251
|
Li G, Hernandez-Ono A, Crooke RM, Graham MJ, Ginsberg HN. Antisense reduction of 11β-hydroxysteroid dehydrogenase type 1 enhances energy expenditure and insulin sensitivity independent of food intake in C57BL/6J mice on a Western-type diet. Metabolism 2012; 61:823-35. [PMID: 22209663 PMCID: PMC3319522 DOI: 10.1016/j.metabol.2011.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 01/16/2023]
Abstract
We recently reported that inhibition of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) by antisense oligonucleotide (ASO) improved hepatic lipid metabolism independent of food intake. In that study, 11β-HSD1 ASO-treated mice lost weight compared with food-matched control ASO-treated mice, suggesting treatment-mediated increased energy expenditure. We have now examined the effects of 11β-HSD1 ASO treatment on adipose tissue metabolism, insulin sensitivity, and whole-body energy expenditure. We used an ASO to knock down 11β-HSD1 in C57BL/6J mice consuming a Western-type diet (WTD). The 11β-HSD1 ASO-treated mice consumed less food, so food-matched control ASO-treated mice were also evaluated. We characterized body composition, gene expression of individual adipose depots, and measures of energy metabolism. We also investigated glucose/insulin tolerance as well as acute insulin signaling in several tissues. Knockdown of 11β-HSD1 protected against WTD-induced obesity by reducing epididymal, mesenteric, and subcutaneous white adipose tissue while activating thermogenesis in brown adipose tissue. The latter was confirmed by demonstrating increased energy expenditure in 11β-HSD1 ASO-treated mice. The 11β-HSD1 ASO treatment also protected against WTD-induced glucose intolerance and insulin resistance; this protection was associated with smaller cells and fewer macrophages in epididymal white adipose tissue as well as enhanced in vivo insulin signaling. Our results indicate that ASO-mediated inhibition of 11β-HSD1 can protect against several WTD-induced metabolic abnormalities. These effects are, at least in part, mediated by increases in the oxidative capacity of brown adipose tissue.
Collapse
Affiliation(s)
- Guoping Li
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - Rosanne M. Crooke
- Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, CA 92008-7326, USA
| | - Mark J. Graham
- Isis Pharmaceuticals, Inc., 1896 Rutherford Road, Carlsbad, CA 92008-7326, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Corresponding Author: Henry N. Ginsberg, MD, Department of Medicine, PH 10-305, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY, 10032 , Phone: (212) 305-9562, Fax: (212) 305-3213
| |
Collapse
|
252
|
Liver upregulation of genes involved in cortisol production and action is associated with metabolic syndrome in morbidly obese patients. Obes Surg 2012; 22:478-86. [PMID: 21964795 DOI: 10.1007/s11695-011-0524-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hepatic 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity, which converts cortisone (inactive) to cortisol, is downregulated in obesity. However, this compensation fails in obese with metabolic abnormalities, such as diabetes. To further characterize the tissue-specific cortisol regeneration in obesity, we have investigated the mRNA expression of genes related to local cortisol production, i.e., 11β-HSD1, hexose-6-phosphate dehydrogenase (H6PDH) and cortisol action, glucocorticoid receptor (GR) and a cortisol target gene, phosphoenolpyruvate carboxykinase (PEPCK) in the liver, and visceral (VAT) and subcutaneous (SAT) adipose tissues from morbidly obese patients with and without metabolic syndrome (MS). METHODS Fifty morbidly obese patients undergoing bariatric surgery, 14 men (mean age, 41.3 ± 3.5 years; BMI, 48.0 ± 3.6 kg/m(2)) and 36 women (mean age, 44.6 ± 1.9 years; BMI, 44.9 ± 1.2 kg/m(2)), were classified as having MS (MS+, n = 20) or not (MS-, n = 30). Tissue mRNA levels were measured by real-time polymerase chain reaction. RESULTS Hepatic mRNA levels of these genes were higher in obese patients with MS (11β-HSD1, P = 0.002; H6PDH, P = 0.043; GR, P = 0.033; PEPCK, P = 0.032) and positively correlated with the number of clinical characteristics that define the MS. The expression of the four genes positively correlated among them. In contrast to the liver, these genes were not differently expressed in VAT or SAT, when MS+ and MS- obese patients were compared. CONCLUSIONS Coordinated liver-specific upregulation of genes involved in local cortisol regeneration and action support the concept that local hepatic hypercortisolism contributes to development of MS in morbidly obese patients.
Collapse
|
253
|
Qin W, Judge RA, Longenecker KL, Solomon LR, Harlan JE. On-column ligand exchange for structure-based drug design: a case study with human 11β-hydroxysteroid dehydrogenase type 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:601-5. [PMID: 22691797 PMCID: PMC3374522 DOI: 10.1107/s1744309112010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/07/2012] [Indexed: 06/01/2023]
Abstract
Successfully forming ligand-protein complexes with specific compounds can be a significant challenge in supporting structure-based drug design for a given protein target. In this respect, an on-column ligand- and detergent-exchange method was developed to obtain ligand-protein complexes of an adamantane series of compounds with 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) after a variety of other complexation methods had failed. This report describes the on-column exchange method and an unexpected byproduct of the method in which artificial trimers were observed in the structures.
Collapse
Affiliation(s)
- Wenying Qin
- Consultant, 11 Minute Man Lane, Lexington, MA 02421, USA
| | - Russell A. Judge
- Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Kenton L. Longenecker
- Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Larry R. Solomon
- Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - John E. Harlan
- Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| |
Collapse
|
254
|
Molusky MM, Li S, Ma D, Yu L, Lin JD. Ubiquitin-specific protease 2 regulates hepatic gluconeogenesis and diurnal glucose metabolism through 11β-hydroxysteroid dehydrogenase 1. Diabetes 2012; 61:1025-35. [PMID: 22447855 PMCID: PMC3331773 DOI: 10.2337/db11-0970] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis.
Collapse
|
255
|
Czegle I, Csala M, Mandl J, Benedetti A, Karádi I, Bánhegyi G. G6PT-H6PDH-11βHSD1 triad in the liver and its implication in the pathomechanism of the metabolic syndrome. World J Hepatol 2012; 4:129-38. [PMID: 22567185 PMCID: PMC3345537 DOI: 10.4254/wjh.v4.i4.129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 11/16/2011] [Accepted: 04/24/2012] [Indexed: 02/06/2023] Open
Abstract
The metabolic syndrome, one of the most common clinical conditions in recent times, represents a combination of cardiometabolic risk determinants, including central obesity, glucose intolerance, insulin resistance, dyslipidemia, non-alcoholic fatty liver disease and hypertension. Prevalence of the metabolic syndrome is rapidly increasing worldwide as a consequence of common overnutrition and consequent obesity. Although a unifying picture of the pathomechanism is still missing, the key role of the pre-receptor glucocorticoid activation has emerged recently. Local glucocorticoid activation is catalyzed by a triad composed of glucose-6-phosphate-transporter, hexose-6-phosphate dehydrogenase and 11β-hydroxysteroid dehydrogenase type 1 in the endoplasmic reticulum. The elements of this system can be found in various cell types, including adipocytes and hepatocytes. While the contribution of glucocorticoid activation in adipose tissue to the pathomechanism of the metabolic syndrome has been well established, the relative importance of the hepatic process is less understood. This review summarizes the available data on the role of the hepatic triad and its role in the metabolic syndrome, by confronting experimental findings with clinical observations.
Collapse
Affiliation(s)
- Ibolya Czegle
- Ibolya Czegle, István Karádi, 3rd Department of Internal Medicine, Semmelweis University, 1125 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
256
|
Nixon M, Wake DJ, Livingstone DE, Stimson RH, Esteves CL, Seckl JR, Chapman KE, Andrew R, Walker BR. Salicylate downregulates 11β-HSD1 expression in adipose tissue in obese mice and in humans, mediating insulin sensitization. Diabetes 2012; 61:790-6. [PMID: 22357964 PMCID: PMC3314355 DOI: 10.2337/db11-0931] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022]
Abstract
Recent trials show salicylates improve glycemic control in type 2 diabetes, but the mechanism is poorly understood. Expression of the glucocorticoid-generating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissue is increased in vitro by proinflammatory cytokines and upregulated in obesity. 11β-HSD1 inhibition enhances insulin sensitivity. We hypothesized that salicylates downregulate 11β-HSD1 expression, contributing to their metabolic efficacy. We treated diet-induced obese (DIO) 11β-HSD1-deficient mice and C57Bl/6 mice with sodium salicylate for 4 weeks. Glucose tolerance was assessed in vivo. Tissue transcript levels were assessed by quantitative PCR and enzyme activity by incubation with (3)H-steroid. Two weeks' administration of salsalate was also investigated in a randomized double-blind placebo-controlled crossover study in 16 men, with measurement of liver 11β-HSD1 activity in vivo and adipose tissue 11β-HSD1 transcript levels ex vivo. In C57Bl/6 DIO mice, salicylate improved glucose tolerance and downregulated 11β-HSD1 mRNA and activity selectively in visceral adipose. DIO 11β-HSD1-deficient mice were resistant to these metabolic effects of salicylate. In men, salsalate reduced 11β-HSD1 expression in subcutaneous adipose, and in vitro salicylate treatment reduced adipocyte 11β-HSD1 expression and induced adiponectin expression only in the presence of 11β-HSD1 substrate. Reduced intra-adipose glucocorticoid regeneration by 11β-HSD1 is a novel mechanism that contributes to the metabolic efficacy of salicylates.
