251
|
Marino D, Andrio E, Danchin EGJ, Oger E, Gucciardo S, Lambert A, Puppo A, Pauly N. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. THE NEW PHYTOLOGIST 2011; 189:580-92. [PMID: 21155825 PMCID: PMC3491693 DOI: 10.1111/j.1469-8137.2010.03509.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The plant plasma membrane-localized NADPH oxidases, known as respiratory burst oxidase homologues (RBOHs), appear to play crucial roles in plant growth and development. They are involved in important processes, such as root hair growth, plant defence reactions and abscisic acid signalling. Using sequence similarity searches, we identified seven putative RBOH-encoding genes in the Medicago truncatula genome. A phylogenetic reconstruction showed that Rboh gene duplications occurred in legume species. We analysed the expression of these MtRboh genes in different M. truncatula tissues: one of them, MtRbohA, was significantly up-regulated in Sinorhizobium meliloti-induced symbiotic nodules. MtRbohA expression appeared to be restricted to the nitrogen-fixing zone of the functional nodule. Moreover, using S. meliloti bacA and nifH mutants unable to form efficient nodules, a strong link between nodule nitrogen fixation and MtRbohA up-regulation was shown. MtRbohA expression was largely enhanced under hypoxic conditions. Specific RNA interference for MtRbohA provoked a decrease in the nodule nitrogen fixation activity and the modulation of genes encoding the microsymbiont nitrogenase. These results suggest that hypoxia, prevailing in the nodule-fixing zone, may drive the stimulation of MtRbohA expression, which would, in turn, lead to the regulation of nodule functioning.
Collapse
Affiliation(s)
- Daniel Marino
- Interactions Biotiques et Santé Végétale, UMR Université de Nice-Sophia Antipolis - INRA 1301 - CNRS 6243, 400 Route des Chappes, BP 167, F-06903 Sophia Antipolis Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
252
|
Donnini S, Dell'Orto M, Zocchi G. Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes. TREE PHYSIOLOGY 2011; 31:102-13. [PMID: 21389006 DOI: 10.1093/treephys/tpq105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We analysed Pyrus communis cv. Conference and Cydonia oblonga BA29, differently tolerant to lime-induced chlorosis, to identify the key mechanisms involved in their different performance under Fe deficiency induced by the absence of Fe (-Fe) or by the presence of bicarbonate (+FeBic). Under our experimental conditions, a decrease in root elongation was observed in BA29 under bicarbonate supply. Superoxide dismutase (SOD) and peroxidase (POD) activities were analysed and the relative isoforms were detected by native electrophoresis. The data obtained for both genotypes under -Fe and for BA29 +FeBic suggest the occurrence of overproduction of reactive oxygen species (ROS) and, at the same time, of a scarce capacity to detoxify them. The detection of ROS (O(2)(-) and H(2)O(2)) through histochemical localization supports these results and suggests that they could account for the modifications of mechanical properties of the cell wall during stress adaptation. On the other hand, in the cv. Conference +FeBic, an increase in non-specific POD activity was detected, confirming its higher level of protection in particular against H(2)O(2) accumulation. Peroxidases involved in lignification were assayed and histochemical analysis was performed. The results suggest that only in BA29 under bicarbonate supply can the presence of ROS in root apoplast be correlated with lignin deposits in external layers and in endodermis as a consequence of the shift of PODs towards a lignification role. We suggest that in BA29 the decrease in root growth could impair mineral nutrition, generating susceptibility to calcareous soils. In the cv. Conference, the allocation of new biomass to the root system could improve soil exploration and consequently Fe uptake.
Collapse
Affiliation(s)
- Silvia Donnini
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, Milan, Italy.
| | | | | |
Collapse
|
253
|
Deng S, Yu M, Wang Y, Jia Q, Lin L, Dong H. The antagonistic effect of hydroxyl radical on the development of a hypersensitive response in tobacco. FEBS J 2010; 277:5097-111. [PMID: 21073656 DOI: 10.1111/j.1742-4658.2010.07914.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reactive oxygen species (ROS) are important signalling molecules in living cells. It is believed that ROS molecules are the main triggers of the hypersensitive response (HR) in plants. In the present study of the effect of riboflavin, which is excited to generate ROS in light, on the development of the HR induced by the elicitin protein ParA1 in tobacco (Nicotiana tabacum), we found that the extent of the ParA1-induced HR was diminished by hydroxyl radical (OH•), a type of ROS. As compared with the zones treated with ParA1 only, the HR symptom in the zones that were infiltrated with ParA1 plus riboflavin was significantly diminished when the treated plants were placed in the light. However, this did not occur when the plants were maintained in the dark. Trypan blue staining and the ion leakage measurements confirmed HR suppression in the light. Further experiments proved that HR suppression is attributed to the involvement of the photoexcited riboflavin, and that the suppression can be eliminated with the addition of hydrogen peroxide scavengers or OH• scavengers. Fenton reagent treatment and EPR measurements demonstrated that it is OH• rather than hydrogen peroxide that contributes to HR suppression. Accompanying the endogenous OH• formation, suppression of the ParA1-induced HR occurred in the tobacco leaves that had been treated with high-level abscisic acid, and that suppression was also removed by OH• scavengers. These results offer evidence that OH•, an understudied and little appreciated ROS, participates in and modulates biologically relevant signalling in plant cells.
Collapse
Affiliation(s)
- Sheng Deng
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agricuture of People's Republic of China, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
254
|
Kwasniewski M, Janiak A, Mueller-Roeber B, Szarejko I. Global analysis of the root hair morphogenesis transcriptome reveals new candidate genes involved in root hair formation in barley. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1076-1083. [PMID: 20388575 DOI: 10.1016/j.jplph.2010.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 02/17/2010] [Accepted: 02/18/2010] [Indexed: 05/29/2023]
Abstract
Root hairs are long tubular outgrowths of specialized root epidermal cells that play an important role in plant nutrition and water uptake. They are also an important model in studies of higher plant cell differentiation. In contrast to the model dicot Arabidopsis thaliana, currently very little is known about the genetic and molecular basis of root hair formation in monocots, including major cereals. To elucidate candidate genes controlling this developmental process in barley, we took advantage of the recently established Affymetrix GeneChip Barley1 Genome Array to carry out global transcriptome analyses of hairless and root hair primordia-forming roots of two barely mutant lines. Expression profiling of the root-hairless mutant rhl1.a and its wild type parent variety 'Karat' revealed 10 genes potentially involved in the early step of root hair formation in barley. Differential expression of all identified genes was confirmed by quantitative reverse transcription-polymerase chain reaction. The genes identified encode proteins associated with the cell wall and membranes, including one gene for xyloglucan endotransglycosylase, three for peroxidase enzymes and five for arabinogalactan protein, extensin, leucine-rich-repeat protein, phosphatidylinositol phosphatidylcholine transfer protein and a RhoGTPase GDP dissociation inhibitor, respectively. The molecular function of one gene is unknown at present. The expression levels of these genes were strongly reduced in roots of the root-hairless mutant rhl1.a compared to the parent variety, while expression of all 10 genes was similar in another mutant, i.e. rhp1.b, that has lost its ability to develop full root hairs but still forms hairs blocked at the primordium stage, and its wild type relative. This clearly indicates that the new genes identified are involved in the initiation of root hair morphogenesis in barley.
Collapse
Affiliation(s)
- Miroslaw Kwasniewski
- Department of Genetics, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| | | | | | | |
Collapse
|
255
|
Organogenic nodule formation in hop: a tool to study morphogenesis in plants with biotechnological and medicinal applications. J Biomed Biotechnol 2010; 2010. [PMID: 20811599 PMCID: PMC2929504 DOI: 10.1155/2010/583691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 06/14/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022] Open
Abstract
The usage of Humulus lupulus for brewing increased the demand for high-quality plant material. Simultaneously, hop has been used in traditional medicine and recently recognized with anticancer and anti-infective properties. Tissue culture techniques have been reported for a wide range of species, and open the prospect for propagation of disease-free, genetically uniform and massive amounts of plants in vitro. Moreover, the development of large-scale culture methods using bioreactors enables the industrial production of secondary metabolites.
