251
|
Bartenschlager R, Sparacio S. Hepatitis C virus molecular clones and their replication capacity in vivo and in cell culture. Virus Res 2007; 127:195-207. [PMID: 17428568 DOI: 10.1016/j.virusres.2007.02.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/10/2007] [Accepted: 02/22/2007] [Indexed: 01/27/2023]
Abstract
The hepatitis C virus (HCV) is a positive-strand RNA virus that belongs to the genus Hepacivirus of the family Flaviviridae. The development of a system to propagate this human pathogen in cell culture took more than a decade since the first molecular cloning of the HCV genome. It was a stepwise achievement that began with the construction of the first functional HCV genome with proven in vivo infectivity. It was then followed by the establishment of subgenomic replicons that self-amplify in cultured human hepatoma cells, and culminated in the generation of infectious HCV upon transfection of these cells with a particular molecular HCV clone designated JFH-1. In this review, we will summarize the development and current state of molecular HCV clones and discuss the prospects and implications of the most recent achievements.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| | | |
Collapse
|
252
|
Sakai A, Takikawa S, Thimme R, Meunier JC, Spangenberg HC, Govindarajan S, Farci P, Emerson SU, Chisari FV, Purcell RH, Bukh J. In vivo study of the HC-TN strain of hepatitis C virus recovered from a patient with fulminant hepatitis: RNA transcripts of a molecular clone (pHC-TN) are infectious in chimpanzees but not in Huh7.5 cells. J Virol 2007; 81:7208-19. [PMID: 17409145 PMCID: PMC1933310 DOI: 10.1128/jvi.01774-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both viral and host factors are thought to influence the pathogenesis of hepatitis C virus (HCV) infection. We studied strain HC-TN (genotype 1a), which caused fulminant hepatic failure in a patient and, subsequently, severe hepatitis in a chimpanzee (CH1422), to analyze the relationship between disease severity, host immune response, viral evolution, and outcome. A second chimpanzee (CH1581) was infected from CH1422 plasma, and a third chimpanzee (CH1579) was infected from RNA transcripts of a consensus cDNA of HC-TN (pHC-TN). RNA transcripts of pHC-TN did not replicate in Huh7.5 cells, which were recently found to be susceptible to infection with another fulminant HCV strain (JFH1). The courses of viremia were similar in the three animals. However, CH1581 and CH1579 developed a less severe acute hepatitis than CH1422. CH1579 and CH1422 resolved the infection, whereas CH1581 became persistently infected. CH1579 and CH1581, despite their differing outcomes, both developed significant intrahepatic cellular immune responses, but not antibodies to the envelope glycoproteins or neutralizing antibodies, during the acute infection. We analyzed the polyprotein sequences of virus recovered at five and nine time points from CH1579 and CH1581, respectively, during the first year of follow-up. High mutation rates and high proportions of nonsynonymous mutations suggested immune pressure and positive selection in both animals. Changes were not selected until after the initial decrease in virus titers and after the development of immune responses and hepatitis. Subsequently, however, mutations emerged repeatedly in both animals. Overall, our results indicate that disease severity and outcome of acute HCV infection depend primarily on the host response.
Collapse
Affiliation(s)
- Akito Sakai
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-8009, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
253
|
Lázaro CA, Chang M, Tang W, Campbell J, Sullivan DG, Gretch DR, Corey L, Coombs RW, Fausto N. Hepatitis C virus replication in transfected and serum-infected cultured human fetal hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:478-89. [PMID: 17255316 PMCID: PMC1851861 DOI: 10.2353/ajpath.2007.060789] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the pathogenesis of hepatitis C requires the availability of tissue culture models that sustain viral replication and produce infectious particles. We report on the establishment of a culture system of nontransformed human fetal hepatocytes that supports hepatitis C virus (HCV) replication after transfection with full-length in vitro-transcribed genotype 1a HCV RNA without adaptive mutations and infection with patient sera of diverse HCV genotypes. Transfected and infected hepatocytes expressed HCV core protein and HCV negative-strand RNA. For at least 2 months, transfected or infected cultures released HCV into the medium at high levels and usually with a cyclical pattern. Viral replication had some cytotoxic effects on the cells, which produced interferon (IFN)-beta as a component of the antiviral response. Medium from transfected cells was able to infect naïve cultures in a Transwell system, and the infection was blocked by IFN-alpha and IFN-lambda. Viral particles analyzed by sucrose density centrifugation had a density of 1.17 g/ml. Immunogold labeling with antibody against HCV envelope protein E2 decorated the surface of the viral particles, as visualized by electron microscopy. This culture system may be used to study the responses of nontransformed human hepatocytes to HCV infection, to analyze serum infectivity, and to clone novel HCVs from infected patients.
Collapse
Affiliation(s)
- Catherine A Lázaro
- Department of Pathology, University of Washington School of Medicine, K078 Health Sciences Building, Box 357705, Seattle, WA 98195-7705, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
254
|
Blight KJ. Allelic variation in the hepatitis C virus NS4B protein dramatically influences RNA replication. J Virol 2007; 81:5724-36. [PMID: 17360748 PMCID: PMC1900245 DOI: 10.1128/jvi.02481-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the Huh-7.5 hepatoma cell line, replication of the genotype 1a H77 strain of hepatitis C virus (HCV) is attenuated compared to that of the genotype 1b Con1 strain. This study identifies the poorly characterized integral membrane protein, NS4B, as a major determinant for this replication difference. Chimeric H77 subgenomic replicons containing the entire NS4B gene from Con1 in place of the H77 NS4B sequence replicated approximately 10-fold better than the H77 parent and to levels similar to that of the adapted Con1 replicon. An intermediate level of replication enhancement was conferred by H77 chimeras containing the poorly conserved N-terminal 47 residues or the remaining less-divergent C terminus of Con1 NS4B. The replication-enhancing activity within the N terminus of NS4B was further mapped to two Con1-specific amino acids. Experiments to elucidate the mechanism of enhanced H77 replication revealed that Con1 NS4B primarily increased H77 RNA synthesis on a per cell basis, as indicated by the similar capacities of chimeric and parental replicons to establish replication in Huh-7.5 cells and the higher levels of both positive- and negative-strand RNAs for the chimeras than for the H77 parent. Additionally, enhanced H77 replication was not the result of Con1 NS4B-mediated effects on HCV translation efficiency or alterations in polyprotein processing. Expression of Con1 NS4B in trans did not improve the replication of the H77 parental replicon, suggesting a cis-dominant role for NS4B in HCV replication. These results provide the first evidence that allelic variation in the NS4B sequence between closely related isolates significantly impacts HCV replication in cell culture.
Collapse
Affiliation(s)
- Keril J Blight
- Department of Molecular Microbiology, Center for Infectious Disease Research, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8230, St. Louis, MO 63110, USA.
| |
Collapse
|
255
|
Han JQ, Townsend HL, Jha BK, Paranjape JM, Silverman RH, Barton DJ. A phylogenetically conserved RNA structure in the poliovirus open reading frame inhibits the antiviral endoribonuclease RNase L. J Virol 2007; 81:5561-72. [PMID: 17344297 PMCID: PMC1900262 DOI: 10.1128/jvi.01857-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNase L is an antiviral endoribonuclease that cleaves viral mRNAs after single-stranded UA and UU dinucleotides. Poliovirus (PV) mRNA is surprisingly resistant to cleavage by RNase L due to an RNA structure in the 3C(Pro) open reading frame (ORF). The RNA structure associated with the inhibition of RNase L is phylogenetically conserved in group C enteroviruses, including PV type 1 (PV1), PV2, PV3, coxsackie A virus 11 (CAV11), CAV13, CAV17, CAV20, CAV21, and CAV24. The RNA structure is not present in other human enteroviruses (group A, B, or D enteroviruses). Coxsackievirus B3 mRNA and hepatitis C virus mRNA were fully sensitive to cleavage by RNase L. HeLa cells expressing either wild-type RNase L or a dominant-negative mutant RNase L were used to examine the effects of RNase L on PV replication. PV replication was not inhibited by RNase L activity, but rRNA cleavage characteristic of RNase L activity was detected late during the course of PV infection, after assembly of intracellular virus. Rather than inhibiting PV replication, RNase L activity was associated with larger plaques and better cell-to-cell spread. Mutations in the RNA structure associated with the inhibition of RNase L did not affect the magnitude of PV replication in HeLa cells expressing RNase L, consistent with the absence of observed RNase L activity until after virus assembly. Thus, PV carries an RNA structure in the 3C protease ORF that potently inhibits the endonuclease activity of RNase L, but this RNA structure does not prevent RNase L activity late during the course of infection, as virus assembly nears completion.
Collapse
Affiliation(s)
- Jian-Qiu Han
- Department of Microbiology, School of Medicine, University of Colorado, Mail Stop 8333, Room P18-9116, 12800 E. 19th Ave., Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
256
|
Haqshenas G, Dong X, Netter H, Torresi J, Gowans EJ. A chimeric GB virus B encoding the hepatitis C virus hypervariable region 1 is infectious in vivo. J Gen Virol 2007; 88:895-902. [PMID: 17325362 DOI: 10.1099/vir.0.82467-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Two GB virus B (GBV-B) chimeric genomes, GBV-HVR and GBV-HVRh (with a hinge), containing the coding region of the immunodominant hypervariable region 1 (HVR1) of the E2 envelope protein of Hepatitis C virus (HCV) were constructed. Immunoblot analysis confirmed that HVR1 was anchored to the GBV-B E2 protein. To investigate the replication competence and in vivo stability of in vitro-generated chimeric RNA transcripts, two naïve marmosets were inoculated intrahepatically with the transcripts. The GBV-HVR chimeric genome was detectable for 2 weeks post-inoculation (p.i.), whereas GBV-HVRh reverted to wild type 1 week p.i. Sequencing analysis of the HVR1 and flanking regions from GBV-HVR RNA isolated from marmoset serum demonstrated that the HVR1 insert remained unaltered in the GBV-HVR chimera for 2 weeks. Inoculation of a naïve marmoset with serum collected at 1 week p.i. also resulted in viraemia and confirmed that the serum contained infectious particles. All animals cleared the infection by 3 weeks p.i. and remained negative for the remaining weeks. The chimera may prove useful for the in vivo examination of any HCV HVR1-based vaccine candidates.
