nearby a 12 amino acids region that is deleted in PON2 Isoform 2. An in vitro mutation analysis showed that the SNPs and the deletion are involved in PON2 activity and suggested a role of PTMs on its modulation, while a SAXS analysis pointed to Isoform 2 as being largely unstructured, compared to the wild type. Besides, we discovered a control of PON2 expression via a putative mRNA operon involving the Wilms tumor 1 associated protein (WTAP) and the E3 ubiquitin ligase (E3UbL) baculoviral IAP repeat-containing 3 (BIRC3).
Collapse
Affiliation(s)
- Teresa Maria Carusone
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giovanna Cardiero
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", (IGB-ABT, CNR), National Research Council, Naples, Italy
| | - Mariangela Cerreta
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Luigi Mandrich
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Oscar Moran
- Institute of Biophysics (IBF, CNR), National Research Council, Genoa, Italy
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", (IGB-ABT, CNR), National Research Council, Naples, Italy.
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology (IBBC, CNR), National Research Council, Naples, Italy.
| |
Collapse
|
274
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
275
|
Zhao M, Song K, Hao W, Wang L, Patil G, Li Q, Xu L, Hua F, Fu B, Schwamborn JC, Dorf ME, Li S. Non-proteolytic ubiquitination of OTULIN regulates NF-κB signaling pathway. J Mol Cell Biol 2020; 12:163-175. [PMID: 31504727 PMCID: PMC7181720 DOI: 10.1093/jmcb/mjz081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/23/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
NF-κB signaling regulates diverse processes such as cell death, inflammation, immunity, and cancer. The activity of NF-κB is controlled by methionine 1-linked linear polyubiquitin, which is assembled by the linear ubiquitin chain assembly complex (LUBAC) and the ubiquitin-conjugating enzyme UBE2L3. Recent studies found that the deubiquitinase OTULIN breaks the linear ubiquitin chain, thus inhibiting NF-κB signaling. Despite the essential role of OTULIN in NF-κB signaling has been established, the regulatory mechanism for OTULIN is not well elucidated. To discover the potential regulators of OTULIN, we analyzed the OTULIN protein complex by proteomics and revealed several OTULIN-binding proteins, including LUBAC and tripartite motif-containing protein 32 (TRIM32). TRIM32 is known to activate NF-κB signaling, but the mechanism is not clear. Genetic complement experiments found that TRIM32 is upstream of OTULIN and TRIM32-mediated NF-κB activation is dependent on OTULIN. Mutagenesis of the E3 ligase domain showed that the E3 ligase activity is essential for TRIM32-mediated NF-κB activation. Further experiments found that TRIM32 conjugates polyubiquitin onto OTULIN and the polyubiquitin blocks the interaction between HOIP and OTULIN, thereby activating NF-κB signaling. Taken together, we report a novel regulatory mechanism by which TRIM32-mediated non-proteolytic ubiquitination of OTULIN impedes the access of OTULIN to the LUBAC and promotes NF-κB activation.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kun Song
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Wenzhuo Hao
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lingyan Wang
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Girish Patil
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Qingmei Li
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lingling Xu
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fang Hua
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Bishi Fu
- State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg City, Luxembourg
| | - Martin E Dorf
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Shitao Li
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
276
|
MeCP2 and Chromatin Compartmentalization. Cells 2020; 9:cells9040878. [PMID: 32260176 PMCID: PMC7226738 DOI: 10.3390/cells9040878] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/24/2022] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is a multifunctional epigenetic reader playing a role in transcriptional regulation and chromatin structure, which was linked to Rett syndrome in humans. Here, we focus on its isoforms and functional domains, interactions, modifications and mutations found in Rett patients. Finally, we address how these properties regulate and mediate the ability of MeCP2 to orchestrate chromatin compartmentalization and higher order genome architecture.
Collapse
|
277
|
Khosravi B, LaClair KD, Riemenschneider H, Zhou Q, Frottin F, Mareljic N, Czuppa M, Farny D, Hartmann H, Michaelsen M, Arzberger T, Hartl FU, Hipp MS, Edbauer D. Cell-to-cell transmission of C9orf72 poly-(Gly-Ala) triggers key features of ALS/FTD. EMBO J 2020; 39:e102811. [PMID: 32175624 PMCID: PMC7156967 DOI: 10.15252/embj.2019102811] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
The C9orf72 repeat expansion causes amyotrophic lateral sclerosis and frontotemporal dementia, but the poor correlation between C9orf72‐specific pathology and TDP‐43 pathology linked to neurodegeneration hinders targeted therapeutic development. Here, we addressed the role of the aggregating dipeptide repeat proteins resulting from unconventional translation of the repeat in all reading frames. Poly‐GA promoted cytoplasmic mislocalization and aggregation of TDP‐43 non‐cell‐autonomously, and anti‐GA antibodies ameliorated TDP‐43 mislocalization in both donor and receiver cells. Cell‐to‐cell transmission of poly‐GA inhibited proteasome function in neighboring cells. Importantly, proteasome inhibition led to the accumulation of TDP‐43 ubiquitinated within the nuclear localization signal (NLS) at lysine 95. Mutagenesis of this ubiquitination site completely blocked poly‐GA‐dependent mislocalization of TDP‐43. Boosting proteasome function with rolipram reduced both poly‐GA and TDP‐43 aggregation. Our data from cell lines, primary neurons, transgenic mice, and patient tissue suggest that poly‐GA promotes TDP‐43 aggregation by inhibiting the proteasome cell‐autonomously and non‐cell‐autonomously, which can be prevented by inhibiting poly‐GA transmission with antibodies or boosting proteasome activity with rolipram.