Reliable and efficient tissue culture protocol for shoot regeneration through organogenic nodule formation was established for hop. The present review describes the histological, and biochemical changes occurring during this morphogenic process, together with an analysis of transcriptional and metabolic profiles. We also discuss the existence of common molecular factors among three different morphogenic processes: organogenic nodules and somatic embryogenesis, which strictly speaking depend exclusively on intrinsic developmental reprogramming, and legume nitrogen-fixing root nodules, which arises in response to symbiosis. The review of the key factors that participate in hop nodule organogenesis and the comparison with other morphogenic processes may have merit as a study presenting recent advances in complex molecular networks occurring during morphogenesis and together, these provide a rich framework for biotechnology applications.
Collapse
|
256
|
Peter E, Rothbart M, Oelze ML, Shalygo N, Dietz KJ, Grimm B. Mg protoporphyrin monomethylester cyclase deficiency and effects on tetrapyrrole metabolism in different light conditions. PLANT & CELL PHYSIOLOGY 2010; 51:1229-41. [PMID: 20460500 DOI: 10.1093/pcp/pcq071] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mg protoporphyrin monomethylester (MgProtoME) cyclase catalyzes isocyclic ring formation to form divinyl protochlorophyllide. The CHL27 protein is part of the cyclase complex. Deficiency of CHL27 has been previously reported to compromise photosynthesis and nuclear gene expression. In a comprehensive analysis of different CHL27 antisense tobacco lines grown under different light conditions, the physiological consequences of gradually reduced CHL27 expression on the tetrapyrrole biosynthetic pathway were explored. Excessive amounts of MgProtoME, the substrate of the cyclase reaction, accumulated in response to the reduced CHL27 content. Moreover, 5-aminolevulinic acid (ALA) synthesis, Mg chelatase and Mg protoporphyrin methyltransferase activities were reduced in transgenic plants. Compared with growth under continuous light exposure, the CHL27-deficient plants showed a stronger reduction in Chl content, cell death and leaf necrosis during diurnal light/dark cycles. This photooxidative phenotype correlated with a rapidly increasing MgProtoME steady-state level at the beginning of each light period. In contrast, the same transformants grown under continuous light exposure possessed a permanently elevated amount of MgProtoME. Its lower phototoxicity correlated with increased activities of ascorbate peroxidase and catalase, and a higher amount of reduced ascorbate. It is proposed that improved stress acclimation during continuous light in comparison with light-dark growth increases the capacity to prevent photooxidation by excess tetrapyrrole precursors and lowers the susceptibility to secondary photodynamic damage.
Collapse
Affiliation(s)
- Enrico Peter
- Institute of Biology/Plant Physiology, Humboldt University, Philippstr.13, Building 12, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
257
|
Localisation of hydrogen peroxide accumulation during Solanum tuberosum cv. Rywal hypersensitive response to Potato virus Y. Micron 2010; 41:327-35. [DOI: 10.1016/j.micron.2009.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/12/2009] [Accepted: 12/13/2009] [Indexed: 01/05/2023]
|
258
|
Zhou Y, Stuart-Williams H, Farquhar GD, Hocart CH. The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls. PHYTOCHEMISTRY 2010; 71:982-993. [PMID: 20362306 DOI: 10.1016/j.phytochem.2010.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 05/29/2023]
Abstract
Qualitative and quantitative understanding of the chemical linkages between the three major biochemical components (cellulose, hemicellulose and lignin) of plant cell walls is crucial to the understanding of cell wall structure. Although there is convincing evidence for chemical bonds between hemicellulose and lignin and the absence of chemical bonds between hemicellulose and cellulose, there is no conclusive evidence for the presence of covalent bonds between cellulose and lignin. This is caused by the lack of selectivity of current GC/MS-, NMR- and IR-based methods for lignin characterisation as none of these techniques directly targets the possible ester and ether linkages between lignin and cellulose. We modified the widely-accepted "standard" three-step extraction method for isolating cellulose from plants by changing the order of the steps for hemicellulose and lignin removal (solubilisation with concentrated NaOH and oxidation with acetic acid-containing NaClO(2), respectively) so that cellulose and lignin could be isolated with the possible chemical bonds between them intact. These linkages were then cleaved with NaClO(2) reagent in aqueous media of contrasting (18)O/(16)O ratios. We produced cellulose with higher purity (a lower level of residual hemicellulose and no detectable lignin) than that produced by the "standard" method. Oxidative artefacts may potentially be introduced at the lignin removal stage; but testing showed this to be minimal. Cellulose samples isolated from processing plant-derived cellulose-lignin mixtures in media of contrasting (18)O/(16)O ratios were compared to provide the first quantitative evidence for the presence of oxygen-containing ester and ether bonds between cellulose and lignin in Zea mays leaves. However, no conclusive evidence for the presence or lack of similar bonds in Araucaria cunninghamii wood was obtained.
Collapse
Affiliation(s)
- Youping Zhou
- Research School of Earth Sciences, Australian National University, Canberra, Australia.
| | | | | | | |
Collapse
|
259
|
Leiber RM, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C. The TOR pathway modulates the structure of cell walls in Arabidopsis. THE PLANT CELL 2010; 22:1898-908. [PMID: 20530756 PMCID: PMC2910960 DOI: 10.1105/tpc.109.073007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 05/12/2010] [Accepted: 05/23/2010] [Indexed: 05/18/2023]
Abstract
Plant cell growth is limited by the extension of cell walls, which requires both the synthesis and rearrangement of cell wall components in a controlled fashion. The target of rapamycin (TOR) pathway is a major regulator of cell growth in eukaryotes, and inhibition of this pathway by rapamycin reduces cell growth. Here, we show that in plants, the TOR pathway affects cell wall structures. LRR-extensin1 (LRX1) of Arabidopsis thaliana is an extracellular protein involved in cell wall formation in root hairs, and lrx1 mutants develop aberrant root hairs. rol5 (for repressor of lrx1) was identified as a suppressor of lrx1. The functionally similar ROL5 homolog in yeast, Ncs6p (needs Cla4 to survive 6), was previously found to affect TOR signaling. Inhibition of TOR signaling by rapamycin led to suppression of the lrx1 mutant phenotype and caused specific changes to galactan/rhamnogalacturonan-I and arabinogalactan protein components of cell walls that were similar to those observed in the rol5 mutant. The ROL5 protein accumulates in mitochondria, a target of the TOR pathway and major source of reactive oxygen species (ROS), and rol5 mutants show an altered response to ROS. This suggests that ROL5 might function as a mitochondrial component of the TOR pathway that influences the plant's response to ROS.
Collapse
Affiliation(s)
- Ruth-Maria Leiber
- University of Zürich, Institute of Plant Biology, 8008 Zurich, Switzerland
| | - Florian John
- University of Zürich, Institute of Plant Biology, 8008 Zurich, Switzerland
| | - Yves Verhertbruggen
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Anouck Diet
- University of Zürich, Institute of Plant Biology, 8008 Zurich, Switzerland
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Christoph Ringli
- University of Zürich, Institute of Plant Biology, 8008 Zurich, Switzerland
| |
Collapse
|
260
|
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 2010; 123:1468-79. [PMID: 20375061 DOI: 10.1242/jcs.064352] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Reactive oxygen species (ROS) are central to plant stress response, signalling, development and a multitude of other processes. In this study, the plasma-membrane hydroxyl radical (HR)-activated K(+) channel responsible for K(+) efflux from root cells during stress accompanied by ROS generation is characterised. The channel showed 16-pS unitary conductance and was sensitive to Ca(2+), tetraethylammonium, Ba(2+), Cs(+) and free-radical scavengers. The channel was not found in the gork1-1 mutant, which lacks a major plasma-membrane outwardly rectifying K(+) channel. In intact Arabidopsis roots, both HRs and stress induced a dramatic K(+) efflux that was much smaller in gork1-1 plants. Tests with electron paramagnetic resonance spectroscopy showed that NaCl can stimulate HR generation in roots and this might lead to K(+)-channel activation. In animals, activation of K(+)-efflux channels by HRs can trigger programmed cell death (PCD). PCD symptoms in Arabidopsis roots developed much more slowly in gork1-1 and wild-type plants treated with K(+)-channel blockers or HR scavengers. Therefore, similar to animal counterparts, plant HR-activated K(+) channels are also involved in PCD. Overall, this study provides new insight into the regulation of plant cation transport by ROS and demonstrates possible physiological properties of plant HR-activated K(+) channels.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Biological Sciences, University of Essex, Colchester, Essex CO4 5AP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
261
|
Mathé C, Barre A, Jourda C, Dunand C. Evolution and expression of class III peroxidases. Arch Biochem Biophys 2010; 500:58-65. [PMID: 20398621 DOI: 10.1016/j.abb.2010.04.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/07/2010] [Accepted: 04/08/2010] [Indexed: 10/19/2022]
Abstract
Class III peroxidases are members of a large multigenic family, only detected in the plant kingdom and absent from green algae sensu stricto (chlorophyte algae or Chlorophyta). Their evolution is thought to be related to the emergence of the land plants. However class III peroxidases are present in a lower copy number in some basal Streptophytes (Charapyceae), which predate land colonization. Gene structures are variable among organisms and within species with respect to the number of introns, but their positions are highly conserved. Their high copy number, as well as their conservation could be related to plant complexity and adaptation to increasing stresses. No specific function has been assigned to respective isoforms, but in large multigenic families, particular structure-function relations can be expected. Plant peroxidase sequences contain highly conserved residues and motifs, variable domains surrounded by conserved residues and present a low identity level among their promoter regions, further suggesting the existence of sub-functionalization of the different isoforms.