Collapse
Affiliation(s)
- G Haqshenas
- The Macfarlane Burnet Institute, GPO Box 2284, Melbourne, VIC 3001, Australia
| | - X Dong
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- The Macfarlane Burnet Institute, GPO Box 2284, Melbourne, VIC 3001, Australia
| | - H Netter
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - J Torresi
- Department of Medicine (RMH/WH), University of Melbourne, Centre for Clinical Research Excellence, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - E J Gowans
- Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
- The Macfarlane Burnet Institute, GPO Box 2284, Melbourne, VIC 3001, Australia
| |
Collapse
|
257
|
McMullan LK, Grakoui A, Evans MJ, Mihalik K, Puig M, Branch AD, Feinstone SM, Rice CM. Evidence for a functional RNA element in the hepatitis C virus core gene. Proc Natl Acad Sci U S A 2007; 104:2879-84. [PMID: 17299041 PMCID: PMC1815275 DOI: 10.1073/pnas.0611267104] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Indexed: 02/06/2023] Open
Abstract
In the core protein-coding region of hepatitis C virus (HCV), evidence exists for both phylogenetically conserved RNA structures and a +1 alternative reading frame (ARF). To investigate its role in HCV infection, we introduced four stop codons into the ARF of a genotype 1a H77 molecular clone. The changes did not alter the core protein sequence, but were predicted to disrupt RNA secondary structures. An attenuated infection was established after inoculation of the mutant HCV RNA into an HCV naïve chimpanzee. The acute infection was atypical with low peak viremia, minimal alanine aminotransferase elevation, and early virus control by a diverse adaptive immune response. Sequencing circulating virus revealed progressive reversions at the third and then fourth stop codon. In cell culture, RNA replication of a genome with four stop codons was severely impaired. In contrast, the revertant genome exhibited only a 5-fold reduction in replication. Genomes harboring only the first two stop codons replicated to WT levels. Similarly, reversions at stop codons 3 and 4, which improved replication, were selected with recombinant, infectious HCV in cell culture. We conclude that ARF-encoded proteins initiating at the polyprotein AUG are not essential for HCV replication in cell culture or in vivo. Rather, our results provide evidence for a functionally important RNA element in the ARF region.
Collapse
Affiliation(s)
- Laura K. McMullan
- *Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10021
| | - Arash Grakoui
- *Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10021
| | - Matthew J. Evans
- *Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10021
| | - Kathleen Mihalik
- Laboratory of Hepatitis Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892; and
| | - Montserrat Puig
- Laboratory of Hepatitis Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892; and
| | - Andrea D. Branch
- Division of Liver Disease, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Stephen M. Feinstone
- Laboratory of Hepatitis Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892; and
| | - Charles M. Rice
- *Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY 10021
| |
Collapse
|
258
|
Kato T, Matsumura T, Heller T, Saito S, Sapp RK, Murthy K, Wakita T, Liang TJ. Production of infectious hepatitis C virus of various genotypes in cell cultures. J Virol 2007; 81:4405-11. [PMID: 17301131 PMCID: PMC1900162 DOI: 10.1128/jvi.02334-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A unique hepatitis C virus (HCV) strain JFH-1 has been shown to replicate efficiently in cell culture with production of infectious HCV. We previously developed a DNA expression system containing HCV cDNA flanked by two self-cleaving ribozymes to generate HCV particles in cell culture. In this study, we produced HCV particles of various genotypes, including 1a (H77), 1b (CG1b), and 2a (J6 and JFH-1), in the HCV-ribozyme system. The constructs also contain the secreted alkaline phosphatase gene to control for transfection efficiency and the effects of culture conditions. After transfection into the Huh7-derived cell line Huh7.5.1, continuous HCV replication and secretion were confirmed by the detection of HCV RNA and core antigen in the culture medium. HCV replication levels of strains H77, CG1b, and J6 were comparable, whereas the JFH-1 strain replicates at a substantially higher level than the other strains. To evaluate the infectivity in vitro, the culture medium of JFH-1-transfected cells was inoculated into naive Huh7.5.1 cells. HCV proteins were detected by immunofluorescence 3 days after inoculation. To evaluate the infectivity in vivo, the culture medium from HCV genotype 1b-transfected cells was inoculated into a chimpanzee and caused a typical course of HCV infection. The HCV 1b propagated in vitro and in vivo had sequences identical to those of the HCV genomic cDNA used for cell culture transfection. The development of culture systems for production of various HCV genotypes provides a valuable tool not only to study the replication and pathogenesis of HCV but also to screen for antivirals.
Collapse
Affiliation(s)
- Takanobu Kato
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Rm. 9B16, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
259
|
von Hahn T, Yoon JC, Alter H, Rice CM, Rehermann B, Balfe P, McKeating JA. Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology 2007; 132:667-78. [PMID: 17258731 DOI: 10.1053/j.gastro.2006.12.008] [Citation(s) in RCA: 308] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 11/13/2006] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Broadly reactive neutralizing antibodies (nAbs) and multispecific T-cell responses are generated during chronic hepatitis C virus (HCV) infection and yet fail to clear the virus. This study investigated the development of autologous nAb and HCV-glycoprotein-specific T-cell responses and their effects on viral sequence evolution during chronic infection in order to understand the reasons for their lack of effectiveness. METHODS Numerous E1E2 sequences were amplified and sequenced from serum samples collected over a 26-year period from patient H, a uniquely well-characterized, chronically infected individual. HCV pseudoparticles (HCVpp) expressing the patient-derived glycoproteins were generated and tested for their sensitivity to neutralization by autologous and heterologous serum antibodies. RESULTS A strain-specific nAb response developed early in infection (8 weeks postinfection), whereas cross-reactive antibodies able to neutralize HCVpp-bearing heterologous glycoproteins developed late in infection (>33 wk postinfection). The humoral response continuously failed to neutralize viruses bearing autologous glycoprotein sequences that were present in the serum at a given time. The amplified glycoprotein sequences displayed high variability, particularly in regions corresponding to defined linear B-cell epitopes. Mutations in defined neutralizing epitopes were associated with a loss of recognition by monoclonal antibodies against these epitopes and with decreased neutralization of corresponding HCVpp. Viral escape from CD4 and CD8 T-cell responses also was shown for several novel epitopes throughout the glycoprotein region. CONCLUSIONS During chronic infection HCV is subjected to selection pressures from both humoral and cellular immunity, resulting in the continuous generation of escape variants.
Collapse
Affiliation(s)
- Thomas von Hahn
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
260
|
Ma HC, Ku YY, Hsieh YC, Lo SY. Characterization of the cleavage of signal peptide at the C-terminus of hepatitis C virus core protein by signal peptide peptidase. J Biomed Sci 2007; 14:31-41. [PMID: 17237979 PMCID: PMC7088784 DOI: 10.1007/s11373-006-9127-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 10/08/2006] [Indexed: 12/22/2022] Open
Abstract
Production of hepatitis C virus (HCV) core protein requires the cleavages of polyprotein by signal peptidase and signal peptide peptidase (SPP). Cleavage of signal peptide at the C-terminus of HCV core protein by SPP was characterized in this study. The spko mutant (mutate a.a. 189-193 from ASAYQ to PPFPF) is more efficient than the A/F mutant (mutate a.a 189 and 191 from A to F) in blocking the cleavage of signal peptide by signal peptidase. The cleavage efficiency of SPP is inversely proportional to the length of C-terminal extension of the signal peptide: the longer the extension, the less efficiency the cleavage is. Thus, reducing the length of C-terminal extension of signal peptide by signal peptidase cleavage could facilitate further cleavage by SPP. The recombinant core protein fused with signal peptide from the C-terminus of p7 protein, but not those from the C-termini of E1 and E2, could be cleaved by SPP. Therefore, the sequence of the signal peptide is important but not the sole determinant for its cleavage by SPP. Replacement of the HCV core protein E.R.-associated domain (a.a. 120-150) with the E.R.-associated domain (a.a.1-50) of SARS-CoV membrane protein results in the failure of cleavage of this recombinant protein by SPP, though this protein still is E.R.-associated. This result suggests that not only E.R.-association but also specific protein sequence is important for the HCV core protein signal peptide cleavage by SPP. Thus, our results suggest that both sequences of the signal peptide and the E.R.-associated domain are important for the signal peptide cleavage of HCV core protein by SPP.
Collapse
Affiliation(s)
- Hsin-Chieh Ma
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| | - Yi-Yung Ku
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan, ROC
| | - Yi-Ching Hsieh
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan, ROC
| | - Shih-Yen Lo
- Graduate Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC
- Graduate Institute of Molecular and Cellular Biology, Tzu Chi University, Hualien, Taiwan, ROC
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, 701, Section 3, Chung Yang Road, Hualien, Taiwan, ROC
| |
Collapse
|
261
|
Zhou D, Fan X, Tan D, Xu Y, Tavis JE, Di Bisceglie AM. Separation of near full-length hepatitis C virus quasispecies variants from a complex population. J Virol Methods 2007; 141:220-4. [PMID: 17208310 DOI: 10.1016/j.jviromet.2006.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 11/28/2006] [Accepted: 12/06/2006] [Indexed: 11/24/2022]
Abstract
A long RT-PCR (LRP) protocol was developed recently for robust amplification of a near full-length HCV genomic sequence from clinical samples, followed by efficient cloning [Fan, X., Xu, Y., Di Biceglie, A.M., 2006. Efficient amplification and cloning of near full-length hepatitis C virus genome from clinical samples. Biochem. Biophys. Res. Commun. 346, 1163-1172]. In the present study, the LRP protocol has been estimated for its error rate and the validation by sequencing fully the near full-length HCV inserts from six recombinant clones derived from a patient sample with complex viral diversity. These sequences were compared with the near full-length HCV sequence that was generated by direct sequencing of multiple overlapped PCR products from the same sample, referred to as the population sequence. Comparative analysis confirmed the artificial nature of the PCR-assembled population sequence and identified potential domains for linked viral mutations. The data also suggested that the hypervariable region 1 (HVR1) may be a biological marker for the phenotype at the quasispecies level. These observations emphasize the significance of the use of near full-length genomic sequences for HCV genetic studies and for reverse genetic analysis using authentic quasispecies variants.