Collapse
Affiliation(s)
- Bahram Khosravi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Frédéric Frottin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nikola Mareljic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Mareike Czuppa
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Biomedical Sciences of Cells and Systems, University of Groningen, Groningen, The Netherlands.,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
278
|
The Viral SUMO–Targeted Ubiquitin Ligase ICP0 is Phosphorylated and Activated by Host Kinase Chk2. J Mol Biol 2020; 432:1952-1977. [DOI: 10.1016/j.jmb.2020.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
|
279
|
Kespohl M, Bredow C, Klingel K, Voß M, Paeschke A, Zickler M, Poller W, Kaya Z, Eckstein J, Fechner H, Spranger J, Fähling M, Wirth EK, Radoshevich L, Thery F, Impens F, Berndt N, Knobeloch KP, Beling A. Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. SCIENCE ADVANCES 2020; 6:eaay1109. [PMID: 32195343 PMCID: PMC7065878 DOI: 10.1126/sciadv.aay1109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/13/2019] [Indexed: 05/10/2023]
Abstract
Protein modification with ISG15 (ISGylation) represents a major type I IFN-induced antimicrobial system. Common mechanisms of action and species-specific aspects of ISGylation, however, are still ill defined and controversial. We used a multiphasic coxsackievirus B3 (CV) infection model with a first wave resulting in hepatic injury of the liver, followed by a second wave culminating in cardiac damage. This study shows that ISGylation sets nonhematopoietic cells into a resistant state, being indispensable for CV control, which is accomplished by synergistic activity of ISG15 on antiviral IFIT1/3 proteins. Concurrent with altered energy demands, ISG15 also adapts liver metabolism during infection. Shotgun proteomics, in combination with metabolic network modeling, revealed that ISG15 increases the oxidative capacity and promotes gluconeogenesis in liver cells. Cells lacking the activity of the ISG15-specific protease USP18 exhibit increased resistance to clinically relevant CV strains, therefore suggesting that stabilizing ISGylation by inhibiting USP18 could be exploited for CV-associated human pathologies.
Collapse
Affiliation(s)
- Meike Kespohl
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany
| | - Clara Bredow
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Karin Klingel
- University of Tuebingen, Cardiopathology, Institute for Pathology and Neuropathology, Tuebingen, Germany
| | - Martin Voß
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Anna Paeschke
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Martin Zickler
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Wolfgang Poller
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Clinic for Cardiology, Campus Benjamin Franklin, Berlin, Germany
| | - Ziya Kaya
- Universitätsklinikum Heidelberg, Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Heidelberg, Germany
| | - Johannes Eckstein
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Joachim Spranger
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Michael Fähling
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Vegetative Physiology, Berlin, Germany
| | - Eva Katrin Wirth
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Fabien Thery
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Nikolaus Berndt
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| | | | - Antje Beling
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany
- Corresponding author.
| |
Collapse
|
280
|
Lotz C, Lamour V. The interplay between DNA topoisomerase 2α post-translational modifications and drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:149-160. [PMID: 35582608 PMCID: PMC9090595 DOI: 10.20517/cdr.2019.114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 01/13/2023]
Abstract
The type 2 DNA topoisomerases (Top2) are conserved enzymes and biomarkers for cell proliferation. The catalytic activities of the human isoform Top2α are essential for the regulation of DNA topology during DNA replication, transcription, and chromosome segregation. Top2α is a prominent target for anti-cancer drugs and is highly regulated by post-translational modifications (PTM). Despite an increasing number of proteomic studies, the extent of PTM in cancer cells and its importance in drug response remains largely uncharacterized. In this review, we highlight the different modifications affecting the human Top2α in healthy and cancer cells, taking advantage of the structure-function information accumulated in the past decades. We also overview the regulation of Top2α by PTM, the level of PTM in cancer cells, and the resistance to therapeutic compounds targeting the Top2 enzyme. Altogether, this review underlines the importance of future studies addressing more systematically the interplay between PTM and Top2 drug resistance.
Collapse
Affiliation(s)
- Christophe Lotz
- Integrative Structural Biology Department, IGBMC, Université de Strasbourg, CNRS UMR 7104, INSERM U1258, Illkirch 67404, France
| | - Valérie Lamour
- Integrative Structural Biology Department, IGBMC, Université de Strasbourg, CNRS UMR 7104, INSERM U1258, Illkirch 67404, France
- Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
| |
Collapse
|
281
|
Kliza K, Husnjak K. Resolving the Complexity of Ubiquitin Networks. Front Mol Biosci 2020; 7:21. [PMID: 32175328 PMCID: PMC7056813 DOI: 10.3389/fmolb.2020.00021] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Ubiquitination regulates nearly all cellular processes by coordinated activity of ubiquitin writers (E1, E2, and E3 enzymes), erasers (deubiquitinating enzymes) and readers (proteins that recognize ubiquitinated proteins by their ubiquitin-binding domains). By differentially modifying cellular proteome and by recognizing these ubiquitin modifications, ubiquitination machinery tightly regulates execution of specific cellular events in space and time. Dynamic and complex ubiquitin architecture, ranging from monoubiquitination, multiple monoubiquitination, eight different modes of homotypic and numerous types of heterogeneous polyubiquitin linkages, enables highly dynamic and complex regulation of cellular processes. We discuss available tools and approaches to study ubiquitin networks, including methods for the identification and quantification of ubiquitin-modified substrates, as well as approaches to quantify the length, abundance, linkage type and architecture of different ubiquitin chains. Furthermore, we also summarize the available approaches for the discovery of novel ubiquitin readers and ubiquitin-binding domains, as well as approaches to monitor and visualize activity of ubiquitin conjugation and deconjugation machineries. We also discuss benefits, drawbacks and limitations of available techniques, as well as what is still needed for detailed spatiotemporal dissection of cellular ubiquitination networks.