Collapse
Affiliation(s)
- Catherine Mathé
- Université de Toulouse, UPS, UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|
262
|
Abstract
Reactive oxygen species (ROS) are now recognized as important regulators of plant developmental programs and recent work on tip-growing systems has revealed a central role for the NADPH oxidases in generating such developmentally important ROS. Tip-growing cells have also shown that the functions of cytosolic ROS, acting as regulators of activities such as ion channel gating, are closely linked to those of ROS produced to the apoplast, where they act to modulate cell wall properties. Thus, coordination of ROS production and their activities between compartments is emerging as an important theme in our understanding of how growth and developmental programs are integrated.
Collapse
Affiliation(s)
- Sarah Swanson
- Department of Botany, University of Wisconsin-Madison, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | | |
Collapse
|
263
|
Bandaranayake PC, Filappova T, Tomilov A, Tomilova NB, Jamison-McClung D, Ngo Q, Inoue K, Yoder JI. A single-electron reducing quinone oxidoreductase is necessary to induce haustorium development in the root parasitic plant Triphysaria. THE PLANT CELL 2010; 22:1404-19. [PMID: 20424175 PMCID: PMC2879752 DOI: 10.1105/tpc.110.074831] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/19/2010] [Accepted: 04/07/2010] [Indexed: 05/18/2023]
Abstract
Parasitic plants in the Orobanchaceae develop haustoria in response to contact with host roots or chemical haustoria-inducing factors. Experiments in this manuscript test the hypothesis that quinolic-inducing factors activate haustorium development via a signal mechanism initiated by redox cycling between quinone and hydroquinone states. Two cDNAs were previously isolated from roots of the parasitic plant Triphysaria versicolor that encode distinct quinone oxidoreductases. QR1 encodes a single-electron reducing NADPH quinone oxidoreductase similar to zeta-crystallin. The QR2 enzyme catalyzes two electron reductions typical of xenobiotic detoxification. QR1 and QR2 transcripts are upregulated in a primary response to chemical-inducing factors, but only QR1 was upregulated in response to host roots. RNA interference technology was used to reduce QR1 and QR2 transcripts in Triphysaria roots that were evaluated for their ability to form haustoria. There was a significant decrease in haustorium development in roots silenced for QR1 but not in roots silenced for QR2. The infrequent QR1 transgenic roots that did develop haustoria had levels of QR1 similar to those of nontransgenic roots. These experiments implicate QR1 as one of the earliest genes on the haustorium signal transduction pathway, encoding a quinone oxidoreductase necessary for the redox bioactivation of haustorial inducing factors.
Collapse
Affiliation(s)
- Pradeepa C.G. Bandaranayake
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka 20400
- Department of Plant Sciences, University of California, Davis, California 96516
| | - Tatiana Filappova
- Department of Plant Sciences, University of California, Davis, California 96516
| | - Alexey Tomilov
- Department of Plant Sciences, University of California, Davis, California 96516
| | - Natalya B. Tomilova
- Department of Plant Sciences, University of California, Davis, California 96516
| | | | - Quy Ngo
- Department of Plant Sciences, University of California, Davis, California 96516
| | - Kentaro Inoue
- Department of Plant Sciences, University of California, Davis, California 96516
| | - John I. Yoder
- Department of Plant Sciences, University of California, Davis, California 96516
| |
Collapse
|
264
|
Yamaguchi M, Sharp RE. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses. PLANT, CELL & ENVIRONMENT 2010; 33:590-603. [PMID: 19895398 DOI: 10.1111/j.1365-3040.2009.02064.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Progress in understanding root growth regulation and adaptation under water-stressed conditions is reviewed, with emphasis on recent advances from transcriptomic and proteomic analyses of maize and soybean primary roots. In both systems, kinematic characterization of the spatial patterns of cell expansion within the root elongation zone showed that at low water potentials, elongation rates are preferentially maintained towards the root apex but are progressively inhibited at more basal locations resulting in a shortened growth zone. This characterization provided an essential foundation for extensive research into the physiological mechanisms of growth regulation in the maize primary root at low water potentials. Recently, these studies were expanded to include transcriptomic and cell wall proteomic analyses of the maize primary root, and a proteomic analysis of total soluble proteins in the soybean primary root. This review focuses on findings related to protection from oxidative damage, the potential roles of increased apoplastic reactive oxygen species in regulation of wall extension properties and other processes, region-specific phenylpropanoid metabolism as related to accumulation of (iso)flavonoids and wall phenolics and amino acid metabolism. The results provide novel insights into the complexity and coordination of the processes involved in root growth at low water potentials.
Collapse
|
265
|
Busch S, Seidel R, Speck O, Speck T. Morphological aspects of self-repair of lesions caused by internal growth stresses in stems of Aristolochia macrophylla and Aristolochia ringens. Proc Biol Sci 2010; 277:2113-20. [PMID: 20236971 DOI: 10.1098/rspb.2010.0075] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study reveals in detail the mechanism of self-repair during secondary growth in the vines Aristolochia macrophylla and Aristolochia ringens based on morphological data. For a comprehensive understanding of the underlying mechanisms during the self-repair of lesions in the sclerenchymatous cylinder of the stem, which are caused by internal growth stresses, a classification of morphological changes in the cells involved in the repair process is required. In an early stage of self-repair, we observed morphological changes as a mere extension of the turgescent cortex cells surrounding the lesion, whereby the cell wall extends locally through visco-elastic/plastic deformation without observable cell wall synthesis. Later stages involve typical cell growth and cell division. Several successive phases of self-repair were investigated by light microscopy of stained samples and confocal laser-scanning microscopy in fluorescence mode. The results indicate that A. macrophylla and A. ringens respond to lesions caused by internal growth stresses with a sophisticated self-repair mechanism comprising several phases of different repair modes.