Collapse
Affiliation(s)
- Donghui Zhou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
262
|
Sheehy P, Mullan B, Moreau I, Kenny-Walsh E, Shanahan F, Scallan M, Fanning LJ. In vitro replication models for the hepatitis C virus. J Viral Hepat 2007; 14:2-10. [PMID: 17212638 DOI: 10.1111/j.1365-2893.2006.00807.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Soon after the discovery of the hepatitis C virus (HCV), attention turned to the development of models whereby replication of the virus could be investigated. Among the HCV replication models developed, the HCV RNA replicon model and the newly discovered infectious cell culture systems have had an immediate impact on the study of HCV replication, and will continue to lead to important advances in our understanding of HCV replication. The aim of this study is to deal with developments in HCV replication models in a chronological order from the early 1990s to the recent infectious HCV cell culture systems.
Collapse
Affiliation(s)
- P Sheehy
- Department of Medicine, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
263
|
Breiman A, Vitour D, Vilasco M, Ottone C, Molina S, Pichard L, Fournier C, Delgrange D, Charneau P, Duverlie G, Wychowski C, Maurel P, Meurs EF. A hepatitis C virus (HCV) NS3/4A protease-dependent strategy for the identification and purification of HCV-infected cells. J Gen Virol 2006; 87:3587-3598. [PMID: 17098974 DOI: 10.1099/vir.0.82214-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
As a tool for the identification and/or purification of hepatitis C virus (HCV)-infected cells, a chimeric form of the Gal4VP16 transcription factor was engineered to be activated only in the presence of the HCV NS3/4A protease and to induce different reporter genes [choramphenical acetyltransferase (CAT), green fluorescent protein (GFP) and the cell-surface marker H-2K(k)] through the (Gal4)(5)-E1b promoter. For this, the NS5A/5B trans-cleavage motif of HCV of genotype 1a was inserted between Gal4VP16 and the N terminus of the endoplasmic reticulum (ER)-resident protein PERK, and it was demonstrated that it could be cleaved specifically by NS3/4A. Accordingly, transient transfection in tetracycline-inducible UHCV-11 cells expressing the HCV polyprotein of genotype 1a revealed the migration of the Gal4VP16 moiety of the chimera from the ER to the nucleus upon HCV expression. Activation of the chimera provoked specific gene induction, as shown by CAT assay, first in UHCV-11 cells and then in Huh-7 cells expressing an HCV replicon of genotype 1b (Huh-7 Rep). In addition, the GFP reporter gene allowed rapid fluorescence monitoring of HCV expression in the Huh-7 Rep cells. Finally, the chimera was introduced into Huh-7.5 cells infected with cell culture-generated HCV JFH1 (genotype 2a), allowing the purification of the HCV-infected cells by immunomagnetic cell sorting using H-2K(k) as gene reporter. In conclusion, the Gal4VP16 chimera activation system can be used for the rapid identification and purification of HCV-infected cells.
Collapse
Affiliation(s)
- Adrien Breiman
- Unité Hépacivirus, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | - Damien Vitour
- Unité Hépacivirus, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | - Myriam Vilasco
- Unité Hépacivirus, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | - Catherine Ottone
- Unité Hépacivirus, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | | | | | - Chantal Fournier
- Etablissement Français du Sang (EFS) Pyrénées-Méditerranée, F-34094 Montpellier, France
| | - David Delgrange
- Institut Pasteur de Lille, Groupe Hépatite C, Institut de Biologie de Lille, F-59021 Lille, France
| | - Pierre Charneau
- Laboratoire Virologie Moléculaire et Vectorologie, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | | | - Czeslaw Wychowski
- Institut Pasteur de Lille, Groupe Hépatite C, Institut de Biologie de Lille, F-59021 Lille, France
| | | | - Eliane F Meurs
- Unité Hépacivirus, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, F-75724 Paris Cedex 15, France
| |
Collapse
|
264
|
Kanda T, Steele R, Ray R, Ray RB. Small interfering RNA targeted to hepatitis C virus 5' nontranslated region exerts potent antiviral effect. J Virol 2006; 81:669-76. [PMID: 17079316 PMCID: PMC1797438 DOI: 10.1128/jvi.01496-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma. Interferon alone or together with ribavirin is the only therapy for HCV infection; however, a significant number of HCV-infected individuals do not respond to this treatment. Therefore, the development of new therapeutic options against HCV is a matter of urgency. In the present study, we have examined vectors carrying short hairpin RNA (shRNA) targeting the 5' nontranslated conserved region of the HCV genome for inhibition of virus replication. Initially, three sequences were selected, and all three shRNAs (psh-53, psh-274, and psh-375) suppressed HCV internal ribosome entry site (IRES)-mediated translation to different degrees in Huh-7 cells. Next, we introduced siRNA into Huh-7.5 cells persistently infected with HCV genotype 2a (JFH1). The most efficient inhibition of JFH1 replication was observed with psh-274, targeted to the portion from subdomain IIId to IIIe of the IRES. Subsequently, Huh-7.5 cells stably expressing psh-274 further displayed a significant reduction in HCV JFH1 replication. The effect of psh-274 on cell-culture-grown HCV genotype 1a (H77) was also evaluated, and inhibition of virus replication and infectivity titers was observed. In the absence of a cell-culture-grown HCV genotype 1b, the effects of psh-274 on subgenomic and full-length replicons were examined, and efficient inhibition of genome replication was observed. Therefore, we have identified a conserved sequence targeted to the HCV genome that can inhibit replication of different genotypes, suggesting the potential of siRNA as an additional therapeutic modality against HCV infection.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Departments of Pathology, Saint Louis University, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
265
|
Shin EC, Seifert U, Kato T, Rice CM, Feinstone SM, Kloetzel PM, Rehermann B. Virus-induced type I IFN stimulates generation of immunoproteasomes at the site of infection. J Clin Invest 2006; 116:3006-14. [PMID: 17039255 PMCID: PMC1592549 DOI: 10.1172/jci29832] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Accepted: 08/29/2006] [Indexed: 12/20/2022] Open
Abstract
IFN-gamma is known as the initial and primary inducer of immunoproteasomes during viral infections. We now report that type I IFN induced the transcription and translation of immunoproteasome subunits, their incorporation into the proteasome complex, and the generation of an immunoproteasome-dependent CD8 T cell epitope in vitro and provide in vivo evidence that this mechanism occurs prior to IFN-gamma responses at the site of viral infection. Type I IFN-mediated generation of immunoproteasomes was initiated by either poly(I:C) or HCV RNA in human hepatoma cells and was inhibited by neutralization of type I IFN. In serial liver biopsies of chimpanzees with acute HCV infection, increases in immunoproteasome subunit mRNA preceded intrahepatic IFN-gamma responses by several weeks, instead coinciding with intrahepatic type I IFN responses. Thus, viral RNA-induced innate immune responses regulate the antigen-processing machinery, which occurs prior to the detection of IFN-gamma at the site of infection. This mechanism may contribute to the high effectiveness (95%) of type I IFN-based therapies if administered early during HCV infection.
Collapse
Affiliation(s)
- Eui-Cheol Shin
- Immunology Section and Liver Diseases Branch, NIDDK, NIH, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
266
|
Codran A, Royer C, Jaeck D, Bastien-Valle M, Baumert TF, Kieny MP, Pereira CA, Martin JP. Entry of hepatitis C virus pseudotypes into primary human hepatocytes by clathrin-dependent endocytosis. J Gen Virol 2006; 87:2583-2593. [PMID: 16894197 DOI: 10.1099/vir.0.81710-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis worldwide. Studies of the early steps of HCV infection have been hampered by the lack of convenient in vitro or in vivo models. Although several cell-surface molecules that mediate the binding of HCV envelope proteins to target cells have been identified, mechanisms of viral entry into human hepatocytes are still poorly understood. Vesicular stomatitis virus/HCV pseudotyped viruses expressing the HCV envelope glycoproteins on the viral envelope were generated and it was found that their entry into human hepatocytes required co-expression of E1 and E2 on the pseudotype surface. Neutralization of pseudotype infection by anti-HCV antibodies suggested that cellular entry was mediated by HCV envelope glycoproteins and by previously characterized cell-surface molecules, including CD81. An entry assay based on the release of a fluorochrome from labelled HCV pseudotypes provided evidence for a pH-dependent fusion of the pseudotype envelope with a cellular compartment. By using a panel of endocytosis inhibitors, it is postulated that penetration of HCV into primary cultures of hepatocytes takes place by clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Audrey Codran
- INSERM U544, EA 3770, Institut de Virologie, Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France
| | - Cathy Royer
- INSERM U544, EA 3770, Institut de Virologie, Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France
| | - Daniel Jaeck
- Centre de Chirurgie Viscérale et de Transplantation, Centre Hospitalier de Hautepierre, F-67000 Strasbourg, France
| | - Michèle Bastien-Valle
- INSERM U544, EA 3770, Institut de Virologie, Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France
| | - Thomas F Baumert
- Department of Medicine II, University of Freiburg, Hugstetter Straße 55, D-79106 Freiburg, Germany
| | - Marie Paule Kieny
- INSERM U544, EA 3770, Institut de Virologie, Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France
| | | | - Jean-Pierre Martin
- INSERM U544, EA 3770, Institut de Virologie, Université Louis Pasteur, 3 rue Koeberlé, F-67000 Strasbourg, France
| |
Collapse
|
267
|
Puig M, Mihalik K, Tilton JC, Williams O, Merchlinsky M, Connors M, Feinstone SM, Major ME. CD4+ immune escape and subsequent T-cell failure following chimpanzee immunization against hepatitis C virus. Hepatology 2006; 44:736-45. [PMID: 16941702 DOI: 10.1002/hep.21319] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatitis C is a major cause of chronic liver disease, with 170 million individuals infected worldwide and no available vaccine. We analyzed the effects of an induced T-cell response in 3 chimpanzees, targeting nonstructural proteins in the absence of neutralizing antibodies. In all animals the specific T-cell response modified the outcome of infection, producing a 10- to 1,000-fold reduction in peak virus titers. The challenge of 2 immunized animals that had been previously exposed to hepatitis C virus resulted in subclinical infections. Immune responses in the third animal, naive prior to immunization, limited viral replication immediately, evidenced by a 30-fold reduction in virus titer by week 2, declining to a nonquantifiable level by week 6. After 10 weeks of immunological control, we observed a resurgence of virus, followed by progression to a persistent infection. Comparing virus evolution with T-cell recognition, we demonstrated that: (i) resurgence was concomitant with the emergence of new dominant viral populations bearing single amino acid changes in the NS3 and NS5A regions, (ii) these mutations resulted in a loss of CD4+ T-cell recognition, and (iii) subsequent to viral resurgence and immune escape a large fraction of NS3-specific T cells became impaired in their ability to secrete IFN-gamma and proliferate. In contrast, NS3-specific responses were sustained in the recovered/immunized animals presenting with subclinical infections. In conclusion, viral escape from CD4+ T cells can result in the eventual failure of an induced T-cell response that initially controls infection. Vaccines that can induce strong T-cell responses prior to challenge will not necessarily prevent persistent HCV infection.