Collapse
Affiliation(s)
- Katarzyna Kliza
- Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Medical Faculty, Goethe University, Frankfurt, Germany
| |
Collapse
|
282
|
Poreba E, Durzynska J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108307. [PMID: 32430099 DOI: 10.1016/j.mrrev.2020.108307] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor (IGF) system stimulates growth, proliferation, and regulates differentiation of cells in a tissue-specific manner. It is composed of two insulin-like growth factors (IGF-1 and IGF-2), six insulin-like growth factor-binding proteins (IGFBPs), and two insulin-like growth factor receptors (IGF-1R and IGF-2R). IGF actions take place mostly through the activation of the plasma membrane-bound IGF-Rs by the circulating ligands (IGFs) released from the IGFBPs that stabilize their levels in the serum. This review focuses on the IGF-1 part of the system. The IGF-1 gene, which is expressed mainly in the liver as well as in other tissues, comprises six alternatively spliced exons that code for three protein isoforms (pro-IGF-1A, pro-IGF-1B, and pro-IGF-1C), which are processed to mature IGF-1 and E-peptides. The IGF-1R undergoes autophosphorylation, resulting in a signaling cascade involving numerous cytoplasmic proteins such as AKT and MAPKs, which regulate the expression of target genes. However, a more complex picture of the axis has recently emerged with all its components being translocated to the nuclear compartment. IGF-1R takes part in the regulation of gene expression by forming transcription complexes, modifying the activity of chromatin remodeling proteins, and participating in DNA damage tolerance mechanisms. Four IGFBPs contain a nuclear localization signal (NLS), which targets them to the nucleus, where they regulate gene expression (IGFBP-2, IGFBP-3, IGFBP-5, IGFBP-6) and DNA damage repair (IGFBP-3 and IGFBP-6). Last but not least, the IGF-1B isoform has been reported to be localized in the nuclear compartment. However, no specific molecular actions have been assigned to the nuclear pro-IGF-1B or its derivative EB peptide. Therefore, further studies are needed to shed light on their nuclear activity. These recently uncovered nuclear actions of different components of the IGF-1 axis are relevant in cancer cell biology and are discussed in this review.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Julia Durzynska
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
283
|
The 'dark matter' of ubiquitin-mediated processes: opportunities and challenges in the identification of ubiquitin-binding domains. Biochem Soc Trans 2020; 47:1949-1962. [PMID: 31829417 DOI: 10.1042/bst20190869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
Abstract
Ubiquitin modifications of target proteins act to localise, direct and specify a diverse range of cellular processes, many of which are biomedically relevant. To allow this diversity, ubiquitin modifications exhibit remarkable complexity, determined by a combination of polyubiquitin chain length, linkage type, numbers of ubiquitin chains per target, and decoration of ubiquitin with other small modifiers. However, many questions remain about how different ubiquitin signals are specifically recognised and transduced by the decoding ubiquitin-binding domains (UBDs) within ubiquitin-binding proteins. This review briefly outlines our current knowledge surrounding the diversity of UBDs, identifies key challenges in their discovery and considers recent structural studies with implications for the increasing complexity of UBD function and identification. Given the comparatively low numbers of functionally characterised polyubiquitin-selective UBDs relative to the ever-expanding variety of polyubiquitin modifications, it is possible that many UBDs have been overlooked, in part due to limitations of current approaches used to predict their presence within the proteome. Potential experimental approaches for UBD discovery are considered; web-based informatic analyses, Next-Generation Phage Display, deubiquitinase-resistant diubiquitin, proximity-dependent biotinylation and Ubiquitin-Phototrap, including possible advantages and limitations. The concepts discussed here work towards identifying new UBDs which may represent the 'dark matter' of the ubiquitin system.
Collapse
|
284
|
The chilling of adenylyl cyclase 9 and its translational potential. Cell Signal 2020; 70:109589. [PMID: 32105777 DOI: 10.1016/j.cellsig.2020.109589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/26/2022]
Abstract
A recent break-through paper has revealed for the first time the high-resolution, three-dimensional structure of a mammalian trans-membrane adenylyl cyclase (tmAC) obtained by cryo-electronmicroscopy (cryo-EM). Reporting the structure of adenylyl cyclase 9 (AC9) in complex with activated Gsα, the cryo-EM study revealed that AC9 has three functionally interlinked, yet structurally distinct domains. The array of the twelve transmembrane helices is connected to the cytosolic catalytic core by two helical segments that are stabilized through the formation of a parallel coiled-coil. Surprisingly, in the presence of Gsα, the isoform-specific carboxyl-terminal tail of AC9 occludes the forskolin- as well as the active substrate-sites, resulting in marked autoinhibition of the enzyme. As AC9 has the lowest primary sequence homology with the eight further mammalian tmAC paralogues, it appears to be the best candidate for selective pharmacologic targeting. This is now closer to reality as the structural insight provided by the cryo-EM study indicates that all of the three structural domains are potential targets for bioactive agents. The present paper summarizes for molecular physiologists and pharmacologists what is known about the biological role of AC9, considers the potential modes of physiologic regulation, as well as pharmacologic targeting on the basis of the high-resolution cryo-EM structure. The translational potential of AC9 is considered upon highlighting the current state of genome-wide association screens, and the corresponding experimental evidence. Overall, whilst the high- resolution structure presents unique opportunities for the full understanding of the control of AC9, the data on the biological role of the enzyme and its translational potential are far from complete, and require extensive further study.