Collapse
Affiliation(s)
- Sebastian Busch
- Plant Biomechanics Group, Botanical Garden, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
266
|
Zhang D, Zhang T, Guo W. Effect of H2O2 on fiber initiation using fiber retardation initiation mutants in cotton (Gossypium hirsutum). JOURNAL OF PLANT PHYSIOLOGY 2010; 167:393-399. [PMID: 19931935 DOI: 10.1016/j.jplph.2009.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 10/09/2009] [Accepted: 10/09/2009] [Indexed: 05/28/2023]
Abstract
Single-celled fibers initiate at anthesis from cotton seed epidermal cells of normal developmental cotton cultivars; however, fiber initiation is retarded in some cotton fiber mutants. In this study, the relationship between genes associated with fiber initiation retardation and fiber initiation development was investigated using three cotton fiber developmental mutants: recessive naked seed n2; dominant naked seed N1; and Xinxiangxiaoji Linted-Fuzzless Mutant (XinFLM); with genetic standard line TM-1 (TM-1) as control. Retardation during fiber initiation development was observed in N1 and XinFLM by scanning electron microscope (SEM) analysis. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of genes related to the fiber initiation development showed that the expression of GhEXP1 and GhMYB25 was lower in N1 and XinFLM than in TM-1 and n2, however, the expression of GhTTG1 and GhTTG3 in XinFLM and n2 was higher than in TM-1 and N1. In vivo and in vitro treatments on ovules demonstrated that 30% hydrogen peroxide (H2O2) could prevent fiber initiation retardation in XinFLM, but no evident effect on N1. To further confirm the relationship between gene expression and the effects of H2O2 in XinFLM, qRT-PCR analysis of four differentially expressed genes was performed using -1d post-anthesis (DPA) ovules of XinFLM treated for 24 and 48h with 30% H2O2 and H2O, respectively, with 0 and 1 DPA untreated ovules from XinFLM and TM-1 as control. The results showed that the expression of GhMYB25 and GhEXP1 showed significant difference in XinFLM after -1 DPA ovule treated for 24h relative to the untreated or H2O-treated ovules, with the expression of GhMYB25 increased significantly and that of GhEXP1 decreased. This implied that H2O2 might be one of the upstream signal molecules affecting the expression of GhMYB25 and GhEXP1 genes. The fiber initiation retardation in XinFLM might be related to the production of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Dayong Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Research Institute, Nanjing Agricultural University, Weigang No. 1, 210095 Nanjing, Jiangsu Province, China
| | | | | |
Collapse
|
267
|
Fagerstedt KV, Kukkola EM, Koistinen VVT, Takahashi J, Marjamaa K. Cell wall lignin is polymerised by class III secretable plant peroxidases in Norway spruce. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:186-94. [PMID: 20377680 DOI: 10.1111/j.1744-7909.2010.00928.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Class III secretable plant peroxidases occur as a large family of genes in plants with many functions and probable redundancy. In this review we are concentrating on the evidence we have on the catalysis of lignin polymerization by class III plant peroxidases present in the apoplastic space in the xylem of trees. Some evidence exists on the specificity of peroxidase isozymes in lignin polymerization through substrate specificity studies, from antisense mutants in tobacco and poplar and from tissue and cell culture lines of Norway spruce (Picea abies) and Zinnia elegans. In addition, real time (RT-)PCR results have pointed out that many peroxidases have tissue specific expression patterns in Norway spruce. Through combining information on catalytic properties of the enzymes, on the expression patterns of the corresponding genes, and on the presence of monolignols and hydrogen peroxide in the apoplastic space, we can show that specific peroxidases catalyze lignin polymerization in the apoplastic space of Norway spruce xylem.
Collapse
Affiliation(s)
- Kurt V Fagerstedt
- Department of Biological and Environmental Sciences, Plant Biology, Helsinki University, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
268
|
Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S. Specificity of Polyamine Effects on NaCl-induced Ion Flux Kinetics and Salt Stress Amelioration in Plants. ACTA ACUST UNITED AC 2010; 51:422-34. [DOI: 10.1093/pcp/pcq007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
269
|
Kim SG, Kim ST, Wang Y, Kim SK, Lee CH, Kim KK, Kim JK, Lee SY, Kang KY. Overexpression of rice isoflavone reductase-like gene (OsIRL) confers tolerance to reactive oxygen species. PHYSIOLOGIA PLANTARUM 2010; 138:1-9. [PMID: 19825006 DOI: 10.1111/j.1399-3054.2009.01290.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Isoflavone reductase is an enzyme involved in isoflavonoid biosynthesis in plants. However, rice isoflavone reductase-like gene (OsIRL, accession no. AY071920) has not been unraveled so far. Here, we have characterized its behavior in response to oxidizing agents. Using Northern and Western blot analyses, the OsIRL gene and protein were shown to be down-regulated in young seedling roots treated with reduced glutathione (GSH) and diphenyleneiodonium (DPI), known quenchers of reactive oxygen species (ROS). The OsIRL transcript level in rice suspension-cultured cells was also found to be induced by oxidants such as hydrogen peroxide (H(2)O(2)), ferric chloride (FeCl(3)), methyl viologen (MV) and glucose/glucose oxidase (G/GO), but down-regulated when co-treated with GSH. Furthermore, to investigate whether overexpression of OsIRL in transgenic rice plants promotes resistance to ROS, we generated transgenic rice lines overexpressing the OsIRL gene under an abscisic acid (ABA) inducible promoter. Results showed that the OsIRL transgenic rice line activated by ABA treatment was tolerant against MV and G/GO-induced stress in rice leave and suspension-cultured cells. Our results strongly suggest the involvement of OsIRL in homeostasis of ROS.
Collapse
Affiliation(s)
- Sang Gon Kim
- Environmental Biotechnology National Core Research Center, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Pereyra CM, Ramella NA, Pereyra MA, Barassi CA, Creus CM. Changes in cucumber hypocotyl cell wall dynamics caused by Azospirillum brasilense inoculation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:62-69. [PMID: 19875302 DOI: 10.1016/j.plaphy.2009.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 10/01/2009] [Accepted: 10/02/2009] [Indexed: 05/28/2023]
Abstract
We previously reported that Azospirillum brasilense induced a more elastic cell wall and a higher apoplastic water fraction in both wheat coleoptile and flag leaf. These biophysical characteristics could permit increased growth. Knowledge of the biochemical effects the bacteria could elicit in plant cell walls and how these responses change plant physiology is still scarce. The objective of this work was to analyze whether A. brasilense Sp245 inoculation affected elongation and extensibility of growing cucumber (Cucumis sativus) hypocotyls and ionically bound cell wall peroxidase activities. Hypocotyl tip and basal segments were excised from A. brasilense Sp245-inoculated cucumber seedlings growing in darkness under hydroponic conditions. Elongation, cell wall extensibility, cell wall peroxidase activities against ferulic acid and guaiacol and NADH oxidase activities were analyzed. Azospirillum-inoculated cucumber seedlings grew bigger than non-inoculated ones. Dynamic cell wall differences were detected between inoculated and non-inoculated hypocotyls. They included greater acid-induced cell wall extension and in vivo elongation when incubated in distilled water. Although there was no difference between treatments in either region of the hypocotyl NADH oxidase and ferulic acid peroxidase activities were lower in both regions in inoculated seedlings. These lesser activities could be delaying the stiffening of cell wall in inoculated seedlings. These results showed that the cell wall is a target for A. brasilense growth promotion.
Collapse
Affiliation(s)
- Cintia M Pereyra
- Area Biomolecular, Unidad Integrada Facultad de Ciencias Agrarias de la Universidad Nacional de Mar del Plata-E.E.A, INTA (Balcarce), CC 276 (7620) Balcarce, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
271
|
Tyburski J, Dunajska K, Tretyn A. A role for redox factors in shaping root architecture under phosphorus deficiency. PLANT SIGNALING & BEHAVIOR 2010; 5:64-6. [PMID: 20592813 PMCID: PMC2835962 DOI: 10.4161/psb.5.1.10199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 05/19/2023]
Abstract
The developmental response of the Arabidopsis root system to low phosphorus (P) availability involves the reduction in primary root elongation accompanied by the formation of numerous lateral roots. We studied the roles of selected redox metabolites, namely, radical oxygen species (ROS) and ascorbic acid (ASC) in the regulation of root system architecture by different P availability. Rapidly growing roots of plants grown on P-sufficient medium synthesize ROS in root elongation zone and quiescent centre. We have demonstrated that the arrest of root elongation at low P medium coincides with the disappearance of ROS from the elongation zone. P-starvation resulted in a decrease in ascorbic acid level in roots. This correlated with a decrease in cell division activity. On the other hand, feeding P-deficient plants with ASC, stimulated mitotic activity in the primary root meristem and partly reversed the inhibition of root growth imposed by low P conditions. In this paper, we discuss the idea of the involvement of redox agents in the regulation of root system architecture under low P availability.