Collapse
Affiliation(s)
- Mark Nixon
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, Scotland, U.K.
| | | | | | | | | | | | | | | | | |
Collapse
|
257
|
Zhang L, Chen J, Ning M, Zou Q, Leng Y, Shen J. Synthesis and evaluation of piperidine urea derivatives as efficacious 11β-hydroxysteroid dehydrogenase type 1 inhibitors in diabetic ob/ob mice. Bioorg Med Chem Lett 2012; 22:2748-52. [DOI: 10.1016/j.bmcl.2012.02.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/19/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
|
258
|
Veyrat-Durebex C, Deblon N, Caillon A, Andrew R, Altirriba J, Odermatt A, Rohner-Jeanrenaud F. Central glucocorticoid administration promotes weight gain and increased 11β-hydroxysteroid dehydrogenase type 1 expression in white adipose tissue. PLoS One 2012; 7:e34002. [PMID: 22479501 PMCID: PMC3316512 DOI: 10.1371/journal.pone.0034002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/24/2012] [Indexed: 01/03/2023] Open
Abstract
Glucocorticoids (GCs) are involved in multiple metabolic processes, including the regulation of insulin sensitivity and adipogenesis. Their action partly depends on their intracellular activation by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). We previously demonstrated that central GC administration promotes hyperphagia, body weight gain, hyperinsulinemia and marked insulin resistance at the level of skeletal muscles. Similar dysfunctions have been reported to occur upon specific overexpression of 11β-HSD1 in adipose tissue. The aim of the present study was therefore to determine whether the effects of central GC infusion may enhance local GC activation in white adipose tissue. Male Wistar and Sprague Dawley (SD) rats were intracerebroventricularly infused with GCs for 2 to 3 days. Body weight, food intake and metabolic parameters were measured, and expression of enzymes regulating 11β-HSD1, as well as that of genes regulated by GCs, were quantified. Central GC administration induced a significant increase in body weight gain and in 11β-HSD1 and resistin expression in adipose tissue. A decrease 11β-HSD1 expression was noticed in the liver of SD rats, as a partial compensatory mechanism. Such effects of GCs are centrally elicited. This model of icv dexamethasone infusion thus appears to be a valuable acute model, that helps delineating the initial metabolic defects occurring in obesity. An impaired downregulation of intracellular GC activation in adipose tissue may be important for the development of insulin resistance.
Collapse
Affiliation(s)
- Christelle Veyrat-Durebex
- Laboratory of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
259
|
Kim SH, Bok JH, Lee JH, Kim IH, Kwon SW, Lee GB, Kang SK, Park JS, Jung WH, Kim HY, Rhee SD, Ahn SH, Bae MA, Ha DC, Kim KY, Ahn JH. Synthesis and biological evaluation of cyclic sulfamide derivatives as 11β-hydroxysteroid dehydrogenase 1 inhibitors. ACS Med Chem Lett 2012; 3:88-93. [PMID: 24900439 DOI: 10.1021/ml200226x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/03/2012] [Indexed: 11/29/2022] Open
Abstract
A new series of cyclic sulfamide derivatives were synthesized and evaluated for their ability to inhibit 11β-HSD1. Among this series, 18e showed good in vitro activity toward human 11β-HSD1, selectivity against 11β-HSD2, microsomal stability, and pharmacokinetic and safety profiles (hERG, CYP, and acute toxicity). Additionally, 18e exhibited good in vivo efficacy in rat and monkey models.
Collapse
Affiliation(s)
- Se Hoan Kim
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
- Department of Chemistry, Korea University, Sungbuk-gu, Seoul 136-701, Korea
| | - Ju Han Bok
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Jae Hong Lee
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
- Department of Chemistry, Korea University, Sungbuk-gu, Seoul 136-701, Korea
| | - Il Hyang Kim
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
- Department of Chemistry, Korea University, Sungbuk-gu, Seoul 136-701, Korea
| | - Sung Wook Kwon
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
- Department of Chemistry, Korea University, Sungbuk-gu, Seoul 136-701, Korea
| | - Gui Bin Lee
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Seung Kyu Kang
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Ji Seon Park
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Won Hoon Jung
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Hee Yeon Kim
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Sang Dal Rhee
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Sung Hoon Ahn
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Myung Ae Bae
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Deok Chan Ha
- Department of Chemistry, Korea University, Sungbuk-gu, Seoul 136-701, Korea
| | - Ki Young Kim
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| | - Jin Hee Ahn
- Bio-Organic
Science Division, Korea Research Institute of Chemical Technology, Yuseong-Gu, Daejeon, 305-600, Korea
| |
Collapse
|
260
|
Wend K, Wend P, Krum SA. Tissue-Specific Effects of Loss of Estrogen during Menopause and Aging. Front Endocrinol (Lausanne) 2012; 3:19. [PMID: 22654856 PMCID: PMC3356020 DOI: 10.3389/fendo.2012.00019] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/23/2012] [Indexed: 12/04/2022] Open
Abstract
The roles of estrogens have been best studied in the breast, breast cancers, and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women's Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs) used for the treatment of breast cancers and postmenopausal symptoms.
Collapse
Affiliation(s)
- Korinna Wend
- Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Peter Wend
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| | - Susan A. Krum
- Orthopaedic Hospital Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California Los AngelesLos Angeles, CA, USA
| |
Collapse
|
261
|
Affiliation(s)
- S. Gunten
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - T. Kaufmann
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| |
Collapse
|
262
|
Atalar F, Vural B, Ciftci C, Demirkan A, Akan G, Susleyici-Duman B, Gunay D, Akpinar B, Sagbas E, Ozbek U, Buyukdevrim A. 11β-hydroxysteroid dehydrogenase type 1 gene expression is increased in ascending aorta tissue of metabolic syndrome patients with coronary artery disease. GENETICS AND MOLECULAR RESEARCH 2012; 11:3122-32. [DOI: 10.4238/2012.august.31.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
263
|
Blum A, Loerz C, Martin HJ, Staab-Weijnitz CA, Maser E. Momordica charantia extract, a herbal remedy for type 2 diabetes, contains a specific 11β-hydroxysteroid dehydrogenase type 1 inhibitor. J Steroid Biochem Mol Biol 2012; 128:51-5. [PMID: 22001161 DOI: 10.1016/j.jsbmb.2011.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/19/2022]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the intracellular regeneration of active cortisol from inert cortisone in key metabolic tissues, thus regulating ligand access to glucocorticoid receptors. There is strong evidence that increased adipose 11β-HSD1 activity may be an important aetiological factor in the current obesity and diabetes type 2 epidemics. Hence, inhibition of 11β-HSD1 has emerged as a promising anti-diabetic strategy, a concept that is largely supported by numerous studies in rodent models as well as limited clinical data with prototype inhibitors. Momordica charantia (also known as bitter melon, bitter gourd or karela) is traditionally used for treatment of diabetes in Asia, South America, the Caribbean, and East Africa. In the present study, we show that M. charantia extract capsules contain at least one ingredient with selective 11β-HSD1 inhibitory activity. The finding constitutes an interesting additional explanation for the well-documented anti-diabetic and hypoglycaemic effects of M. charantia.
Collapse
Affiliation(s)
- Andreas Blum
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
264
|
Michalaki M, Kyriazopoulou V, Antonacopoulou A, Koika V, Nikolaou M, Tsoukas A, Kalfarentzos F, Vagenakis AG, Voukelatou G, Papavassiliou AG. The expression of omental 11β-HSD1 is not increased in severely obese women with metabolic syndrome. Obes Facts 2012; 5:104-11. [PMID: 22433622 DOI: 10.1159/000336755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Plasma cortisol in obese subjects does not differ from that in normoweight subjects. Extra-adrenal cortisol production by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) can result in local hypercortisolemia. The aim of the present study was to examine the role of visceral hypercortisolemia in the development of metabolic syndrome in severe obesity. METHODS Eight lean women during hysterectomy (controls) and 19 severely obese women during bariatric surgery were studied, 8 without metabolic syndrome (OM- group) and 11 with it (OM+ group). Biopsies of omental and subcutaneous fat were performed in the severely obese women during surgery, but only omental biopsies in the controls. Expression of 11β-HSD1, glucocorticoid receptor α (GRα) and glucocorticoid receptor β (GRβ) was evaluated using real-time PCR. RESULTS Omental 11β-HSD1 expression was different between groups (one-way ANOVA, p < 0.01). Post-hoc analysis revealed that mean omental 11β-HSD1 mRNA levels were higher in the OM- group compared to controls, whereas they were similar when comparing the OM+ group with lean controls. Expression of 11β-HSD1 in subcutaneous fat was not different between OM+ and OM- groups. GRα expression in omental fat did not differ among groups or between omental and subcutaneous fat in severely obese patients. An expression of GRβ was not detected. CONCLUSION Contrary to our original hypothesis, omental 11β-HSD1 expression is not increased in the OM+ group.