Collapse
Affiliation(s)
- Montserrat Puig
- Laboratory of Hepatitis Viruses, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
268
|
el-Awady MK, Tabll AA, el-Abd YS, Bahgat MM, Shoeb HA, Youssef SS, Bader el-Din NG, Redwan ERM, el-Demellawy M, Omran MH, el-Garf WT, Goueli SA. HepG2 cells support viral replication and gene expression of hepatitis C virus genotype 4 in vitro. World J Gastroenterol 2006; 12:4836-4842. [PMID: 16937465 PMCID: PMC4087617 DOI: 10.3748/wjg.v12.i30.4836] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 12/23/2005] [Accepted: 01/24/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To establish a cell culture system with long-term replication of hepatitis C virus (HCV) genome and expression of viral antigens in vitro. METHODS HepG2 cell line was tested for its susceptibility to HCV by incubation with a serum from a patient with chronic hepatitis C. Cells and supernatant were harvested at various time points during the culture. Culture supernatant was tested for its ability to infect naive cells. The presence of minus (antisense) RNA strand, and the detection of core and E1 antigens in cells were examined by RT-PCR and immunological techniques (flow cytometry and Western blot) respectively. RESULTS The intracellular HCV RNA was first detected on d 3 after infection and then could be consistently detected in both cells and supernatant over a period of at least three months. The fresh cells could be infected with supernatant from cultured infected cells. Flow cytometric analysis showed surface and intracellular HCV antigen expression using in house made polyclonal antibodies (anti-core, and anti-E1). Western blot analysis showed the expression of a cluster of immunogenic peptides at molecular weights extended between 31 and 45 kDa in an one month old culture of infected cells whereas this cluster was undetectable in uninfected HepG2 cells. CONCLUSION HepG2 cell line is not only susceptible to HCV infection but also supports its replication in vitro. Expression of HCV structural proteins can be detected in infected HepG2 cells. These cells are also capable of shedding viral particles into culture media which in turn become infectious to uninfected cells.
Collapse
Affiliation(s)
- Mostafa K el-Awady
- Department of Biomedical Technology, National Research Center, Tahrir Street, PO 12622, Dokki, Cairo, Egypt.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
269
|
el-Awady MK, Tabll AA, el-Abd YS, Bahgat MM, Shoeb HA, Youssef SS, Bader el-Din NG, Redwan ERM, el-Demellawy M, Omran MH, el-Garf WT, Goueli SA. HepG2 cells support viral replication and gene expression of hepatitis C virus genotype 4 in vitro. World J Gastroenterol 2006. [PMID: 16937465 DOI: 10.3748/wjg.v12.i30.4836.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
AIM To establish a cell culture system with long-term replication of hepatitis C virus (HCV) genome and expression of viral antigens in vitro. METHODS HepG2 cell line was tested for its susceptibility to HCV by incubation with a serum from a patient with chronic hepatitis C. Cells and supernatant were harvested at various time points during the culture. Culture supernatant was tested for its ability to infect naive cells. The presence of minus (antisense) RNA strand, and the detection of core and E1 antigens in cells were examined by RT-PCR and immunological techniques (flow cytometry and Western blot) respectively. RESULTS The intracellular HCV RNA was first detected on d 3 after infection and then could be consistently detected in both cells and supernatant over a period of at least three months. The fresh cells could be infected with supernatant from cultured infected cells. Flow cytometric analysis showed surface and intracellular HCV antigen expression using in house made polyclonal antibodies (anti-core, and anti-E1). Western blot analysis showed the expression of a cluster of immunogenic peptides at molecular weights extended between 31 and 45 kDa in an one month old culture of infected cells whereas this cluster was undetectable in uninfected HepG2 cells. CONCLUSION HepG2 cell line is not only susceptible to HCV infection but also supports its replication in vitro. Expression of HCV structural proteins can be detected in infected HepG2 cells. These cells are also capable of shedding viral particles into culture media which in turn become infectious to uninfected cells.
Collapse
Affiliation(s)
- Mostafa K el-Awady
- Department of Biomedical Technology, National Research Center, Tahrir Street, PO 12622, Dokki, Cairo, Egypt.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
270
|
Bartenschlager R. Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Curr Opin Microbiol 2006; 9:416-22. [PMID: 16814596 DOI: 10.1016/j.mib.2006.06.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 06/21/2006] [Indexed: 01/26/2023]
Abstract
There has been major progress in our understanding of hepatitis C virus (HCV) molecular virology in recent years. An essential prerequisite for this progress was the availability of functional molecular HCV clones, that serve as a starting point in order to establish cell culture systems. The first of these was the HCV replicon system, which used self-replicating subgenomic viral RNAs. However, these replicons only recapitulated the intracellular life cycle, and did not support production of infectious virus: this became possible with the identification of an HCV isolate that, for unknown reasons, replicates to very high levels in a human hepatoma cell line. Cells containing this genome release virus particles that are infectious in cell culture and in vivo. Without doubt, this system provides new possibilities for molecular studies of the HCV life cycle and the development of novel antiviral concepts.
Collapse
Affiliation(s)
- Ralf Bartenschlager
- Department of Molecular Virology, Hygiene Institut, University Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| |
Collapse
|
271
|
Elliot LN, Lloyd AR, Ziegler JB, Ffrench RA. Protective immunity against hepatitis C virus infection. Immunol Cell Biol 2006; 84:239-49. [PMID: 16509830 DOI: 10.1111/j.1440-1711.2006.01427.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is increasing evidence that a small percentage of individuals exposed to the hepatitis C virus have the capacity to generate a strong cellular immune response against the virus and avoid persistent infection, and perhaps do so repeatedly after re-exposure. This article reviews the evidence that the responses identified in this unique group of individuals represent the protective immunity that will need to be elicited by hepatitis C virus vaccines.
Collapse
Affiliation(s)
- Lisa N Elliot
- School of Women's and Children's Health, The University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
272
|
Griffiths P. Progress with hepatitis C. Rev Med Virol 2006; 16:205-7. [PMID: 16823762 DOI: 10.1002/rmv.510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
273
|
Yagi S, Mori K, Shiota K. Implications of the HCV subgenome discovery for viral pathogenesis, persistence and proliferation. Future Virol 2006. [DOI: 10.2217/17460794.1.4.425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hepatitis C virus (HCV) subgenome with an in-frame deletion for envelope proteins has been identified in active chronic hepatitis C patients. The revealed features of the HCV subgenome share structural and biological similarities with the defective interfering particles of the RNA viruses, thus suggesting that the HCV subgenome is probably an HCV-defective interfering genome. The HCV subgenome provides an insight into the life cycle of HCV, the mechanisms of RNA replication and virus packaging, and the etiology of the progressive worsening of HCV-induced liver disease.
Collapse
Affiliation(s)
- Shintaro Yagi
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agricultural & Life Sciences, The Universit of Tokyo 1–1-1 Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Kenichi Mori
- Advanced Life Science Institute, Inc., 2–10–23 Maruyamadi, Wako, Saitama, 351–0112, Japan
| | - Kunio Shiota
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agricultural & Life Sciences, The Universit of Tokyo 1–1-1 Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| |
Collapse
|
274
|
Gallegos-Orozco JF, Arenas JI, Vargas HE, Kibler KV, Wilkinson JK, Nowicki M, Radkowski M, Nasseri J, Rakela J, Laskus T. Selection of different 5' untranslated region hepatitis C virus variants during post-transfusion and post-transplantation infection. J Viral Hepat 2006; 13:489-98. [PMID: 16792543 DOI: 10.1111/j.1365-2893.2006.00724.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) translation is initiated in a cap-independent manner by an internal ribosome entry site (IRES) located within the 5' untranslated region (5'UTR). Sequence changes in this region could affect translation efficiency and presumably viral replication. AIM To determine translation efficiency of 5'UTR variants developing during post-transfusion hepatitis C in two immunocompetent subjects and in two immunosuppressed liver recipients with recurrent HCV. METHODS Sequential samples were screened for 5'UTR changes by single-strand conformation polymorphism followed by cloning and sequencing whenever band pattern suggested sequence changes. 5'UTR variants were tested for IRES activity using a bicistronic dual luciferase expression plasmid transfected into HepG2 and Huh7 cell-lines. RESULTS In the transfused patients, translation efficiency of 5'UTR variants from early post-transfusion samples was 5.1- to 13.7-fold higher than that of predominant variants found in late follow-up samples. Post-transplant variants in the other two patients had 2.6- to 5.9-fold higher translation efficiency than those present only in pretransplant samples. CONCLUSION In the immunocompetent host there may be selection of low translation efficiency HCV variants over the course of infection. However, in immunosuppressed subjects the opposite seems to be true as low translation efficiency variants are superseded by high translation efficiency variants.