Collapse
Affiliation(s)
- Jarosław Tyburski
- Department of Biotechnology, Institute of General and Molecular Biology, Nicolaus Copernicus University, Torun, Poland.
| | | | | |
Collapse
|
272
|
Tari I, Guóth A, Benyó D, Kovács J, Poór P, Wodala B. The roles of ABA, reactive oxygen species and nitric oxide in root growth during osmotic stress in wheat: comparison of a tolerant and a sensitive variety. ACTA BIOLOGICA HUNGARICA 2010; 61 Suppl:189-96. [PMID: 21565776 DOI: 10.1556/abiol.61.2010.suppl.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of PEG 6000-induced osmotic stress (-0.976 MPa) on the root growth of young plants, and the changes in abscisic acid (ABA), reactive oxygen species (ROS) and NO contents were investigated in the root tips of a drought-tolerant and a drought-sensitive wheat cultivar (Triticum aestivum L. cvs. MV Emese and GK Élet, respectively). The root length of cv. MV Emese was more effectively reduced than that of GK Élet by osmotic stress. Concomitantly, the ABA content of the 15-mm apical zone of the roots remained at the control level in GK Élet cultivar, but in MV Emese it decreased significantly after the early phase of the experiment, indicating that the accumulation of ABA is necessary for the maintenance of root growth under osmotic stress. The extent of ROS accumulation relative to the respective control was more pronounced in the elongation zone of roots in MV Emese in the later stages of the experiment, while NO concentrations increased significantly early after PEG exposure, suggesting that high concentrations of ROS and NO were unfavourable for root expansion. In contrast, in cv. Élet, the high NO content in the elongation zone declined to the control level under osmotic stress within 4 days. The changes in root growth due to osmotic stress did not exhibit a correlation with the drought tolerance of the genotypes defined on the basis of the crop yield.
Collapse
Affiliation(s)
- Irma Tari
- Department of Plant Biology, Faculty of Science, University of Szeged, P.O. Box 654 H-6701 Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
273
|
Reactive Oxygen Species, Oxidative Stress and Plant Ion Channels. ION CHANNELS AND PLANT STRESS RESPONSES 2010. [DOI: 10.1007/978-3-642-10494-7_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
274
|
Dietz KJ. Redox-dependent regulation, redox control and oxidative damage in plant cells subjected to abiotic stress. Methods Mol Biol 2010; 639:57-70. [PMID: 20387040 DOI: 10.1007/978-1-60761-702-0_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stress development intricately involves uncontrolled redox reactions and oxidative damage to functional macromolecules. Three phases characterize progressing abiotic stress and the stress strength; in the first phase redox-dependent deregulation in metabolism, in the second phase detectable development of oxidative damage and in the third phase cell death. Each phase is characterized by traceable biochemical features and specific molecular responses that reflect on the one hand cell damage but on the other hand indicate specific regulation and redox signalling aiming at compensation of stress impact.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
275
|
Smirnova AV, Matveyeva NP, Polesskaya OG, Yermakov IP. Generation of reactive oxygen species during pollen grain germination. Russ J Dev Biol 2009. [DOI: 10.1134/s1062360409060034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
276
|
Murali Achary VM, Panda BB. Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 2009; 25:201-9. [DOI: 10.1093/mutage/gep063] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
277
|
Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA. Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:4249-62. [PMID: 19717530 DOI: 10.1093/jxb/erp256] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The possible involvement of apoplastic reactive oxygen species produced by the oxidation of free polyamines in the leaf growth of salinized maize has been studied here. Salt treatment increased the apoplastic spermine and spermidine levels, mainly in the leaf blade elongation zone. The total activity of polyamine oxidase was up to 20-fold higher than that of the copper-containing amine oxidase. Measurements of H(2)O(2), *O(2)(-), and HO* production in the presence or absence of the polyamine oxidase inhibitors 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane suggest that, in salinized plants, the oxidation of free apoplastic polyamines by polyamine oxidase by would be the main source of reactive oxygen species in the elongation zone of maize leaf blades. This effect is probably due to increased substrate availability. Incubation with 200 microM spermine doubled segment elongation, whereas the addition of 1,19-bis-(ethylamine)-5,10,15 triazanonadecane and 1,8-diamino-octane to 200 microM spermine attenuated and reversed the last effect, respectively. Similarly, the addition of MnCl(2) (an *O(2)(-) dismutating agent) or the HO* scavenger sodium benzoate along with spermine, annulled the elongating effect of the polyamine on the salinized segments. As a whole, the results obtained here demonstrated that, under salinity, polyamine oxidase activity provides a significant production of reactive oxygen species in the apoplast which contributes to 25-30% of the maize leaf blade elongation.
Collapse
Affiliation(s)
- Andrés Alberto Rodríguez
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús/Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de General San Martín (IIB-INTECH/CONICET-UNSAM), Camino de Circunvalación Laguna, Chascomús, Argentina.
| | | | | | | |
Collapse
|
278
|
Chaudhary B, Hovav R, Flagel L, Mittler R, Wendel JF. Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium). BMC Genomics 2009; 10:378. [PMID: 19686594 PMCID: PMC2907704 DOI: 10.1186/1471-2164-10-378] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 08/17/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) play a prominent role in signal transduction and cellular homeostasis in plants. However, imbalances between generation and elimination of ROS can give rise to oxidative stress in growing cells. Because ROS are important to cell growth, ROS modulation could be responsive to natural or human-mediated selection pressure in plants. To study the evolution of oxidative stress related genes in a single plant cell, we conducted comparative expression profiling analyses of the elongated seed trichomes ("fibers") of cotton (Gossypium), using a phylogenetic approach. RESULTS We measured expression changes during diploid progenitor species divergence, allopolyploid formation and parallel domestication of diploid and allopolyploid species, using a microarray platform that interrogates 42,429 unigenes. The distribution of differentially expressed genes in progenitor diploid species revealed significant up-regulation of ROS scavenging and potential signaling processes in domesticated G. arboreum. Similarly, in two independently domesticated allopolyploid species (G. barbadense and G. hirsutum) antioxidant genes were substantially up-regulated in comparison to antecedent wild forms. In contrast, analyses of three wild allopolyploid species indicate that genomic merger and ancient allopolyploid formation had no significant influences on regulation of ROS related genes. Remarkably, many of the ROS-related processes diagnosed as possible targets of selection were shared among diploid and allopolyploid cultigens, but involved different sets of antioxidant genes. CONCLUSION Our data suggests that parallel human selection for enhanced fiber growth in several geographically widely dispersed species of domesticated cotton resulted in similar and overlapping metabolic transformations of the manner in which cellular redox levels have become modulated.
Collapse
Affiliation(s)
- Bhupendra Chaudhary
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | |
Collapse
|
279
|
Alvarez M, Huygens D, Fernandez C, Gacitúa Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. TREE PHYSIOLOGY 2009; 29:1047-1057. [PMID: 19483186 DOI: 10.1093/treephys/tpp038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.
Collapse
Affiliation(s)
- Maricel Alvarez
- Instituto de Botánica, Universidad Austral de Chile, Casilla 567, Valdivia, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
280
|
Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. PLANT PHYSIOLOGY 2009; 150:1855-65. [PMID: 19493972 PMCID: PMC2719145 DOI: 10.1104/pp.109.139204] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/29/2009] [Indexed: 05/18/2023]
Abstract
Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical ((*)OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that (*)OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By (3)H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic (*)OH in radicles and endosperm caps: the production and action of (*)OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of (*)OH attack on polysaccharides were evident. In vivo (*)OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by (*)OH is a controlled action of this type of reactive oxygen species.
Collapse
Affiliation(s)
- Kerstin Müller
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D-79104 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
281
|
Taleisnik E, Rodríguez AA, Bustos D, Erdei L, Ortega L, Senn ME. Leaf expansion in grasses under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1123-40. [PMID: 19467732 DOI: 10.1016/j.jplph.2009.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/29/2009] [Accepted: 03/29/2009] [Indexed: 05/18/2023]
Abstract
Restriction of leaf growth is among the earliest visible effects of many stress conditions, including salinity. Because leaves determine radiation interception and are the main photosynthetic organs, salinity effects on leaf expansion and function are directly related to yield constraints under saline conditions. The expanding zone of leaf blades spans from the meristem to the region in which cells reach their final length. Kinematic methods are used to describe cell division and cell expansion activities. Analyses of this type have indicated that the reduction in leaf expansion by salinity may be exerted through effects on both cell division and expansion. In turn, the components of vacuole-driven cell expansion may be differentially affected by salinity, and examination of salinity effects on osmotic and mechanical constraints to cell expansion have gradually led to the identification of the gene products involved in such control. The study of how reactive oxygen species affect cell expansion is an emerging topic in the study of salinity's regulation of leaf growth.