Collapse
|
285
|
Wong M, Newton LR, Hartmann J, Hennrich ML, Wachsmuth M, Ronchi P, Guzmán-Herrera A, Schwab Y, Gavin AC, Gilmour D. Dynamic Buffering of Extracellular Chemokine by a Dedicated Scavenger Pathway Enables Robust Adaptation during Directed Tissue Migration. Dev Cell 2020; 52:492-508.e10. [PMID: 32059773 DOI: 10.1016/j.devcel.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023]
Abstract
How tissues migrate robustly through changing guidance landscapes is poorly understood. Here, quantitative imaging is combined with inducible perturbation experiments to investigate the mechanisms that ensure robust tissue migration in vivo. We show that tissues exposed to acute "chemokine floods" halt transiently before they perfectly adapt, i.e., return to the baseline migration behavior in the continued presence of elevated chemokine levels. A chemokine-triggered phosphorylation of the atypical chemokine receptor Cxcr7b reroutes it from constitutive ubiquitination-regulated degradation to plasma membrane recycling, thus coupling scavenging capacity to extracellular chemokine levels. Finally, tissues expressing phosphorylation-deficient Cxcr7b migrate normally in the presence of physiological chemokine levels but show delayed recovery when challenged with elevated chemokine concentrations. This work establishes that adaptation to chemokine fluctuations can be "outsourced" from canonical GPCR signaling to an autonomously acting scavenger receptor that both senses and dynamically buffers chemokine levels to increase the robustness of tissue migration.
Collapse
Affiliation(s)
- Mie Wong
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Lionel R Newton
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jonas Hartmann
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Marco L Hennrich
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Malte Wachsmuth
- Luxendo GmbH, Kurfürsten-Anlage 58, 69115 Heidelberg, Germany
| | - Paolo Ronchi
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Alejandra Guzmán-Herrera
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Electron Microscopy Core Facility, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anne-Claude Gavin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department for Cell Physiology and Metabolism, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Darren Gilmour
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
286
|
SIAH2-mediated and organ-specific restriction of HO-1 expression by a dual mechanism. Sci Rep 2020; 10:2268. [PMID: 32042051 PMCID: PMC7010731 DOI: 10.1038/s41598-020-59005-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
The intracellular levels of the cytoprotective enzyme heme oxygenase-1 (HO-1) are tightly controlled. Here, we reveal a novel mechanism preventing the exaggerated expression of HO-1. The analysis of mice with a knock-out in the ubiquitin E3 ligase seven in absentia homolog 2 (SIAH2) showed elevated HO-1 protein levels in specific organs such as heart, kidney and skeletal muscle. Increased HO-1 protein amounts were also seen in human cells deleted for the SIAH2 gene. The higher HO-1 levels are not only due to an increased protein stability but also to elevated expression of the HO-1 encoding HMOX1 gene, which depends on the transcription factor nuclear factor E2-related factor 2 (NRF2), a known SIAH2 target. Dependent on its RING (really interesting new gene) domain, expression of SIAH2 mediates proteasome-dependent degradation of its interaction partner HO-1. Additionally SIAH2-deficient cells are also characterized by reduced expression levels of glutathione peroxidase 4 (GPX4), rendering the knock-out cells more sensitive to ferroptosis.
Collapse
|
287
|
Dougherty SE, Maduka AO, Inada T, Silva GM. Expanding Role of Ubiquitin in Translational Control. Int J Mol Sci 2020; 21:E1151. [PMID: 32050486 PMCID: PMC7037965 DOI: 10.3390/ijms21031151] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The eukaryotic proteome has to be precisely regulated at multiple levels of gene expression, from transcription, translation, and degradation of RNA and protein to adjust to several cellular conditions. Particularly at the translational level, regulation is controlled by a variety of RNA binding proteins, translation and associated factors, numerous enzymes, and by post-translational modifications (PTM). Ubiquitination, a prominent PTM discovered as the signal for protein degradation, has newly emerged as a modulator of protein synthesis by controlling several processes in translation. Advances in proteomics and cryo-electron microscopy have identified ubiquitin modifications of several ribosomal proteins and provided numerous insights on how this modification affects ribosome structure and function. The variety of pathways and functions of translation controlled by ubiquitin are determined by the various enzymes involved in ubiquitin conjugation and removal, by the ubiquitin chain type used, by the target sites of ubiquitination, and by the physiologic signals triggering its accumulation. Current research is now elucidating multiple ubiquitin-mediated mechanisms of translational control, including ribosome biogenesis, ribosome degradation, ribosome-associated protein quality control (RQC), and redox control of translation by ubiquitin (RTU). This review discusses the central role of ubiquitin in modulating the dynamism of the cellular proteome and explores the molecular aspects responsible for the expanding puzzle of ubiquitin signals and functions in translation.