Collapse
Affiliation(s)
- J F Gallegos-Orozco
- Division of Transplantation Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
275
|
Yang XJ, Liu J, Ye L, Liao QJ, Wu JG, Gao JR, She YL, Wu ZH, Ye LB. HCV NS2 protein inhibits cell proliferation and induces cell cycle arrest in the S-phase in mammalian cells through down-regulation of cyclin A expression. Virus Res 2006; 121:134-43. [PMID: 16797769 DOI: 10.1016/j.virusres.2006.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/28/2006] [Accepted: 02/07/2006] [Indexed: 11/29/2022]
Abstract
Chronic hepatitis C virus (HCV) infection often leads to liver cancer. NS2 protein is a HCV hydrophobic transmembrane protein that associates with several cellular proteins in mammalian cells. In this report, we investigated the functions of NS2 protein by examining its effects on cell growth and cell cycle progression. Stable NS2-expressing HeLa and Vero cell lines were established by transfection of the cells with pcDNA3.1(-)-NS2 followed by selection of the transfected cells in the presence of G418. We found that the proliferation rates of both NS2-expressing cell lines were inhibited by 40-50% compared with the control cells that were transfected with pcDNA3.1(-) control vector. Cell cycle analysis of these NS2-expressing cell lines shows that the proportion of cells in the S-phase increased significantly compared to that of control cells that do not express NS2 protein, suggesting NS2 protein induces cell cycle arrest in the S-phase. Further studies showed that the induction of cell cycle arrest in the S-phase by NS2 protein is associated with the decrease of cyclin A level. In contrast, the expression of NS2 protein does not affect the levels of cyclin-dependent kinase CDK2, CDK4, cyclin D1, or cyclin E. Our results suggest that HCV NS2 protein inhibits cell growth and induces the cell cycle arrest in the S-phase through down-regulation of cyclin A expression, which may be beneficial to HCV viral replication. Our findings not only provide information in the understanding mechanism of HCV infection, but also provide guidance for the future development of potential therapeutics for the prevention and treatment of the viral infection.
Collapse
Affiliation(s)
- Xiao-Jun Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
276
|
Fan X, Xu Y, Di Bisceglie AM. Efficient amplification and cloning of near full-length hepatitis C virus genome from clinical samples. Biochem Biophys Res Commun 2006; 346:1163-72. [PMID: 16793008 PMCID: PMC7092855 DOI: 10.1016/j.bbrc.2006.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 06/02/2006] [Indexed: 11/27/2022]
Abstract
Long RT-PCR (LRP) amplification of RNA templates is sometimes difficult compared to long PCR of DNA templates. Among RNA templates, hepatitis C virus (HCV) represents an excellent example to challenge the potential of LRP technology due to its extensive secondary structures and its difficulty to be readily cultured in vitro. The only source for viral genome amplification is clinical samples in which HCV is usually present at low titers. We have created a comprehensive optimization protocol that allows robust amplification of a 9.1 kb fragment of HCV, followed by efficient cloning into a novel vector. Detailed analyses indicate the lack of potential LRP-mediated recombination and the preservation of viral diversity. Thus, our LRP protocol could be applied for the amplification of other difficult RNA templates and may facilitate RNA virus research such as linked viral mutations and reverse genetics.
Collapse
Affiliation(s)
- Xiaofeng Fan
- Division of Gastroenterology and Hepatology, Saint Louis University Liver Center, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
277
|
Manigold T, Shin EC, Mizukoshi E, Mihalik K, Murthy KK, Rice CM, Piccirillo CA, Rehermann B. Foxp3+CD4+CD25+ T cells control virus-specific memory T cells in chimpanzees that recovered from hepatitis C. Blood 2006; 107:4424-32. [PMID: 16478885 PMCID: PMC1895795 DOI: 10.1182/blood-2005-09-3903] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/12/2006] [Indexed: 01/09/2023] Open
Abstract
Hepatitis C virus (HCV) poses a global health problem because it readily establishes persistent infection and a vaccine is not available. CD4(+)CD25(+) T cells have been implicated in HCV persistence because their frequency is increased in the blood of HCV-infected patients and their in vitro depletion results in increased IFN-gamma production by HCV-specific T cells. Studying a well-characterized cohort of 16 chimpanzees, the sole animal model for HCV infection, we here demonstrate that the frequency of Foxp3(+)CD4(+)CD25(+) regulatory T cells (T(Regs)) and the extent of suppression was as high in spontaneously HCV-recovered chimpanzees as in persistently HCV-infected chimpanzees. Foxp3(+)CD4(+)CD25(+) T(Regs) suppressed IFN-gamma production, expansion, and activation-induced cell death of HCV-specific T cells after recovery from HCV infection and in persistent HCV infection. Thus, T(Reg) cells control HCV-specific T cells not only in persistent infection but also after recovery, where they may regulate memory T-cell responses by controlling their activation and preventing apoptosis. However, Foxp3(+)CD4(+)CD25(+) T(Reg) cells of both HCV-recovered and HCV-infected chimpanzees differed from Foxp3(+)CD4(+)CD25(+)T(Reg) cells of HCV-naive chimpanzees in increased IL-2 responsiveness and lower T-cell receptor excision circle content, implying a history of in vivo proliferation. This result suggests that HCV infection alters the population of Foxp3(+)CD4(+)CD25(+) T(Reg) cells.
Collapse
Affiliation(s)
- Tobias Manigold
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
278
|
Kanda T, Basu A, Steele R, Wakita T, Ryerse JS, Ray R, Ray RB. Generation of infectious hepatitis C virus in immortalized human hepatocytes. J Virol 2006; 80:4633-9. [PMID: 16611923 PMCID: PMC1472020 DOI: 10.1128/jvi.80.9.4633-4639.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Progress in understanding hepatitis C virus (HCV) biology has remained a challenge due to the lack of an efficient cell culture system for virus growth. In this study, we examined HCV core protein-mediated immortalized human hepatocytes (IHH) for growth of HCV. In vitro-transcribed full-length RNA from HCV genotype 1a (clone H77) was introduced into IHH by electroporation. Reverse transcription-PCR of cellular RNA isolated from HCV genome-transfected IHH suggested that viral RNA replication occurred. IHH transfected with the full-length HCV genome also displayed viral protein expression by indirect immunofluorescence. In contrast, cells transfected with polymerase-defective HCV (H77/GND) RNA as a negative control did not exhibit expression of the viral genome. Immunogold labeling demonstrated localization of E1 protein in the rough endoplasmic reticulum of RNA-transfected IHH. Virus-like particles of approximately 50 nm were observed in the cytoplasm. After being inoculated with culture media of cells transfected with the full-length HCV genome, naïve IHH displayed NS5a protein expression in a dilution-dependent manner, but expression of NS5a was inhibited by prior incubation of culture medium with HCV-infected patient sera. NS5a-positive immunofluorescence of cell culture media of IHH transfected with full-length H77 RNA yielded approximately 4.5 x 10(4) to 1 x 10(5) focus-forming units/ml. A similar level of virus growth was observed upon transfection of RNA from HCV genotype 2a (JFH1) into IHH. Taken together, our results suggest that IHH support HCV genome replication and virus assembly.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Pathology, Saint Louis University, 3635 Vista Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
279
|
Abstract
Progress in understanding hepatitis C virus (HCV) biology has remained a challenge due to the lack of an efficient cell culture system for virus growth. In this study, we examined HCV core protein-mediated immortalized human hepatocytes (IHH) for growth of HCV. In vitro-transcribed full-length RNA from HCV genotype 1a (clone H77) was introduced into IHH by electroporation. Reverse transcription-PCR of cellular RNA isolated from HCV genome-transfected IHH suggested that viral RNA replication occurred. IHH transfected with the full-length HCV genome also displayed viral protein expression by indirect immunofluorescence. In contrast, cells transfected with polymerase-defective HCV (H77/GND) RNA as a negative control did not exhibit expression of the viral genome. Immunogold labeling demonstrated localization of E1 protein in the rough endoplasmic reticulum of RNA-transfected IHH. Virus-like particles of approximately 50 nm were observed in the cytoplasm. After being inoculated with culture media of cells transfected with the full-length HCV genome, naïve IHH displayed NS5a protein expression in a dilution-dependent manner, but expression of NS5a was inhibited by prior incubation of culture medium with HCV-infected patient sera. NS5a-positive immunofluorescence of cell culture media of IHH transfected with full-length H77 RNA yielded approximately 4.5 x 10(4) to 1 x 10(5) focus-forming units/ml. A similar level of virus growth was observed upon transfection of RNA from HCV genotype 2a (JFH1) into IHH. Taken together, our results suggest that IHH support HCV genome replication and virus assembly.
Collapse
|
280
|
Abstract
Hepatitis C virus (HCV) is a major public health problem, infecting an estimated 170 million people worldwide. Current therapy for HCV-related chronic hepatitis is based on the use of interferon. However, virus clearance rates are insufficient. Investigations to develop the anti-viral therapy or to understand the life cycle of this virus have been hampered by the lack of viral culture systems. We isolated the JFH-1 strain from a patient with fulminant hepatitis, and the JFH-1 subgenomic replicon could replicate efficiently in culture cell without adaptive mutation. Recently, we developed the HCV infection system in culture cells with this JFH-1 strain. The full-length JFH-1 RNA was transfected into Huh7 cells. Subsequently, viral RNA efficiently replicated in transfected cells and viral particles were secreted. Furthermore, secreted virus displayed infectivity for naive Huh7 cells. This system provides a powerful tool for studying the viral life cycle and constructing anti-viral strategies.