Collapse
Affiliation(s)
- Edith Taleisnik
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina), Argentina.
| | | | | | | | | | | |
Collapse
|
282
|
Tamás L, Valentovicová K, Halusková L, Huttová J, Mistrík I. Effect of cadmium on the distribution of hydroxyl radical, superoxide and hydrogen peroxide in barley root tip. PROTOPLASMA 2009; 236:67-72. [PMID: 19543794 DOI: 10.1007/s00709-009-0057-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/03/2009] [Indexed: 05/27/2023]
Abstract
In the present study, we investigated the alteration of reactive oxygen species production along the longitudinal axis of barley root tips during Cd treatment. In unstressed barley root tips, H(2)O(2) production decreased from the root apex towards the differentiation zone where again, a slight increase was observed towards the more mature region of root. An opposite pattern was observed for O(2)(*-) and OH(*) generation. The amount of both O(2)(*-) and OH(*) was highest in the elongation zone, decreased in the root apex and at the differentiation zone of root, then increased again towards the more mature region of root. An elevated Cd-induced O(2)(*-) production started in the elongation zone and increased further along the differentiation zone of barley root tip. In contrast, Cd-induced H(2)O(2) production was localised to the root elongation zone and to the beginning of the differentiation zone. In contrast to Cd-induced H(2)O(2) and O(2)(*-) production, Cd reduced OH(*) production along the whole barley root tip. Our results suggest that not only an increase but also the spatial distribution of reactive oxygen species production is involved in the Cd-induced stress response of barley root tip.
Collapse
Affiliation(s)
- Ladislav Tamás
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-84523, Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
283
|
Kovácik J, Klejdus B, Backor M. Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogen-deficient Matricaria chamomilla roots: side effects of scavengers. Free Radic Biol Med 2009; 46:1686-93. [PMID: 19345259 DOI: 10.1016/j.freeradbiomed.2009.03.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 03/06/2009] [Accepted: 03/27/2009] [Indexed: 10/21/2022]
Abstract
Owing to the abundance of phenolic metabolites in plant tissue, their accumulation represents an important tool for stress protection. However, the regulation of phenolic metabolism is still poorly known. The regulatory role of reactive oxygen species (ROS) in the activity of phenylalanine ammonia-lyase (PAL) in nitrogen (N)-deficient chamomile roots treated for 24 h was studied using three ROS scavengers [dithiothreitol (DTT), salicylhydroxamic acid, and sodium benzoate]. Scavengers decreased the level of hydrogen peroxide and/or superoxide (and up-regulated ascorbate/guaiacol peroxidase and glutathione reductase), but, surprisingly, stimulated PAL activity. This up-regulation was correlated with increases in nitric oxide (NO) content, total soluble phenols, selected phenolic acids, and, partially, lignin (being expressed the most in DTT-exposed roots). We therefore tested the hypothesis that NO may be involved in these changes. Application of 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) decreased PAL activity and the accumulation of soluble phenols in all treatments. Exogenous H(2)O(2) and NO also stimulated PAL activity and the accumulation of phenols. We conclude that NO, in addition to hydrogen peroxide, may regulate PAL activity during N deficiency. The anomalous effect of PTIO on NO content and possible mechanism of ROS scavenger-evoked NO increases in light of the current knowledge are also discussed.
Collapse
Affiliation(s)
- Jozef Kovácik
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Safárik University, Mánesova 23, 041 67 Kosice, Slovak Republic.
| | | | | |
Collapse
|
284
|
Mortimer JC, Coxon KM, Laohavisit A, Davies JM. Heme-independent soluble and membrane-associated peroxidase activity of a Zea mays annexin preparation. PLANT SIGNALING & BEHAVIOR 2009; 4:428-30. [PMID: 19816107 PMCID: PMC2676756 DOI: 10.1105/tpc.108.059550] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 12/11/2008] [Accepted: 02/26/2009] [Indexed: 05/18/2023]
Abstract
Annexins are cytosolic proteins capable of reversible, Ca(2+)-dependent membrane binding or insertion. Animal annexins form and regulate Ca(2+)-permeable ion channels and may therefore participate in signaling. Zea mays (maize) annexins (ZmANN33 and ZmANN35) have recently been shown to form a Ca(2+)-permeable conductance in planar lipid bilayers and also exhibit in vitro peroxidase activity. Peroxidases form a superfamily of intra- or extracellular heme-containing enzymes that use H(2)O(2) as the electron acceptor in a number of oxidative reactions. Maize annexin peroxidase activity appears independent of heme and persists after membrane association, the latter suggesting a role in reactive oxygen species signaling.
Collapse
|
285
|
Oracz K, El-Maarouf-Bouteau H, Kranner I, Bogatek R, Corbineau F, Bailly C. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. PLANT PHYSIOLOGY 2009; 150:494-505. [PMID: 19329562 PMCID: PMC2675718 DOI: 10.1104/pp.109.138107] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/26/2009] [Indexed: 05/20/2023]
Abstract
The physiological dormancy of sunflower (Helianthus annuus) embryos can be overcome during dry storage (after-ripening) or by applying exogenous ethylene or hydrogen cyanide (HCN) during imbibition. The aim of this work was to provide a comprehensive model, based on oxidative signaling by reactive oxygen species (ROS), for explaining the cellular mode of action of HCN in dormancy alleviation. Beneficial HCN effect on germination of dormant embryos is associated with a marked increase in hydrogen peroxide and superoxide anion generation in the embryonic axes. It is mimicked by the ROS-generating compounds methylviologen and menadione but suppressed by ROS scavengers. This increase results from an inhibition of catalase and superoxide dismutase activities and also involves activation of NADPH oxidase. However, it is not related to lipid reserve degradation or gluconeogenesis and not associated with marked changes in the cellular redox status controlled by the glutathione/glutathione disulfide couple. The expression of genes related to ROS production (NADPHox, POX, AO1, and AO2) and signaling (MAPK6, Ser/ThrPK, CaM, and PTP) is differentially affected by dormancy alleviation either during after-ripening or by HCN treatment, and the effect of cyanide on gene expression is likely to be mediated by ROS. It is also demonstrated that HCN and ROS both activate similarly ERF1, a component of the ethylene signaling pathway. We propose that ROS play a key role in the control of sunflower seed germination and are second messengers of cyanide in seed dormancy release.