Collapse
Affiliation(s)
- Shannon E. Dougherty
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| | - Austin O. Maduka
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| | - Toshifumi Inada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Gustavo M. Silva
- Department of Biology, Duke University, Durham, NC 27708-0338, USA; (S.E.D.); (A.O.M.)
| |
Collapse
|
288
|
Global site-specific neddylation profiling reveals that NEDDylated cofilin regulates actin dynamics. Nat Struct Mol Biol 2020; 27:210-220. [PMID: 32015554 DOI: 10.1038/s41594-019-0370-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/27/2019] [Indexed: 01/19/2023]
Abstract
Neddylation is the post-translational protein modification most closely related to ubiquitination. Whereas the ubiquitin-like protein NEDD8 is well studied for its role in activating cullin-RING E3 ubiquitin ligases, little is known about other substrates. We developed serial NEDD8-ubiquitin substrate profiling (sNUSP), a method that employs NEDD8 R74K knock-in HEK293 cells, allowing discrimination of endogenous NEDD8- and ubiquitin-modification sites by MS after Lys-C digestion and K-εGG-peptide enrichment. Using sNUSP, we identified 607 neddylation sites dynamically regulated by the neddylation inhibitor MLN4924 and the de-neddylating enzyme NEDP1, implying that many non-cullin proteins are neddylated. Among the candidates, we characterized lysine 112 of the actin regulator cofilin as a novel neddylation event. Global inhibition of neddylation in developing neurons leads to cytoskeletal defects, altered actin dynamics and neurite growth impairments, whereas site-specific neddylation of cofilin at K112 regulates neurite outgrowth, suggesting that cofilin neddylation contributes to the regulation of neuronal actin organization.
Collapse
|
289
|
Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, Zahedi RP, Batist G, Borchers CH. Targeted and Untargeted Proteomics Approaches in Biomarker Development. Proteomics 2020; 20:e1900029. [DOI: 10.1002/pmic.201900029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/10/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Sahar Ibrahim
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vanessa Gaspar
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Georgia Mitsa
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vincent Lacasse
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - René P. Zahedi
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Gerald Batist
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill University Montreal Quebec H4A 3T2 Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill University Montreal Quebec H4A 3T2 Canada
- Department of Data Intensive Science and EngineeringSkolkovo Institute of Science and TechnologySkolkovo Innovation Center Moscow 143026 Russia
| |
Collapse
|
290
|
Ægidius HM, Veidal SS, Feigh M, Hallenborg P, Puglia M, Pers TH, Vrang N, Jelsing J, Kornum BR, Blagoev B, Rigbolt KTG. Multi-omics characterization of a diet-induced obese model of non-alcoholic steatohepatitis. Sci Rep 2020; 10:1148. [PMID: 31980690 PMCID: PMC6981216 DOI: 10.1038/s41598-020-58059-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023] Open
Abstract
To improve the understanding of the complex biological processes underlying the development of non-alcoholic steatohepatitis (NASH), a multi-omics approach combining bulk RNA-sequencing based transcriptomics, quantitative proteomics and single-cell RNA-sequencing was used to characterize tissue biopsies from histologically validated diet-induced obese (DIO) NASH mice compared to chow-fed controls. Bulk RNA-sequencing and proteomics showed a clear distinction between phenotypes and a good correspondence between mRNA and protein level regulations, apart from specific regulatory events discovered by each technology. Transcriptomics-based gene set enrichment analysis revealed changes associated with key clinical manifestations of NASH, including impaired lipid metabolism, increased extracellular matrix formation/remodeling and pro-inflammatory responses, whereas proteomics-based gene set enrichment analysis pinpointed metabolic pathway perturbations. Integration with single-cell RNA-sequencing data identified key regulated cell types involved in development of NASH demonstrating the cellular heterogeneity and complexity of NASH pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Michele Puglia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Vrang
- Gubra, Hørsholm Kongevej 11B, Hørsholm, Denmark
| | | | - Birgitte R Kornum
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | |
Collapse
|
291
|
Pérez Berrocal DA, Witting KF, Ovaa H, Mulder MPC. Hybrid Chains: A Collaboration of Ubiquitin and Ubiquitin-Like Modifiers Introducing Cross-Functionality to the Ubiquitin Code. Front Chem 2020; 7:931. [PMID: 32039151 PMCID: PMC6987259 DOI: 10.3389/fchem.2019.00931] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/20/2019] [Indexed: 01/31/2023] Open
Abstract
The Ubiquitin CODE constitutes a unique post-translational modification language relying on the covalent attachment of Ubiquitin (Ub) to substrates, with Ub serving as the minimum entity to generate a message that is translated into different cellular pathways. The creation of this message is brought about by the dedicated action of writers, erasers, and readers of the Ubiquitin CODE. This CODE is greatly expanded through the generation of polyUb chains of different architectures on substrates thus regulating their fate. Through additional post-translational modification by Ub-like proteins (UbL), hybrid Ub/UbL chains, which either alter the originally encrypted message or encode a completely new one, are formed. Hybrid Ub/UbL chains are generated under both stress or physiological conditions and seem to confer improved specificity and affinity toward their cognate receptors. In such a manner, their formation must play a specific, yet still undefined role in cellular signaling and thus understanding the UbCODE message is crucial. Here, we discuss the evidence for the existence of hybrid Ub/UbL chains in addition to the current understanding of its biology. The modification of Ub by another UbL complicates the deciphering of the spatial and temporal order of events warranting the development of a hybrid chain toolbox. We discuss this unmet need and expand upon the creation of tailored tools adapted from our previously established toolkit for the Ubiquitin Proteasome System to specifically target these hybrid Ub/UbL chains.