Collapse
Affiliation(s)
- Takanobu Kato
- Department of Microbiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo
| | | |
Collapse
|
281
|
Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, Steinmann E, Abid K, Negro F, Dreux M, Cosset FL, Bartenschlager R. Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A 2006; 103:7408-13. [PMID: 16651538 PMCID: PMC1455439 DOI: 10.1073/pnas.0504877103] [Citation(s) in RCA: 601] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Indexed: 02/06/2023] Open
Abstract
Chronic liver disease caused by infection with hepatitis C virus (HCV) is an important global health problem that currently affects 170 million people. A major impediment in HCV research and drug development has been the lack of culture systems supporting virus production. This obstacle was recently overcome by using JFH1-based full-length genomes that allow production of viruses infectious both in vitro and in vivo. Although this improvement was important, because of the restriction to the JFH1 isolate and a single chimera consisting of J6CF and JFH1-derived sequences, broadly based comparative studies between different HCV strains were not possible. Therefore, in this study we created a series of further chimeric genomes allowing production of infectious genotype (GT) 1a, 1b, 2a, and 3a particles. With the exception of the GT3a/JFH1 chimera, efficient virus production was obtained when the genome fragments were fused via a site located right after the first transmembrane domain of NS2. The most efficient construct is a GT2a/2a chimera consisting of J6CF- and JFH1-derived sequences connected via this junction. This hybrid, designated Jc1, yielded infectious titers 100- to 1,000-fold higher than the parental isolate and all other chimeras, suggesting that determinants within the structural proteins govern kinetic and efficiency of virus assembly and release. Finally, we describe an E1-specific antiserum capable of neutralizing infectivity of all HCV chimeras.
Collapse
Affiliation(s)
- Thomas Pietschmann
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Artur Kaul
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - George Koutsoudakis
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Anna Shavinskaya
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Stephanie Kallis
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Eike Steinmann
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Karim Abid
- Divisions of Gastroenterology and Hepatology and Clinical Pathology, University Hospital, 24 Rue Micheli-du-Crest, CH-1211 Geneva, Switzerland
| | - Francesco Negro
- Divisions of Gastroenterology and Hepatology and Clinical Pathology, University Hospital, 24 Rue Micheli-du-Crest, CH-1211 Geneva, Switzerland
| | - Marlene Dreux
- Department of Human Virology, L'Institut Fédératif de Recherche 128, Biosciences Lyon-Gerland, Institut National de la Santé et de la Recherche Médicale U758, 69364 Lyon Cedex 07, France; and
- Department of Human Virology, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Francois-Loic Cosset
- Department of Human Virology, L'Institut Fédératif de Recherche 128, Biosciences Lyon-Gerland, Institut National de la Santé et de la Recherche Médicale U758, 69364 Lyon Cedex 07, France; and
- Department of Human Virology, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Ralf Bartenschlager
- *Department of Molecular Virology, University of Heidelberg, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| |
Collapse
|
282
|
Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A 2006. [PMID: 16651538 DOI: 10.1073/pnas.0504877103.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chronic liver disease caused by infection with hepatitis C virus (HCV) is an important global health problem that currently affects 170 million people. A major impediment in HCV research and drug development has been the lack of culture systems supporting virus production. This obstacle was recently overcome by using JFH1-based full-length genomes that allow production of viruses infectious both in vitro and in vivo. Although this improvement was important, because of the restriction to the JFH1 isolate and a single chimera consisting of J6CF and JFH1-derived sequences, broadly based comparative studies between different HCV strains were not possible. Therefore, in this study we created a series of further chimeric genomes allowing production of infectious genotype (GT) 1a, 1b, 2a, and 3a particles. With the exception of the GT3a/JFH1 chimera, efficient virus production was obtained when the genome fragments were fused via a site located right after the first transmembrane domain of NS2. The most efficient construct is a GT2a/2a chimera consisting of J6CF- and JFH1-derived sequences connected via this junction. This hybrid, designated Jc1, yielded infectious titers 100- to 1,000-fold higher than the parental isolate and all other chimeras, suggesting that determinants within the structural proteins govern kinetic and efficiency of virus assembly and release. Finally, we describe an E1-specific antiserum capable of neutralizing infectivity of all HCV chimeras.
Collapse
|
283
|
El-Awady MK, Tabll AA, Atef K, Yousef SS, Omran MH, El-Abd Y, Bader-Eldin NG, Salem AM, Zohny SF, El-Garf WT. Antibody to E1 peptide of hepatitis C virus genotype 4 inhibits virus binding and entry to HepG2 cells in vitro. World J Gastroenterol 2006. [PMID: 16688798 DOI: 10.3748/wjg.v12.i16.2530.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
AIM To analyze the neutralizing activity of antibodies against E1 region of hepatitis C virus (HCV). Specific polyclonal antibody was raised via immunization of New Zealand rabbits with a synthetic peptide that had been derived from the E1 region of HCV and was shown to be highly conserved among HCV published genotypes. METHODS Hyper-immune HCV E1 antibodies were incubated over night at 4 degree Celsius with serum samples positive for HCV RNA, with viral loads ranging from 615 to 3.2 million IU/ mL. Treated sera were incubated with HepG2 cells for 90 min. Blocking of viral binding and entry into cells by anti E1 antibody were tested by means of RT-PCR and flow cytometry. RESULTS Direct immunostaining using FITC conjugated E1 antibody followed by Flow cytometric analysis showed reduced mean fluorescence intensity in samples pre-incubated with E1 antibody compared with untreated samples. Furthermore, 13 out of 18 positive sera (72%) showed complete inhibition of infectivity as detected by RT-PCR. CONCLUSION In house produced E1 antibody, blocks binding and entry of HCV virion infection to target cells suggesting the involvement of this epitope in virus binding and entry. Isolation of these antibodies that block virus attachment to human cells are useful as therapeutic reagents.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Department of Biomedical Technology, National Research Center, Dokki, Cairo, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
284
|
El-Awady MK, Tabll AA, Atef K, Yousef SS, Omran MH, El-Abd Y, Bader-Eldin NG, Salem AM, Zohny SF, El-Garf WT. Antibody to E1 peptide of hepatitis C virus genotype 4 inhibits virus binding and entry to HepG2 cells in vitro. World J Gastroenterol 2006; 12:2530-2535. [PMID: 16688798 PMCID: PMC4087985 DOI: 10.3748/wjg.v12.i16.2530] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 12/26/2005] [Accepted: 01/14/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the neutralizing activity of antibodies against E1 region of hepatitis C virus (HCV). Specific polyclonal antibody was raised via immunization of New Zealand rabbits with a synthetic peptide that had been derived from the E1 region of HCV and was shown to be highly conserved among HCV published genotypes. METHODS Hyper-immune HCV E1 antibodies were incubated over night at 4 degree Celsius with serum samples positive for HCV RNA, with viral loads ranging from 615 to 3.2 million IU/ mL. Treated sera were incubated with HepG2 cells for 90 min. Blocking of viral binding and entry into cells by anti E1 antibody were tested by means of RT-PCR and flow cytometry. RESULTS Direct immunostaining using FITC conjugated E1 antibody followed by Flow cytometric analysis showed reduced mean fluorescence intensity in samples pre-incubated with E1 antibody compared with untreated samples. Furthermore, 13 out of 18 positive sera (72%) showed complete inhibition of infectivity as detected by RT-PCR. CONCLUSION In house produced E1 antibody, blocks binding and entry of HCV virion infection to target cells suggesting the involvement of this epitope in virus binding and entry. Isolation of these antibodies that block virus attachment to human cells are useful as therapeutic reagents.
Collapse
Affiliation(s)
- Mostafa K El-Awady
- Department of Biomedical Technology, National Research Center, Dokki, Cairo, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
285
|
Lindenbach BD, Meuleman P, Ploss A, Vanwolleghem T, Syder AJ, McKeating JA, Lanford RE, Feinstone SM, Major ME, Leroux-Roels G, Rice CM. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc Natl Acad Sci U S A 2006; 103:3805-9. [PMID: 16484368 PMCID: PMC1533780 DOI: 10.1073/pnas.0511218103] [Citation(s) in RCA: 343] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease, frequently progressing to cirrhosis and increased risk of hepatocellular carcinoma. Current therapies are inadequate and progress in the field has been hampered by the lack of efficient HCV culture systems. By using a recently described HCV genotype 2a infectious clone that replicates and produces infectious virus in cell culture (HCVcc), we report here that HCVcc strain FL-J6/JFH can establish long-term infections in chimpanzees and in mice containing human liver grafts. Importantly, virus recovered from these animals was highly infectious in cell culture, demonstrating efficient ex vivo culture of HCV. The improved infectivity of animal-derived HCV correlated with virions of a lower average buoyant density than HCVcc, suggesting that physical association with low-density factors influences viral infectivity. These results greatly extend the utility of the HCVcc genetic system to allow the complete in vitro and in vivo dissection of the HCV life cycle.