Collapse
Affiliation(s)
- Marina Michalaki
- Endocrine Division, Department of Internal Medicine, University of Patras, Patras, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
265
|
Pradaux-Caggiano F, Su X, Vicker N, Thomas MP, Smithen D, Halem HA, Culler MD, Potter BVL. Synthesis and evaluation of thiadiazole derivatives as inhibitors of 11β-hydroxysteroid dehydrogenase type 1. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20091k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
266
|
Coutinho AE, Gray M, Brownstein DG, Salter DM, Sawatzky DA, Clay S, Gilmour JS, Seckl JR, Savill JS, Chapman KE. 11β-Hydroxysteroid dehydrogenase type 1, but not type 2, deficiency worsens acute inflammation and experimental arthritis in mice. Endocrinology 2012; 153:234-40. [PMID: 22067318 PMCID: PMC3279737 DOI: 10.1210/en.2011-1398] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucocorticoids profoundly influence immune responses, and synthetic glucocorticoids are widely used clinically for their potent antiinflammatory effects. Endogenous glucocorticoid action is modulated by the two isozymes of 11β-hydroxysteroid dehydrogenase (11β-HSD). In vivo, 11β-HSD1 catalyzes the reduction of inactive cortisone or 11-dehydrocorticosterone into active cortisol or corticosterone, respectively, thereby increasing intracellular glucocorticoid levels. 11β-HSD2 catalyzes the reverse reaction, inactivating intracellular glucocorticoids. Both enzymes have been postulated to modulate inflammatory responses. In the K/BxN serum transfer model of arthritis, 11β-HSD1-deficient mice showed earlier onset and slower resolution of inflammation than wild-type controls, with greater exostoses in periarticular bone and, uniquely, ganglion cysts, consistent with greater inflammation. In contrast, K/BxN serum arthritis was unaffected by 11β-HSD2 deficiency. In a distinct model of inflammation, thioglycollate-induced sterile peritonitis, 11β-HSD1-deficient mice had more inflammatory cells in the peritoneum, but again 11β-HSD2-deficient mice did not differ from controls. Additionally, compared with control mice, 11β-HSD1-deficient mice showed greater numbers of inflammatory cells in pleural lavages in carrageenan-induced pleurisy with lung pathology consistent with slower resolution. These data suggest that 11β-HSD1 limits acute inflammation. In contrast, 11β-HSD2 plays no role in acute inflammatory responses in mice. Regulation of local 11β-HSD1 expression and/or delivery of substrate may afford a novel approach for antiinflammatory therapy.
Collapse
Affiliation(s)
- Agnes E Coutinho
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
267
|
Bates HE, Campbell JE, Ussher JR, Baggio LL, Maida A, Seino Y, Drucker DJ. Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(-/-) mice. Diabetes 2012; 61:40-8. [PMID: 22043004 PMCID: PMC3237652 DOI: 10.2337/db11-1060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) promotes glucose-dependent insulin secretion. However, GIP also enhances glucocorticoid secretion and promotes adiposity. Because obesity and diabetes are glucocorticoid dependent, we examined whether the effects of GIP on energy balance and glycemia are regulated by glucocorticoids using pharmacological activation of GIP receptor (GIPR) signaling with [d-Ala(2)]GIP in mice and in Y1 adrenocortical cells. Genetic elimination of GIPR activity was also studied in normal- and high-fat (HF)-fed Gipr-deficient (Gipr(-/-)) mice. [d-Ala(2)]GIP increased murine corticosterone levels in a GIPR-dependent manner. Conversely, basal corticosterone levels were reduced, whereas food deprivation resulted in significantly enhanced plasma corticosterone levels in Gipr(-/-) mice. [d-Ala(2)]GIP increased cAMP levels, activated extracellular signal\x{2013}related kinase (ERK)1/2, increased expression of steroidogenic genes, and increased neutral lipid storage in Y1GIPR cells. Gipr(-/-) adrenal glands demonstrated a twofold upregulation of the ACTH receptor mRNA and increased sensitivity to ACTH ex vivo. Although HF-fed Gipr(-/-) mice exhibited significantly lower plasma corticosterone, glucocorticoid-treated HF-fed Gipr(-/-) mice had similar energy balance and glycemia compared with Gipr(+)(/+) controls. Hence, although the Gipr is essential for adrenal steroidogenesis and links HF feeding to increased levels of corticosterone, reduced glucocorticoid levels do not significantly contribute to the enhanced metabolic phenotypes in HF-fed Gipr(-/-) mice.
Collapse
Affiliation(s)
- Holly E. Bates
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan E. Campbell
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John R. Ussher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Laurie L. Baggio
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Adriano Maida
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel J. Drucker
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Daniel J. Drucker,
| |
Collapse
|
268
|
Dhanesha N, Joharapurkar A, Shah G, Kshirsagar S, Dhote V, Sharma A, Jain M. Inhibition of 11β-hydroxysteroid dehydrogenase 1 by carbenoxolone affects glucose homeostasis and obesity in db/db mice. Clin Exp Pharmacol Physiol 2011; 39:69-77. [DOI: 10.1111/j.1440-1681.2011.05640.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
269
|
Tagawa N, Minamitani E, Yamaguchi Y, Kobayashi Y. Alternative mechanism for anti-obesity effect of dehydroepiandrosterone: possible contribution of 11β-hydroxysteroid dehydrogenase type 1 inhibition in rodent adipose tissue. Steroids 2011; 76:1546-53. [PMID: 21945397 DOI: 10.1016/j.steroids.2011.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/21/2011] [Accepted: 09/06/2011] [Indexed: 11/24/2022]
Abstract
Dehydroepiandrosterone (DHEA) has been suggested to have an anti-obesity effect; however, the mechanism underlying this effect remains unclear. The effect of DHEA on adipocytes opposes that of glucocorticoids, which potentiate adipogenesis. The key to the intracellular activation of glucocorticoids in adipocytes is 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which catalyses the production of active glucocorticoids (cortisol in humans and corticosterone in rodents) from an inactive 11-keto form (cortisone in humans and 11-dehydrocorticosterone in rodents). In humans and rodents, intracellular glucocorticoid reactivation is exaggerated in obese adipose tissue. Using differentiated 3T3-L1 adipocytes, we demonstrated that DHEA inhibited about 15.6% of 11β-HSD1 activity at a concentration of 1 μM within 10min. Inhibition was also observed in a cell-free system composed of microsomes prepared from rat adipose tissue and NADPH, a coenzyme of 11β-HSD1. A kinetic study revealed that DHEA acted as a non-competitive inhibitor of 11β-HSD1. Moreover, conversion from DHEA to estrogens was not observed by sensitive semi-micro HPLC equipped with electrochemical detector. These results indicate that the inhibition of 11β-HSD1 by DHEA depends on neither the transcriptional pathway nor the nonspecific manner. This is the first demonstration that the anti-obesity effect of DHEA is exerted by non-transcriptional inhibition of 11β-HSD1 in rodent adipocytes.
Collapse
Affiliation(s)
- Noriko Tagawa
- Department of Medical Biochemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | | | |
Collapse
|
270
|
Michailidou Z, Turban S, Miller E, Zou X, Schrader J, Ratcliffe PJ, Hadoke PWF, Walker BR, Iredale JP, Morton NM, Seckl JR. Increased angiogenesis protects against adipose hypoxia and fibrosis in metabolic disease-resistant 11β-hydroxysteroid dehydrogenase type 1 (HSD1)-deficient mice. J Biol Chem 2011; 287:4188-97. [PMID: 22158867 PMCID: PMC3281676 DOI: 10.1074/jbc.m111.259325] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In obesity, rapidly expanding adipose tissue becomes hypoxic, precipitating inflammation, fibrosis, and insulin resistance. Compensatory angiogenesis may prevent these events. Mice lacking the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1−/−) have “healthier” adipose tissue distribution and resist metabolic disease with diet-induced obesity. Here we show that adipose tissues of 11βHSD1−/− mice exhibit attenuated hypoxia, induction of hypoxia-inducible factor (HIF-1α) activation of the TGF-β/Smad3/α-smooth muscle actin (α-SMA) signaling pathway, and fibrogenesis despite similar fat accretion with diet-induced obesity. Moreover, augmented 11βHSD1−/− adipose tissue angiogenesis is associated with enhanced peroxisome proliferator-activated receptor γ (PPARγ)-inducible expression of the potent angiogenic factors VEGF-A, apelin, and angiopoietin-like protein 4. Improved adipose angiogenesis and reduced fibrosis provide a novel mechanism whereby suppression of intracellular glucocorticoid regeneration promotes safer fat expansion with weight gain.