Collapse
Affiliation(s)
- Krystyna Oracz
- UPMC Univ Paris 06, Unité de Recherche 5, Germination et Dormance des Semences, Site d'Ivry, F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
286
|
|
287
|
Garg N, Manchanda G. ROS generation in plants: Boon or bane? PLANT BIOSYSTEMS - AN INTERNATIONAL JOURNAL DEALING WITH ALL ASPECTS OF PLANT BIOLOGY 2009. [PMID: 0 DOI: 10.1080/11263500802633626] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
288
|
Mei W, Qin Y, Song W, Li J, Zhu Y. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. J Genet Genomics 2009; 36:141-50. [DOI: 10.1016/s1673-8527(08)60101-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/30/2008] [Accepted: 01/10/2009] [Indexed: 11/15/2022]
|
289
|
Kukavica B, Mojovic M, Vuccinic Z, Maksimovic V, Takahama U, Jovanovic SV. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. PLANT & CELL PHYSIOLOGY 2009; 50:304-17. [PMID: 19098072 DOI: 10.1093/pcp/pcn199] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The hydroxyl radical produced in the apoplast has been demonstrated to facilitate cell wall loosening during cell elongation. Cell wall-bound peroxidases (PODs) have been implicated in hydroxyl radical formation. For this mechanism, the apoplast or cell walls should contain the electron donors for (i) H(2)O(2) formation from dioxygen; and (ii) the POD-catalyzed reduction of H(2)O(2) to the hydroxyl radical. The aim of the work was to identify the electron donors in these reactions. In this report, hydroxyl radical (.OH) generation in the cell wall isolated from pea roots was detected in the absence of any exogenous reductants, suggesting that the plant cell wall possesses the capacity to generate .OH in situ. Distinct POD and Mn-superoxide dismutase (Mn-SOD) isoforms different from other cellular isoforms were shown by native gel electropho-resis to be preferably bound to the cell walls. Electron paramagnetic resonance (EPR) spectroscopy of cell wall isolates containing the spin-trapping reagent, 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO), was used for detection of and differentiation between .OH and the superoxide radical (O(2)(-).). The data obtained using POD inhibitors confirmed that tightly bound cell wall PODs are involved in DEPMPO/OH adduct formation. A decrease in DEPMPO/OH adduct formation in the presence of H(2)O(2) scavengers demonstrated that this hydroxyl radical was derived from H(2)O(2). During the generation of .OH, the concentration of quinhydrone structures (as detected by EPR spectroscopy) increased, suggesting that the H(2)O(2) required for the formation of .OH in isolated cell walls is produced during the reduction of O(2) by hydroxycinnamic acids. Cell wall isolates in which the proteins have been denaturated (including the endogenous POD and SOD) did not produce .OH. Addition of exogenous H(2)O(2) again induced the production of .OH, and these were shown to originate from the Fenton reaction with tightly bound metal ions. However, the appearance of the DEPMPO/OOH adduct could also be observed, due to the production of O(2)(-). when endogenous SOD has been inactivated. Also, O(2)(-). was converted to .OH in an in vitro horseradish peroxidase (HRP)/H(2)O(2) system to which exogenous SOD has been added. Taken together with the discovery of the cell wall-bound Mn-SOD isoform, these results support the role of such a cell wall-bound SOD in the formation of .OH jointly with the cell wall-bound POD. According to the above findings, it seems that the hydroxycinnamic acids from the cell wall, acting as reductants, contribute to the formation of H(2)O(2) in the presence of O(2) in an autocatalytic manner, and that POD and Mn-SOD coupled together generate .OH from such H(2)O(2).
Collapse
|
290
|
Cosio C, Dunand C. Specific functions of individual class III peroxidase genes. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:391-408. [PMID: 19088338 DOI: 10.1093/jxb/ern318] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In higher plants, class III peroxidases exist as large multigene families (e.g. 73 genes in Arabidopsis thaliana). The diversity of processes catalysed by peroxidases as well as the large number of their genes suggests the possibility of a functional specialization of each isoform. In addition, the fact that peroxidase promoter sequences are very divergent and that protein sequences contain both highly conserved domains and variable regions supports this hypothesis. However, two difficulties are associated with the study of the function of specific peroxidase genes: (i) the modification of the expression of a single peroxidase gene often results in no visible mutant phenotype, because it is compensated by redundant genes; and (ii) peroxidases show low substrate specificity in vitro resulting in an unreliable indication of peroxidase specific activity unless complementary data are available. The generalization of molecular biology approaches such as whole transcriptome analysis and recombinant DNA combined with biochemical approaches provide unprecedented tools for overcoming these difficulties. This review highlights progress made with these new techniques for identifying the specific function of individual class III peroxidase genes taking as an example the model plant A. thaliana, as well as discussing some other plants.
Collapse
Affiliation(s)
- Claudia Cosio
- Laboratory of Plant Physiology, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
291
|
Pirker KF, Stolze K, Reichenauer TG, Goodman BA. Free radical generation in uncooked carrot (Daucus carota) root tissue after cell disruption – A model for chemical reactions during mastication. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.05.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
292
|
Marjamaa K, Kukkola EM, Fagerstedt KV. The role of xylem class III peroxidases in lignification. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:367-76. [PMID: 19264758 DOI: 10.1093/jxb/ern278] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lignification is a cell wall fortifying process which occurs in xylem tissue in a scheduled manner during tissue differentiation. In this review, enzymes and the genes responsible for lignin biosynthesis have been studied with an emphasis on lignin polymerizing class III secretable plant peroxidases. Our aim is to understand the cell and molecular biology of the polymerization of lignin especially in tracheids and vessels of woody species but much of the experimental evidence comes from herbaceous plants. Class III peroxidases pose many problems for empirical work as their encoding genes are variable, their substrate specificities are wide and the half-life of many of the isozymes is very long. However, there is some evidence for the role of specific peroxidases in lignin polymerization through antisense mutants in tobacco and poplar and from tissue and cell culture lines of Picea abies and Zinnia elegans. Peroxidase enzyme action has been shown by substrate specificity studies and, for example, RT-PCR results have pointed out that many peroxidases have tissue-specific expression patterns. Tissue-level location of gene expression of some peroxidases has been studied by in situ hybridization and their cellular localization with antibodies and using EGFP-fusion genes. From these, it can be concluded that, although many of the xylem class III peroxidases have the potential for functioning in the synthesis of the lignin polymer, the combined information of catalytic properties, expression, and localization can reveal differences in the significance of different peroxidases in the lignification process.
Collapse
Affiliation(s)
- Kaisa Marjamaa
- Technical Research Center of Finland (VTT), PL 1000, 02044 VTT, Finland
| | | | | |
Collapse
|
293
|
Reactive Oxygen Species in Growth and Development. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
294
|
Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. THE PLANT CELL 2008; 20:2989-3005. [PMID: 19033527 PMCID: PMC2613669 DOI: 10.1105/tpc.108.062414] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/04/2008] [Accepted: 11/11/2008] [Indexed: 05/18/2023]
Abstract
Knowledge about signaling in arbuscular mycorrhizal (AM) symbioses is currently restricted to the common symbiosis (SYM) signaling pathway discovered in legumes. This pathway includes calcium as a second messenger and regulates both AM and rhizobial symbioses. Both monocotyledons and dicotyledons form symbiotic associations with AM fungi, and although they differ markedly in the organization of their root systems, the morphology of colonization is similar. To identify and dissect AM-specific signaling in rice (Oryza sativa), we developed molecular phenotyping tools based on gene expression patterns that monitor various steps of AM colonization. These tools were used to distinguish common SYM-dependent and -independent signaling by examining rice mutants of selected putative legume signaling orthologs predicted to be perturbed both upstream (CASTOR and POLLUX) and downstream (CCAMK and CYCLOPS) of the central, calcium-spiking signal. All four mutants displayed impaired AM interactions and altered AM-specific gene expression patterns, therefore demonstrating functional conservation of SYM signaling between distant plant species. In addition, differential gene expression patterns in the mutants provided evidence for AM-specific but SYM-independent signaling in rice and furthermore for unexpected deviations from the SYM pathway downstream of calcium spiking.
Collapse
Affiliation(s)
- Caroline Gutjahr
- Department of Plant Molecular Biology, University of Lausane, 1015 Lausane, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Bustos D, Lascano R, Villasuso AL, Machado E, Senn ME, Córdoba A, Taleisnik E. Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2*- levels. ANNALS OF BOTANY 2008; 102:551-9. [PMID: 18703541 PMCID: PMC2701787 DOI: 10.1093/aob/mcn141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 05/28/2008] [Accepted: 07/03/2008] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Experimental evidence in the literature suggests that O(2)(*-) produced in the elongation zone of roots and leaves by plasma membrane NADPH oxidase activity is required for growth. This study explores whether growth changes along the root tip induced by hyperosmotic treatments in Zea mays are associated with the distribution of apoplastic O(2)(*-). METHODS Stress treatments were imposed using 150 mm NaCl or 300 mM sorbitol. Root elongation rates and the spatial distribution of growth rates in the root tip were measured. Apoplastic O(2)(*-) was determined using nitro blue tetrazolium, and H(2)O(2) was determined using 2', 7'-dichlorofluorescin. KEY RESULTS In non-stressed plants, the distribution of accelerating growth and highest O(2)(*-) levels coincided along the root tip. Salt and osmotic stress of the same intensity had similar inhibitory effects on root elongation, but O(2)(*-) levels increased in sorbitol-treated roots and decreased in NaCl-treated roots. CONCLUSIONS The lack of association between apoplastic O(2)(*-) levels and root growth inhibition under hyper-osmotic stress leads us to hypothesize that under those conditions the role of apoplastic O(2)(*-) may be to participate in signalling processes, that convey information on the nature of the substrate that the growing root is exploring.