Collapse
Affiliation(s)
- Brett D. Lindenbach
- *Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Philip Meuleman
- Center for Vaccinology, Ghent University and Hospital, Building A, First Floor, De Pintelaan 185, 9000 Ghent, Belgium
| | - Alexander Ploss
- *Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Thomas Vanwolleghem
- Center for Vaccinology, Ghent University and Hospital, Building A, First Floor, De Pintelaan 185, 9000 Ghent, Belgium
| | - Andrew J. Syder
- *Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Jane A. McKeating
- Division of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | - Robert E. Lanford
- Department of Virology and Immunology, Southwest National Primate Research Center and Southwest Foundation for Biomedical Research, 7620 NW Loop 410, San Antonio, TX 78245; and
| | - Stephen M. Feinstone
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892
| | - Marian E. Major
- Laboratory of Hepatitis Viruses, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892
| | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University and Hospital, Building A, First Floor, De Pintelaan 185, 9000 Ghent, Belgium
| | - Charles M. Rice
- *Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| |
Collapse
|
286
|
Bukh J, Purcell RH. A milestone for hepatitis C virus research: a virus generated in cell culture is fully viable in vivo. Proc Natl Acad Sci U S A 2006; 103:3500-1. [PMID: 16505349 PMCID: PMC1533773 DOI: 10.1073/pnas.0600551103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jens Bukh
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
287
|
Dash S, Haque S, Joshi V, Prabhu R, Hazari S, Fermin C, Garry R. HCV-hepatocellular carcinoma: new findings and hope for effective treatment. Microsc Res Tech 2006; 68:130-48. [PMID: 16276514 DOI: 10.1002/jemt.20227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present here a comprehensive review of the current literature plus our own findings about in vivo and in vitro analysis of hepatitis C virus (HCV) infection, viral pathogenesis, mechanisms of interferon action, interferon resistance, and development of new therapeutics. Chronic HCV infection is a major risk factor for the development of human hepatocellular carcinoma. Standard therapy for chronic HCV infection is the combination of interferon alpha and ribavirin. A significant number of chronic HCV patients who cannot get rid of the virus infection by interferon therapy experience long-term inflammation of the liver and scarring of liver tissue. Patients who develop cirrhosis usually have increased risk of developing liver cancer. The molecular details of why some patients do not respond to standard interferon therapy are not known. Availability of HCV cell culture model has increased our understanding on the antiviral action of interferon alpha and mechanisms of interferon resistance. Interferons alpha, beta, and gamma each inhibit replication of HCV, and the antiviral action of interferon is targeted to the highly conserved 5'UTR used by the virus to translate protein by internal ribosome entry site mechanism. Studies from different laboratories including ours suggest that HCV replication in selected clones of cells can escape interferon action. Both viral and host factors appear to be involved in the mechanisms of interferon resistance against HCV. Since interferon therapy is not effective in all chronic hepatitis C patients, alternative therapeutic strategies are needed to treat chronic hepatitis C patients not responding to interferon therapy. We also reviewed the recent development of new alternative therapeutic strategies for chronic hepatitis C, which may be available in clinical use within the next decade. There is hope that these new agents along with interferon will prevent the occurrence of hepatocellular carcinoma due to chronic persistent hepatitis C virus infection. This review is not inclusive of all important scientific publications due to space limitation.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
288
|
White PW, Llinas-Brunet M, Bös M. Blunting the Swiss army knife of hepatitis C virus: inhibitors of NS3/4A protease. PROGRESS IN MEDICINAL CHEMISTRY 2006; 44:65-107. [PMID: 16697895 DOI: 10.1016/s0079-6468(05)44402-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
289
|
Brass V, Moradpour D, Blum HE. Molecular virology of hepatitis C virus (HCV): 2006 update. Int J Med Sci 2006; 3:29-34. [PMID: 16614739 PMCID: PMC1415840 DOI: 10.7150/ijms.3.29] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/10/2006] [Indexed: 02/06/2023] Open
Abstract
Fascinating progress in the understanding of the molecular biology of hepatitis C virus (HCV) was achieved recently. The replicon system revolutionized the investigation of HCV RNA replication and facilitated drug discovery. Novel systems for functional analyses of the HCV glycoproteins allowed the validation of HCV receptor candidates and the investigation of cell entry mechanisms. Most recently, recombinant infectious HCV could be produced in cell culture, rendering all steps of the viral life cycle, including entry and release of viral particles, amenable to systematic analysis. In this review, we summarize recent advances and discuss future research directions.
Collapse
Affiliation(s)
- Volker Brass
- Department of Medicine II, University of Freiburg, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
290
|
Yao E, Tavis JE, the Virahep-C Study Group. A general method for nested RT-PCR amplification and sequencing the complete HCV genotype 1 open reading frame. Virol J 2005; 2:88. [PMID: 16321149 PMCID: PMC1325262 DOI: 10.1186/1743-422x-2-88] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 12/01/2005] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) is a pathogenic hepatic flavivirus with a single stranded RNA genome. It has a high genetic variability and is classified into six major genotypes. Genotype 1a and 1b cause the majority of infections in the USA. Viral genomic sequence information is needed to correlate viral variation with pathology or response to therapy. However, reverse transcription-polymerase chain reaction (RT-PCR) of the HCV genome must overcome low template concentration and high target sequence diversity. Amplification conditions must hence have both high sensitivity and specificity yet recognize a heterogeneous target population to permit general amplification with minimal bias. This places divergent demands of the amplification conditions that can be very difficult to reconcile. RESULTS RT and nested PCR conditions were optimized independently and systematically for amplifying the complete open reading frame (ORF) from HCV genotype 1a and 1b using several overlapping amplicons. For each amplicon, multiple pairs of nested PCR primers were optimized. Using these primers, the success rate (defined as the rate of production of sufficient DNA for sequencing with any one of the primer pairs for a given amplicon) for amplification of 72 genotype 1a and 1b patient plasma samples averaged over 95% for all amplicons. In addition, two sets of sequencing primers were optimized for each genotype 1a and 1b. Viral consensus sequences were determined by directly sequencing the amplicons. HCV ORFs from 72 patients have been sequenced using these primers. Sequencing errors were negligible because sequencing depth was over 4-fold and both strands were sequenced. Primer bias was controlled and monitored through careful primer design and control experiments. CONCLUSION Optimized RT-PCR and sequencing conditions are useful for rapid and reliable amplification and sequencing of HCV genotype 1a and 1b ORFs.
Collapse
Affiliation(s)
- Ermei Yao
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | - John E Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
- Saint Louis University Liver Center, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | | |
Collapse
|
291
|
Duong FHT, Christen V, Berke JM, Penna SH, Moradpour D, Heim MH. Upregulation of protein phosphatase 2Ac by hepatitis C virus modulates NS3 helicase activity through inhibition of protein arginine methyltransferase 1. J Virol 2005; 79:15342-50. [PMID: 16306605 PMCID: PMC1315989 DOI: 10.1128/jvi.79.24.15342-15350.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 09/20/2005] [Indexed: 01/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma worldwide. HCV has a positive-strand RNA genome of about 9.4 kb in size, which serves as a template for replication and for translation of a polyprotein of about 3,000 amino acids. The polyprotein is cleaved co- and posttranslationally by cellular and viral proteases into at least 10 different mature proteins. One of these proteins, nonstructural protein 3 (NS3), has serine protease and NTPase/RNA helicase activity. Arginine 467 in the helicase domain of NS3 (arginine 1493 in the polyprotein) can be methylated by protein arginine methyltransferase 1 (PRMT1). Here we report that the methylation of NS3 inhibits the enzymatic activity of the helicase. Furthermore, we found that PRMT1 activity itself is regulated by protein phosphatase 2A (PP2A). PP2A inhibits PRMT1 enzymatic activity and therefore increases the helicase activity of NS3. This is important, because we found an increased expression of PP2A in cell lines with inducible HCV protein expression, in transgenic mice expressing HCV proteins in hepatocytes, and in liver biopsy samples from patients with chronic hepatitis C. Interestingly, up-regulation of PP2A not only modulates the enzymatic activity of an important viral protein, NS3 helicase, but also interferes with the cellular defense against viruses by inhibiting interferon-induced signaling through signal transducer and activator of transcription 1 (STAT1). We conclude that up-regulation of PP2A might be crucial for the efficient replication of HCV and propose PP2A as a potential target for anti-HCV treatment strategies.
Collapse
Affiliation(s)
- Francois H T Duong
- Department of Research and Division of Gastroenterology and Hepatology, University Hospital Basel, CH-4031 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
292
|
Berke JM, Moradpour D. Hepatitis C virus comes full circle: production of recombinant infectious virus in tissue culture. Hepatology 2005; 42:1264-9. [PMID: 16317703 DOI: 10.1002/hep.20980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jan Martin Berke
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland
| | | |
Collapse
|
293
|
Kong LB, Ye LB, Ye L, Timani KA, Zheng Y, Liao QJ, Li BZ, Gao B. Establishment of stable HeLa cell lines expressing enzymatically active hepatitis C virus RNA polymerase. Arch Virol 2005; 151:361-7. [PMID: 16328144 DOI: 10.1007/s00705-005-0656-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 09/09/2005] [Indexed: 10/25/2022]
Abstract
The hepatitis C virus RNA polymerase (NS5B) is strictly required for viral replication and thus represents an attractive target for antiviral drug development. In this study, stable HeLa cell lines with an integrated NS5B gene were selected by G418 and then confirmed by genome PCR. Subsequently, transcription and expression of the integrated NS5B genes were demonstrated by RT-PCR and Western blot analysis. Further analysis demonstrated enzymatic activity of the expressed NS5B polymerase. The stable HeLa cell lines should be useful for the identification of NS5B inhibitors and for studying the mechanisms of HCV replication.
Collapse
Affiliation(s)
- L B Kong
- State Key Laboratory of Virology, College of Life Science, Wuhan University, Wuhan, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
294
|
Shin EC, Protzer U, Untergasser A, Feinstone SM, Rice CM, Hasselschwert D, Rehermann B. Liver-directed gamma interferon gene delivery in chronic hepatitis C. J Virol 2005; 79:13412-20. [PMID: 16227262 PMCID: PMC1262601 DOI: 10.1128/jvi.79.21.13412-13420.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gamma interferon (IFN-gamma) has been shown to inhibit replication of subgenomic and genomic hepatitis C virus (HCV) RNAs in vitro and to noncytolytically suppress hepatitis B virus (HBV) replication in vivo. IFN-gamma is also known for its immunomodulatory effects and as a marker of a successful cellular immune response to HCV. Therapeutic expression of IFN-gamma in the liver may therefore facilitate resolution of chronic hepatitis C, an infection that is rarely resolved spontaneously. To analyze immunomodulatory and antiviral effects of liver-specific IFN-gamma expression in vivo, we intravenously injected two persistently HCV-infected chimpanzees twice with a recombinant, replication-deficient HBV vector and subsequently with a recombinant adenoviral vector. These vectors expressed human IFN-gamma under control of HBV- and liver-specific promoters, respectively. Gene transfer resulted in a transient increase of intrahepatic IFN-gamma mRNA, without increase in serum alanine aminotransferase levels. Ex vivo analysis of peripheral blood lymphocytes demonstrated enhanced CD16 expression on T cells and upregulation of the liver-homing marker CXCR3. Moreover, an increased frequency of HCV-specific T cells was detected ex vivo in the peripheral blood and in vitro in liver biopsy-derived, antigen-nonspecifically expanded T-cell lines. None of these immunologic effects were observed in the third chimpanzee injected with an HBV control vector. Despite these immunologic effects of the experimental vector, however, IFN-gamma gene transfer did not result in a significant and long-lasting decrease of HCV titers. In conclusion, liver-directed IFN-gamma gene delivery resulted in HCV-specific and nonspecific activation of cellular immune responses but did not result in effective control of HCV replication.