Collapse
Affiliation(s)
- Zoi Michailidou
- Medical Research Council Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
271
|
Yehuda R, Seckl J. Minireview: Stress-related psychiatric disorders with low cortisol levels: a metabolic hypothesis. Endocrinology 2011; 152:4496-503. [PMID: 21971152 DOI: 10.1210/en.2011-1218] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several stress-associated neuropsychiatric disorders, notably posttraumatic stress disorder and chronic pain and fatigue syndromes, paradoxically exhibit somewhat low plasma levels of the stress hormone cortisol. The effects appear greatest in those initially traumatized in early life, implying a degree of developmental programming, perhaps of both lower cortisol and vulnerability to psychopathology. In these conditions, lowered cortisol is not due to any adrenal or pituitary insufficiency. Instead, two processes appear involved. First, there is increased target cell sensitivity to glucocorticoid action, notably negative feedback upon the hypothalamic-pituitary-adrenal (stress) axis. Altered density of the glucocorticoid receptor is inferred, squaring with much preclinical data showing early life challenges can permanently program glucocorticoid receptors in a tissue-specific manner. These effects involve epigenetic mechanisms. Second, early life trauma/starvation induces long-lasting lowering of glucocorticoid catabolism, specifically by 5α-reductase type 1 (predominantly a liver enzyme) and 11β-hydroxysteroid dehydrogenase type 2 (in kidney), an effect also seen in model systems. These changes reflect a plausible early-life adaptation to increase the persistence of active cortisol in liver (to maximize fuel output) and kidney (to increase salt retention) without elevation of circulating levels, thus avoiding their deleterious effects on brain and muscle. Modestly lowered circulating cortisol and increased vulnerability to stress-associated disorders may be the outcome. This notion implies a vulnerable early-life phenotype may be discernable and indicates potential therapy by modest glucocorticoid replacement. Indeed, early clinical trials with cortisol have shown a modicum of promise.
Collapse
Affiliation(s)
- Rachel Yehuda
- Mount Sinai School of Medicine, Department of Psychiatry, Traumatology and Stress Studies Division, New York, New York 10029, USA
| | | |
Collapse
|
272
|
Design, synthesis, and SAR studies of novel polycyclic acids as potent and selective inhibitors of human 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1). Bioorg Med Chem Lett 2011; 21:6699-704. [DOI: 10.1016/j.bmcl.2011.09.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 01/21/2023]
|
273
|
Klusoňová P, Pátková L, Ergang P, Mikšík I, Zicha J, Kuneš J, Pácha J. Local metabolism of glucocorticoids in Prague hereditary hypertriglyceridemic rats--effect of hypertriglyceridemia and gender. Steroids 2011; 76:1252-9. [PMID: 21729713 DOI: 10.1016/j.steroids.2011.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/06/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11HSD1) is a microsomal NADPH-dependent oxidoreductase which elevates intracellular concentrations of active glucocorticoids. Data obtained from mouse strains with genetically manipulated 11HSD1 showed that local metabolism of glucocorticoids plays an important role in the development of metabolic syndrome. Tissue specific dysregulation of 11HSD1 was also found in other models of metabolic syndrome as well as in a number of clinical studies. Here, we studied local glucocorticoid action in the liver, subcutaneous adipose tissue (SAT) and skeletal muscles of male and female Prague hereditary hypertriglyceridemic rats (HHTg) and their normotriglyceridemic counterpart, the Wistar rats. 11HSD1 bioactivity was measured as a conversion of [(3)H]11-dehydrocorticosterone to [(3)H]corticosterone or vice versa. Additionally to express level of active 11HSD1 protein, enzyme activity was measured in tissue homogenates. mRNA abundance of 11HSD1, hexoso-6-phosphate dehydrogenase (H6PDH) and the glucocorticoid receptor (GR) was measured by real-time PCR. In comparison with normotriglyceridemic animals, female HHTg rats showed enhanced regeneration of glucocorticoids in the liver and the absence of any changes in SAT and skeletal muscle. In contrast to females, the glucocorticoid regeneration in males of HHTg rats was unchanged in liver, but stimulated in SAT and downregulated in muscle. Furthermore, SAT and skeletal muscle exhibited not only 11-reductase but also 11-oxidase catalyzed by 11HSD1. In females of both strains, 11-oxidase activity largely exceeded 11-reductase activity. No dramatic changes were found in the mRNA expression of H6PDH and GR. Our data provide evidence that the relationship between hypertriglyceridemia and glucocorticoid action is complex and gender specific.
Collapse
Affiliation(s)
- Petra Klusoňová
- Department of Epithelial Physiology, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
274
|
|
275
|
Wetzel S, Bon RS, Kumar K, Waldmann H. Biology-Oriented Synthesis. Angew Chem Int Ed Engl 2011; 50:10800-26. [DOI: 10.1002/anie.201007004] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Indexed: 12/22/2022]
|
276
|
Mason BL, Thomas SA, Lightman SL, Pariante CM. Desipramine treatment has minimal effects on the brain accumulation of glucocorticoids in P-gp-deficient and wild-type mice. Psychoneuroendocrinology 2011; 36:1351-60. [PMID: 21481537 PMCID: PMC3179986 DOI: 10.1016/j.psyneuen.2011.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/18/2022]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in patients with depression can be reduced by antidepressants, which are thought to improve endogenous glucocorticoid-mediated negative feedback. A proportion of peripherally released glucocorticoids need to enter brain tissue, protected by the blood-brain barrier (BBB), in order to achieve this negative feedback effect at the level of the central nervous systems (CNS). The multidrug resistance transporter P-glycoprotein (P-gp) has been shown to actively transport glucocorticoid hormones and has been implicated in the regulation of glucocorticoid access to the CNS. Using an in situ brain/choroid plexus perfusion method, we tested the hypothesis that the antidepressant desipramine increases glucocorticoid accumulation in the mouse brain by inhibiting P-gp, following either chronic treatment (8 days, 20 mg/kg/day, IP) or acute administration (20 min brain perfusion in the presence of either 0.9 μM or 10 μM desipramine). Contrary to our hypothesis, chronic treatment with desipramine did not affect the accumulation of [³H]dexamethasone in any sample compared to saline-treated mice. Acute desipramine had limited and variable effects on glucocorticoid accumulation in the CNS, with accumulation of [³H]dexamethasone increased in the cerebellum, accumulation of [³H]cortisol reduced in the frontal cortex, hypothalamus, and cerebellum, and accumulation of [³H]corticosterone (the endogenous glucocorticoid in rodents) not affected. Overall, under the conditions tested, these results do not support the hypothesis that treatment with desipramine can inhibit P-gp at the BBB and subsequently increase the accumulation of glucocorticoids in the brain.
Collapse
Affiliation(s)
- Brittany L Mason
- Institute of Pharmaceutical Science, King's College London, London, UK.
| | | | | | | |
Collapse
|
277
|
Wu SC, Yoon D, Chin J, van Kirk K, Seethala R, Golla R, He B, Harrity T, Kunselman LK, Morgan NN, Ponticiello RP, Taylor JR, Zebo R, Harper TW, Li W, Wang M, Zhang L, Sleczka BG, Nayeem A, Sheriff S, Camac DM, Morin PE, Everlof JG, Li YX, Ferraro CA, Kieltyka K, Shou W, Vath MB, Zvyaga TA, Gordon DA, Robl JA. Discovery of 3-hydroxy-4-cyano-isoquinolines as novel, potent, and selective inhibitors of human 11β-hydroxydehydrogenase 1 (11β-HSD1). Bioorg Med Chem Lett 2011; 21:6693-8. [PMID: 21983444 DOI: 10.1016/j.bmcl.2011.09.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 11/30/2022]
Abstract
Derived from the HTS hit 1, a series of hydroxyisoquinolines was discovered as potent and selective 11β-HSD1 inhibitors with good cross species activity. Optimization of substituents at the 1 and 4 positions of the isoquinoline group in addition to the core modifications, with a special focus on enhancing metabolic stability and aqueous solubility, resulted in the identification of several compounds as potent advanced leads.
Collapse
Affiliation(s)
- Shung C Wu
- Bristol-Myers Squibb Research & Development, PO Box 5400, Hopewell, NJ 08534-5400, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
278
|
Su X, Pradaux-Caggiano F, Vicker N, Thomas MP, Halem H, Culler MD, Potter BVL. Adamantyl ethanone pyridyl derivatives: potent and selective inhibitors of human 11β-hydroxysteroid dehydrogenase type 1. ChemMedChem 2011; 6:1616-29. [PMID: 21714097 PMCID: PMC3179844 DOI: 10.1002/cmdc.201100182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Indexed: 12/30/2022]
Abstract
Elevated levels of active glucocorticoids have been implicated in the development of several phenotypes of metabolic syndrome, such as type 2 diabetes and obesity. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular conversion of inactive cortisone to cortisol. Selective 11β-HSD1 inhibitors have shown beneficial effects in various conditions, including diabetes, dyslipidemia and obesity. A series of adamantyl ethanone pyridyl derivatives has been identified, providing potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective for this isoform, with no activity against 11β-HSD2 and 17β-HSD1. Structure-activity relationship studies reveal that an unsubstituted pyridine tethered to an adamantyl ethanone motif through an ether or sulfoxide linker provides a suitable pharmacophore for activity. The most potent inhibitors have IC₅₀ values around 34-48 nM against human 11β-HSD1, display reasonable metabolic stability in human liver microsomes, and weak inhibition of key human CYP450 enzymes.