Collapse
Affiliation(s)
- David A Pérez Berrocal
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Katharina F Witting
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Chemical Immunology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| |
Collapse
|
292
|
Mendes ML, Fougeras MR, Dittmar G. Analysis of ubiquitin signaling and chain topology cross-talk. J Proteomics 2020; 215:103634. [PMID: 31918034 DOI: 10.1016/j.jprot.2020.103634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/13/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022]
Abstract
Protein ubiquitination is a powerful post-translational modification implicated in many cellular processes. Although ubiquitination is associated with protein degradation, depending on the topology of polyubiquitin chains, protein ubiquitination is connected to non-degradative events in DNA damage response, cell cycle control, immune response, trafficking, intracellular localization, and vesicle fusion events. It has been shown that a ubiquitin chain can contain two or more topologies at the same time. These branched chains add another level of complexity to ubiquitin signaling, increasing its versatility and specificity. Mass spectrometry-based proteomics has been playing an important role in the identification of all types of ubiquitin chains and linkages. This review aims to provide an overview of ubiquitin chain topology and associated signaling pathways and discusses the MS-based proteomic methodologies used to determine such topologies. SIGNIFICANCE: Ubiquitination plays important roles in many cellular processes. Proteins can be monoubiquitinated or polyubiquitinated forming non-branched or branched chains in a high number of possible combinations, each associated with different cellular processes. The detection and the topology of ubiquitin chains is thus of extreme importance in order to explain such processes. Advances in mass spectrometry based proteomics allowed for the discovery and topology mapping of many ubiquitin chains. This review revisits the state of the art in ubiquitin chain identification by mass spectrometry and gives an insight on the implication of such chains in many cellular processes.
Collapse
Affiliation(s)
- Marta L Mendes
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Miriam R Fougeras
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg; Faculty of Science, Technology and Communication, University of Luxembourg, 2 avenue de l'Université, 4365, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
293
|
Contreras O, Soliman H, Theret M, Rossi FMV, Brandan E. TGF-β-driven downregulation of the Wnt/β-Catenin transcription factor TCF7L2/TCF4 in PDGFRα+ fibroblasts. J Cell Sci 2020; 133:jcs.242297. [DOI: 10.1242/jcs.242297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent progenitors essential for organogenesis, tissue homeostasis, regeneration, and scar formation. Tissue injury upregulates TGF-β signaling, which modulates myofibroblast fate, extracellular matrix remodeling, and fibrosis. However, the molecular determinants of MSCs differentiation and survival remain poorly understood. The canonical Wnt Tcf/Lef transcription factors regulate development and stemness, but the mechanisms by which injury-induced cues modulate their expression remain underexplored. Here, we studied the cell-specific gene expression of Tcf/Lef and, more specifically, we investigated whether damage-induced TGF-β impairs the expression and function of TCF7L2, using several models of MSCs, including skeletal muscle fibro-adipogenic progenitors. We show that Tcf/Lefs are differentially expressed and that TGF-β reduces the expression of TCF7L2 in MSCs but not in myoblasts. We also found that the ubiquitin-proteasome system regulates TCF7L2 proteostasis and participates in TGF-β-mediated TCF7L2 protein downregulation. Finally, we show that TGF-β requires HDACs activity to repress the expression of TCF7L2. Thus, our work found a novel interplay between TGF-β and Wnt canonical signaling cascades in PDGFRα+ fibroblasts and suggests that this mechanism could be targeted in tissue repair and regeneration.
Collapse
Affiliation(s)
- Osvaldo Contreras
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
- Present address: Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Hesham Soliman
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
- Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Marine Theret
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics and School of Biomedical Engineering, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| | - Enrique Brandan
- Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
- Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
294
|
Zámbó B, Mózner O, Bartos Z, Török G, Várady G, Telbisz Á, Homolya L, Orbán TI, Sarkadi B. Cellular expression and function of naturally occurring variants of the human ABCG2 multidrug transporter. Cell Mol Life Sci 2020; 77:365-378. [PMID: 31254042 PMCID: PMC6971004 DOI: 10.1007/s00018-019-03186-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022]
Abstract
The human ABCG2 multidrug transporter plays a crucial role in the absorption and excretion of xeno- and endobiotics; thus the relatively frequent polymorphic and mutant ABCG2 variants in the population may significantly alter disease conditions and pharmacological effects. Low-level or non-functional ABCG2 expression may increase individual drug toxicity, reduce cancer drug resistance, and result in hyperuricemia and gout. In the present work we have studied the cellular expression, trafficking, and function of nine naturally occurring polymorphic and mutant variants of ABCG2. A comprehensive analysis of the membrane localization, transport, and ATPase activity, as well as retention and degradation in intracellular compartments was performed. Among the examined variants, R147W and R383C showed expression and/or protein folding defects, indicating that they could indeed contribute to ABCG2 functional deficiency. These studies and the applied methods should significantly promote the exploration of the medical effects of these personal variants, promote potential therapies, and help to elucidate the specific role of the affected regions in the folding and function of the ABCG2 protein.