Collapse
Affiliation(s)
- Dolores Bustos
- IFFIVE-INTA, Camino a 60 Cuadras Km 5 1/2, X5020ICA Córdoba, Argentina
| | - Ramiro Lascano
- IFFIVE-INTA, Camino a 60 Cuadras Km 5 1/2, X5020ICA Córdoba, Argentina
| | - Ana Laura Villasuso
- Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Estela Machado
- Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | | | - Alicia Córdoba
- IFFIVE-INTA, Camino a 60 Cuadras Km 5 1/2, X5020ICA Córdoba, Argentina
| | - Edith Taleisnik
- IFFIVE-INTA, Camino a 60 Cuadras Km 5 1/2, X5020ICA Córdoba, Argentina
| |
Collapse
|
296
|
Sakamoto M, Munemura I, Tomita R, Kobayashi K. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:13-27. [PMID: 18557836 DOI: 10.1111/j.1365-313x.2008.03577.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although auxin and ethylene play pivotal roles in leaf abscission, the subsequent signaling molecules are poorly understood. This is mainly because it is difficult to effectively treat the intact abscission zone (AZ) with pharmacological reagents. We developed an in vitro experimental system that reproduces stress-induced leaf abscission in planta. In this system, 1-mm-thick petiole strips, encompassing the AZ, were separated within 4 days of abscission at the AZ through cell wall degradation in an auxin depletion- and ethylene-dependent manner. The system allowed us to show that hydrogen peroxide (H(2)O(2)) is involved in abscission signaling. Microscopic analyses revealed continuous H(2)O(2) production by AZ cells. H(2)O(2) scavengers and diphenylene iodonium, an inhibitor of NADPH oxidase, suppressed in vitro abscission and cellulase expression. Conversely, the application of H(2)O(2) promoted in vitro abscission and expression of cellulase. Ethephon-induced abscission was suppressed by inhibitors of H(2)O(2) production, whereas the expression of ethylene-responsive genes was unaffected by both H(2)O(2) and an H(2)O(2) inhibitor. These results indicated that H(2)O(2) acts downstream from ethylene in in vitro abscission signaling. In planta, salinity stress induced the expression of genes that respond to ethylene and reactive oxygen species, and also induced H(2)O(2) production at the AZ, which preceded leaf abscission. These results indicate that H(2)O(2) has roles in leaf abscission associated with ethylene both in vitro and in planta.
Collapse
Affiliation(s)
- Masaru Sakamoto
- Iwate Biotechnology Research Center, Narita 22-174-4, Kitakami, Iwate 022-0003, Japan
| | | | | | | |
Collapse
|
297
|
Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C. Stimulus-induced downregulation of root water transport involves reactive oxygen species-activated cell signalling and plasma membrane intrinsic protein internalization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:207-218. [PMID: 18573191 DOI: 10.1111/j.1365-313x.2008.03594.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The water uptake capacity of plant roots (i.e. their hydraulic conductivity, Lp(r)) is determined in large part by aquaporins of the plasma membrane intrinsic protein (PIP) subfamily. In the present work, we investigated two stimuli, salicylic acid (SA) and salt, because of their ability to induce an accumulation of reactive oxygen species (ROS) and an inhibition of Lp(r) concomitantly in the roots of Arabidopsis plants. The inhibition of Lp(r) by SA was partially counteracted by preventing the accumulation of hydrogen peroxide (H(2)O(2)) with exogenous catalase. In addition, exogenous H(2)O(2) was able to reduce Lp(r) by up to 90% in <15 min. Based on the lack of effects of H(2)O(2) on the activity of individual aquaporins in Xenopus oocytes, and on a pharmacological dissection of the action of H(2)O(2) on Lp(r), we propose that ROS do not gate Arabidopsis root aquaporins through a direct oxidative mechanism, but rather act through cell signalling mechanisms. Expression in transgenic roots of PIP-GFP fusions and immunogold labelling indicated that external H(2)O(2) enhanced, in <15 min, the accumulation of PIPs in intracellular structures tentatively identified as vesicles and small vacuoles. Exposure of roots to SA or salt also induced an intracellular accumulation of the PIP-GFP fusion proteins, and these effects were fully counteracted by co-treatment with exogenous catalase. In conclusion, the present work identifies SA as a novel regulator of aquaporins, and delineates an ROS-dependent signalling pathway in the roots of Arabidopsis. Several abiotic and biotic stress-related stimuli potentially share this path, which involves an H(2)O(2)-induced internalization of PIPs, to downregulate root water transport.
Collapse
Affiliation(s)
- Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Julie Boudet
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Olivier Postaire
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Doan-Trung Luu
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Colette Tournaire-Roux
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| |
Collapse
|
298
|
Houde M, Diallo AO. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 2008; 9:400. [PMID: 18752686 PMCID: PMC2551624 DOI: 10.1186/1471-2164-9-400] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/27/2008] [Indexed: 11/26/2022] Open
Abstract
Background Aluminum is considered the most limiting factor for plant productivity in acidic soils, which cover large areas of the world's potential arable lands. The inhibition of root growth is recognized as the primary effect of Al toxicity. To identify genes associated with Al stress and tolerance, transcriptome analyses of four different wheat lines (2 Al-tolerant and 2 Al sensitive) that differ in their response to Al were performed. Results Microarray expression profiling revealed that 83 candidate genes are associated with Al stress and 25 are associated with tolerance. The stress-associated genes include important enzymes such as pyruvate dehydrogenase, alternative oxidase, and galactonolactone oxidase, ABC transporter and ascorbate oxido-reducatase. The Al tolerance-associated genes include the ALMT-1 malate transporter, glutathione S-transferase, germin/oxalate oxidase, fructose 1,6-bisphosphatase, cysteine-rich proteins, cytochrome P450 monooxygenase, cellulose synthase, zinc finger transcription factor, disease resistance response protein and F-box containing domain protein. Conclusion In this survey, we identified stress- and tolerance-associated genes that may be involved in the detoxification of Al and reactive oxygen species. Alternative pathways could help maintain the supply of important metabolites (H2O2, ascorbate, NADH, and phosphate) needed for Al tolerance and root growth. The Al tolerance-associated genes may be key factors that regulate these pathways.
Collapse
Affiliation(s)
- Mario Houde
- Centre TOXEN, Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal QC, H3C 3P8, Canada.
| | | |
Collapse
|
299
|
|
300
|
Heyno E, Klose C, Krieger-Liszkay A. Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. THE NEW PHYTOLOGIST 2008; 179:687-699. [PMID: 18537884 DOI: 10.1111/j.1469-8137.2008.02512.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
* Cadmium (Cd(2+)) is an environmental pollutant that causes increased reactive oxygen species (ROS) production. To determine the site of ROS production, the effect of Cd(2+) on ROS production was studied in isolated soybean (Glycine max) plasma membranes, potato (Solanum tuberosum) tuber mitochondria and roots of intact seedlings of soybean or cucumber (Cucumis sativus). * The effects of Cd(2+) on the kinetics of superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and hydroxyl radical ((*OH) generation were followed using absorption, fluorescence and spin-trapping electron paramagnetic resonance spectroscopy. * In isolated plasma membranes, Cd(2+) inhibited O2*- production. This inhibition was reversed by calcium (Ca(2+)) and magnesium (Mg(2+)). In isolated mitochondria, Cd(2+) increased and H(2)O(2) production. In intact roots, Cd(2+) stimulated H(2)O(2) production whereas it inhibited O2*- and (*)OH production in a Ca(2+)-reversible manner. * Cd(2+) can be used to distinguish between ROS originating from mitochondria and from the plasma membrane. This is achieved by measuring different ROS individually. The immediate (
Collapse
Affiliation(s)
- Eiri Heyno
- CEA, iBiTecS, CNRS URA 2096, Service de Bioénergétique Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| | - Cornelia Klose
- Institut für Biologie II, Universität Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Anja Krieger-Liszkay
- CEA, iBiTecS, CNRS URA 2096, Service de Bioénergétique Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|