Collapse
Affiliation(s)
- Xiangdong Su
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| | - Fabienne Pradaux-Caggiano
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| | - Nigel Vicker
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| | - Mark P Thomas
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| | - Heather Halem
- IPSEN, Biomeasure Inc.27 Maple Street, Milford, MA 01757 (USA)
| | | | - Barry V L Potter
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of BathBath, BA2 7AY (UK), Fax: (+44) 1225 386114
| |
Collapse
|
279
|
Xu Z, Tice CM, Zhao W, Cacatian S, Ye YJ, Singh SB, Lindblom P, McKeever BM, Krosky PM, Kruk BA, Berbaum J, Harrison RK, Johnson JA, Bukhtiyarov Y, Panemangalore R, Scott BB, Zhao Y, Bruno JG, Togias J, Guo J, Guo R, Carroll PJ, McGeehan GM, Zhuang L, He W, Claremon DA. Structure-Based Design and Synthesis of 1,3-Oxazinan-2-one Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1. J Med Chem 2011; 54:6050-62. [PMID: 21786805 DOI: 10.1021/jm2005354] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhenrong Xu
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Colin M. Tice
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Wei Zhao
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Salvacion Cacatian
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Yuan-Jie Ye
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Suresh B. Singh
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Peter Lindblom
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Brian M. McKeever
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Paula M. Krosky
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Barbara A. Kruk
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Jennifer Berbaum
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Richard K. Harrison
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Judith A. Johnson
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Yuri Bukhtiyarov
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Reshma Panemangalore
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Boyd B. Scott
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Yi Zhao
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Joseph G. Bruno
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Jennifer Togias
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Joan Guo
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Rong Guo
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, 250 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Gerard M. McGeehan
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Linghang Zhuang
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - Wei He
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| | - David A. Claremon
- Vitae Pharmaceuticals, 502 West Office Center Drive, Fort Washington, Pennsylvania 19034, United States
| |
Collapse
|
280
|
Öztürk M, Atmaca M. Remission of Cushing's disease with growth hormone replacement. Growth Horm IGF Res 2011; 21:238-241. [PMID: 21641842 DOI: 10.1016/j.ghir.2011.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 05/08/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022]
Abstract
Treatment of Cushing's disease is often challenging. The success rates are not satisfactory and therapeutic interventions frequently causes hypopituitarism. We present three cases of remitting Cushing's disease complicated with growth hormone deficiency. Surprisingly, growth hormone replacement resulted in complete clinical and laboratory remission of Cushing's disease in these patients. However, one of the patients died of myocardial infarction. Effects of growth hormone on cortisol metabolism are discussed.
Collapse
Affiliation(s)
- Mustafa Öztürk
- Yuzuncu Yil University Medical Faculty, Internal medicine Department of Endocrinology and Metabolism, Van, Turkey
| | | |
Collapse
|
281
|
Wyrwoll CS, Holmes MC, Seckl JR. 11β-hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 2011; 32:265-86. [PMID: 21144857 PMCID: PMC3149101 DOI: 10.1016/j.yfrne.2010.12.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 12/11/2022]
Abstract
Glucocorticoids have profound effects on brain development and adult CNS function. Excess or insufficient glucocorticoids cause myriad abnormalities from development to ageing. The actions of glucocorticoids within cells are determined not only by blood steroid levels and target cell receptor density, but also by intracellular metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSD). 11β-HSD1 regenerates active glucocorticoids from their inactive 11-keto derivatives and is widely expressed throughout the adult CNS. Elevated hippocampal and neocortical 11β-HSD1 is observed with ageing and causes cognitive decline; its deficiency prevents the emergence of cognitive defects with age. Conversely, 11β-HSD2 is a dehydrogenase, inactivating glucocorticoids. The major central effects of 11β-HSD2 occur in development, as expression of 11β-HSD2 is high in fetal brain and placenta. Deficient feto-placental 11β-HSD2 results in a life-long phenotype of anxiety and cardiometabolic disorders, consistent with early life glucocorticoid programming.
Collapse
Affiliation(s)
- Caitlin S Wyrwoll
- Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | | | | |
Collapse
|
282
|
Gambineri A, Tomassoni F, Munarini A, Stimson RH, Mioni R, Pagotto U, Chapman KE, Andrew R, Mantovani V, Pasquali R, Walker BR. A combination of polymorphisms in HSD11B1 associates with in vivo 11{beta}-HSD1 activity and metabolic syndrome in women with and without polycystic ovary syndrome. Eur J Endocrinol 2011; 165:283-92. [PMID: 21622477 DOI: 10.1530/eje-11-0091] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Regeneration of cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) within liver and adipose tissue may be of pathophysiological importance in obesity and the metabolic syndrome. single nucleotide polymorphisms (SNPs) in HSD11B1, the gene encoding 11β-HSD1, have been associated with type 2 diabetes and hypertension in population-based cohort studies, and with hyperandrogenism in patients with the polycystic ovary syndrome (PCOS). However, the functional consequences of these SNPs for in vivo 11β-HSD1 expression and activity are unknown. METHODS We explored associations of well-characterised hormonal and metabolic phenotypes with two common SNPs (rs846910 and rs12086634) in HSD11B1 in 600 women (300 with PCOS) and investigated 11β-HSD1 expression and activity in a nested study of 40 women from this cohort. RESULTS HSD11B1 genotypes (as single SNPs and as the combination of the two minor allele SNPs) were not associated with PCOS. Women who were heterozygous for rs846910 A and homozygous for rs12086634 T (GA, TT genotype) had a higher risk of metabolic syndrome, regardless of the diagnosis of PCOS (odds ratio in the whole cohort=2.77 (95% confidence interval (CI) 1.16-6.67), P=0.023). In the nested cohort, women with the GA, TT genotype had higher HSD11B1 mRNA levels in adipose tissue, and higher rates of appearance of cortisol and d3-cortisol (16.1±0.7 nmol/min versus 12.1±1.1, P=0.044) during 9,11,12,12-2H4-cortisol (d4-cortisol) steady-state infusion. CONCLUSIONS We conclude that, in a population of Southern European Caucasian women with and without PCOS, alleles of HSD11B1 containing the two SNPs rs846910 A and rs12086634 T confer increased 11β-HSD1 expression and activity, which associates with the metabolic syndrome.
Collapse
Affiliation(s)
- Alessandra Gambineri
- Division of Endocrinology, Department of Clinical Medicine, Centre for Applied Biomedical Research (CRBA), S. Orsola-Malpighi Hospital, University of Bologna - Alma Mater Studiorum, Via Massarenti 9, 40138 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
283
|
Yamaguchi H, Akitaya T, Yu T, Kidachi Y, Kamiie K, Noshita T, Umetsu H, Ryoyama K. Molecular docking and structural analysis of cofactor-protein interaction between NAD⁺ and 11β-hydroxysteroid dehydrogenase type 2. J Mol Model 2011; 18:1037-48. [PMID: 21667072 DOI: 10.1007/s00894-011-1140-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 05/27/2011] [Indexed: 11/28/2022]
Abstract
Molecular docking and structural analysis of the cofactor-protein interaction between NAD(+) and human (h) or mouse (m) 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) were performed with the molecular operating environment (MOE). 11βHSD1 (PDB code: 3HFG) was selected as a template for the 3D structure modeling of 11βHSD2. The MOE docking (MOE-dock) and the alpha sphere and excluded volume-based ligand-protein docking (ASE-dock) showed that both NAD(+)-h11βHSD2 and NAD(+)-m11βHSD2 models have a similar binding orientation to the template cofactor-protein model. Our present study also revealed that Asp91, Phe94, Tyr232 and Thr267 could be of importance in the interaction between NAD(+) and 11βHSD2. NADP(+) was incapable of entering into the cofactor-binding site of the 11βHSD2 models. The present study proposes the latest models for 11βHSD2 and its cofactor NAD(+), and to the best of our knowledge, this is the first report of a m11βHSD2 model with NAD(+).