Collapse
Affiliation(s)
- Boglárka Zámbó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Orsolya Mózner
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - György Török
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - György Várady
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Tamás I Orbán
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudosok krt. 2, Budapest, 1117, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
295
|
Barrio-Hernandez I, Jafari A, Rigbolt KTG, Hallenborg P, Sanchez-Quiles V, Skovrind I, Akimov V, Kratchmarova I, Dengjel J, Kassem M, Blagoev B. Phosphoproteomic profiling reveals a defined genetic program for osteoblastic lineage commitment of human bone marrow-derived stromal stem cells. Genome Res 2019; 30:127-137. [PMID: 31831592 PMCID: PMC6961576 DOI: 10.1101/gr.248286.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/05/2019] [Indexed: 01/17/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) differentiate into osteoblasts upon stimulation by signals present in their niche. Because the global signaling cascades involved in the early phases of MSCs osteoblast (OB) differentiation are not well-defined, we used quantitative mass spectrometry to delineate changes in human MSCs proteome and phosphoproteome during the first 24 h of their OB lineage commitment. The temporal profiles of 6252 proteins and 15,059 phosphorylation sites suggested at least two distinct signaling waves: one peaking within 30 to 60 min after stimulation and a second upsurge after 24 h. In addition to providing a comprehensive view of the proteome and phosphoproteome dynamics during early MSCs differentiation, our analyses identified a key role of serine/threonine protein kinase D1 (PRKD1) in OB commitment. At the onset of OB differentiation, PRKD1 initiates activation of the pro-osteogenic transcription factor RUNX2 by triggering phosphorylation and nuclear exclusion of the histone deacetylase HDAC7.
Collapse
Affiliation(s)
- Inigo Barrio-Hernandez
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Abbas Jafari
- Department of Endocrinology and Metabolism, University Hospital of Odense and University of Southern Denmark, 5000 Odense C, Denmark.,Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristoffer T G Rigbolt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Virginia Sanchez-Quiles
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ida Skovrind
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Irina Kratchmarova
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Joern Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, University Hospital of Odense and University of Southern Denmark, 5000 Odense C, Denmark.,Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
296
|
Sun F, Suttapitugsakul S, Xiao H, Wu R. Comprehensive Analysis of Protein Glycation Reveals Its Potential Impacts on Protein Degradation and Gene Expression in Human Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2480-2490. [PMID: 31073893 PMCID: PMC6842084 DOI: 10.1007/s13361-019-02197-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 05/02/2023]
Abstract
Glycation as a type of non-enzymatic protein modification is related to aging and chronic diseases, especially diabetes. Global analysis of protein glycation will aid in a better understanding of its formation mechanism and biological significance. In this work, we comprehensively investigated protein glycation in human cells (HEK293T, Jurkat, and MCF7 cells). The current results indicated that this non-enzymatic modification was not random, and protein at the extracellular regions and the nucleus were more frequently glycated. Systematic and site-specific analysis of glycated proteins allowed us to study the effect of the primary sequences and secondary structures of proteins on glycation. Furthermore, nearly every enzyme in the glycolytic pathway was found to be glycated and a possible mechanism was proposed. Many glycation sites were also previously reported as acetylation and ubiquitination sites, which strongly suggested that this non-enzymatic modification may disturb protein degradation and gene expression. The current results will facilitate further studies of protein glycation in biomedical and clinical research.
Collapse
Affiliation(s)
- Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
297
|
Salas-Lloret D, Agabitini G, González-Prieto R. TULIP2: An Improved Method for the Identification of Ubiquitin E3-Specific Targets. Front Chem 2019; 7:802. [PMID: 31850303 PMCID: PMC6901917 DOI: 10.3389/fchem.2019.00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/07/2019] [Indexed: 01/27/2023] Open
Abstract
Protein modification by Ubiquitin or Ubiquitin-like modifiers is mediated by an enzyme cascade composed of E1, E2, and E3 enzymes. E1s, or ubiquitin-activating enzymes, perform ubiquitin activation. Next, ubiquitin is transferred to ubiquitin-conjugating enzymes or E2s. Finally, ubiquitin ligases or E3s catalyze the transfer of ubiquitin to the acceptor proteins. E3 enzymes are responsible for determining the substrate specificity. Determining which E3 enzyme maps to which substrate is a major challenge that is greatly facilitated by the TULIP2 methodology. TULIP2 methodology is fast, precise, and cost-effective. Compared to the previous TULIP methodology protocol, TULIP2 methodology achieves a more than 50-fold improvement in the purification yield and two orders of magnitude improvement in the signal-to-background ratio after label free quantification by mass spectrometry analysis. The method includes the generation of TULIP2 cell lines, subsequent purification of TULIP2 conjugates, preparation, and analysis of samples by mass spectrometry.
Collapse
Affiliation(s)
- Daniel Salas-Lloret
- González-Prieto Laboratory, Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Giulia Agabitini
- González-Prieto Laboratory, Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Román González-Prieto
- González-Prieto Laboratory, Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
298
|
Zhang Y, Thery F, Wu NC, Luhmann EK, Dussurget O, Foecke M, Bredow C, Jiménez-Fernández D, Leandro K, Beling A, Knobeloch KP, Impens F, Cossart P, Radoshevich L. The in vivo ISGylome links ISG15 to metabolic pathways and autophagy upon Listeria monocytogenes infection. Nat Commun 2019; 10:5383. [PMID: 31772204 PMCID: PMC6879477 DOI: 10.1038/s41467-019-13393-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022] Open
Abstract
ISG15 is an interferon-stimulated, ubiquitin-like protein, with anti-viral and anti-bacterial activity. Here, we map the endogenous in vivo ISGylome in the liver following Listeria monocytogenes infection by combining murine models of reduced or enhanced ISGylation with quantitative proteomics. Our method identifies 930 ISG15 sites in 434 proteins and also detects changes in the host ubiquitylome. The ISGylated targets are enriched in proteins which alter cellular metabolic processes, including upstream modulators of the catabolic and antibacterial pathway of autophagy. Computational analysis of substrate structures reveals that a number of ISG15 modifications occur at catalytic sites or dimerization interfaces of enzymes. Finally, we demonstrate that animals and cells with enhanced ISGylation have increased basal and infection-induced autophagy through the modification of mTOR, WIPI2, AMBRA1, and RAB7. Taken together, these findings ascribe a role of ISGylation to temporally reprogram organismal metabolism following infection through direct modification of a subset of enzymes in the liver.