Collapse
Affiliation(s)
- Eui-Cheol Shin
- Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, 10 Center Drive, Room 9B16, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
295
|
Abdalla MY, Ahmad IM, Spitz DR, Schmidt WN, Britigan BE. Hepatitis C virus-core and non structural proteins lead to different effects on cellular antioxidant defenses. J Med Virol 2005; 76:489-97. [PMID: 15977232 DOI: 10.1002/jmv.20388] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis C virus (HCV) infection leads to increased oxidative stress in the liver. Hepatic antioxidant enzymes provide an important line of defense against oxidative injury. To understand the antioxidant responses of hepatocytes to different HCV proteins, we compared changes in antioxidative enzymes in HCV-core and HCV-nonstructural protein expressing hepatocyte cell lines. We found that expression of HCV-core protein in hepatocyte cell lines leads to increased oxidative stress as determined by increased in the oxidant-sensitive probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-DCFH(2)) fluorescence, decreased reduced glutathione (GSH), and increased oxidation of thioredoxin (Trx). Although the expression of HCV-nonstructural (HCV-NS) proteins led to increased oxidative stress as well, the antioxidant enzymatic responses were different. Over-expression of HCV-NS proteins increased antioxidant enzymes (MnSOD and catalase), heme oxygenase-1 (HO-1), and GSH, indicating different mechanism(s) of prooxidative activity than HCV-core protein. Our findings show that different HCV proteins induce different antioxidant defense responses in hepatocytes. These findings may facilitate understanding the interaction of different HCV proteins with infected liver cells and help identify possible factors contributing to hepatocyte damage during HCV infection.
Collapse
Affiliation(s)
- Maher Y Abdalla
- Department of Internal Medicine of the Roy G. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
296
|
Cai Z, Zhang C, Chang KS, Jiang J, Ahn BC, Wakita T, Liang TJ, Luo G. Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. J Virol 2005; 79:13963-73. [PMID: 16254332 PMCID: PMC1280219 DOI: 10.1128/jvi.79.22.13963-13973.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/22/2005] [Indexed: 01/15/2023] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide, with an increased risk of developing cirrhosis and hepatocellular carcinoma. The study of HCV replication and pathogenesis has been hampered by the lack of an efficient stable cell culture system and small-animal models of HCV infection and propagation. In an effort to develop a robust HCV infection system, we constructed stable human hepatoma cell lines that contain a chromosomally integrated genotype 2a HCV cDNA and constitutively produce infectious virus. Transcriptional expression of the full-length HCV RNA genome is under the control of a cellular Pol II polymerase promoter at the 5' end and a hepatitis delta virus ribozyme at the 3' end. The resulting HCV RNA was expressed and replicated efficiently, as shown by the presence of high levels of HCV proteins as well as both positive- and negative-strand RNAs in the stable Huh7 cell lines. Stable cell lines robustly produce HCV virions with up to 10(8) copies of HCV viral RNA per milliliter (ml) of the culture medium. Subsequent infection of naïve Huh7.5 cells with HCV released from the stable cell lines resulted in high levels of HCV proteins and RNAs. Additionally, HCV infection was inhibited by monoclonal antibodies specific to CD81 and the HCV envelope glycoproteins E1 and E2, and HCV replication was suppressed by alpha interferon. Collectively, these results demonstrate the establishment of a stable HCV culture system that robustly produces infectious virus, which will allow the study of each aspect of the entire HCV life cycle.
Collapse
Affiliation(s)
- Zhaohui Cai
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | |
Collapse
|
297
|
Schofield DJ, Bartosch B, Shimizu YK, Allander T, Alter HJ, Emerson SU, Cosset FL, Purcell RH. Human monoclonal antibodies that react with the E2 glycoprotein of hepatitis C virus and possess neutralizing activity. Hepatology 2005; 42:1055-62. [PMID: 16250048 DOI: 10.1002/hep.20906] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Active and/or passive immunoprophylaxis against hepatitis C virus (HCV) remain unachieved goals. Monoclonal antibodies might provide one approach to protection. We derived human monoclonal antibodies from the bone marrow of a patient with a well-controlled HCV infection of 22 years duration. Five distinct antibodies reactive with the E2 glycoprotein of the homologous 1a strain of HCV were recovered as antigen-binding fragments (FAbs). They demonstrated affinity constants as high as 2 nanomolar. "Neutralization of binding" titers paralleled the affinity constants. All five FAbs reacted with soluble E2 protein only in nonreducing gels, indicating that the relevant epitopes were conformational. The FAbs could be divided into two groups, based on competition analysis. Three of the FAbs neutralized the infectivity of pseudotyped virus particles (pp) bearing the envelope glycoproteins of the homologous HCV strain (genotype 1a). The three FAbs also neutralized genotype 1b pp and one also neutralized genotype 2a pp. In conclusion, one or more of these monoclonal antibodies may be useful in preventing infections by HCV belonging to genotype 1 or 2, the most medically important genotypes worldwide.
Collapse
Affiliation(s)
- Darren J Schofield
- Hepatitis Viruses Section, Laboratory of Infectious Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892-8009, USA
| | | | | | | | | | | | | | | |
Collapse
|
298
|
Huang L, Hwang J, Sharma SD, Hargittai MRS, Chen Y, Arnold JJ, Raney KD, Cameron CE. Hepatitis C Virus Nonstructural Protein 5A (NS5A) Is an RNA-binding Protein. J Biol Chem 2005; 280:36417-28. [PMID: 16126720 DOI: 10.1074/jbc.m508175200] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to antagonize numerous cellular pathways, including the antiviral interferon-alpha response. However, the capacity of this protein to interact with the viral polymerase suggests a more direct role for NS5A in genome replication. In this study, we employed two bacterially expressed, soluble derivatives of NS5A to probe for novel functions of this protein. We find that NS5A has the capacity to bind to the 3'-ends of HCV plus and minus strand RNAs. The high affinity binding site for NS5A in the 3'-end of plus strand RNA maps to the polypyrimidine tract, an element known to be essential for genome replication and infectivity. NS5A has a preference for single-stranded RNA containing stretches of uridine or guanosine. Values for the equilibrium dissociation constants for high affinity binding sites were in the 10 nM range. Two-dimensional gel electrophoresis followed by Western blotting revealed the presence of unphosphorylated NS5A in Huh-7 cells stably expressing the subgenomic replicon. Moreover, RNA immunoprecipitation and NS5A pull-down experiments showed the capacity of replicon-derived NS5A to bind to synthetic RNA and the HCV genome, respectively. Deletion of all of the casein kinase II phosphorylation sites in NS5A supported stable replication of a subgenomic replicon in Huh-7. However, this derivative could not be labeled with inorganic phosphate, suggesting that extensive phosphorylation of NS5A is not required for the replication functions of NS5A. The discovery that NS5A is an RNA-binding protein defines a new functional target for development of agents to treat HCV infection and a new structural class of RNA-binding proteins.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Binding, Competitive
- Biotinylation
- Blotting, Western
- Collodion/chemistry
- Cross-Linking Reagents/pharmacology
- Dose-Response Relationship, Drug
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Gene Deletion
- Genome, Viral
- Guanosine Monophosphate/chemistry
- Immunoprecipitation
- Kinetics
- Models, Genetic
- Models, Statistical
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotides/chemistry
- Phosphorylation
- Protein Binding
- Protein Structure, Tertiary
- Pyrimidines/chemistry
- RNA/chemistry
- RNA-Binding Proteins/chemistry
- Recombinant Proteins/chemistry
- Transcription, Genetic
- Ultraviolet Rays
- Uridine Monophosphate/chemistry
- Viral Nonstructural Proteins/metabolism
- Viral Nonstructural Proteins/physiology
Collapse
Affiliation(s)
- Luyun Huang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
299
|
Abstract
Since the discovery of the hepatitis C virus over 15 years ago, scientists have raced to develop diagnostics, study the virus and find new therapies. Yet virtually every attempt to dissect this pathogen has met with roadblocks that impeded progress. Its replication was restricted to humans or experimentally infected chimpanzees, and efficient growth of the virus in cell culture failed until very recently. Nevertheless hard-fought progress has been made and the first wave of antiviral drugs is entering clinical trials.
Collapse
Affiliation(s)
- Brett D Lindenbach
- Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
300
|
Takahashi H, Yamaji M, Hosaka M, Kishine H, Hijikata M, Shimotohno K. Analysis of the 5' end structure of HCV subgenomic RNA replicated in a Huh7 cell line. Intervirology 2005; 48:104-11. [PMID: 15812182 DOI: 10.1159/000081736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 03/10/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Recently, HCV subgenomic RNA that replicates in vitro in a certain cell line have been elucidated. Since the 5' end of the genome of positive strand RNA viruses is often modified with a cap structure or a covalently linked protein, we have assessed structural feature of the HCV genome obtained from Huh7 cells in which HCV subgenomic RNA has been shown to efficiently self-replicate. METHODS HCV subgenomic RNA was obtained from the Huh7 and was analyzed for its 5' end. RESULTS Phosphorylation of the genomic RNA by polynucleotide kinase was observed only after treatment with phosphatase. The labeling efficiency of the genome with polynucleotide kinase was not enhanced by treatment with pyrophosphatase. CONCLUSION It is suggested that the 5' end of HCV genomic RNA obtained from HCV replicon cells is not modified except phosphorylation. Furthermore, analysis of the 5' end of the HCV RNA obtained from the HCV subgenome self-replicating cells revealed the presence of two types of subgenomic RNA that contained either guanylate or adenylate at the 5' end. This result indicates that the 5' end of the subgenome in Huh7 cells is redundant and there is no significant evolutionary advantage between the two genomes.
Collapse
Affiliation(s)
- Hitoshi Takahashi
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|