Collapse
Affiliation(s)
- Hideaki Yamaguchi
- Department of Pharmacy, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tenpaku, Nagoya 468-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Feig PU, Shah S, Hermanowski-Vosatka A, Plotkin D, Springer MS, Donahue S, Thach C, Klein EJ, Lai E, Kaufman KD. Effects of an 11β-hydroxysteroid dehydrogenase type 1 inhibitor, MK-0916, in patients with type 2 diabetes mellitus and metabolic syndrome. Diabetes Obes Metab 2011; 13:498-504. [PMID: 21272190 DOI: 10.1111/j.1463-1326.2011.01375.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM We examined the effects of the 11β-hydroxysteroid dehydrogenase type 1 (HSD1) inhibitor, MK-0916, on the multiple components of the metabolic syndrome (MetS) in patients with type 2 diabetes (T2DM) and MetS. METHODS This was a 12-week, multicentre, randomized, double-blind, placebo-controlled study. Patients with T2DM (mean baseline A1C: 7.3%) and National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III)-defined MetS were randomized 1 : 1 : 1 : 1 to 0.5, 2 or 6 mg/day MK-0916 or placebo. The primary efficacy endpoint was a change from baseline at week 12 in fasting plasma glucose (FPG). Secondary endpoints included glycosylated haemoglobin A(1c) (A1C), 2-h postprandial glucose (2-h PPG), body weight, waist circumference, blood pressure and lipid profile. RESULTS Treatment with MK-0916 had no significant effect relative to placebo on FPG at week 12. Compared to placebo, 6 mg MK-0916 produced a modest, significant (p = 0.049) reduction in A1C of 0.3% at week 12, but no significant difference was observed in 2-h PPG. Six milligram MK-0916 increased LDL-C relative to placebo by 10.4% (p = 0.041). Treatment with MK-0916 led to modest dose-dependent decreases in blood pressure and body weight. Overall, MK-0916 was generally well tolerated. MK-0916 produced mechanism-based activation of the hypothalamic-pituitary-adrenal axis, resulting in mean increases in adrenal androgen levels that remained within the normal range at all doses tested. CONCLUSIONS Inhibition of HSD1 with MK-0916 was generally well tolerated in patients with T2DM and MetS. Although no significant improvement in FPG was observed with MK-0916 compared to placebo, modest improvements in A1C, body weight and blood pressure were observed.
Collapse
Affiliation(s)
- P U Feig
- Merck Sharp & Dohme Corp., Rahway, NJ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Su X, Vicker N, Thomas MP, Pradaux-Caggiano F, Halem H, Culler MD, Potter BVL. Discovery of adamantyl heterocyclic ketones as potent 11β-hydroxysteroid dehydrogenase type 1 inhibitors. ChemMedChem 2011; 6:1439-51. [PMID: 21608132 PMCID: PMC3170876 DOI: 10.1002/cmdc.201100144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Indexed: 11/11/2022]
Abstract
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays a key role in converting intracellular cortisone to physiologically active cortisol, which is implicated in the development of several phenotypes of metabolic syndrome. Inhibition of 11β-HSD1 activity with selective inhibitors has beneficial effects on various conditions, including diabetes, dyslipidemia and obesity, and therefore constitutes a promising strategy to discover novel therapies for metabolic and cardiovascular diseases. A series of novel adamantyl heterocyclic ketones provides potent and selective inhibitors of human 11β-HSD1. Lead compounds display low nanomolar inhibition against human and mouse 11β-HSD1 and are selective with no activity against 11β-HSD2 and 17β-HSD1. Selected potent 11β-HSD1 inhibitors show moderate metabolic stability upon incubation with human liver microsomes and weak inhibition of human CYP450 enzymes.
Collapse
Affiliation(s)
- Xiangdong Su
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA27AY, UK
| | | | | | | | | | | | | |
Collapse
|
286
|
Zielinska AE, Walker EA, Stewart PM, Lavery GG. Biochemistry and physiology of hexose-6-phosphate knockout mice. Mol Cell Endocrinol 2011; 336:213-8. [PMID: 21146583 DOI: 10.1016/j.mce.2010.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
Hexose-6-phosphate dehydrogenase (H6PDH) has emerged as an important factor in setting the redox status of the endoplasmic reticulum (ER) lumen. An important role of H6PDH is to generate a high NADPH/NADP(+) ratio which permits 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) to act as an oxo-reductase, catalyzing the activation of glucocorticoids (GCs). In H6PDH knockout mice 11β-HSD1 assumes dehydrogenase activity and inactivates GCs, rendering the target cell relatively GC insensitive. Consequently, H6PDHKO mice have a phenotype consistent with defects in the permissive and adaptive actions of GCs upon physiology. H6PDHKO mice have also offered an insight into muscle physiology as they also present with a severe vacuolating myopathy, abnormalities of glucose homeostasis and activation of the unfolded protein response due to ER stress, and a number of mechanisms driving this phenotype are thought to be involved. This article will review what we understand of the redox control of GC hormone metabolism regulated by H6PDH, and how H6PDHKO mice have allowed an in-depth understanding of its potentially novel, GC-independent roles in muscle physiology.
Collapse
Affiliation(s)
- Agnieszka E Zielinska
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
287
|
Rahman TJ, Mayosi BM, Hall D, Avery PJ, Stewart PM, Connell JMC, Watkins H, Keavney B. Common variation at the 11-β hydroxysteroid dehydrogenase type 1 gene is associated with left ventricular mass. CIRCULATION. CARDIOVASCULAR GENETICS 2011; 4:156-62. [PMID: 21402901 DOI: 10.1161/circgenetics.110.958496] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Polymorphisms in 11-β hydroxysteroid dehydrogenase type 1 (11β-HSD1, encoded by HSD11B1) have been reported to be associated with obesity-related cardiovascular risk factors, such as type II diabetes and hypertension. Left ventricular hypertrophy (LVH) is an independent risk factor for cardiovascular death associated with these factors but has significant additional heritability, the cause of which is undetermined. The 11β-HSD1 is believed to maintain tonic inhibition of the mineralocorticoid receptor in cardiomyocytes, and mineralocorticoid receptor activation is involved in the pathophysiology of LVH. We assessed the association between polymorphisms in the HSD11B1 gene and left ventricular mass (LVM) in 248 families ascertained through a proband with hypertension. METHODS AND RESULTS LVM was measured by electrocardiography and echocardiography in 868 and 829 participants, respectively. Single-nucleotide polymorphisms (SNPs) tagging common variation in the HSD11B1 gene were genotyped by mass spectrometry. The rs846910 SNP, which lies in the flanking region 5' to exon 1B of HSD11B1, was associated with LVM both by electrocardiography (≈5% lower LVM per copy of the rare allele, P=0.02) and by echocardiography (≈10% lower LVM per copy of the rare allele, P=0.003). Genotype explained 1% to 2% of the population variability in LVM, or approximately 5% of the heritable fraction. There were no significant associations between any HSD11B1 SNP and blood pressure or body mass index that could have confounded the association with LVM. CONCLUSIONS Genotype at HSD11B1 has a small, but significant effect on LVM, apparently independently of any effect on obesity-related traits. These findings suggest a novel action of 11β-HSD1 in the human cardiomyocyte, which may be of therapeutic importance.
Collapse
Affiliation(s)
- Thahira J Rahman
- Institute of Human Genetics, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | |
Collapse
|
288
|
Sun W, Maletic M, Mundt SS, Shah K, Zokian H, Lyons K, Waddell ST, Balkovec J. Substituted phenyl triazoles as selective inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1. Bioorg Med Chem Lett 2011; 21:2141-5. [DOI: 10.1016/j.bmcl.2011.01.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/27/2011] [Accepted: 01/28/2011] [Indexed: 11/29/2022]
|
289
|
Venier O, Pascal C, Braun A, Namane C, Mougenot P, Crespin O, Pacquet F, Mougenot C, Monseau C, Onofri B, Dadji-Faïhun R, Leger C, Ben-Hassine M, Van-Pham T, Ragot JL, Philippo C, Güssregen S, Engel C, Farjot G, Noah L, Maniani K, Nicolaï E. Pyrrolidine-pyrazole ureas as potent and selective inhibitors of 11β-hydroxysteroid-dehydrogenase type 1. Bioorg Med Chem Lett 2011; 21:2244-51. [PMID: 21439819 DOI: 10.1016/j.bmcl.2011.02.111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/25/2011] [Accepted: 02/27/2011] [Indexed: 11/26/2022]
Abstract
A High Throughput Screening campaign allowed the identification of a novel class of ureas as 11β-HSD1 inhibitors. Rational chemical optimization provided potent and selective inhibitors of both human and murine 11β-HSD1 with an appropriate ADME profile and ex vivo activity in target tissues.
Collapse
Affiliation(s)
- Olivier Venier
- Sanofi-aventis R&D, 1 Avenue Pierre Brossolette, 91385 Chilly-Mazarin, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
290
|
Yau JLW, Noble J, Seckl JR. 11beta-hydroxysteroid dehydrogenase type 1 deficiency prevents memory deficits with aging by switching from glucocorticoid receptor to mineralocorticoid receptor-mediated cognitive control. J Neurosci 2011; 31:4188-93. [PMID: 21411659 PMCID: PMC3132450 DOI: 10.1523/jneurosci.6145-10.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/08/2011] [Accepted: 01/27/2011] [Indexed: 11/21/2022] Open
Abstract
Local brain amplification of glucocorticoids (GCs) by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays a pivotal role in age-related memory deficits. 11β-HSD1 deficient mice are protected from spatial memory impairments with aging, but the underlying mechanisms are unknown. To determine which brain receptors [high-affinity mineralocorticoid receptors (MRs) or low-affinity glucocorticoid receptors (GRs)] are involved, spatial memory was measured in aged 11β-HSD1(-/-) mice before and during intracerebroventricular infusion (10 d) of spironolactone (MR antagonist) or RU486 (GR antagonist). Aged C57BL/6J control mice showed impaired spatial memory in the Y-maze; this improved with GR blockade, while MR blockade had no effect. In contrast, aged 11β-HSD1(-/-) mice showed intact spatial memory that became impaired with MR blockade, but not GR blockade. Hippocampal MR and GR mRNA expression and plasma corticosterone levels were not significantly altered with spironolactone or RU486 in either genotype. These data support the notion that 11β-HSD1 deficiency in aging mice leads to lower intracellular GC concentrations in brain, particularly in the hippocampus, which activate predominantly MRs to enhance memory, while in aging C57BL/6J controls, the increased intracellular GCs saturate MRs and activate predominantly GRs, thus impairing memory, an effect reversed by GR blockade.