Collapse
Affiliation(s)
- Yifeng Zhang
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Fabien Thery
- Center for Medical Biotechnology, VIB, 9000, Gent, Belgium
- Department for Biomolecular Medicine, Gent University, 9000, Gent, Belgium
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Emma K Luhmann
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Olivier Dussurget
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, 75015, Paris, France
- Inserm, U604, 75015, Paris, France
- National Institute for Agronomic Research (INRA), Unité sous-contrat 2020, 75015, Paris, France
| | - Mariko Foecke
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, 75015, Paris, France
- Inserm, U604, 75015, Paris, France
- National Institute for Agronomic Research (INRA), Unité sous-contrat 2020, 75015, Paris, France
| | - Clara Bredow
- Charité-Universitäts medizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | | | - Kevin Leandro
- Center for Medical Biotechnology, VIB, 9000, Gent, Belgium
- Department for Biomolecular Medicine, Gent University, 9000, Gent, Belgium
| | - Antje Beling
- Charité-Universitäts medizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Francis Impens
- Center for Medical Biotechnology, VIB, 9000, Gent, Belgium.
- Department for Biomolecular Medicine, Gent University, 9000, Gent, Belgium.
- VIB Proteomics Core, VIB, 9000, Gent, Belgium.
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, 75015, Paris, France.
- Inserm, U604, 75015, Paris, France.
- National Institute for Agronomic Research (INRA), Unité sous-contrat 2020, 75015, Paris, France.
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
299
|
Mózner O, Bartos Z, Zámbó B, Homolya L, Hegedűs T, Sarkadi B. Cellular Processing of the ABCG2 Transporter-Potential Effects on Gout and Drug Metabolism. Cells 2019; 8:E1215. [PMID: 31597297 PMCID: PMC6830335 DOI: 10.3390/cells8101215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
The human ABCG2 is an important plasma membrane multidrug transporter, involved in uric acid secretion, modulation of absorption of drugs, and in drug resistance of cancer cells. Variants of the ABCG2 transporter, affecting cellular processing and trafficking, have been shown to cause gout and increased drug toxicity. In this paper, we overview the key cellular pathways involved in the processing and trafficking of large membrane proteins, focusing on ABC transporters. We discuss the information available for disease-causing polymorphic variants and selected mutations of ABCG2, causing increased degradation and impaired travelling of the transporter to the plasma membrane. In addition, we provide a detailed in silico analysis of an as yet unrecognized loop region of the ABCG2 protein, in which a recently discovered mutation may actually promote ABCG2 membrane expression. We suggest that post-translational modifications in this unstructured loop at the cytoplasmic surface of the protein may have special influence on ABCG2 processing and trafficking.
Collapse
Affiliation(s)
- Orsolya Mózner
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Boglárka Zámbó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
300
|
Ye Y, Klenerman D, Finley D. N-Terminal Ubiquitination of Amyloidogenic Proteins Triggers Removal of Their Oligomers by the Proteasome Holoenzyme. J Mol Biol 2019; 432:585-596. [PMID: 31518613 PMCID: PMC6990400 DOI: 10.1016/j.jmb.2019.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/18/2022]
Abstract
Aggregation of amyloidogenic proteins is an abnormal biological process implicated in neurodegenerative disorders. Whereas the aggregation process of amyloid-forming proteins has been studied extensively, the mechanism of aggregate removal is poorly understood. We recently demonstrated that proteasomes could fragment filamentous aggregates into smaller entities, restricting aggregate size [1]. Here, we show in vitro that UBE2W can modify the N-terminus of both α-synuclein and a tau tetra-repeat domain with a single ubiquitin. We demonstrate that an engineered N-terminal ubiquitin modification changes the aggregation process of both proteins, resulting in the formation of structurally distinct aggregates. Single-molecule approaches further reveal that the proteasome can target soluble oligomers assembled from ubiquitin-modified proteins independently of its peptidase activity, consistent with our recently reported fibril-fragmenting activity. Based on these results, we propose that proteasomes are able to target oligomers assembled from N-terminally ubiquitinated proteins. Our data suggest a possible disassembly mechanism by which N-terminal ubiquitination and the proteasome may together impede aggregate formation. Amyloid proteins α-synuclein and tauK18 can be ubiquitinated by UBE2W. N-terminal ubiquitin modification on amyloid proteins delays aggregation. Proteasomes can remove N-terminal ubiquitin-modified oligomers. Proteasomes remove oligomers primarily by enabling their dissociation.
Collapse
Affiliation(s)
- Yu Ye
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; UK Dementia Research Institute at Imperial College London, London W12 0NN, UK.
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK; UK Dementia Research Institute at the University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|