Collapse
Affiliation(s)
- Joyce L W Yau
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, and Endocrinology Unit, Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom.
| | | | | |
Collapse
|
291
|
Lawson AJ, Walker EA, Lavery GG, Bujalska IJ, Hughes B, Arlt W, Stewart PM, Ride JP. Cortisone-reductase deficiency associated with heterozygous mutations in 11beta-hydroxysteroid dehydrogenase type 1. Proc Natl Acad Sci U S A 2011; 108:4111-6. [PMID: 21325058 PMCID: PMC3054023 DOI: 10.1073/pnas.1014934108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In peripheral target tissues, levels of active glucocorticoid hormones are controlled by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), a dimeric enzyme that catalyzes the reduction of cortisone to cortisol within the endoplasmic reticulum. Loss of this activity results in a disorder termed cortisone reductase deficiency (CRD), typified by increased cortisol clearance and androgen excess. To date, only mutations in H6PD, which encodes an enzyme supplying cofactor for the reaction, have been identified as the cause of disease. Here we examined the HSD11B1 gene in two cases presenting with biochemical features indicative of a milder form of CRD in whom the H6PD gene was normal. Novel heterozygous mutations (R137C or K187N) were found in the coding sequence of HSD11B1. The R137C mutation disrupts salt bridges at the subunit interface of the 11β-HSD1 dimer, whereas K187N affects a key active site residue. On expression of the mutants in bacterial and mammalian cells, activity was either abolished (K187N) or greatly reduced (R137C). Expression of either mutant in a bacterial system greatly reduced the yield of soluble protein, suggesting that both mutations interfere with subunit folding or dimer assembly. Simultaneous expression of mutant and WT 11β-HSD1 in bacterial or mammalian cells, to simulate the heterozygous condition, indicated a marked suppressive effect of the mutants on both the yield and activity of 11β-HSD1 dimers. Thus, these heterozygous mutations in the HSD11B1 gene have a dominant negative effect on the formation of functional dimers and explain the genetic cause of CRD in these patients.
Collapse
Affiliation(s)
| | - Elizabeth A. Walker
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gareth G. Lavery
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Iwona J. Bujalska
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Beverly Hughes
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul M. Stewart
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | |
Collapse
|
292
|
Thomas MP, Potter BVL. Crystal structures of 11β-hydroxysteroid dehydrogenase type 1 and their use in drug discovery. Future Med Chem 2011; 3:367-90. [PMID: 21446847 PMCID: PMC4037982 DOI: 10.4155/fmc.10.282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cortisol is synthesized by 11β-hydroxysteroid dehydrogenase type 1, inhibitors of which may treat disease associated with excessive cortisol levels. The crystal structures of 11β-hydroxysteroid dehydrogenase type 1 that have been released may aid drug discovery. The crystal structures have been analyzed in terms of the interactions between the protein and the ligands. Despite a variety of structurally different inhibitors the crystal structures of the proteins are quite similar. However, the differences are significant for drug discovery. The crystal structures can be of use in drug discovery, but care needs to be taken when selecting structures for use in virtual screening and ligand docking.
Collapse
Affiliation(s)
- Mark P Thomas
- Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry VL Potter
- Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
293
|
Gaware R, Khunt R, Czollner L, Stanetty C, Cunha TD, Kratschmar DV, Odermatt A, Kosma P, Jordis U, Claßen-Houben D. Synthesis of new glycyrrhetinic acid derived ring A azepanone, 29-urea and 29-hydroxamic acid derivatives as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors. Bioorg Med Chem 2011; 19:1866-80. [DOI: 10.1016/j.bmc.2011.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 11/16/2022]
|
294
|
Li G, Hernandez-Ono A, Crooke RM, Graham MJ, Ginsberg HN. Effects of antisense-mediated inhibition of 11β-hydroxysteroid dehydrogenase type 1 on hepatic lipid metabolism. J Lipid Res 2011; 52:971-81. [PMID: 21364201 DOI: 10.1194/jlr.m013748] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) converts inactive 11-keto derivatives to active glucocorticoids within tissues and may play a role in the metabolic syndrome (MS). We used an antisense oligonucleotide (ASO) to knock down 11β-HSD1 in livers of C57BL/6J mice consuming a Western-type diet (WTD). 11β-HSD1 ASO-treated mice consumed less food, so we compared them to ad libitum-fed mice and to food-matched mice receiving control ASO. Knockdown of 11β-HSD1 directly protected mice from WTD-induced steatosis and dyslipidemia by reducing synthesis and secretion of triglyceride (TG) and increasing hepatic fatty acid oxidation. These changes in hepatic and plasma lipids were not associated with reductions in genes involved in de novo lipogenesis. However, protein levels of both sterol regulatory element-binding protein (SREBP) 1 and fatty acid synthase were significantly reduced in mice treated with 11β-HSD1 ASO. There was no change in hepatic secretion of apolipoprotein (apo)B, indicating assembly and secretion of smaller apoB-containing lipoproteins by the liver in the 11β-HSD1-treated mice. Our results indicate that inhibition of 11β-HSD1 by ASO treatment of WTD-fed mice resulted in improved plasma and hepatic lipid levels, reduced lipogenesis by posttranslational regulation, and secretion of similar numbers of apoB-containing lipoproteins containing less TG per particle.
Collapse
Affiliation(s)
- Guoping Li
- Department of Medicine, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
295
|
Fan Z, Du H, Zhang M, Meng Z, Chen L, Liu Y. Direct regulation of glucose and not insulin on hepatic hexose-6-phosphate dehydrogenase and 11β-hydroxysteroid dehydrogenase type 1. Mol Cell Endocrinol 2011; 333:62-9. [PMID: 21163329 PMCID: PMC3741409 DOI: 10.1016/j.mce.2010.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 12/22/2022]
Abstract
Abnormal hepatic gluconeogenesis contributes significantly to both fasting and non-fasting hyperglycemia of patients with type 2 diabetes. 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates the key hepatic gluconeogenic enzymes including phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) through the amplification of glucocorticoid receptor (GR) - mediated tissue glucocorticoid action, and is crucially dependent on hexose-6-phosphate dehydrogenase (H6PDH) - generating NADPH system. Here, we observed that compared with fasting state, H6PDH and 11β-HSD1 expression in livers were all increased under non-fasting state in both normal and diabetic rats, and the non-fasting diabetic group was the highest among the four experimental groups. Moreover, incubation of primary hepatocytes with increasing glucose caused dose-dependent increases in H6PDH, 11β-HSD1, GR, PEPCK and G6Pase expression. Also, glucose-6-phosphate (G6P) had a positive regulation on H6PDH and 11β-HSD1 in hepatocytes. In addition, primary hepatocytes treated with different doses of insulin in high glucose induced alteration of H6PDH and 11β-HSD1 while in low glucose there was no significant effect. These findings suggest that glucose instead of insulin directly regulates H6PDH and 11β-HSD1 and suppression of the two enzymes could be considered as an effective target for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Zheng Fan
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun 130021, China
| | - Hongwei Du
- Department of Pediatric Endocrinology, The First Clinical Hospital Affiliated to Jilin University, China
| | - Ming Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun 130021, China
| | - Zhaojie Meng
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun 130021, China
| | - Li Chen
- Department of Pharmacology, School of Basic Medical Sciences, Jilin University, 126 Xin Min Street, Changchun 130021, China
| | - Yanjun Liu
- Division of Endocrinology, Metabolism and Molecular Medicine, UCLA School of Medicine, Charles Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA 90059, USA
| |
Collapse
|
296
|
Wang Y, Nakagawa Y, Liu L, Wang W, Ren X, Anghel A, Lutfy K, Friedman TC, Liu Y. Tissue-specific dysregulation of hexose-6-phosphate dehydrogenase and glucose-6-phosphate transporter production in db/db mice as a model of type 2 diabetes. Diabetologia 2011; 54:440-50. [PMID: 21052977 PMCID: PMC3795617 DOI: 10.1007/s00125-010-1956-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 09/28/2010] [Indexed: 01/15/2023]
Abstract
AIMS/HYPOTHESIS Tissue-specific amplification of glucocorticoid action through 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) affects the development of the metabolic syndrome. Hexose-6-phosphate dehydrogenase (H6PDH) mediates intracellular NADPH availability for 11β-HSD1 and depends on the glucose-6-phosphate transporter (G6PT). Little is known about the tissue-specific alterations of H6PDH and G6PT and their contributions to local glucocorticoid action in db/db mice. METHODS We characterised the role of H6PDH and G6PT in pre-receptor metabolism of glucocorticoids by examining the production of the hepatic 11β-HSD1-H6PDH-G6PT system in db/db mice. RESULTS We observed that increased production of hepatic H6PDH in db/db mice was paralleled by upregulation of hepatic G6PT production and responded to elevated circulating levels of corticosterone. Treatment of db/db mice with the glucocorticoid antagonist RU486 markedly reduced production of both H6PDH and 11β-HSD1 and improved hyperglycaemia and insulin resistance. The reduction of H6PDH and 11β-HSD1 production by RU486 was accompanied by RU486-induced suppression of hepatic G6pt (also known as Slc37a4) mRNA. Incubation of mouse primary hepatocytes with corticosterone enhanced G6PT and H6PDH production with corresponding activation of 11β-HSD1 and PEPCK: effects that were blocked by RU486. Knockdown of H6pd by small interfering RNA showed effects comparable with those of RU486 for attenuating the corticosterone-induced H6PDH production and 11ß-HSD1 reductase activity in these intact cells. Addition of the G6PT inhibitor chlorogenic acid to primary hepatocytes suppressed H6PDH production. CONCLUSIONS/INTERPRETATION These findings suggest that increased hepatic H6PDH and G6PT production contribute to 11β-HSD1 upregulation of local glucocorticoid action that may be related to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Y. Wang
- Division of Endocrinology, Metabolism & Molecular Medicine, Charles Drew University of Medicine & Sciences, UCLA School of Medicine, 1731 E. 120th St, Los Angeles, CA 90059, USA
| | - Y. Nakagawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - L. Liu
- Department of Endocrinology & Metabolism, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai, People’s Republic of China
| | - W. Wang
- Division of Endocrinology, Metabolism & Molecular Medicine, Charles Drew University of Medicine & Sciences, UCLA School of Medicine, 1731 E. 120th St, Los Angeles, CA 90059, USA
| | - X. Ren
- Division of Endocrinology, Metabolism & Molecular Medicine, Charles Drew University of Medicine & Sciences, UCLA School of Medicine, 1731 E. 120th St, Los Angeles, CA 90059, USA
| | - A. Anghel
- Division of Endocrinology, Metabolism & Molecular Medicine, Charles Drew University of Medicine & Sciences, UCLA School of Medicine, 1731 E. 120th St, Los Angeles, CA 90059, USA
| | - K. Lutfy
- Division of Endocrinology, Metabolism & Molecular Medicine, Charles Drew University of Medicine & Sciences, UCLA School of Medicine, 1731 E. 120th St, Los Angeles, CA 90059, USA
| | - T. C. Friedman
- Division of Endocrinology, Metabolism & Molecular Medicine, Charles Drew University of Medicine & Sciences, UCLA School of Medicine, 1731 E. 120th St, Los Angeles, CA 90059, USA
| | - Y. Liu
- Division of Endocrinology, Metabolism & Molecular Medicine, Charles Drew University of Medicine & Sciences, UCLA School of Medicine, 1731 E. 120th St, Los Angeles, CA 90059, USA
| |
Collapse
|
297
|
Biedasek K, Andres J, Mai K, Adams S, Spuler S, Fielitz J, Spranger J. Skeletal muscle 11beta-HSD1 controls glucocorticoid-induced proteolysis and expression of E3 ubiquitin ligases atrogin-1 and MuRF-1. PLoS One 2011; 6:e16674. [PMID: 21304964 PMCID: PMC3031623 DOI: 10.1371/journal.pone.0016674] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/09/2011] [Indexed: 11/18/2022] Open
Abstract
Recent studies demonstrated expression and activity of the intracellular cortisone-cortisol shuttle 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in skeletal muscle and inhibition of 11beta-HSD1 in muscle cells improved insulin sensitivity. Glucocorticoids induce muscle atrophy via increased expression of the E3 ubiquitin ligases Atrogin-1 (Muscle Atrophy F-box (MAFbx)) and MuRF-1 (Muscle RING-Finger-1). We hypothesized that 11beta-HSD1 controls glucocorticoid-induced expression of atrophy E3 ubiquitin ligases in skeletal muscle. Primary human myoblasts were generated from healthy volunteers. 11beta-HSD1-dependent protein degradation was analyzed by [(3)H]-tyrosine release assay. RT-PCR was used to determine mRNA expression of E3 ubiquitin ligases and 11beta-HSD1 activity was measured by conversion of radioactively labeled [(3)H]-cortisone to [(3)H]-cortisol separated by thin-layer chromatography. We here demonstrate that 11beta-HSD1 is expressed and biologically active in interconverting cortisone to active cortisol in murine skeletal muscle cells (C2C12) as well as in primary human myotubes. 11Beta-HSD1 expression increased during differentiation from myoblasts to mature myotubes (p < 0.01), suggesting a role of 11beta-HSD1 in skeletal muscle growth and differentiation. Treatment with cortisone increased protein degradation by about 20% (p < 0.001), which was paralleled by an elevation of Atrogin-1 and MuRF-1 mRNA expression (p < 0.01, respectively). Notably, pre-treatment with the 11beta-HSD1 inhibitor carbenoxolone (Cbx) completely abolished the effect of cortisone on protein degradation as well as on Atrogin-1 and MuRF-1 expression. In summary, our data suggest that 11beta-HSD1 controls glucocorticoid-induced protein degradation in human and murine skeletal muscle via regulation of the E3 ubiquitin ligases Atrogin-1 and MuRF-1.
Collapse
Affiliation(s)
- Katrin Biedasek
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Janin Andres
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Adams
- Muscle Research Unit, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Fielitz
- Department of Cardiology and Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
298
|
Expression of 11β-hydroxysteroid Dehydrogenase Type 1 in Breast Cancer and Adjacent Non-Malignant Tissue. An Immunocytochemical Study. Pathol Oncol Res 2011; 17:627-32. [DOI: 10.1007/s12253-011-9361-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 01/06/2011] [Indexed: 10/18/2022]
|
299
|
Abstract
11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular conversion of inert cortisone to physiologically active cortisol, functioning to enhance local cortisol action beyond what would be predicted based on simple plasma exposures. Adipose tissue overexpression of 11β-HSD1 in rodents to levels observed in human obesity can lead to a near complete metabolic syndrome phenotype, and inhibition of 11β-HSD1 has been proposed to be of potential therapeutic benefit to patients with type 2 diabetes mellitus (T2DM). Recently published clinical results with the selective 11β-HSD1 inhibitor, INCB13739, have, for the first time, provided evidence substantiating this hypothesis, and suggest that 11β-HSD1 activity may be important in regulating glycaemia and cardiometabolic risk. In patients with T2DM failing metformin monotherapy, INCB13739 treatment achieves significant reductions in haemoglobin A1c (HbA1c) and fasting plasma glucose (FPG), and when present improves hyperlipidaemia and hypertriglyceridaemia. Interestingly, these positive effects are observed primarily in subjects categorized as obese (body mass index, BMI > 30 kg/m²) and not in subjects categorized as overweight (BMI ≤ 30 kg/m²), underscoring the likely importance of adipose tissue 11β-HSD1 activity to the cardiometabolic sequelae of obesity. This review summarizes the therapeutic rationale for 11β-HSD1 inhibition, and describes in detail the metabolic and endocrinologic changes observed in patients with T2DM treated with INCB13739.
Collapse
Affiliation(s)
- G Hollis
- Incyte Corporation, Wilmington, DE 19880, USA
| | | |
Collapse
|
300
|
Paderes GD, Dress K, Huang B, Elleraas J, Rejto PA, Pauly T. Structure-based and property-compliant library design of 11β-HSD1 adamantyl amide inhibitors. Methods Mol Biol 2011; 685:191-215. [PMID: 20981525 DOI: 10.1007/978-1-60761-931-4_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Multiproperty lead optimization that satisfies multiple biological endpoints remains a challenge in the pursuit of viable drug candidates. Optimization of a given lead compound to one having a desired set of molecular attributes often involves a lengthy iterative process that utilizes existing information, tests hypotheses, and incorporates new data. Within the context of a data-rich corporate setting, computational tools and predictive models have provided the chemists a means for facilitating and streamlining this iterative design process. This chapter discloses an actual library design scenario for following up a lead compound that inhibits 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. The application of computational tools and predictive models in the targeted library design of adamantyl amide 11β-HSD1 inhibitors is described. Specifically, the multiproperty profiling using our proprietary PGVL (Pfizer Global Virtual Library) Hub is discussed in conjunction with the structure-based component of the library design using our in-house docking tool AGDOCK. The docking simulations were based on a piecewise linear potential energy function in combination with an efficient evolutionary programming search engine. The library production protocols and results are also presented.
Collapse
Affiliation(s)
- Genevieve D Paderes
- Cancer Crystallography & Computational Chemistry, La Jolla Laboratories, Pfizer Inc., San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|